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Abstract

We derive a posteriori error estimates for both semidiscrete and implicit fully dis-

crete backward Euler method for linear parabolic integro-differential equations in a

bounded convex polygonal or polyhedral domain. A novel space-time reconstruction

operator is introduced, which is a generalization of the elliptic reconstruction operator

[SIAM J. Numer. Anal., 41(2003), no. 4, pp. 1585–1594], and we call it as Ritz-Volterra

reconstruction operator. The Ritz-Volterra reconstruction operator in conjunction with

the linear approximation of the Volterra integral term are used in a crucial way to de-

rive optimal order a posteriori error estimates in L∞(L2) and L2(H1)-norms. The

related a posteriori error estimates for the Ritz-Volterra reconstruction error are also

established. We allow only nested refinement of the space meshes for the fully discrete

analysis.

Keywords. Parabolic integro-differential equation; finite element method; semidiscrete,

fully discrete; optimal a posteriori error estimate.

1 Introduction

In this paper, we address successfully the problem of obtaining a posteriori error estimates for

both semidiscrete and fully discrete approximations to the solutions of the initial-boundary

value problems for the linear parabolic integro-differential equations (PIDE) of the form

ut(x, t) +Au(x, t) =

∫ t

0

B(t, s)u(x, s)ds+ f(x, t), (x, t) ∈ Ω× J,(1)

u(x, t) = 0, (x, t) ∈ ∂Ω× J̄ ,

u(x, 0) = u0(x), x ∈ Ω.
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Here, Ω ⊂ Rd, d ≥ 1 is a bounded convex polygonal or polyhedral domain with boundary

∂Ω, J = (0, T ] with T < ∞ and ut(x, t) =
∂u
∂t (x, t). Further, A is a self-adjoint, uniformly

positive definite second-order linear elliptic partial differential operator of the form

A = −∇ · (A∇u),

and the operator B(t, s) is of the form

B(t, s) = −∇ · (B(t, s)∇u),

where “∇” denotes the spatial gradient and the coefficients matrices A and B(t, s) are as-

sumed to be in L∞(Ω)
d×d

. Moreover, the initial value u0 = u0(x) and the nonhomogeneous

term f are assumed to be smooth for our purpose.

Such problems and variants of them arise in various applications, such as heat conduction

in material with memory [10], the compression of poro-viscoelasticity media [11], nuclear

reactor dynamics [12] and the epidemic phenomena in biology [5]. The existence, uniqueness

and regularity results for above problems can be found in [22] and references therein.

A priori error estimates for such kind of problems and their variants are quite rich in

the literature. We refer to [4, 14, 16, 20, 22] for optimal order a priori error estimates for

semidiscrete scheme and [23] for fully discrete scheme. Although a wide range of articles

related to a priori error estimates are available, a posteriori error estimation of such kind of

problems is still wide open.

A posteriori error estimation is the basis for efficient adaptive meshing procedures de-

signed to control and minimize the error. Over the last two decades, a posteriori error

analysis for the finite element methods for partial differential equations has been an area of

active research [1,6–8,13,15]. While much of interest has focussed on elliptic and parabolic

problems, relatively less progress has been made in the direction of a posteriori error anal-

ysis of PIDE. For an overview and summary of current research activities in the later area

we refer to the articles [18, 19]. In the absence of the memory term, i.e., when B(t, s) = 0,

a posteriori error analysis for linear parabolic problems have been investigated by several

authors [2,6,8,13,15,21] in recent years. In [8], the authors have derived quasi-optimal error

estimates in L∞(L2(Ω))-norm via duality technique. Subsequently, optimal order estimates

in L2(H1(Ω)) and suboptimal estimates in L∞(L2(Ω)) norms are derived in [21]. In [13,15],

the authors have used the elliptic reconstruction in combination with energy techniques to

derive optimal order a posteriori error estimates for the heat equation in L∞(L2(Ω))-norm.

Since then several authors have considered the elliptic reconstruction operator as an ana-

lytical tool to derive a posteriori error estimates in various norms for linear and nonlinear

parabolic problems [9, 13,15].

In this paper, we have derived first optimal order a posteriori bounds for PIDE in

L∞(L2(Ω))-norm for the semidiscrete case and in L∞(L2(Ω)) and L2(H1(Ω)) norms of the

error for the practically more relevant backward Euler fully discrete scheme. The proof of

a posteriori bounds for the semidiscrete and fully discrete analysis necessitates the careful

introduction of a novel space-time reconstruction operator and we call it as Ritz-Volterra

reconstruction operator. This Ritz-Volterra reconstruction may be thought of as a general-

ization of the elliptic reconstruction introduced earlier by the authors in [13,15] for parabolic

problems. An attempt has been made in this exposition to carry over a posteriori error anal-

ysis of parabolic problems to PIDE. Due to the presence of the Volterra integral term in
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(1) such an extension is not straightforward. The complications arises because the Volterra

integral term memorizes the jumps over all element edges in all previous space meshes. We

first prove optimal order a posteriori error estimates for the Ritz-Volterra reconstruction

error. Then, introducing Ritz-Volterra reconstruction operator as an intermediate solution

we derive a posteriori error estimates. For fully discrete analysis, we allow only nested

refinement of the space meshes.

We organize the paper as follows. In Section 2, we introduce some standard notations

and preliminary materials to be used in the subsequent sections. The Ritz-Volterra recon-

struction operator in the context of semidiscrete scheme is introduced in Section 3. Section

4 is devoted to the related a posteriori error estimates for the reconstruction error and a

posteriori error estimate for the parabolic error. Further, optimal order a posteriori error

estimate in L∞(L2) norm is derived for the semidiscrete scheme. Finally, optimal order a

posteriori error estimates for the implicit backward Euler fully discrete scheme are estab-

lished in Section 5.

2 Notations and preliminaries

Given a Lebesgue measurable set ω ⊂ R2, we denote by Lp(ω), 1 ≤ p ≤ +∞, the Lebesgue

spaces with corresponding norms ‖ · ‖Lp(ω). When p = 2, the space L2(ω) is equipped with

inner product 〈·, ·〉ω and the induced norm ‖ · ‖L2(ω). Whenever ω = Ω, we remove the

subscripts of ‖.‖L2(ω) and 〈·, ·〉ω. Further, we shall use the standard notation for Sobolev

spaces Wm,p(ω) with 1 ≤ p ≤ +∞. The norm on Wm,p(ω) is defined by

‖v‖m,p,ω =

(∫
ω

∑
|α|≤m

|Dαv|pdx

)1/p

, 1 ≤ p <∞

with the standard modification for p = ∞. When p = 2, we write Wm,2(Ω) by Hm(Ω) and

denote the norm by ‖ · ‖m. In particular, H1
0 (Ω) signifies the space of functions in H1(Ω)

that vanish on the boundary of Ω (boundary values are taken in the sense of traces).

Let a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R be the bilinear form corresponding to the elliptic

operator A defined by

a(v, ψ) := 〈A∇v,∇ψ〉, ∀ v, ψ ∈ H1
0 (Ω).

Similarly, let b(t, s; ·, ·) be the bilinear form corresponding to the operator B(t, s) defined on

H1
0 (Ω)×H1

0 (Ω) by

b(t, s; v(s), ψ) := 〈B(t, s)∇v(s),∇ψ〉, ∀ v(s), ψ ∈ H1
0 (Ω).

Let bt(t, s; ·, ·) and bs(t, s; ·, ·) be the bilinear forms obtained by differentiating the coefficient

of b(t, s; ·, ·) with respect to t and s, respectively.

We assume that the bilinear form a(·, ·) is continuous and coercive on H1
0 (Ω) i.e.,

(2) |a(ψ, φ)| ≤ α‖ψ‖1‖φ‖1 and a(φ, φ) ≥ β‖φ‖21, ∀ ψ, φ ∈ H1
0 (Ω),

with α, β ∈ R+. Further, we assume that the bilinear forms b(t, s; ·, ·) and bs(t, s; ·, ·) are

continuous on H1
0 (Ω) i.e.,

|b(t, s;ψ(s), φ)| ≤ γ‖ψ(s)‖1‖φ‖1, ∀ ψ(s), φ ∈ H1
0 (Ω),(3)

|bs(t, s;ψ(s), φ)| ≤ γ′‖ψ(s)‖1‖φ‖1, ∀ ψ(s), φ ∈ H1
0 (Ω),(4)
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with γ, γ′ ∈ R+.

The weak formulation of the problem (1.1) may be stated as follows: Find u : J̄ → H1
0 (Ω)

such that

〈ut, φ〉+ a(u, φ) =

∫ t

0

b(t, s;u(s), φ)ds+ 〈f, φ〉, ∀φ ∈ H1
0 (Ω), t ∈ J,(5)

u(0) = u0.

