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Abstract. In this paper, we study robust iterative solvers for finite element systems resulting
in approximation of steady-state Richards’ equation in porous media with highly heterogeneous
conductivity fields. It is known that in such cases the contrast, ratio between the highest and
lowest values of the conductivity, can adversely affect the performance of the preconditioners
and, consequently, a design of robust preconditioners is important for many practical applica-
tions. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations.
Outer iterations are designed to handle nonlinearities by linearizing the equation around the
previous solution state. As a result of the linearization, a large-scale linear system needs to be
solved. This linear system is solved iteratively (called inner iterations), and since it can have
large variations in the coefficients, a robust preconditioner is needed. First, we show that under
some assumptions the number of outer iterations is independent of the contrast. Second, based
on the recently developed iterative methods (see [15, 17]), we construct a class of preconditioners
that yields convergence rate that is independent of the contrast. Thus, the proposed iterative
solvers are optimal with respect to the large variation in the physical parameters. Since the
same preconditioner can be reused in every outer iteration, this provides an additional compu-
tational savings in the overall solution process. Numerical tests are presented to confirm the
theoretical results.

1. Introduction

In this paper, we study robust preconditioners for solving finite element approximations of
nonlinear flow equations in heterogeneous media. Our motivation stems from Richards’ equation
([28]) which describes the infiltration of water into a porous media whose pore space is filled with
air and water. In many cases, the heterogeneous porous media is characterized by large variations
of the conductivity. For example, in natural porous formations it is common to have several
orders of magnitude of variations in the conductivity values. A high contrast, expressed as the
ratio between high and low conductivity values, brings an additional scale into the problem. A
design of robust preconditioners that converge independent of small scales and high-contrast of
the media for nonlinear problems is a challenging task. In this paper, we address this problem
for the model of two-phase flow in porous media, the steady-state Richards’ equation.

The Richards’ equation has the form

(1) Dtθ(u)− div(k(x, u)∇(u+ x3)) = f, x ∈ Ω,

where θ(u) denotes the volumetric fluid content, and k(x, u) ≥ k0 > 0 is the relative hydraulic
conductivity and k0 is a constant. We assume that suitable initial and boundary data are pro-
vided. The dependence of the volumetric water content and the relative hydraulic conductivity
from the pressure head is established experimentally by assuming some functional form. There
is a large number of functional forms used by hydrologists and soil scientists. In our numerical
experiments, we use three popular among the soil scientists models, namely, Haverkamp, van
Genuchten models, and Exponential (see, e.g. [7, 21, 33, 27]).
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In this paper, we are interested in robust preconditioners for the finite element system resulting
from the discretization of nonlinear equations when k(x, u) is heterogeneous with respect to
space. We consider the steady-state Richards’ equation

(2) div(k(x, u)∇(u+ x3)) = f, x ∈ Ω,

where k(x, u) has high variations in x. In many practical cases, the heterogeneous portion of the
relative permeability is given by a spatial field that does not depend on u, i.e., k(x, u) = k(x)λ(u).
By denoting, u+x3 as a new variable and assuming λ is smooth, we can write the above equation
as

(3) div(k(x)λ(x, u)∇u) = f, x ∈ Ω,

where k(x) is a heterogeneous function, while λ(x, u) is a smooth function that varies moderately
in both x and u. Robust preconditioners for a finite element approximation of Equation (3)
with such coefficients will be studied in the paper. We note that coarse-grid approximations of
Richards’ equation are discussed in literature (e.g., [8, 1, 13]).

Various iterative methods for solving nonlinear equations have been proposed and studied
in the past, e.g. [5, 6, 10, 24, 31, 34]. For example, in [5, 31], a nonlinear iterative procedure
has been proposed and its optimality has been established, in [24], multilevel iterative methods
have been studied for Richards’ equation, in [10], two-level domain decomposition methods have
been proposed and analyzed. To the best of our knowledge, the techniques developed in the
previous works have not considered the case of highly heterogeneous conductivity fields, which
is the main objective of this paper. The proposed iterative procedure involves outer iterations
and inner iterations, a technique that is commonly used in the literature. Outer iterations are
designed to handle nonlinearities by linearizing the equation around the previous state. The
simplest is Picard iteration that is described by div(k(x)λ(x, un)∇un+1) = f , where n denotes
the outer iteration number. For every outer iteration n, a linear problem needs to be solved. For
the solution of the linear problem, we employ two-level domain decomposition preconditioners
within conjugate gradient (CG) iterative technique. Both inner and outer iteration can, in
general, depend on the contrast and small scales. One of our main goals is to construct an
iterative process that converges independently of both, the small scales and the contrast. In
particular, we show that the robust iterative techniques designed for a linear system can be
re-used for every outer iteration if λ is a smooth function. Therefore, it is important to use
efficient preconditioners for solving linear systems arising in approximation of problems with
highly heterogeneous coefficients. Such preconditioners, designed in the earlier works [15, 17, 18],
are discussed below and described in Section 3.

For every outer iteration, the resulting linear system on the fine scale is solved using a two-
level domain decomposition preconditioner (e.g., [32, 25]), which involves local (subdomain)
and global (coarse) problems. The number of iterations required by domain decomposition
preconditioners is typically affected by the contrast in the media properties (e.g., [25, 32]) that
are within each coarse grid block. Because of the complex geometry of fine-scale features, it is
often impossible to separate low and high conductivity regions into different coarse grid blocks.
Consequently, without proper preconditioner, the number of iterations can be very large, which
substantially reduces the efficiency of the iterative method, particularly for nonlinear flows.

In this paper, for every outer iteration we use the preconditioners designed in [15, 17]. The
main idea of these preconditioners consists of augmenting the coarse space in the domain de-
composition methods. In particular, a coarse space based on local spectral problems using
multiscale functions is constructed. We prove that when the coarse space in the domain de-
composition methods includes these eigenfunctions, the condition number of the preconditioned
matrix is bounded independently of the contrast. The choice of multiscale spaces is important



ROBUST DOMAIN DECOMPOSITION METHOD FOR NONLINEAR FLOWS 3

to achieve small dimensional coarse spaces. By incorporating small-scale localizable features of
the solution into initial multiscale basis functions, we have shown that one can achieve small
dimensional coarse spaces without sacrificing the convergence properties of the precondition-
ers. Initial multiscale spaces can employ constructions proposed for multiscale finite element
methods in [12, 14, 22, 23].

We show that both, the number of outer iterations and the number of inner iterations, are
bounded independently of physical parameters, such as the contrast and small spatial scales.
We first prove that under some assumptions the number of outer iterations depends on the
contraction constant that is independent of the contrast in the conductivity field. Our reasoning
takes into account the high variations of the contrast in the conductivity field and follows the
standard for such nonlinear problems technique, e.g., [4]. As for inner iterations, we use two-
level preconditioners developed in [15, 17] that provide, independent of the contrast, condition
number for every outer iteration. We use the same preconditioner for every outer iteration
repeatedly without sacrificing the convergence of the overall method.

We note that one can use Kirchhoff’s potential (see, e.g. [7, p. 29-31]) to transform the
original equation into a linear equation for the potential. However, this technique becomes
cumbersome when λ(x, u) depends on x and does not have an explicit form (e.g., given via a
graph interpolation). Moreover, the difficulty of inversion of Kirchhoff’s potential still needs to
be performed and the extensions to time-dependent problems can become complicated.

We test our methodology on a number of numerical examples for various nonlinear models.
We consider two different heterogeneous permeability fields and vary the contrast over four
orders in magnitude. Our numerical results show that the number of outer iterations does not
depend on the contrast. Moreover, the number of inner iterations on every outer iteration does
not depend on the contrast if an appropriate preconditioner is chosen. We also test two-level
domain decomposition preconditioner when the coarse space includes only the initial multiscale
basis functions. In this case, the number of iterations at every outer iteration grows as the
contrast increases.

The paper is organized as follows. In Section 2, we introduce the problem. Section 3 is
devoted to the description of robust preconditioners. Some of the proofs are presented in the
Appendix. In Section 4 we present numerical results and, finally, in Section 5 we draw some
conclusions.

2. Problem setting

2.1. Weak Formulation. We multiply equation (3) by a test function v ∈ H1
0 (Ω) and integrate

over the domain Ω. After applying the divergence theorem, we get that the solution u satisfies
the following integral identity∫

Ω
k(x)λ(x, u)∇u∇vdx =

∫
Ω
fvdx, for all v ∈ H1

0 (Ω).

Now we define the space V = H1
0 (Ω), set of all functions with square integrable generalized

derivatives of first order vanishing on the boundary ∂Ω, the form a(·, ·; ·)

(4) a(u, v;w) =
∫

Ω
k(x)λ(x,w)∇u∇vdx,

and the functional F (·)

(5) F (v) =
∫

Ω
fvdx.
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Then the variational form of (3) is to find u ∈ V such that

(6) a(u, v;u) = F (v), for all v ∈ V.

2.2. Finite Element Discretization. Let Th be a triangulation of the domain Ω into a finite
number of triangular (tetrahedral) elements. We assume that Th is quasiuniform and regular;
see [9]. Let V h be the finite dimensional subspace of V of piece-wise polynomials with respect
to Th. Let uh ∈ V h be a solution of the following discrete problem.

(7) a(uh, v;uh) = F (v), for all v ∈ V h.

We know that under suitable conditions, one can ensure the existence of a solution to the above
equation. Define the nonlinear map Th : V h → V h by

(8) a(Thuh, v;uh) = F (v), for all v ∈ V h.

This is well defined, since uh ∈ V h.

2.3. A nonlinear fixed point iteration. In this section we describe a robust numerical
method to approximate the numerical solutions of the Richards’ equation (7). We use a fixed
point iteration based on the contractivity of the mapping Th defined in (8). The numerical
solution uh can be approximated to an arbitrary accuracy using Picard iteration.

Starting with an initial guess u0
h ∈ V h, we define the nonlinear fixed point iteration by

un+1
h = Thu

n
h.

That is, given unh, the next approximation un+1
h is the solution of the linear elliptic equation

(9) a(un+1
h , w;unh) = F (w), for all w ∈ V h.

In order to define the solution method, we reformulate the problem (9) in terms of the linear
operator An : V h → V h defined for any given unh ∈ V h as

(10) a(v, w;unh) = (Anv, w), for all v, w ∈ V h,

where (·, ·) is the standard L2-inner product in V h. In a similar manner, we present the linear
functional F (w) in the form

(11) F (w) = (b, w), for all w ∈ V h.

Obviously, b is the L2-projection of the right hand side f of (3) on V h. Then the equation (9)
can be rewritten in the following operator form

(12) Anun+1
h = b.

Note that equation (9) (and its operator counterpart (12)) is an approximation of the linear
equation −div(k(x)λ(x, unh)∇un+1

h ) = f with unh being the previous iterate. It is known that
the presence of the high-contrast coefficient k(x) makes it computationally difficult to construct
appropriated robust linear solvers for computing un+1

h . Moreover, taking into account the con-
tractivity of the operator Th, in order to get a robust method to compute the solution of the
Richards’ equation (8), we only need a robust method for solving the linear problem (9). Because
of the small scales and high contrast in the conductivity field, the solution of this system (of
size proportional the fine grid points) is prohibitively expensive. Therefore, an adequate robust
iterative method is needed.

The construction of robust solvers for high-contrast linear elliptic equation has been con-
sidered by many authors. We will use as a preconditioner a two-level domain decomposition
method proposed in [15, 17, 18], which involves solutions of appropriate local spectral problems.
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If B−1 is the preconditioner, our goal is to have the condition number of B−1An bounded in-
dependent of the contrast and n (i.e, independent of unh). Now we describe a construction of
such preconditioner for (12), which will give a robust, with respect to the contrast, method for
Richards’ equation.

3. Finite element discretization and two level domain decomposition
preconditioner

3.1. Finite element approximation and local spaces. First, we provide an overview of the
use of domain decomposition techniques for constructing preconditioners for multiscale finite
element approximations of high-contrast elliptic equations (cf., [15, 17, 18, 19, 20]). For an
extension to multilevel methods, we refer to [16]. Next, we briefly describe a two-level domain
decomposition setting that we use and introduce the local spaces and the coarse space.

Let TH and Th be coarse and fine partitions of Ω into finite elements K (or nonoverlapping
subdomains) that consists of triangles, quadrilaterals, etc.. We assume that the coarse elements
of TH consist of a number of fine elements from Th. Practically, we first introduce the coarse-grid
TH and then obtain the fine grid Th by partitioning each coarse element into a number of smaller
ones. Let χi be the nodal basis of the standard finite element space with respect to the coarse
triangulation TH . We denote by Nv the number of coarse nodes, by {yi}Nvi=1 the vertices of the
coarse mesh TH , and define a neighborhood of each node yi by

(13) ωi =
⋃
{Kj ∈ TH ; yi ∈ Kj}.