3 Semidiscrete finite element approximations and Ritz-

Volterra reconstruction

Let h(x) = diam(K), where K ∈ Th and x ∈ K denotes positive piecewise constant mesh-

size function corresponds to Th = {K}, a shape regular, conforming triangulation of Ω. Let

Eh = {E} be the set of internal sides of Th. These internal sides are edges in d = 2 and

faces in d = 3. The union of all internal sides
⋃

E∈Eh
E be denoted as

∑
h .

We associate the following finite element space corresponding to Th:

Sh = {χ ∈ H1
0 (Ω) : χ|K ∈ Pk(K), for all K ∈ Th},

where Pk is the space of polynomials of degree ≤ k with k ∈ Z+. The semidiscrete finite

element approximation uh : J̄ → Sh of u is defined by

〈uh,t, χ〉+ a(uh, χ) =

∫ t

0

b(t, s;uh(s), χ)ds+ 〈f, χ〉, ∀χ ∈ Sh,(6)

uh(., 0) = P 0
hu0,

where P 0
hu0 is the L2-projection of u0 onto Sh.

Representation of the bilinear forms. For a function v ∈ Sh, following [13], the bilinear

form a(u, v) can be represented as

a(v, φ) =
∑

K∈Th

〈−div(A∇v), φ〉K +
∑
E∈Eh

〈J1[v], φ〉E , ∀φ ∈ H1
0 (Ω),

where J1[v] is the spatial jump of the field A∇v across an element side E ∈ Eh defined as

(7) J1[v]|E(x) = [A∇v]E(x) := lim
ε→0

(A∇v(x+ ενE)−A∇v(x− ενE)).νE ,

where νE is a unit normal vector to E at the point x. For v ∈ Sh, let Aelv be the regular

part of the distribution −div(A∇v), which is defined as a piecewise continuous function such

that

〈Aelv, φ〉 =
∑

K∈Th

〈−div(A∇v), φ〉, ∀φ ∈ H1
0 (Ω).

Thus, we can represent our bilinear form a(·, ·) as

a(v, φ) = 〈Aelv, φ〉+ 〈J1[v], φ〉∑
h
, ∀φ ∈ H1

0 (Ω).(8)

Similarly, one can represent the bilinear form b(t, s; ·, ·) as

(9) b(t, s; v(s), φ) = 〈Bel(t, s)v(s), φ〉+ 〈J2[v(s)], φ〉∑
h
, ∀φ ∈ H1

0 (Ω),
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where Bel(t, s)v(s) is the regular part of the distribution−div(B(t, s)∇v(s)), which is defined

as a piecewise continuous function such that

(10) 〈Bel(t, s)v(s), φ〉 =
∑

K∈Th

〈−div(B(t, s)∇v(s)), φ〉, ∀φ ∈ H1
0 (Ω),

and J2[v(s)] is the spatial jump of the field −div(B(t, s)∇v(s)) across an element side E ∈ Eh
as defined in (7) with B(t, s) replacing A.

For s ∈ [0, t], following [18], we define the discrete operators Ah : H1
0 (Ω) → Sh and

Bh(t, s) : H
1
0 (Ω) → Sh by

(11) 〈Ahw,χ〉 = a(w,χ) and 〈Bh(t, s)w(s), χ〉 = b(t, s;w(s), χ), ∀χ ∈ Sh.

Recall from [14] the following Ritz-Volterra projection Wh : J̄ → Sh defined by

(12) a(Whu− u, χ) =

∫ t

0

b(t, s; (Whu− u)(s), χ)ds, ∀χ ∈ Sh, t ∈ J̄ .

Definition 3.1 (Elliptic reconstruction [13, 15]) For a given v ∈ H1
0 (Ω), we define the

elliptic reconstruction operator R : [0, T ] → H1
0 (Ω) associated with the bilinear form a(·, ·)

and is given by

a(Rv, φ) = 〈Ahv, φ〉, ∀φ ∈ H1
0 (Ω).

The following definition generalize the concept of elliptic reconstruction and we call it as

Ritz-Volterra reconstruction.

Definition 3.2 (Ritz-Volterra reconstruction) Define the time-dependent Ritz-Volterra re-

construction Rw : [0, T ] → H1
0 , which plays a crucial role in our error analysis, by

a(Rwv, φ)−
∫ t

0

b(t, s;Rwv(s), φ)ds = 〈Ahv, φ〉 −
∫ t

0

〈Bh(t, s)v(s), φ〉ds,(13)

for all φ ∈ H1
0 (Ω).

The function Rwv is referred to as the Ritz-Volterra reconstruction of v. Note that in

the absence of the memory term this definition is equivalent to the definition of the elliptic

reconstruction operator above. Although, similar to the elliptic reconstruction we define the

domain of definition of Ritz-Volterra reconstruction to beH1
0 (Ω) but we will use it effectively

on the finite element spaces only. The wellposedness of the Ritz-Volterra reconstruction

operator follows analogously to that of the elliptic reconstruction operator [15].

Remark. For t ∈ J̄ , an important property of the Ritz-Volterra reconstruction operator

Rw is that for v ∈ H1
0 (Ω), v−Rwv is orthogonal to Sh with respect to a(·, ·)−

∫ t

0
b(t, s; ·, ·)ds,

i.e.,

(14) a(Rwv − v, φ)−
∫ t

0

b(t, s; (Rwv − v)(s), φ)ds = 0, ∀φ ∈ Sh.

This property is known as Galerkin orthogonality and is important in the sense that it allows

to obtain a posteriori error estimates.
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4 Analysis for the semidiscrete scheme

In order to give a posteriori error bounds, we decompose the main error e := uh − u as

follows:

e := ρ− ε, where ρ := Rwuh − u, ε := Rwuh − uh.

Here, ε is referred to as the reconstruction error whereas the time approximation error

information is conveyed by ρ, which will be referred to as the parabolic error. Unlike for the

parabolic problem [13, 15], we don’t have any a posteriori error estimators available in the

literature to control the error ε. In this section, we first derive a posteriori error estimates

for the reconstruction error (ε) which will then be used to obtain a posteriori error estimates

for the spatially semidiscrete Galerkin approximations to the problem (1).

We now recall from [17] the following interpolation error estimates.

Lemma 4.1 ( [17]) Let Πh : H1
0 (Ω) → Sh be the Clément-type interpolation operator.

Then, for sufficiently smooth ψ and finite element polynomial space of degree l, there exist

constants C1,j and C2,j depending only upon the shape-regularity of the family of triangula-

tions such that for j ≤ l + 1

‖h−j(ψ −Πhψ)‖ ≤ C1,j‖ψ‖j ,

and

‖h1/2−j(ψ −Πhψ)‖∑
h
≤ C2,j‖ψ‖j .

We shall use traditional residual type a posteriori error estimators.

Residual. Using the definitions of the discrete operators Ah and Bh(t, s) and the distribu-

tional form of semidiscrete equation (6), we have

Ahuh −
∫ t

0

Bh(t, s)uh(s)ds−Aeluh +

∫ t

0

Bel(t, s)uh(s)ds = R[uh] + (fh − f),

where R[uh] = f − uh,t −Aeluh +
∫ t

0
Bel(t, s)uh(s)ds are the inner residuals and fh = P 0

hf .

Further, we define

J[uh] = J1[uh]−
∫ t

0

J2[uh(s)]ds

as the jump residuals.

Below, we shall derive a posteriori error estimates for Ritz-Volterra reconstruction error.

Lemma 4.2 (Ritz-Volterra reconstruction error estimates)

For any v ∈ Sh, the following estimates holds true:

‖(Rwv − v)(t)‖1

≤ C1h‖Ahv −Aelv −
∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds‖

+C2h
1/2‖J1[v]−

∫ t

0

J2[v(s)]ds‖∑
h
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and

‖(Rwv − v)(t)‖

≤ C3h
2‖Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds‖

+C4h
3/2‖J1[v]−

∫ t

0

J2[v(s)]ds‖∑
h
,

where Cj , j = 1, 2, 3, 4 are positive constants independent of the discretization parameter but

depending upon the shape-regularity of the family of triangulations and the final time T .

Proof. For all φ ∈ H1
0 (Ω), using (8), (9) and (13) we have

a(Rwv − v, φ) −
∫ t

0

b(t, s; (Rwv − v)(s), φ)ds

= 〈Ahv, φ〉 −
∫ t

0

〈Bh(t, s)v(s)ds, φ〉 − a(v, φ) +

∫ t

0

b(t, s; v(s), φ)ds

= 〈Ahv −
∫ t

0

Bh(t, s)v(s)ds−Aelv +

∫ t

0

Bel(t, s)v(s)ds, φ〉

−〈J1[v]−
∫ t

0

J2[v(s)]ds, φ〉∑
h
.