Let V h
0 (ωi) ⊂ V h be the set of finite element functions with support in ωi and RTi : V h

0 (ωi)→ V h

denote the extension by zero operator.
We define, for later use, the one level additive preconditioner (e.g. [25, 32])

(14) B−1
1 =

Nv∑
i=1

RTi (A0
i )
−1Ri,

where the operators A0
i : V h

0 (ωi)→ V h
0 (ωi) are defined by

(15) (A0
i v, w) = a(v, w;u0

h), for all v, w ∈ V h
0 (ωi), i = 1, . . . , Nv.

The application of the preconditioner B−1
1 involves (A0

i )
−1 which means solving local problems

subdomain-wise in each iteration. The operator A0
i , defined by the bilinear form a(·, ·;u0

h)
restricted to V h

0 (Ω′i), is local and invertible.

3.2. Coarse space construction. For given Mc number of linearly independent functions
{Φi}Mc

i=1 associated with the coarse mesh TH (these will be introduced later), we define a coarse
space V0 by

(16) V0 = span{Φi}Mc
i=1.

Below we shall give three choices of sets {Φi}Mc
i=1, that have been already used in the construction

of a robust preconditioner for An. These are: (1) multiscale coarse space (see, e.g. [12] and
the references therein), (2) energy minimizing coarse space (see, e.g. [35]), and (3) a coarse
space with local spectral information, (see, e.g. [15, 17, 18]). On an abstract level, the main
assumption is that Φi ∈ V h, but the support of each Φi is related to the coarse mesh TH so that
Mc << dimV h. Below we refer to the Φi’s as coarse-scale basis functions. The coarse space V0

defines an operator

Ac : V0 → V0, (Acv, w;u0
h) = a(v, w;u0

h), ∀v, w ∈ V0.
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Note that if RTc : V0 → V h is the natural interpolation operator, then we have

(17) Ac = RcA
0RTc with A0 defined by (10) for n = 0.

Note that the operator Ac uses the initial guess u0
h ∈ V h and is constructed only once at the

beginning of the fixed point nonlinear iteration. Likewise, the coarse basis functions {Φj}Mc
j=1

are related to the form a(·, ·;u0
h) and are constructed only one time. These can be regarded as

a preprocessing step. Once the coarse space V0 is constructed and the coarse-scale operator Ac
is defined, we can use the two level additive preconditioner of the form

(18) B−1 = RTc A
−1
c Rc +

Nv∑
i=1

RTi (A0
i )
−1Ri = RTc A

−1
c Rc +B−1

1 .

The preconditioner B−1 involves solving one coarse-scale system and Nv local problems in each
overlapping subdomain ωi, i = 1, . . . , Nv. The goal is to reduce the number of iterations in the
iterative procedure, e.g., a preconditioned conjugate gradient. An appropriate construction of
the coarse space V0 plays a key role in obtaining robust iterative domain decomposition method.
In the next Section 3.3 we present examples of such coarse space constructions. We summarize
the fixed point iteration in Algorithm 1.

Algorithm 1 Fixed point iteration

1: Initialize: Choose u0
h ∈ V h and compute the residual r0 = b−A0u0

h.
2: Construct the coarse basis {Φj}, the coarse space V0 in (16), and the coarse operator Ac in

(17) .
3: for n = 1, 2, . . . until convergence do
4: Set the linear system Anun+1

h = b (see (12)).
5: Using PCG with preconditioner B−1 in (18) solve the linear system in 4: to get un+1

h .
6: Compute the residual rn+1 = b−An+1un+1

h .
7: end for

Remark 1. In the general domain decomposition method setting the overlapping subdomains
{ωi} could be chosen independently of the coarse triangulation T H . However, for the purpose of
this paper, we will only consider the partition introduced above.

3.3. Some multiscale coarse spaces. In this subsection we review several possibilities for
construction of coarse basis functions that have been used to design two-level preconditioners
that are robust with respect to the contrast.

3.3.1. Linear boundary conditions multiscale coarse spaces. Let χHi be the nodal basis of the
standard finite element space with respect to the coarse triangulation TH . We define multiscale
finite element basis function χmsi that coincides with χHi on the boundaries of the coarse partition.
Namely, for each K ⊂ ωi

(19)
∫
K
k∇χmsi ∇vdx = 0, ∀v ∈ V h ∩ V h

0 (ωi) and χmsi = χHi on ∂K.

This means that χHi is an approximation in the fine-grid space of the boundary value problem

−div(k∇χmsi ) = 0 in K ⊂ ωi, χmsi = χHi in ∂K, for all K ⊂ ωi,(20)

where K is a coarse grid element within ωi. Then we define

(21) V ms
0 = span{χmsi }.
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Note that multiscale basis functions coincide with standard finite element basis functions on
the boundaries of coarse grid blocks, while are oscillatory in the interior of each coarse grid
block. Even though the choice of χHi can be quite arbitrary, our main assumption is that the
basis functions satisfy the leading order homogeneous equations when the right hand side f is
a smooth function (e.g., L2 integrable). We remark that the MsFEM formulation allows one to
take advantage of scale separation. In particular, K can be chosen to be a volume smaller than
the coarse grid. Various other boundary conditions have been introduced and analyzed in the
literature, see [12] and references therein. For example, in [23], reduced boundary conditions
are found to be efficient in many porous media applications.

3.3.2. Energy minimizing coarse spaces. Coarse basis functions can be obtained by minimizing
the energy of the basis functions subject to a global constraint (see, [35]). More precisely, one
can use the partition of unity functions {χemi }

Nv
i=1, with Nv being the number of coarse nodes,

that provide the least energy. This can be accomplished by solving

(22) min
Nv∑
i=1

∫
ωi

k|∇χemi |2,

subject to the constraint
∑

i χ
em
i = 1 with supp(χemi ) ⊂ ωi, i = 1, . . . , Nv. Note that

∑
i χ

em
i = 1

is a global constraint though it is not tied to any particular global fields unlike the methods
discussed previously. One can solve (22) following a procedure discussed in [35] and then define
the coarse space

(23) V em
0 = span{χemi }.

We note that the computation of these basis functions requires the solution of a global linear
system, a procedure more expensive compared to the local computation of multiscale finite
element basis functions with linear boundary conditions χmsi .

3.3.3. A coarse space with local spectral information. We motivate the choice of the coarse spaces
based on the analysis presented in [15, 17, 18]. First, we briefly review the results of [15, 17, 18].
For fixed ωi consider the eigenvalue problem

(24) −div(k∇ψωi` ) = µωi` k̃ψ
ωi
` ,

where µωi` and ψωi` are eigenvalues and eigenvectors in ωi and k̃ is defined by

(25) k̃ =
1
H2

k

Nv∑
j=1

|∇χinj |2.