An application of the Galerkin orthogonality (14) yields

a(Rwv − v, φ) −
∫ t

0

b(t, s; (Rwv − v)(s), φ)ds

= 〈Ahv −
∫ t

0

Bh(t, s)v(s)ds−Aelv +

∫ t

0

Bel(t, s)v(s)ds, φ−Πhφ〉

−〈J1[v]−
∫ t

0

J2[v(s)]ds, φ−Πhφ〉∑
h
.

Now using Lemma 4.1 with Ci,1, i = 1, 2 as interpolation constants, we obtain

|a(Rwv − v, φ)|

≤ C1,1h‖φ‖1‖Ahv −Aelv −
∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds‖

+C2,1h
1/2‖φ‖1‖J1[v]−

∫ t

0

J2[v(s)]ds‖∑
h
+

∫ t

0

|b(t, s; (Rwv − v)(s), φ)|ds.

Taking φ = Rwv − v and using (3), we have

|a(Rwv − v,Rwv − v)|

≤ ‖Rwv − v‖1
{
C1,1h‖Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds‖

+C2,1h
1/2‖J1[v]−

∫ t

0

J2[v(s)]ds‖∑
h
+ γ

∫ t

0

‖(Rwv − v)(s)‖1ds
}
.

Now, coercivity property of a(·, ·) and an application of the Gronwall’s lemma yield the

first inequality with Ci = C1,G(T )Ci,1/β, i = 1, 2, where C1,G is a constant appear due to

Gronwall’s lemma.
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The proof of L2 error estimate will proceed by the duality technique. For v ∈ Sh, let

ψ ∈ H2(Ω) ∩H1
0 (Ω) be the solution of

Aψ = Rwv − v in Ω,(15)

ψ = 0 on Ω,

satisfying the following regularity estimate (Ω is convex) with the constant CΩ depending

on the domain Ω:

(16) ‖ψ‖2 ≤ CΩ‖Rwv − v‖.

Multiplying (15) by Rwv− v and integrating over Ω and using Galerkin orthogonality (14),

we obtain

‖Rwv − v‖2 = a(Rwv − v, ψ −Πhψ) + a(Rwv − v,Πhψ)

= a(Rwv − v, ψ −Πhψ)−
∫ t

0

b(t, s; (Rwv − v)(s), ψ −Πhψ)ds

+

∫ t

0

b(t, s; (Rwv − v)(s), ψ)ds

= I1 + I2 + I3.

Using (8), (9) and (13), we arrive at

I1 + I2 = 〈Ahv −Aelv −
∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds, ψ −Πhψ〉

−〈J1[v]−
∫ t

0

J2[v(s)]ds, ψ −Πhψ〉∑
h
.

Now, using the fact

(17) b(t, s; (Rwv − v)(s), ψ) := 〈(Rwv − v)(s),B∗(t, s)ψ〉,

where B∗(t, s) is the formal adjoint of the operator B(t, s) and ‖B∗(t, s)ψ‖ ≤ CB∗
1
‖ψ‖2, we

obtain

|I3| ≤ CB∗
1
‖ψ‖2

∫ t

0

‖(Rwv − v)(s)‖ds.

The above bounds on I1, I2 and I3, and an application of Lemma 4.1 with the interpolation

constants as Ci,2, i = 1, 2, yields

‖Rwv − v‖2 ≤ ‖ψ‖2
{
C1,2h

2‖Ahv −Aelv −
∫ t

0

Bh(t, s)v(s)ds

+

∫ t

0

Bel(t, s)v(s)ds‖+ C2,2h
3/2‖J1[v]−

∫ t

0

J2[v(s)]ds‖∑
h

+CB∗
1

∫ t

0

‖(Rwv − v)(s)‖ds
}
.

And hence, with an aid of (16), we have

‖Rwv − v‖ ≤ C1,2CΩh
2‖Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds‖

+C2,2CΩh
3/2‖J1[v]−

∫ t

0

J2[v(s)]ds‖∑
h
+ CΩCB∗

1

∫ t

0

‖(Rwv − v)(s)‖ds.
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Finally, an application of the Gronwall’s lemma yield the desired estimate with C3 =

C2,G(T )C1,2CΩ and C4 = C2,G(T )C2,2CΩ, where C2,G is a constant appear due to Gron-

wall’s lemma.

We now define the following error estimators.

(18) Θ0(uh(t)) := C3h
2‖R[uh(t)]‖+ C4h

3/2‖J[uh(t)]‖,

(19) Osc(g(t)) := ‖gh(t)− g(t)‖.

Here, (19) denotes the oscillations of g in L2-norm where gh(t) = P 0
hg(t).

The following lemma yields a bound for the time derivative of the reconstruction error.

Lemma 4.3 For any v ∈ Sh, the following bound holds true in terms of the reconstruction

error:

‖(Rwv − v)t‖ ≤ C5h
2‖ d
dt

{
Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds
}
‖

+C6h
3/2‖ d

dt

{
J1[v]−

∫ t

0

J2[v(s)]ds
}
‖∑

h
+ C7

∫ t

0

‖(Rwv − v)(s)‖ds

+C8‖Rwv − v‖.

In particular, for finite element solution uh, the following a posteriori error bound holds

true:

‖(Rwuh − uh)t‖

≤ C5h
2‖ d
dt

{
Ahuh −Aeluh −

∫ t

0

Bh(t, s)uh(s)ds+

∫ t

0

Bel(t, s)uh(s)ds
}
‖

+C6h
3/2‖ d

dt

{
J1[uh]−

∫ t

0

J2[uh(s)]ds
}
‖∑

h
+ C7

∫ t

0

Θ0(uh)(s)ds

+C7C3

∫ t

0

h2 Osc(f(s))ds+ C8Θ0(uh) + C8C3h
2 Osc(f(t)),

where Cj , j = 5, 6, 7, 8 are the positive constants independent of the discretization parameter

but depending upon the shape-regularity of the family of triangulations and the final time T .

Proof. Differentiating (14) with respect to t, for all φ ∈ Sh, we have

a((Rwv − v)t, φ) − b(t, t; (Rwv − v)(t), φ)(20)

−
∫ t

0

bt(t, s; (Rwv − v)(s), φ)ds = 0.

Consider the dual elliptic problem with the forcing function to be (Rwv−v)t. For v ∈ Sh,

let ψ ∈ H2(Ω) ∩H1
0 (Ω), be the solution of

Aψ = (Rwv − v)t in Ω,(21)

ψ = 0 on Ω,

satisfying the following regularity estimate (Ω is convex) with the constant C̄Ω depending

on the domain Ω:

(22) ‖ψ‖2 ≤ C̄Ω‖(Rwv − v)t‖.
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We first multiply (21) by (Rwv− v)t and integrate over Ω. Then, rearranging terms and

using (20), we obtain

‖(Rwv − v)t‖2(23)

= a((Rwv − v)t, ψ −Πhψ)−
∫ t

0

bt(t, s; (Rwv − v)(s), ψ −Πhψ)ds

−b(t, t; (Rwv − v)(t), ψ −Πhψ) +

∫ t

0

bt(t, s; (Rwv − v)(s), ψ)ds

+b(t, t; (Rwv − v)(t), ψ) := J1 + J2 + J3 + J4 + J5.

In order to handle the first three terms, arguing analogously as in the proof for the second

inequality in Lemma 4.2, we have

a(Rwv − v, ψ −Πhψ)−
∫ t

0

b(t, s; (Rwv − v)(s), ψ −Πhψ)ds

= 〈Ahv −
∫ t

0

Bh(t, s)v(s)ds−Aelv +

∫ t

0

Bel(t, s)v(s)ds, ψ −Πhψ〉

−〈J1[v]−
∫ t

0

J2[v(s)]ds, ψ −Πhψ〉∑
h
.

We differentiate both sides of the above equation with respect to t. Then, use of Cauchy-

Schwarz inequality and Lemma 4.1 with the interpolation constants Ci,2, i = 1, 2 leads

to

|a((Rwv − v)t, ψ −Πhψ)−
∫ t

0

bt(t, s; (Rwv − v)(s), ψ −Πhψ)ds

−b(t, t; (Rwv − v)(t), ψ −Πhψ)|

= |〈 d
dt

{
Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds
}
, ψ −Πhψ〉

−〈 d
dt

{
J1[v]−

∫ t

0

J2[v(s)]ds
}
, ψ −Πhψ〉∑

h
|

≤ ‖ψ‖2
{
C1,2h

2‖ d
dt

{
Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds
}
‖

+C2,2h
3/2‖ d

dt

{
J1[v]−

∫ t

0

J2[v(s)]ds
}
‖∑

h

}
.