We recall that χinj (simply denoted by χj in further discussions) are the initial multiscale basis
functions (either multiscale basis functions with linear boundary conditions or energy minimizing
basis functions) and Nv is the number of the coarse nodes. The eigenvalue problem considered
above is solved with zero Neumann boundary condition and understood in a discrete setting.
Assume eigenvalues are given by

µωi1 ≤ µ
ωi
2 ≤ ....

Basis functions are computed by selecting a number of eigenvalues (starting with small ones)
and multiplying corresponding eigenvectors by χi. Thus, multiscale space is defined for each i
as the span of χiψωi` , ` = 1, ..., Li, where Li is the number of selected eigenvectors (see Figure 1
for an illustration).
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Figure 1. Illustration of basis construction

We note that {ωi}yi∈T H is a covering of Ω. Let {χi}Nvi=1 be a partition of unity subordinated
to the covering {ωi} such that χi ∈ V h

0 (ωi) and |∇χi| ≤ 1
H , i = 1, . . . , Nv. Define the set of

coarse basis functions

(26) Φi,` = Ih(χiψωi` ), for 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nv,

where Ih is the fine-scale nodal value interpolation and Li is an integer number specified for each
i = 1, . . . , Nv. Note that in this case, there might be several basis functions per coarse node.
The number of basis functions per node is defined via the eigenvalue problem (24). Denote by
V0 the local spectral multiscale space

(27) V lsm
0 = span{Φi,` : 1 ≤ ` ≤ Li and 1 ≤ i ≤ Nv}.

3.4. Condition number estimates. In this section, we present a theoretical result which
shows that the number of outer iterations is independent of the contrast. First, for a given
K > 0 we introduce the ball

(28) V K,ph := {v ∈ Vh : ‖v‖W 1
p
≤ K}.

The following three assumptions are used in the proofs of Theorems 1, 2, and 3.

Assumption 1.
(A) C0 ≤ k(x) ≤M , where C0, and M is a constant.
(B) The function λ(x, u) satisfies the following conditions.

(a) λ(x, u) is Lipschitz continuous with respect to u, i.e., there exists a constant C1 such
that |λ(x, u)− λ(x, v)| ≤ C1|u− v|, for all u, v ∈ V , x ∈ Ω,

(b) λ(x, u) is bounded above, i.e. there is a constant C such that λ(x, u) ≤ C for all x ∈ Ω
and u ∈ L∞(Ω)

(c) λ(x, u) is bounded below, i.e. there is a constant C2 such that 0 < C2 ≤ λ(x, u) for all
x ∈ Ω and u ∈ V .

(C) See (43).

Under these assumptions, we show the following theorems concerning the existence of the
solution and the boundedness of the contraction constant.

Theorem 1. Under the Assumption 1 (A) and (B), there are constants α < ∞, h0 > 0 and
ε > 0 such that for all 0 < h ≤ h0 and uh ∈ V h

(29) |uh|W 1
p (Ω) ≤ α sup

06=vh∈V h

a(uh, vh; ·)
|vh|W 1

q (Ω)
, with a(u, v; ·) =

∫
Ω
k∇u∇v dx,
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whenever |2− p| ≤ ε, q is the dual index to p, 1
p + 1

q = 1 and | · |W 1
q (Ω) is a semi-norm in W 1

q (Ω).

Theorem 2. Let the Assumption 1 (A), (B), and (C) hold. Then (a) there exists K > 0, p >
2, h0 > 0, and δ > 0 such that for all F with ‖F‖W−1

p
≤ δ, Th maps V K,ph into itself for all 0 <

h ≤ h0 and by Browder fixed point Theorem, there exists a solution ũh of equation (7) and it
satisfies

(30) Thũh = ũh.

(b) The map Th : V K,ph → V K,ph is a contraction and the contraction constant is independent of
the contrast.

Theorem 3. Under the assumptions of Theorem 1, we have cond(B−1An) ≤ C, where C is
independent of the contrast.

The proofs of these theorems are presented in Appendix A.

4. Numerical results

In this section we present some representative numerical examples. We solve the Richards’
equation (7) in Ω = [0, 1]× [0, 1] with f(x) = 1 and homogeneous Dirichlet boundary conditions.
We consider several models for the hydraulic conductivity: the Haverkamp, van Genuchten, and
Exponential model, (see, e.g. [7, 21, 33, 27]), as introduced below. The coarse mesh TH is
obtained by dividing Ω into a 10× 10 mesh. The fine triangulation is obtained by dividing each
coarse-mesh element into 10 × 10 squares and further dividing each square into two triangles.
Thus, the fine-mesh step size is h = 1/100. In all the numerical experiments we use the initial
approximation for the iterative process u0

h that solves

(31) a(u0
h, v; 0) = F (v), for all v ∈ V h.

We apply the Algorithm (1). As stated in Algorithm (1) we use the preconditioner B−1 in
(18) with three different coarse spaces:

(1) V ms
0 described in Section 3.3.1. In this case B−1 is denoted by B−1

ms;
(2) V em

0 described in Section 3.3.2. In this case B−1 is denoted by B−1
em;

(3) V lsm
0 described in Section 3.3.3. In this case B−1 is denoted by B−1

lsm.
We study the performance of Algorithm 1 with initial guess u0

h and preconditioners B−1
ms, B

−1
em,

and B−1
lsm. We consider different permeabilities with complex high-contrast configurations, see

Figure 2. A number of parameter values in the nonlinearity of the hydraulic conductivity are
tested in our simulations. In particular, for each experiment we chose a different set of parameters
for the model and a set of contrast values for the hydraulic conductivity. We note that, for each
outer iteration in Algorithm 1 we have a PCG iteration. The inner PCG iteration is convergent
when the initial residual is reduced by a factor of tolin = 1e− 10 while the outer tolerance is set
to tolout = 1e− 8.

We consider the following indicators for the performance of the preconditioners:
• Coarse space dimension;
• The number of outer iterations of the nonlinear fixed point iteration (R-iter);
• The maximum and minimum number of inner PCG iterations over all outer iterations

(CG-iter) and the estimated maximum condition numbers (Cond).
We also verify numerically our main assumption in the proof of Theorem 1. That is, for ev-
ery outer iteration update we compute ‖

√
k|∇u|‖pp =

∫
D(
√
k|∇u|)p dx, p = 1, 2, 3, . . . , 10. We

observe that this quantity remains bounded in all experiments.
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Figure 2. (Left): Conductivity field 1. Blue designates the regions where the
coefficient is 1 and other colors designates the regions where the coefficient is
a random number between η and 10 ∗ η. (Right): Conductivity field 2. Blue
designates the regions where the coefficient is 1 and red designates the regions
where the coefficient is η.