For the terms J4 and J5, use the fact

bt(t, s; (Rwv − v)(s), ψ) := 〈(Rwv − v)(s),B∗
t (t, s)ψ〉,

and (17) together with ‖B∗
t (t, s)ψ‖ ≤ CB∗

2
‖ψ‖2 and ‖B∗(t, t)ψ‖ ≤ CB∗

3
‖ψ‖2, where B∗

t (t, s)

is obtained by differentiating the coefficient of the operator B∗(t, s) with respect to t, to

obtain

‖(Rwv − v)t‖2

≤ ‖ψ‖2
{
C1,2h

2‖ d
dt

{
Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds
}
‖

+C2,2h
3/2‖ d

dt

{
J1[v]−

∫ t

0

J2[v(s)]ds
}
‖∑

h

+CB∗
2

∫ t

0

‖(Rwv − v)(s)‖ds+ CB∗
3
‖Rwv − v‖

}
.
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Using (22), the desired estimate follows with constants C5 = C1,2C̄Ω, C6 = C2,2C̄Ω, C7 =

CB∗
2
C̄Ω and C8 = CB∗

3
C̄Ω. The second estimate follows immediately from Lemma 4.2, (18)

and (19) with uh replacing v.

The first two terms in the previous error estimate can be handled in the following way.

‖ d
dt

{
Ahv −Aelv −

∫ t

0

Bh(t, s)v(s)ds+

∫ t

0

Bel(t, s)v(s)ds
}
‖

= ‖ d
dt

[R[uh] + (fh − f)]‖ = ‖Rt[uh]‖+Osc(ft(t)),

and

‖ d
dt

{
J1[v]−

∫ t

0

J2[v(s)]ds
}
‖∑

h
= ‖Jt[uh]‖∑

h
.

Now, we define the estimator for the time derivative of the reconstruction error by

Θ0,t(uh(t)) := C5h
2‖Rt[uh(t)]‖+ C5h

2 Osc(ft(t), L
2) + C6h

3/2‖Jt[uh]‖∑
h

(24)

+C7

∫ t

0

Θ0(uh)(s)ds+ C7C3

∫ t

0

h2 Osc(f(s))ds

+C8Θ0(uh) + C8C3h
2 Osc(f(t)).

We now derive a posteriori estimate for the parabolic error ρ in the following lemma.

Lemma 4.4 The following estimates holds true for the parabolic error:

‖ρ(t)‖ ≤ C9

[
‖ρ(0)‖+ 2

∫ t

0

{Θ0,t(uh(t)) +Osc(f(t))} ds

]
,

where C9 is a positive constant independent of the discretization parameter but depending

on the final time T .

Proof. Using (6) and the definition of the Ritz-Volterra reconstructions, we have the follow-

ing error equation for ρ(t)

〈ρt, φ〉+ a(ρ, φ)−
∫ t

0

b(t, s; ρ(s), φ)ds

= 〈Rwuh,t, φ〉+ a(Rwuh, φ)−
∫ t

0

b(t, s;Rwuh(s), φ)ds− 〈f, φ〉

= 〈Rwuh,t, φ〉+ 〈Ahuh −
∫ t

0

Bh(t, s)uh(s)ds, φ〉 − 〈f, φ〉

= 〈εt, φ〉+ 〈fh − f, φ〉, t ∈ J̄(25)

for all φ ∈ H1
0 (Ω). Set φ = ρ in the error equation (25). Apply Cauchy-Schwarz inequality

and Young’s inequality together with (3) to obtain

1

2

d

dt
‖ρ‖2 + a(ρ, ρ) = 〈εt, ρ〉+ 〈fh − f, ρ〉+

∫ t

0

b(t, s; ρ(s), ρ)ds(26)

≤ 1

2
β‖ρ‖21 +

γ2

2β

(∫ t

0

‖ρ(s)‖1ds

)2

+
(
‖εt‖+ ‖fh − f‖

)
‖ρ‖.
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Integrate (26) from 0 to t. Then, use coercivity property of a(·, ·) and Cauchy-Schwarz

inequality to obtain

‖ρ(t)‖2 + β

∫ t

0

‖ρ‖21 ≤ ‖ρ(0)‖2 + C ′(T )γ2

β

∫ t

0

∫ s

0

‖ρ(τ)‖21dτds

+2

∫ t

0

(
‖εt‖+ ‖fh − f‖

)
‖ρ‖ds,

where C ′(T ) is a positive constant depending on the final time T . Applying Gronwall’s

lemma and letting ‖ρ(t̄)‖ = sups≤t ‖ρ(s)‖, 0 ≤ t̄ ≤ t, with the notations (19) and (24)

yields the required estimate.

The semidiscrete a posteriori estimate in L∞(L2)-norm is presented in the following

theorem.

Theorem 4.5 (Semidiscrete a posteriori error estimate) Let u and uh satisfy (1) and (6),

respectively. Then the following a posteriori error bound holds for 0 ≤ t ≤ T :

max
0≤t≤T

‖(u− uh)(t)‖ ≤ C9

[
‖u(0)− uh(0)‖+Θ0(uh(0)) + C3h

2Osc(f(0))

+2

∫ t

0

(
Θ0,t(uh(t)) +Osc(f(t))

)
ds

]
+Θ0(uh(t)),

where C9 is as defined in Lemma 4.4.

Proof. Choosing the Ritz-Volterra reconstruction Rwuh ∈ H1
0 (Ω) as the comparison func-

tion, express the error as

(27) e(t) = uh(t)− u(t) = (Rwuh(t)− u(t))− (Rwuh(t)− uh(t)) = ρ(t)− ε(t).

Also, we have

‖ρ(0)‖ ≤ ‖u(0)− uh(0)‖+ ‖Rwuh(0)− uh(0)‖ = ‖u(0)− uh(0)‖+ ‖ε(0)‖.

Combine Lemma 4.2 with Lemma 4.4 and (27) to complete the rest of the proof.

Remarks. (i) The a posteriori error estimator obtained in Theorem 4.5 generalizes the

result of purely parabolic problem to parabolic integro-differential equation. In the absence

of the memory term (i.e., B(t, s) = 0), our error estimator is similar to that for the parabolic

problem [15].

(ii) Theorem 4.5 gives the dual a posteriori analogue of a priori error estimate for semi-

discrete finite element approximations to PIDE (cf. [14]).

(iii) Note that Ritz-Volterra reconstruction operator defined by (13) is a partial right

inverse of the Ritz-Volterra projection [14] defined by (12). Let Û denote the Ritz-Volterra

reconstruction of the finite element solution uh, then by Galerkin orthogonality property

(14)

Û = Rwuh ⇒WhÛ = uh.
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5 Analysis for the fully discrete scheme

In this section, we shall discuss a posteriori error bounds for the fully discrete Galerkin

approximations to the PIDE (1) based on backward Euler method. While dealing with

the fully discrete scheme, we use the same symbols introduced for the semidiscrete scheme

by dropping the subscript index h and using the index n. Here, we denote the fully dis-

crete finite element approximation by U as compared with the semi-discrete finite element

approximation uh.

In order to discretize in time, we introduce the partition 0 = t0 < t1 < . . . < tN = T

of [0, T ]. Let In := (tn−1, tn] and we denote by τn := tn − tn−1 the time steps. For

t = tn, n ∈ [0 : N ], we set fn(·) = f(·, tn).
Let hn(x) = diam(K), where K ∈ Tn and x ∈ K denotes the local mesh-size function

corresponds to each given triangulation Tn. Let Sn denotes the set of internal sides of Tn
representing edges in d = 2 or faces in d = 3, and

∑
n denotes the union of all internal sides

∪E∈SnE.

Let (Tn)n∈[0:N ] be family of conforming triangulations of the domain Ω. Each triangu-

lation (Tn), for n ∈ [1 : N ], is a refinement of a macro-triangulation M of the domain Ω

that satisfies the same conformity and shape-regularity assumptions (cf. [3]) made on its

refinements. We assume the following admissible criteria as mentioned in [13]:

1. The refined triangulation is conforming.

2. The shape-regularity of an arbitrary refinement depends only on the shape-regularity

of the macro-triangulation M.

We allow only nested refinement of the space meshes at each time level t = tn, n ∈ [0 : N ]

i.e., for 0 ≤ j ≤ i ≤ N, Si∩Sj = Sj , (cf. [18]). The complications arises during mesh change

because the Volterra integral term memorizes the jumps over element edges in all previous

space meshes.

Now we associate with these triangulations the finite element spaces:

Vn := {φ ∈ H1
0 (Ω) : φ|K ∈ Pl, ∀K ∈ Tn},

where Pl is the space of polynomials in d variables of degree at most l ∈ Z+.

Let σn be the quadrature rule used to discretize the Volterra integral term. To be

consistent with the backward difference scheme, we use the left rectangular rule given by

σn(y) =
n−1∑
j=0

τj+1y(tj) ≈
∫ tn

0

y(s)ds.

For a function v ∈ Vn, the bilinear form a(·, ·) can be represented in the same way as in (8)

i.e.,

a(v, φ) = 〈Aelv, φ〉+ 〈J1[v], φ〉∑
n
, ∀φ ∈ H1

0 (Ω).

But, the representation of the bilinear form b(tn; ·, ·) needs a little modification. For a

function v ∈ H1
0 (Ω), we represent the bilinear form b(tn; ·, ·) as

σn(b(tn; v, φ)) = 〈σn(Belv), φ〉+ 〈σn(J2[v]), φ〉∑
n
, ∀φ ∈ H1

0 (Ω),
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where Belv and J2[v] have the usual meaning as in (10) and

σn(b(tn; v, φ)) = 〈σn(B(tn)∇v),∇φ〉 = 〈
n−1∑
j=0

τj+1B(tn, tj)∇v(tj),∇φ〉.

The discrete operators An and Bn(s) at t = tn for the fully discrete case are defined in

the same way as in (11). Associated with An, let Rn be the corresponding fully discrete

elliptic reconstruction operator. Moreover, Pn
0 denotes the L2 projection operator into Vn.

The backward Euler-Galerkin fully discrete scheme may be stated as follows: Given

U0 = P 0
0 u(0), find U

n ∈ Vn, n ∈ [1 : N ] such that

(28) τ−1
n 〈Un − Un−1, φn〉+ a(Un, φn) = σn(b(tn;U, φn)) + 〈fn, φn〉, ∀φn ∈ Vn.

For all t ∈ In, we introduce the continuous, piecewise linear approximation in time

defined by

U(t) := ln−1(t)U
n−1 + ln(t)U

n, for n ∈ [1 : N ],

where ln−1(t) and ln(t) are functions defined by

ln(t) :=
t− tn−1

τn
and ln−1(t) :=

tn − t

τn
.

In the context of fully discrete error analysis, we now define the Ritz-Volterra recon-

struction operator Rn
w : Vn → H1

0 by

(29) a(Rn
wv, φ)− σn(b(tn;Rwv, φ)) = 〈Anv, φ〉 − 〈σn(Bnv), φ〉, ∀ φ ∈ H1

0 (Ω).

We shall use the following definitions in the subsequent analysis:

∂Un :=
Un − Un−1

τn
, ∂̄Un := Pn

0 ∂U
n =

Un − Pn
0 U

n−1

τn
, ∀ n ∈ [1 : N ]

and

f̄n := Pn
0 f

n.

Further, Lemma 4.1 holds true for the fully discrete case with Πn : H1
0 (Ω) → Vn as the

Clément-type interpolation operator as introduced in [17].

Lemma 5.1 (Ritz-Volterra reconstruction error estimates)

For any v ∈ Vn, the following estimates holds true:

‖Rn
wv − v‖1 ≤ C1hn‖Anv −Aelv − σn(Bnv) + σn(Belv)‖

+C2h
1/2
n ‖J1[v]− σn(J2[v])‖∑

n
,

‖Rn
wv − v‖ ≤ C3h

2
n‖Anv −Aelv − σn(Bnv) + σn(Belv)‖

+C4h
3/2
n ‖J1[v]− σn(J2[v])‖∑

n
,

where Cj , j = 1, 2, 3, 4 are the positive constants independent of the discretization parameters

but depending upon the shape-regularity of the family of triangulations and the final time T .
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Proof. The proof is same as that in the semidiscrete case. The discrete Gronwall’s lemma [23]

is used instead of the continuous one and the quadrature approximation is taken for the

integral term.

For any φ ∈ H1
0 (Ω), we have from (28)

〈∂̄Un +AnUn − σn(BnU)− f̄n, φ〉 = 〈∂̄Un +AnUn − σn(BnU)− f̄n, Pn
0 φ〉

= 〈∂̄Un, Pn
0 φ〉+ a(Un, Pn

0 φ)− σn(b(tn;U,P
n
0 φ))− 〈f̄n, Pn

0 φ〉

= τ−1
n 〈Un − Pn

0 U
n−1, Pn

0 φ〉+ a(Un, Pn
0 φ)− σn(b(tn;U,P

n
0 φ))− 〈f̄n, Pn

0 φ〉

= τ−1
n 〈Un − Un−1, Pn

0 φ〉+ a(Un, Pn
0 φ)− σn(b(tn;U,P

n
0 φ))− 〈fn, Pn

0 φ〉

= 0.

The fully discrete scheme can be written in the following distributional form:

(30) ∂̄Un +AnUn(x) = σn(BnU(x)) + f̄n(x), ∀x ∈ Ω.

For the sake of convenience, we shall use the following shorthand notation

ω(t) = RwU(t), for t ∈ In

to denote the Ritz-Volterra reconstruction of fully discrete solution U(t). Now, associate

ω(t), t ∈ In with the values ωn and ωn−1 by

ω(t) := ln−1(t)ω
n−1 + ln(t)ω

n.

Lemma 5.2 For each n ∈ [1 : N ], and for each φ ∈ H1
0 (Ω), we have the following parabolic

error equation

〈ρt, φ〉 + a(ρ, φ)−
∫ t

0

b(t, s; ρ(s), φ)ds(31)

= 〈εt, φ〉+ a(ω − ωn, φ)−
∫ t

0

b(t, s;ω(s), φ)ds

+σn(b(tn;ω, φ)) + 〈Pn
0 f

n − f, φ〉+ τ−1
n 〈Pn

0 U
n−1 − Un−1, φ〉.

Proof. For t ∈ In, using (29), (5) and (30), we have ∀φ ∈ H1
0 (Ω)

〈ρt, φ〉 + a(ρ, φ)−
∫ t

0

b(t, s; ρ(s), φ)ds

= 〈ωt, φ〉+ a(ω, φ)−
∫ t

0

b(t, s;ω(s), φ)ds− 〈f, φ〉

= 〈ωt, φ〉+ a(ω, φ)−
∫ t

0

b(t, s;ω(s), φ)ds− 〈f, φ〉 − 〈∂Un, φ〉

+τ−1
n 〈Pn

0 U
n−1 − Un−1, φ〉 − a(ωn, φ) + σn(b(tn;ω, φ)) + 〈Pn

0 f
n, φ〉

= 〈εt, φ〉+ a(ω − ωn, φ)−
∫ t

0

b(t, s;ω(s), φ)ds+ σn(b(tn;ω, φ))

+〈Pn
0 f

n − f, φ〉+ τ−1
n 〈Pn

0 U
n−1 − Un−1, φ〉,

where we have used the fact that ∂Un = Ut(t), ∀t ∈ In.
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Remark. One can observe that in the absence of time-discretization error and mesh

change error ( i.e., in the absence of the second, third, fourth and sixth terms in (31))

fully-discrete parabolic error equation (31) reduces to the parabolic error equation (25) for

the semidiscrete scheme. This shows that space-time discretizations are properly adapted

to the space discretizations.

Similar to the semidiscrete case, define the inner residual for n ∈ [0 : N ] as:

Rn := AelU
n − σn(BelU)−AnUn + σn(BnU) = AelU

n − σn(BelU)− f̄n + ∂̄Un,

R0 := AelU
0 −A0U0,

and the jump residual for n ∈ [0 : N ] as

Jn := J1[U
n]− σn(J2[U ]),(32)

J0 := J1[U
0].

The inner residual terms can also be written in the following form

< Rn, φ >:=
∑

K∈Tn

〈−div(A∇Un) + σn(div(B(tn)∇U))− Pn
0 f(tn) +

Un − Pn
0 U

n−1

τn
, φ〉K .

For the purpose of fully discrete analysis, we introduce the following estimators that are

local in time.

For n ∈ [0 : N ],

αn := C1hn‖Rn‖+ C2h
1/2
n ‖Jn‖∑

n
,(33)

βn := C3h
2
n‖Rn‖+ C4h

3/2
n ‖Jn‖∑

n
,(34)

are Ritz-Volterra reconstruction error estimators.

For n ∈ [0 : N ],

ξn :=
γ′

2

(
τ̂2n−1

n−1∑
j=1

{αj + αj−1}+ τ̂2n

n∑
j=1

{αj + αj−1}(35)

+τ̂2n−1

n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+ τ̂2n

n∑
j=1

{
‖U j‖1 + ‖U j−1‖1

})

+2γ
√
1/3
(
τ̂n

n∑
j=1

{αj + αj−1}+ τ̂2n

n∑
j=1

‖∂U j‖1
)

is the quadrature error estimator, where τ̂n = maxnj=1 τj .

For n ∈ [1 : N ],

ζn := CΩC10

( τ̂n
τn

)[
h2n‖∂Rn‖+ h3/2n ‖∂Jn‖Σn +

n−1∑
j=0

βj

]
(36)

are the space and mesh modification error estimators.