4.1. Haverkamp model. First, we will study the Haverkamp model. In this model, (see, e.g.
[21]), the hydraulic conductivity is given by

(32) k(x, u) = ks(x)
A

A+ (|u|/B)γ
.

We present the first set of numerical results in Tables 1 and 2. We use the preconditioner B−1
ms

based on the coarse space V ms
0 . We observe from these tables that the numbers of outer iterations

do not change when the contrast value η increases. However, the condition number of the
preconditioned system grows as η increases. We also observe that the quantity ‖

√
k|∇u|‖pp, p =

1, 2, 3, . . . , 10, that is related to the number of outer iterations, is bounded. We observe that
the number of outer iterations is larger when B and γ (see (32)) decrease. This is because
the smaller values of B and γ increase the magnitude of the conductivity that comes from its
nonlinear component. Comparing Tables 1 and 2 that use different conductivity fields, we see
that the condition numbers in Table 2 are smaller than the condition numbers in Table 1. This
is because conductivity field 2 (see Figure 2) has simpler heterogeneity structure compared to
conductivity field 1.

Next, we repeat the above numerical experiments using the preconditioner B−1
em based on

the coarse space V em
0 . Numerical results are presented in Tables 3 and 4. We observe that,

as before, the number of outer iterations is fixed with increasing η. On the other hand, the
condition number of the PCG iteration grows as the contrast increases. This condition number
is much larger compared to the case when spectral basis functions are used as presented in the
next tables.

Further, we show the numerical experiment using the preconditioner B−1
lsm based on the spec-

tral coarse space V lsm
0 . Numerical results are presented in Tables 5 and 6. As before, we observe

that the number of outer iterations is independent of the contrast. We observe that the condition
number is also independent of the contrast. Note that the condition number is substantially
smaller than the one of the preconditioned system using B−1

ms or B−1
em. In general, the number

of inner PCG iterations is much smaller compared to those when other coarse spaces are used.

4.2. van Genuchten Model. Next, we consider the Van Genuchten model (see [33]) that is
one of widely used empirical constitutive relations. In this model, the hydraulic conductivity is
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A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 4 119, 124 1.1e+ 3 0.12 11 131, 139 1.4e+ 3 0.12
104 4 166, 178 1.1e+ 4 0.12 11 179, 199 1.4e+ 4 0.12
105 4 224, 224 1.1e+ 5 0.12 11 224, 224 1.4e+ 5 0.12
106 4 278, 278 1.1e+ 6 0.12 11 278, 278 1.4e+ 6 0.12

Table 1. Numerical results for preconditioner B−1
ms. Here we use the Haverkamp

model k(x, u) = k(x) A
A+(|u|/B)γ with k depicted in the left picture of Figure 2.

The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 4 113, 113 2.6e+ 2 0.13 11 107, 123 3.9e+ 2 0.13
104 4 163, 171 2.5e+ 3 0.13 11 180, 193 3.6e+ 3 0.13
105 4 224, 232 2.5e+ 4 0.13 11 238, 255 3.6e+ 4 0.13
106 4 288, 295 2.5e+ 5 0.13 11 308, 324 3.6e+ 5 0.13

Table 2. Numerical results for preconditioner B−1
ms. Here we use the Haverkamp

model k(x, u) = k(x) A
A+(|u|/B)γ with k depicted in the right picture of Figure 2.

The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 83, 83 1.3e+ 2 0.12 8 90, 102 1.9e+ 2 0.12
104 3 88, 88 2.5e+ 2 0.12 8 95, 109 3.9e+ 2 0.12
105 3 89, 90 3.0e+ 2 0.12 8 97, 113 4.6e+ 2 0.12
106 3 95, 103 3.1e+ 2 0.12 8 103, 115 4.7e+ 2 0.12

Table 3. Numerical results for preconditioner B−1
em. Here we use the Haverkamp

model k(x, u) = k(x) A
A+(|u|/B)γ with k depicted in the left picture of Figure 2.

The coarse space dimension is 81.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 90, 90 1.6e+ 2 0.13 8 84, 98 2.7e+ 2 0.13
104 3 94, 94 3.7e+ 2 0.13 8 88, 102 6.2e+ 2 0.13
105 3 95, 95 4.2e+ 2 0.13 8 89, 103 7.1e+ 2 0.13
106 3 96, 96 4.3e+ 2 0.13 8 91, 104 7.2e+ 2 0.13

Table 4. Numerical results for preconditioner B−1
em. Here we use the Haverkamp

model k(x, u) = k(x) A
A+(|u|/B)γ with k depicted in the right picture of Figure 2.

The coarse space dimension is 81.

given by

(33) k(x, u) = ks(x)
{1− (α|u|/B)n−1[1 + (α|u|)n]−m}2

[1 + (α|u|)n]
m
2

.
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A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 4 34, 34 6.9 0.13 8 37, 39 9.6 0.13
104 4 35, 35 7.0 0.13 8 39, 41 9.7 0.13
105 4 35, 37 7.0 0.13 8 40, 42 9.7 0.13
106 4 36, 36 7.0 0.13 8 41, 44 9.7 0.13

Table 5. Numerical results for preconditioner B−1
lsm. Here we use the Haverkamp

model k(x, u) = k(x) A
A+(|u|/B)γ with k depicted in the left picture of Figure 2.

The coarse space dimension is 166.

A = 1, B = 1, γ = 1 A = 1, B = 0.01, γ = 0.5
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 31, 31 6.2 0.13 8 35, 37 8.1 0.13
104 3 33, 33 6.3 0.13 8 36, 37 8.0 0.13
105 3 33, 33 6.3 0.13 8 38, 43 8.0 0.13
106 3 34, 34 6.3 0.13 8 38, 41 8.0 0.13

Table 6. Numerical results for preconditioner B−1
lsm. Here we use the Haverkamp

model k(x, u) = k(x) A
A+(|u|/B)γ with k depicted in the right picture of Figure 2.

The coarse space dimension is 184.

As before, we will present numerical results for all three coarse spaces. First, in Tables 7 and
8 we present the numerical results for the preconditioner B−1

ms. We observe that the number of
outer iterations is smaller compared to the other two models. The number of outer iterations
stays the same while increasing η. On the other hand, the condition number of the linearized
system increases as η increases. We observe that the value ‖

√
k|∇u|‖pp, p = 1, 2, 3, . . . , 10 is

bounded independent of the contrast. Now we compare Table 7 and Table 8 for two different
conductivity fields depicted in Figure 2. We observe that the condition numbers presented
in Table 8 is smaller than those presented in Table 7 which is consistent with our previous
observations.