ηn =

{
1
2‖f̄

1 − ∂U1 −A0U0‖, for n = 1,
1
2τn‖∂(f̄

n − ∂Un)‖, for n ∈ [2 : N ]
(37)
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are the time error estimators.

For n ∈ [1 : N ],

µn := C11hn‖(Pn
0 − I)(fn +

Un−1

τn
)‖(38)

are the data approximation and mesh modification error estimators, and for n ∈ [1 : N ],

λn :=
1

τn

∫ tn

tn−1

‖fn − f(t)‖dt(39)

are the data oscillations error estimators.

The following lemma yields a bound for the parabolic error ρ(t).

Lemma 5.3 (L∞(L2) and L2(H1) a posteriori estimate for the parabolic error). For each

m ∈ [1 : N ], the following estimate holds:(
max
[0,tm]

‖ρ(t)‖2 + β

∫ tm

0

‖ρ(t)‖21dt

)1/2

≤ ‖ρ(t0)‖+ 2C(tm)(σ2
1,m + σ2

2,m)1/2,

where

σ1,m =
m∑

n=1

(ζn + ηn + λn)τn,

σ2
2,m =

m∑
n=1

(ξn + µn)
2(τn/β),

and C(tm) is a positive constant depends upon the time tm.

Proof Set φ = ρ in the error equation (31) to obtain

1

2

d

dt
‖ρ(t)‖2 + a(ρ, ρ) =

∫ t

0

b(t, s; ρ(s), ρ)ds+ 〈εt, ρ〉

+ a(ω − ωn, ρ)−
∫ t

0

b(t, s;ω(s), ρ)ds+ σn(b(tn;ω, ρ))

+ 〈Pn
0 f

n − f, ρ〉+ τ−1
n 〈Pn

0 U
n−1 − Un−1, ρ〉.

Using (2), (3) and Young’s inequality, we obtain

1

2

d

dt
‖ρ(t)‖2 +

β

2
‖ρ‖21 ≤ γ2

2β

(∫ t

0

‖ρ(s)‖1ds

)2

+ |〈εt, ρ〉|

+ |a(ω − ωn, ρ)−
∫ t

0

b(t, s;ω(s), ρ)ds+ σn(b(tn;ω, ρ))|

+ |〈Pn
0 f

n − f, ρ〉|+ |τ−1
n 〈Pn

0 U
n−1 − Un−1, ρ〉|.

Apply Cauchy-Schwarz inequality and then integrate from tn−1 to tn. Summing over n =
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1 : m and applying Gronwall’s lemma it now leads to

‖ρ(tm)‖2 + β

∫ tm

0

‖ρ(t)‖21dt− ‖ρ(t0)‖2 ≤ 2C(tm)

[
m∑

n=1

∫ tn

tn−1

(
|〈εt(t), ρ(t)〉|

+|a(ω(t)− ωn, ρ(t))−
∫ t

0

b(t, s;ω(s), ρ(t))ds+ σn(b(tn;ω, ρ(t))|

+|〈Pn
0 f

n − fn + τ−1
n (Pn

0 U
n−1 − Un−1), ρ(t)〉|+ 〈fn − f(t), ρ(t)〉|

)
dt

]

:= 2C(tm)

m∑
n=1

(I1
n + I2

n + I3
n + I4

n) := 2C(tm)Im,

where I1
n denotes the spatial error, I2

n the time discretization error, I3
n the mesh change

error, I4
n the data oscillation error and C(tm) is a positive constant appeared due to the

application of Gronwall’s lemma which will depend on tm.

Denote t∗m ∈ [0, tm] the time for which

max
t∈[0,tm]

‖ρ(t)‖ = ‖ρ(t∗m)‖ := ‖ρm∗ ‖.

Hence, we have

‖ρm∗ ‖2 + β

∫ tm

0

‖ρ(t)‖21dt ≤ ‖ρ(t0)‖2 + 2C(tm)Im.

Spatial error estimates. To estimate the term I1
n, for n ∈ [1 : N ], we note that

I1
n =

∫ tn

tn−1

|〈εt(t), ρ(t)〉|dt

= τ−1
n

∫ tn

tn−1

|〈ωn − ωn−1 − Un + Un−1, ρ(t)〉|dt.(40)

Since ωn − Un is orthogonal to Vn with respect to a(·, ·) − σn(b(tn; (·), ·)), the first term

in the inner product is orthogonal to Vn ∩ Vn−1. To give a simplified analysis, we exploit

here orthogonality property of the Ritz-Volterra reconstructions under the nested refinement

condition to introduce the Clément-type interpolation operator Πn. We shall use duality

technique to estimate (40).

For t ∈ (0, T ), let ψ ∈ H2(Ω) ∩ H1
0 (Ω) be the solution of the following dual elliptic

problem in the weak form

a(χ, ψ(t)) = 〈χ, ρ(t)〉,

satisfying the following regularity estimate:

(41) ‖ψ‖2 ≤ CΩ‖ρ‖, ∀χ ∈ H1
0 (Ω),

where the constant CΩ depending on the domain Ω. Now, using the definition of the Ritz-
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Volterra reconstruction and making adjustment of the terms, we have

〈ωn − ωn−1 − Un + Un−1, ρ(t)〉

= a(ωn − ωn−1 − Un + Un−1, ψ(t))

= a(ωn − ωn−1 − Un + Un−1, ψ(t)−Πnψ(t))

+σn(b(tn;ω − U,Πnψ(t)))− σn−1(b(tn−1;ω − U,Πnψ(t)))

= a(ωn − ωn−1 − Un + Un−1, ψ(t)−Πnψ(t))

−σn(b(tn;ω − U,ψ(t)−Πnψ(t)))

+σn−1(b(tn−1;ω − U,ψ(t)−Πnψ(t)))

+σn(b(tn;ω − U,ψ(t)))− σn−1(b(tn−1;ω − U,ψ(t)))

= 〈AnUn − σn(BnU)−AelU
n + σn(BelU), ψ(t)−Πnψ(t)〉

−〈An−1Un−1 − σn−1(Bn−1U)−AelU
n−1 + σn(BelU), ψ(t)−Πnψ(t)〉

+〈σn(J2[U ])− J1[U
n]− σn−1(J2[U ]) + J1[U

n−1], ψ(t)−Πnψ(t)〉Σn

+σn(b(tn;ω − U,ψ(t)))− σn−1(b(tn−1;ω − U,ψ(t))).

Using the distributional form of the fully discrete scheme, on each interval In, we have

AnUn −An−1Un−1 + σn−1(Bn−1U)− σn(BnU)

+AelU
n−1 −AelU

n + σn(BelU)− σn(BelU)

= Rn−1 −Rn = −τn∂Rn.

Using (32) with Jn − Jn−1 = τn∂J
n, we now obtain

|〈ωn − ωn−1 − Un + Un−1, ρ(t)〉|(42)

≤ τn‖∂Rn‖‖ψ(t)−Πnψ(t)‖+ τn‖∂Jn‖Σn‖ψ(t)−Πnψ(t)‖Σn

+|σn(b(tn;ω − U,ψ(t)))− σn−1(b(tn−1;ω − U,ψ(t)))|.

To handle the last term above, we use (17) by replacing (Rwv− v) by (ω−U) and Cauchy-

Schwarz inequality together with ‖B∗(tn, tj)ψ‖ ≤ CB∗
1
‖ψ‖2 for all j ∈ [0 : n] to obtain

|σn(b(tn;ω − U,ψ(t)))− σn−1(b(tn−1;ω − U,ψ(t)))|

≤ |〈
n−1∑
j=0

τj+1(ω − U)(tj),B∗(tn, tj)ψ(t)〉 − 〈
n−2∑
j=0

τj+1(ω − U)(tj),B∗(tn−1, tj)ψ(t)〉|

≤ τ̂n‖
n−1∑
j=0

(ω − U)(tj)‖‖B∗(tn, tj)ψ(t)‖+ τ̂n−1‖
n−2∑
j=0

(ω − U)(tj)‖‖B∗(tn−1, tj)ψ(t)‖

≤ CB∗
1

[
τ̂n

n−1∑
j=0

βj + τ̂n−1

n−2∑
j=0

βj

]
‖ψ(t)‖2

≤ CB∗
4
τ̂n

[ n−1∑
j=0

βj

]
‖ψ(t)‖2,

where CB∗
4
= 2CB∗

1
. Using the above estimate in (42) and applying Lemma 4.1 with C10 =
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max
(
CB∗

4
, 1
)
, we obtain

|〈ωn − ωn−1 − Un + Un−1, ρ(t)〉|(43)

≤ C10‖ψ‖2τ̂n
[
h2n‖∂Rn‖+ h3/2n ‖∂Jn‖Σn +

n−1∑
j=0

βj
]
.

Using (43) in (40) together with (41) yields

I1
n ≤ C10τ

−1
n

∫ tn

tn−1

‖ψ(t)‖2dt τ̂n
[
h2n‖∂Rn‖+ h3/2n ‖∂Jn‖Σn +

n−1∑
j=0

βj

]
≤ max

t∈In
‖ρ(t)‖τnζn,

where we have used (36). Summing from n = 1 : m we obtain

m∑
n=1

I1
n ≤ ‖ρ(tm∗ )‖

m∑
n=1

τnζn.

Remark. In the case of parabolic problem [13], the authors have introduced Clément-type

interpolation operator Π̂n : H1
0 (Ω) → Vn∩Vn−1 in order to handle spatial error term similar

to (40). But, in our analysis due to presence of the quadrature term, one has to look back

through all the previous time levels which will make the analysis much more complicated.

So, the introduction to such kind of operator is avoided using nested refinement condition.

Time error estimates. In order to count the time discretization error, let

φ̂(t) :=

∫ t

0

B(t, s)∇ω(s)ds.

Then, for t ∈ In, we associate the integral vectors φ̂(tn−1) and φ̂(tn) with φ̂(t) as

φ̂(t) := ln−1(t)φ̂(tn−1) + ln(t)φ̂(tn).

Then ∫ t

0

b(t, s;ω(s), ρ(t))ds = ln−1(t)

∫ tn−1

0

b(tn−1, s;ω(s), ρ(t))ds

+ ln(t)

∫ tn

0

b(tn, s;ω(s), ρ(t))ds.

By the definition of discrete time extensions, we get

I2
n =

∫ tn

tn−1

|a(ω(t)− ωn, ρ(t))−
∫ t

0

b(t, s;ω(s), ρ(t))ds+ σn(b(tn;ω, ρ(t)))|dt

=

∫ tn

tn−1

|a(ln−1(t)ω
n−1 + ln(t)ω

n − ωn, ρ(t))

−
[
ln−1(t)

∫ tn−1

0

b(tn−1, s;ω(s), ρ(t))ds

+ln(t)

∫ tn

0

b(tn, s;ω(s), ρ(t))ds− σn(b(tn;ω, ρ(t)))

]
|dt
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=

∫ tn

tn−1

|ln−1(t)
{
a(ωn−1, ρ(t))− σn−1(b(tn−1;ω, ρ(t)))

}
+(ln(t)− 1)

{
a(ωn, ρ(t))− σn(b(tn;ω, ρ(t)))

}
+ln−1(t)

{
σn−1(b(tn−1;ω, ρ(t)))−

∫ tn−1

0

b(tn−1, s;ω(s), ρ(t))ds
}

+ln(t)
{
σn(b(tn;ω, ρ(t)))−

∫ tn

0

b(tn, s;ω(s), ρ(t))ds
}
|dt.

Now, using the identity, ln(t)−1
ln−1(t)

= −1, for t ∈ In, the definition of the Ritz-Volterra recon-

structions for the fully discrete case and by adjusting some terms, we obtain

I2
n =

∫ tn

tn−1

|ln−1(t)
{
〈An−1Un−1, ρ(t)〉 − 〈σn−1(Bn−1U), ρ(t)〉 − 〈AnUn, ρ(t)〉(44)

+〈σn(BnU), ρ(t)〉
}
+ ln−1(t)

{
σn−1(b(tn−1;ω − U, ρ(t)))

−
∫ tn−1

0

b(tn−1, s;ω(s)− U(s), ρ(t))ds
}
+ ln(t)

{
σn(b(tn;ω − U, ρ(t)))

−
∫ tn

0

b(tn, s;ω(s)− U(s), ρ(t))ds
}
dt+ ln−1(t)

{
σn−1(b(tn−1;U, ρ(t)))

−
∫ tn−1

0

b(tn−1, s;U(s), ρ(t))ds
}
+ ln(t)

{
σn(b(tn;U, ρ(t)))

−
∫ tn

0

b(tn, s;U(s), ρ(t))ds
}
|dt.

We know that if ψ1n(s) = (tn − s), then we have

(45)

∫ tn

tn−1

y(s)ds− τny(tn−1) =

∫ tn

tn−1

ψ1n(s)
dy

ds
ds.

By setting y(s) = B(tn, s)∇v(s), s ∈ In, we have

dy

ds
= Bs(tn, s)∇v(s) +B(tn, s)∇vs(s)

= Bs(tn, s)∇v(s) +B(tn, s)∇∂vn

= ln−1(s)Bs(tn, s)∇vn−1 + ln(s)Bs(tn, s)∇vn +B(tn, s)∇∂vn,

where we have used the fact v(s) = ln−1(s)v
n−1 + ln(s)v

n and vs(s) = ∂vn. Using (45), the

second term on the right hand side of (44) becomes

σn−1(b(tn−1;ω − U, ρ(t)))−
∫ tn−1

0

b(tn−1, s;ω(s)− U(s), ρ(t))ds

= 〈−
n−1∑
j=1

∫ tj

tj−1

ψ1j(s)
∂
{
B(tn−1, s)∇(ω − U)

}
∂s

ds,∇ρ(t)〉

= −
n−1∑
j=1

∫ tj

tj−1

bs(tn−1, s;ψ1j(s)(ω − U)(s), ρ(t))ds

−
n−1∑
j=1

∫ tj

tj−1

b(tn−1, s;ψ1j(s)∂(ω
j − U j), ρ(t))ds
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Thus, applying continuity of b(t, s, ·, ·) and bs(t, s; ·, ·) together with the fact that ln(t) ≤
1, t ∈ In and ln−1(t) ≤ 1, t ∈ In, we have

|σn−1(b(tn−1;ω − U, ρ(t)))−
∫ tn−1

0

b(tn−1, s;ω(s)− U(s), ρ(t))ds|

≤

[
γ′τ̂2n−1

2

n−1∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}

+γτ̂n−1

n−1∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}]
‖ρ(t)‖1.

Similarly, for the other terms, we have

|σn(b(tn;ω − U, ρ(t)))−
∫ tn

0

b(tn, s;ω(s)− U(s), ρ(t))ds|

≤

[
γ′τ̂2n
2

n∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}

+γτ̂n

n∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}]
‖ρ(t)‖1,

|σn−1(b(tn−1;U, ρ(t)))−
∫ tn−1

0

b(tn−1, s;U(s), ρ(t))ds|

≤

[
γ′τ̂2n−1

2

n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+ γτ̂n−1

n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}]
‖ρ(t)‖1

and

|σn(b(tn;U, ρ(t)))−
∫ tn

0

b(tn, s;U(s), ρ(t))ds|

≤

[
γ′τ̂2n
2

n∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+ γτ̂n

n∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}]
‖ρ(t)‖1,
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Using the above estimates in (44) and an application of Cauchy-Schwarz inequality yields

I2
n ≤

∫ tn

tn−1

ln−1(t)‖An−1Un−1 − σn−1(Bn−1U)−AnUn + σn(BnU)‖‖ρ(t)‖dt

+
γ′

2

∫ tn

tn−1

[
ln−1(t)τ̂

2
n−1

n−1∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}
+ln(t)τ̂

2
n

n∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}

+ln−1(t)τ̂
2
n−1

n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+ ln(t)τ̂

2
n

n∑
j=1

{
‖U j‖+ ‖U j−1‖1

}]
‖ρ(t)‖1dt

+γ

∫ tn

tn−1

[
ln−1(t)τ̂n−1

n−1∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}
+ln(t)τ̂n

n∑
j=1

{
‖ωj − U j‖1 + ‖ωj−1 − U j−1‖1

}

+ln−1(t)τ̂n−1

n−1∑
j=1

‖U j − U j−1‖1 + ln(t)τ̂n

n∑
j=1

‖U j − U j−1‖1

]
‖ρ(t)‖1dt.