Numerical results for the preconditioner B−1
em are presented in Tables 9 and 10, while numerical

results for the preconditioner B−1
lsm are presented in Tables 11 and 12. As before, we observe

that the number of outer iteration does not change with η increasing. However, the condition
number of the inner iteration is increasing for B−1

em, while the condition number of the inner
iteration does not change (and is much smaller) for B−1

lsm.

4.3. Exponential Model. Finally, we present numerical results for the exponential model.
Here the hydraulic conductivity depend exponentially on the pressure head u, that is,

(34) k(x, u) = ks(x)eαu/B.

This nonlinear equation can also be derived by homogenizing Stokes equation in porous media
when the fluid viscosity exponentially depends on the pressure [27].

We present the first set of numerical results in Tables 13 and 14. First, we use the pre-
conditioner B−1

ms based on the coarse space V ms
0 . We observe that the number of the outer

iterations does not change when the contrast η increases. However, the condition number
of the preconditioned system increases proportional to η. We also observe that the quantity
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α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 2 116, 116 1.1e+ 3 0.13 2 115, 116 1.1e+ 3 0.13
104 2 168, 168 1.1e+ 4 0.13 2 174, 174 1.1e+ 4 0.13
105 2 219, 219 1.1e+ 5 0.13 2 219, 219 1.1e+ 5 0.13
106 2 273, 290 1.1e+ 6 0.13 2 267, 272 1.1e+ 6 0.13

Table 7. Numerical results for preconditioner B−1
ms. Here we use the van

Genuchten model k(x, u) = k(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with k depicted
in the left picture of Figure 2. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 2 98, 99 2.5e+ 2 0.13 2 99, 99 2.5e+ 2 0.13
104 2 134, 134 2.5e+ 3 0.13 2 160, 160 2.5e+ 3 0.13
105 2 183, 184 2.5e+ 4 0.13 2 219, 223 2.5e+ 4 0.13
106 2 222, 225 2.5e+ 5 0.13 2 286, 287 2.5e+ 5 0.13

Table 8. Numerical results for preconditioner B−1
ms. Here we use the van

Genuchten model k(x, u) = k(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with k depicted
in the right picture of Figure 2. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 2 82, 82 1.3e+ 2 0.13 1 81 1.3e+ 2 0.13
104 2 85, 85 2.5e+ 2 0.13 1 84 2.5e+ 2 0.13
105 2 88, 88 3.0e+ 2 0.13 1 87 3.0e+ 2 0.13
106 2 93, 101 3.1e+ 2 0.13 1 95 3.1e+ 2 0.13

Table 9. Numerical results for preconditioner B−1
em. Here we use the van

Genuchten model k(x, u) = k(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with k depicted
in the left picture of Figure 2. The coarse space dimension is 81.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 2 76, 76 1.6e+ 2 0.13 1 88 1.6e+ 2 0.13
104 2 79, 79 3.6e+ 2 0.13 1 90 3.6e+ 2 0.13
105 2 79, 79 4.2e+ 2 0.13 1 87 4.1e+ 2 0.13
106 2 80, 81 4.2e+ 2 0.13 1 90 4.2e+ 2 0.13

Table 10. Numerical results for preconditioner B−1
em. Here we use the van

Genuchten model k(x, u) = k(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with k depicted
in the right picture of Figure 2. The coarse space dimension is 81.
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α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 2 33, 33 6.8 0.13 1 33 6.8 0.13
104 2 34, 34 6.8 0.13 1 34 6.8 0.13
105 2 35, 35 6.8 0.13 1 35 6.8 0.13
106 2 36, 36 6.8 0.13 1 36 6.8 0.13

Table 11. Numerical results for preconditioner B−1
lsm. Here we use the van

Genuchten model k(x, u) = k(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with k depicted
in the left picture of Figure 2. The coarse space dimension is 166.

α = 0.005, B = 1, n = 2, m = 0.5 α = 0.01, B = 1, n = 4, m = 0.75
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 2 32, 32 6.5 0.14 1 31 6.2 0.13
104 2 33, 33 6.6 0.13 1 32 6.3 0.13
105 2 33, 33 6.6 0.13 1 33 6.3 0.13
106 2 35, 35 6.6 0.13 1 34 6.3 0.13

Table 12. Numerical results for preconditioner B−1
lsm. Here we use the van

Genuchten model k(x, u) = k(x){1−(α(|u|/B))n−1[1+(α(|u|/B))n]−m}2
[1+(α(|u|/B))n]m/2

with k depicted
in the right picture of Figure 2. The coarse space dimension is 184.

‖
√
k|∇u|‖pp, p = 1, 2, 3, . . . , 10 is bounded independent of contrast η. We see that the number

of outer iterations stays the same for both set of parameters for nonlinearities which means
larger α values do not affect the outer iterations. We observe from Tables 13 and 14 (these
use different conductivity fields) that the condition numbers in Table 14 are smaller than the
corresponding condition numbers in Table 13. This is because conductivity field 2 has simpler
subgrid structure compared to conductivity field 1.

Next, we repeat the numerical experiment using the preconditioner B−1
em based on the coarse

space V em
0 and B−1

lsm with coarse space V lsm
0 . Numerical results for the coarse space B−1

em are
presented in Tables 15 and 16 while the results for V lsm

0 are presented in Tables 17 and 18. As
before, we observe that the number of outer iterations is independent of the contrast. However,
the for space V em

0 the condition number increases as we increase the contrast. On the other hand,
the condition number is independent of contrast when V lsm

0 is used as a coarse space. Moreover,
we observe that the condition number produced by V lsm

0 , is only 6 while the condition number
for V em

0 is about 400 for η = 106. In conclusion, B−1
lsm provides a truly independent-of-contrast

solver.

5. Conclusions

In this paper, we study robust iterative solvers for finite element discretizations of steady-
state Richards’ equation. We assume that the nonlinear conductivity field can be written as
a product of a nonlinear function and a heterogeneous spatial function that has high contrast.
Due to spatial heterogeneities, the number of iterations in an iterative method, in general, will
depend on the contrast. To alleviate this problem, we design and investigate iterative solvers
that converge independent of the physical parameters (small spatial scales and large contrast).
The proposed iterative solvers consist of outer and inner iterations, as it is commonly done in
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α = 1, B = 1 α = 2, B = 1
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 4 119, 120 1.0e+ 3 0.13 4 120, 122 1.1e+ 3 0.13
104 4 166, 178 1.1e+ 4 0.13 4 173, 181 1.1e+ 4 0.13
105 4 224, 224 1.1e+ 5 0.13 4 226, 227 1.1e+ 5 0.13
106 4 274, 284 1.1e+ 6 0.13 4 277, 287 1.1e+ 6 0.13

Table 13. Numerical results for preconditioner B−1
ms. Here we use the Exponen-

tial model k(x, u) = k(x)eα(u/B) with k depicted in the left picture of Figure 2.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 4 113, 113 2.5e+ 2 0.13 4 114, 115 2.5e+ 2 0.13
104 4 164, 164 2.5e+ 3 0.13 4 164, 164 2.5e+ 3 0.13
105 4 223, 232 2.5e+ 4 0.13 4 227, 231 2.5e+ 4 0.13
106 4 290, 294 2.5e+ 5 0.13 4 289, 302 2.5e+ 5 0.13

Table 14. Numerical results for preconditioner B−1
ms. Here we use the Exponen-

tial model k(x, u) = k(x)eα(u/B) with k depicted in the right picture of Figure 2.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 83, 84 1.3e+ 2 0.13 3 84, 84 1.3e+ 2 0.13
104 3 88, 88 2.5e+ 2 0.13 3 89, 90 2.6e+ 2 0.13
105 3 90, 91 3.0e+ 2 0.13 3 92, 92 3.1e+ 2 0.13
106 3 96, 97 3.1e+ 2 0.13 3 97, 98 3.1e+ 2 0.13

Table 15. Numerical results for preconditioner B−1
em. Here we use the Exponen-

tial model k(x, u) = k(x)eα(u/B) with k depicted in the left picture of Figure 2.
The coarse space dimension is 81.

α = 1, B = 1 α = 2, B = 1
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 91, 91 1.6e+ 2 0.13 3 91, 92 1.6e+ 2 0.13
104 3 95, 95 3.6e+ 2 0.13 3 95, 96 3.7e+ 2 0.13
105 3 95, 95 4.2e+ 2 0.13 3 98, 99 4.2e+ 2 0.13
106 3 98, 98 4.2e+ 2 0.13 3 99, 99 4.3e+ 2 0.13

Table 16. Numerical results for preconditioner B−1
em. Here we use the Exponen-

tial model k(x, u) = k(x)eα(u/B) with k depicted in the right picture of Figure 2.
The coarse space dimension is 81.

the literature. Outer iterations, designed to handle nonlinearities, linearize the equation around
the previous solution state. We show that this linearization yields contrast independent iterative
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α = 1, B = 1 α = 2, B = 1
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 33, 33 6.8 0.13 3 34, 34 6.8 0.13
104 3 35, 35 6.8 0.13 3 35, 35 6.8 0.13
105 3 36, 36 6.8 0.13 3 36, 36 6.9 0.13
106 3 37, 37 6.8 0.13 3 37, 37 6.9 0.13

Table 17. Numerical results for preconditioner B−1
lsm. Here we use the Expo-

nential model k(x, u) = k(x)eα(u/B) with k depicted in the left picture of Figure
2. The coarse space dimension is 166.

α = 1, B = 1 α = 2, B = 1
η R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp R-iter CG-iter Max Cond ‖(

√
k|∇u|)‖pp

103 3 32, 32 6.4 0.13 3 32, 32 6.6 0.13
104 3 34, 34 6.8 0.13 3 34, 34 6.7 0.13
105 3 34, 34 6.5 0.13 3 35, 35 6.7 0.13
106 3 36, 36 6.8 0.13 3 35, 36 6.7 0.13

Table 18. Numerical results for preconditioner B−1
lsm. Here we use the Expo-

nential model k(x, u) = k(x)eα(u/B) with k depicted in the right picture of Figure
2. The coarse space dimension is 184.

procedure. For inner iterations, we use recently developed iterative methods (see [15, 17]) that
converge independent of the contrast. One of main ingredients of this approach, the construction
of coarse spaces, is discussed in details in the paper. Since the same preconditioner was used for
every outer iteration, this makes the overall solution process quite efficient. Numerical results
are presented to confirm the theoretical findings.

In the future, we would like to study the time-dependent case and the case with non-separable
nonlinearities and heterogeneities. In the latter, we plan to develop nonlinear local problems
that can identify high-conductivity regions and include these features into the coarse space.

Appendix A. Proof of Theorems 1, 2, and 3

A.1. Proof of Theorem 1. It was shown in [4] that for δ > 0 there exists ε > 0 such that

(35) |uh|W 1
p (Ω) ≤ (1 + δ) sup

06=vh∈V h

〈∇uh,∇vh〉
|vh|W 1

q
(Ω)

, for all |2− p| ≤ ε,

where 1
p + 1

q = 1 and δ and ε are independent of h. Now, we consider a high-contrast case via a
perturbation argument.

Define a bilinear form B : W 1
p (Ω)×W 1

q (Ω)→ R by

B(u, v) := 〈∇u,∇v〉 − 1
M
a(u, v; ·).

It follows from Assumption 1 (A) and Hölder’s inequality that

(36) B(u, v) ≤
(

1− C0

M

)∫
Ω
|∇u(x)∇v(x)|dx ≤

(
1− C0

M

)
|u|W 1

p (Ω)|v|W 1
q (Ω).
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Note that C0/M < 1. Then, the identity 〈∇u,∇v〉 = B(u, v) +
1
M
a(u, v; ·), together with

estimates (35) and (36) yields

M

(
1

1 + δ
−
(

1− C0

M

))
|uh|W 1

p (Ω) ≤ sup
06=vh∈V h

a(uh, vh; ·)
|vh|W 1

q (Ω)
.

Let δ = C0
2M−C0

, and choose ε to be as given in (35) for this particular choice of δ. Then,

M
(

1
1+δ −

(
1− C0

M

))
= C0/2. Recall that a(u, v; ·) can be very large because of high contrast.

This completes the proof. Note that ε and α depend only on the constants C0, C
∗ and M ,

though the coercivity bound is independent of the contrast M . �

A.2. Proof of Theorem 2. (a) For any uh ∈ V K,ph , k(x)λ(x, uh) satisfies the conditions of
Theorem 1 with a constant M0 such that

(37) M0 = sup{k(x)λ(x, s) : ‖s‖L∞ ≤ cp| log h|K},

where h is the mesh-size of the partition Th and cp is the constant in Sobolev’s inequality [4],

(38) ‖v‖L∞(Ω) ≤ cp| log h|‖v‖W 1
p (Ω), for all v ∈W 1

p (Ω).

The constant M0 exists because of Assumption 1 (A) and (B). Then, uh ∈ V K,ph implies that
‖uh‖L∞(Ω) ≤ cp| log h|‖uh‖W 1

p (Ω) ≤ cp| log h|K and hence sup{k(x)λ(x, uh)} ≤ M0. For suffi-
ciently small K (e.g., K = C/cp) there is a p > 2 such that the inequality (29) in Theorem 1
holds. Then,

‖Thuh‖W 1
p (Ω) ≤ α sup

0 6=vh∈V h

a(Thuh, vh;uh)
|vh|W 1

q (Ω)
(from Theorem 1)

= α sup
0 6=vh∈V h

F (vh)
|vh|W 1

q (Ω)
≤ C‖F‖W−1

p (Ω).