With an aid of (33), we obtain

I2
n ≤ 1/2 τn max

t∈In
‖ρ(t)‖ ‖An−1Un−1 − σn−1(Bn−1U)−AnUn + σn(BnU)‖

+
γ′

2

[
τ̂2n−1

(∫ tn

tn−1

l2n−1(t)dt

)1/2 n−1∑
j=1

{αj + αj−1}

+τ̂2n

(∫ tn

tn−1

l2n(t)dt

)1/2 n∑
j=1

{αj + αj−1}

+τ̂2n−1

(∫ tn

tn−1

l2n−1(t)dt

)1/2 n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+τ̂2n

(∫ tn

tn−1

l2n(t)dt

)1/2 n∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}](∫ tn

tn−1

‖ρ(t)‖21dt
)1/2

+γ

[
τ̂n−1

(∫ tn

tn−1

l2n−1(t)dt

)1/2 n−1∑
j=1

{αj + αj−1}

+τ̂n

(∫ tn

tn−1

l2n(t)dt

)1/2 n∑
j=1

{αj + αj−1}

+

(∫ tn

tn−1

l2n−1(t)dt

)1/2

τ̂n−1

n−1∑
j=1

‖U j − U j−1‖1

+

(∫ tn

tn−1

l2n(t)dt

)1/2

τ̂n

n∑
j=1

‖U j − U j−1‖1
](∫ tn

tn−1

‖ρ(t)‖21dt
)1/2
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≤ 1/2 τn max
t∈In

‖ρ(t)‖ ‖An−1Un−1 − σn−1(Bn−1U)−AnUn + σn(BnU)‖

+
√
1/3 τ1/2n

[
γ′

2

(
τ̂2n−1

n−1∑
j=1

{αj + αj−1}+ τ̂2n

n∑
j=1

{αj + αj−1}

+τ̂2n−1

n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+ τ̂2n

n∑
j=1

{
‖U j‖1 + ‖U j−1‖1

})

+γ

(
τ̂n−1

n−1∑
j=1

{αj + αj−1}+ τ̂n

n∑
j=1

{αj + αj−1}

+τ̂n−1

n−1∑
j=1

‖U j − U j−1‖1 + τ̂n

n∑
j=1

‖U j − U j−1‖1
)](∫ tn

tn−1

‖ρ(t)‖21dt
)1/2

≤ 1/2 τn max
t∈In

‖ρ(t)‖ ‖An−1Un−1 − σn−1(Bn−1U)−AnUn + σn(BnU)‖

+τ1/2n

[
γ′

2

(
τ̂2n−1

n−1∑
j=1

{αj + αj−1}+ τ̂2n

n∑
j=1

{αj + αj−1}

+τ̂2n−1

n−1∑
j=1

{
‖U j‖1 + ‖U j−1‖1

}
+ τ̂2n

n∑
j=1

{
‖U j‖1 + ‖U j−1‖1

})

+2γ
√
1/3
(
τ̂n

n∑
j=1

{αj + αj−1}+ τ̂2n

n∑
j=1

‖∂U j‖1
)](∫ tn

tn−1

‖ρ(t)‖21dt
)1/2

.

In view of (35) and (37), we have

m∑
n=1

I2
n ≤ ‖ρm∗ ‖

m∑
n=1

ηnτn +

m∑
n=1

(∫ tn

tn−1

‖ρ(t)‖21dt
)1/2

ξnτ
1/2
n .

Mesh change estimates. The term I3
n can be estimated using the orthogonality of

the L2-projection. Since Vn ⊂ ker(Pn
0 − I), we have

〈(Pn
0 − I)(fn + τ−1

n Un−1), φn〉 = 0, ∀φn ∈ Vn.

Using Lemma 4.1 and Cauchy-Schwarz inequality, we have

I3
n =

∫ tn

tn−1

|〈(Pn
0 − I)(fn + τ−1

n Un−1), ρ(t)−Πnρ(t)〉|dt

≤ C11hn

∫ tn

tn−1

‖(Pn
0 − I)(fn + τ−1

n Un−1)‖‖ρ(t)‖1dt

≤ C11hnτ
1/2
n ‖(Pn

0 − I)(fn + τ−1
n Un−1)‖

(∫ tn

tn−1

‖ρ(t)‖21dt

)1/2

.

Therefore, in view of (38) we have the following estimate,

m∑
n=1

I3
n ≤

m∑
n=1

(∫ tn

tn−1

‖ρ(t)‖21dt

)1/2

τ1/2n µn.

Data Oscillation estimates. We have

I4
n ≤

∫ tn

tn−1

‖fn − f(t)‖‖ρ(t)‖dt

≤

(
max
t∈In

‖ρ(t)‖

)∫ tn

tn−1

‖fn − f(t)‖dt.
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Thus, using (39) we obtain
m∑

n=1

I4
n ≤ ‖ρm∗ ‖

m∑
n=1

λnτn.

Combining these estimates we arrive at

‖ρm∗ ‖2 + β

∫ tm

0

‖ρ(t)‖21dt ≤ ‖ρ(t0)‖2 + 2C(tm)

[
‖ρm∗ ‖

m∑
n=1

(ζn + ηn + λn)τn

+
m∑

n=1

(∫ tn

tn−1

‖ρ(t)‖21dt

)1/2

τ1/2n (ξn + µn)

]
.

To complete the proof of Lemma 5.3, we now use the following elementary fact. For

a = (a0, a1, . . . , am), b = (b0, b1, . . . , bm) ∈ Rm+1 and c ∈ R, if

|a|2 ≤ c2 + a.b,

then

|a| ≤ |c|+ |b|.

In particular for n = [1 : m], taking

a0 = ‖ρm∗ ‖, an =

(
β

∫ tn

tn−1

‖ρ(t)‖21dt
)1/2

, c = ‖ρ(t0)‖,

b0 = 2C(tm)
m∑

n=1

(ζn + ηn + λn)τn, bn = 2C(tm)(τn/β)
1/2

(ξn + µn),

we obtained the required result.

The main results concerning fully discrete a posteriori error estimates in L∞(L2) and

L2(H1)-norms are stated in the following theorem.

Theorem 5.4 (Fully discrete a posteriori error estimates)

For each m ∈ [1 : N ], the following error estimates hold:

max
[0,tm]

‖u(t)− U(t)‖ ≤ ‖R0
wU

0 − u(0)‖+ max
n∈[0:m]

βn + 2C(tm)(σ2
1,m + σ2

1,m)1/2,

(∫ tm

0

‖u(t)− U(t)‖21

)1/2

≤ β−1/2

[
‖R0

wU
0 − u(0)‖+ 2C(tm)(σ2

1,m + σ2
2,m)1/2

]

+

( m∑
n=1

τnα
2
n−1

)1/2

+

( m∑
n=1

τnα
2
n

)1/2

,

where σ2
1,m, σ2

2,m and C(tm) are defined as in Lemma 5.3.

Proof. We decompose the error with Ritz-Volterra reconstruction as an intermediate solution

and obtain

(46) ‖u(t)− U(t)‖ ≤ ‖ρ(t)‖+ ‖ε(t)‖,

where ρ(t) := ω(t)− u(t) and ε(t) := ω(t)− U(t).
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Also, we know that for t ∈ In,

‖ε(t)‖ = ‖ln−1(t)ε
n−1 + ln(t)ε

n‖ ≤ max
(
‖εn−1‖, ‖εn‖

)
.

Therefore, for t ∈ [0, tm], using Lemma 5.1 and (34) we have

‖ε(t)‖ ≤ max
n∈[0,m]

(
‖εn−1‖, ‖εn‖

)
≤ max

n∈[0,m]
βn.(47)

Then, the first estimate follows from (46), (47) and Lemma 5.3.

To prove the second estimate, using Lemma 5.1 and (33) we obtain(∫ tm

0

‖ε(t)‖21

)1/2

=

(∫ tm

0

‖ln−1(t)ε
n−1 + ln(t)ε

n‖21

)1/2

≤
( m∑

n=1

τnα
2
n−1

)1/2

+

( m∑
n=1

τnα
2
n

)1/2

.

The rest of the proof follows from Lemma 5.3.

Concluding Remarks. (i) It is known fact that a posteriori error estimators for parabolic

problems in L∞(L2) and L2(H1)-norms are of optimal order [13]. Since PIDE (1) can be

thought of as a perturbation to the parabolic problem, it is natural to expect that our a pos-

teriori error estimators should reflect the contributions to the error from the approximation

of the memory term. This fact can be easily observed through the estimator ξn which is of

O(τ). Further, in the absence of the memory term (i.e., B(t, s) = 0), the error estimators

obtained in Theorem 5.4 are similar to that for the parabolic problems [13].

(ii) We know that the constants appearing in the a posteriori error bounds should be

explicit or computable. For PIDE, the constants appeared in the bounds are time dependent

due to the use of the Gronwall’s lemma. However, the other constants (continuity constants,

interpolation constants etc.) are computable. Since the final time T is finite, the constant

appeared due to Gronwall’s lemma will be at most exp(T ) and thus, it is finite.

(iii) It is observed that the Ritz-Volterra projection is useful in apriori analysis for a

wide range of (linear and nonlinear) parabolic and hyperbolic integro-differential problems.

We strongly believe that, the Ritz-Volterra Reconstruction introduced in this paper, a coun-

terpart of the Ritz-Volterra projection in the apriori analysis, can be appropriately modified

to obtain estimators for a class of integro-differential problems.

(iv) The numerical computations of the proposed error bounds to study the behavior of

the estimators through adaptive algorithms and to verify the optimality of our results is a

challenging task which deserves attention and will be considered elsewhere. Also, we will

address the problem of obtaining the a posteriori error estimates for the Crank-Nicolson

scheme for parabolic integro-differential in near future.
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