Choose ‖F‖W−1
p (Ω) ≤ K/C to get ‖Thuh‖W 1

p (Ω) ≤ K, i.e., Th maps V K,ph into itself. By Browder
fixed point [11], there exists a solution ũh of equation (7) and it satisfies

(39) Thũh = ũh.

�

(b) Now, we shall show the mapping Th is contraction and also that the contractivity con-
stant is independent of the contrast.

Suppose uh, vh ∈ V K,ph satisfy a(Thuh, w;uh) = F (w) and a(Thvh, w; vh) = F (w). Thus,

a(Thuh, w;uh)− a(Thvh, w; vh) = 0.(40)

Since a(·, ·, ·) is a bilinear form, from equation (40) we get

a(Thuh − Thvh, w;uh) = a(Thvh, w; vh)− a(Thvh, w;uh).(41)
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Now, using the definition of a(·, ·, ·), the right hand side of the equation (41) can be written as

(42)

∫
Ω
k(x)(λ(x, vh)− λ(x, uh))∇Thvh∇wdx

≤
(∫

Ω
k(x)(∇Thvh)2|λ(x, vh)− λ(x, uh)|2dx

) 1
2
(∫

Ω
k(x)(∇w)2dx

) 1
2

≤
(∫

Ω
|k(x)|q|∇Thvh|2qdx

) 1
2q
(∫

Ω
|λ(x, vh)− λ(x, uh)|2q′dx

) 1
2q′

�

(∫
Ω
k(x)(∇w)2dx

) 1
2

(By Hőlder’s inequality,
1
q

+
1
q′

= 1)

≤
(∫

Ω
|k(x)|q|∇Thvh|2qdx

) 1
2q
(
C1

∫
Ω
|vh − uh|2q

′
dx

) 1
2q′

�

(∫
Ω
k(x)(∇w)2dx

) 1
2

(By Lipschitz continuity of λ)

≤
(∫

Ω
|k(x)|q|∇Thvh|2qdx

) 1
2q
(
C1C2q′

∫
Ω

(∇(vh − uh))2dx

) 1
2

�

(∫
Ω
k(x)(∇w)2dx

) 1
2

, (by Sobolev inequality),

where we have used the Sobolev inequality ‖u‖L2q′ (Ω) ≤ C2q′‖Du‖L2(Ω) with 2q′ ∈ [1,∞] for

function u with bounded mean oscillation. Next, we want to bound
(∫

Ω |k(x)|q|∇Thvh|2qdx
) 1

2q

with some constant which is independent of the contrast, i.e., the constant doesn’t depend on
k(·).

Now, we make the following assumption, which is slightly different than Assumption 1(C).

Assumption 2. Given the equation a(Thvh, Thvh, vh) = F (Thvh) (see (8)), we assume that

(43)
∫

Ω
(k(x)|∇Thvh|2)q/2dx ≤ CqF ,

where CqF → 0 as ‖F‖W−1
q (Ω) → 0 for some q > 2.

We note that when F = 0 then C2
F = 0, thus, Thvh is zero almost everywhere. Moreover, if

‖F‖W−1
2 (Ω) is small, then C2

F is small and C2
F converges to zero as ‖F‖W−1

2 (Ω) goes to zero. The
inequality (43) assumes that we have continuity of CqF with respect to ‖F‖W−1

2 (Ω) for any q > 2
that is sufficiently close to 2. We note that ‖Thvh‖W 1

q (Ω) is bounded by ‖F‖W−1
q (Ω) as shown

above. This is typically used to show the contractivity of the map Th.
Now, we can conclude that

(44)

∫
Ω
k(x)(λ(x, vh)−λ(x, uh))∇Thvh∇wdx

≤ C
(∫

Ω
(∇(vh − uh))2dx

) 1
2
(∫

Ω
k(x)(∇w)2dx

) 1
2

,

where the constant C depends on Lipschitz constant C1.
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Now put w = Thuh − Thvh, then left hand side of (41) is bounded below,

(45)
a(Thuh − Thvh, Thuh − Thvh, uh) =

∫
Ω

(k(x)λ(x, uh)(∇(Thuh − Thvh))2dx

≥ C2

∫
Ω
k(x)(∇(Thuh − Thvh))2dx.

Combine equations (44) and (45), then we get∫
Ω
k(x)(∇(Thuh−Thvh))2dx ≤ C−1

2 C

(∫
Ω

(∇(vh − uh))2dx

) 1
2
(∫

Ω
k(x)(∇(Thuh − Thvh))2dx

) 1
2

.

Then, using the Assumption 1 (a), we get

C
1
2
0

(∫
Ω

(∇(Thuh − Thvh)2dx

) 1
2

≤ C−1
2 C

(∫
Ω

(∇(vh − uh))2dx

) 1
2

.

So we can deduce that

|Thuh − Thvh|W 1
2
≤ C−

1
2

0 C−1
2 C|uh − vh|W 1

2
,(46)

i.e., the mapping Th is a contraction if C is chosen sufficiently small (see Assumption 2).

A.3. Proof of Theorem 3. From Lemma 1 and Lemma 10 of [17] we have that there is a
stable decomposition, that is, there exists v0 ∈ V lsm

0 , vi ∈ V h
0 (ωi), i = 1, . . . , Nv, such that∫

D
k|∇v0|+

Nv∑
i=1

∫
ωi

k|∇vi|2 ≤ C0

(
1 +

1
H2µL+1

)∫
D
k|∇v|2,

for some positive constant independent of the contrast and µL+1 = mini µLi+1. Here we select
the first Li smallest eigenvalues of (24). Then, for a fixed w we have stable decomposition,∫

D
λ(x,w)k(x)|∇v0(x)|+

Nv∑
i=1

∫
ωi

λ(x,w)k(x)|∇vi|2

≤ C0
maxx∈D λ(x,w)
minx∈D λ(x, ω)

(
1 +

1
H2µL+1

)∫
D
λ(x,w)k(x)|∇v|2.

According to the abstract theory of domain decomposition, see [32, 25], we conclude that the
condition number of the preconditioned matrix is of order

cond(B−1A) ≤ C0
maxx∈D λ(x,w)
minx∈D λ(x, ω)

(
1 +

1
H2µL+1

)
.

Further noting that the number of nonlinear outer iterations is bounded (see Theorem 2), we
conclude that the proposed iterative procedure converges independent of the contrast.
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