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Abstract. We present a two-scale finite element method for solving
Brinkman’s equations with piece-wise constant coefficients. This system
of equations model fluid flows in highly porous, heterogeneous media with
complex topology of the heterogeneities. We make use of the recently
proposed discontinuous Galerkin FEM for Stokes equations by Wang
and Ye in [12] and the concept of subgrid approximation developed for
Darcy’s equations by Arbogast in [4]. In order to reduce the error along
the coarse-grid interfaces we have added a alternating Schwarz iteration
using patches around the coarse-grid boundaries. We have implemented
the subgrid method using Deal.II FEM library, [7], and we present the
computational results for a number of model problems.
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1 Introduction

In this paper we consider the Brinkman’s equations for the velocity u and the
pressure p:

−µ∆u +∇p + µκ−1u = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω.
(1)

Here µ > 0 is the viscosity, Ω is a bounded simply connected domain in Rn,
n = 2, 3, with Lipschitz polyhedral boundary having the outward unit normal
vector n, 0 < κ ∈ L∞(Ω) is the permeability and f ∈ L2(Ω)n is a forcing term.
Then problem (1) has unique weak solution (u, p) ∈ (H1(Ω)n, L2

0(Ω)).
Brinkman’s equations adequately describe flows in highly porous media. They

are used for modeling many industrial materials and processes such as industrial
filters, with porosity above 0.9, thermal insulators made of glass or mineral wool
with porosity 0.99, or open foams with porosity above 0.95, see Fig. 1. Equation
(1) was introduced by Brinkman in [6] in order to reduce the deviations between
the measurements for flows in highly porous media and the Darcy-based pre-
dictions. This was done without direct link to underlying microscopic behavior
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Fig. 1. Microstructure of industrial foams

of the flow process, but as a constitutive relation involving a dissipative term
scaled by the viscosity. However, advances in homogenization theory made it
possible to rigorously derive Brinkman’s equations from Stokes’ equations in the
case of slow viscous fluid flow in the presence of periodically arranged solid ob-
stacles, see e.g., [1, 2, 9, 11]. Also, system (1) has been considered from the point
of view of fictitious domain or penalty formulation of flows of incompressible liq-
uids around solid or porous obstacles; in this case the coefficients are piece-wise
constant: the viscosity µ is constant and κ is “small” in the solid obstacles and
“infinity” in the fluid, (see, e.g. [3]).

Fig. 2. Microstructure and marcostructure of mineral wool

In this paper we derive and study numerical methods for solving Brinkman’s
equations (1) assuming that the coefficient κ is piece-wise constant and has
large jumps. Moreover, the structure of the subdomains, where the coefficient is
constant, has quite a complicated geometry, see, e.g. Figure 1. For such problems
we shall construct and numerically test two-scale finite element approximations.
In the case of problems with scale separation the method captures well the
coarse scale behavior of the solution and enhances it with fine scale features.
Also, we extend such approximations to numerically treat problems without
scale separation. Enhancing the method by subdomains around the coarse-grid
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edges we devise an iterative alternating Schwarz methods, which converges to
the fine-grid approximate solution. All constructions are implemented within
the Deal.II finite element library. As a byproduct of this development we also
obtaine a subgrid finite element approximation of Darcy’s problem, a method
proposed and justified by Arbogast [4], and the discontinuous Galerkin method
for Stokes’ equations, proposed and studied by Wang and Ye [12].

In this note we present derivation of a subgrid approximation of Brinkman
equations and test the method on a number of model problems. Our further
goals include theoretical and practical study of the error of the method, testing
its performance on more realistic three-dimensional problems, and development
and justification of efficient solution methods.

2 Preliminaries

Here we use the standard notation for spaces of scalar and vector-functions
defined on Ω. L2(Ω) is the space of measurable square integrable functions in
Ω and L2

0(Ω) is its subspace of functions with mean value zero. The Sobolev
spaces H1(Ω) and H1(Ω)n consist of scalar and vector-functions, respectively,
with weak first derivatives in L2(Ω) and L2(Ω)n. Similarly,

H1
0 (Ω)n := {v ∈ H1(Ω)n : v = 0 on ∂Ω},

H(div;Ω) := {v ∈ L2(Ω)n : ∇ · v ∈ L2(Ω)},
H0(div;Ω) := {v ∈ H(div;Ω) : v · n = 0 on ∂Ω}.

Further, Pk denotes the set of polynomials of degree k ≥ 0 and Pn
k the set of

vector functions in Rn with components in Pk.
The two-scale finite element method uses various (mixed) finite element

spaces, which are defined below. Let TH and Th be quasi-uniform quadrilat-
eral triangulations of Ω with mesh-parameter H and h, respectively, such that
each TH ∈ TH is an agglomeration of elements in Th. We will refer to TH and Th

as coarse and fine triangulation, respectively. Let EH denote the set of all edges
(n = 2) and faces (n = 3) of TH , respectively. Also, we define E̊H to be the set of
all internal edges/faces of TH , i.e., E̊H := {eH ∈ EH | eH * ∂Ω} and E̊h to be the
set of all edges/faces of Th that are internal for the coarse-grid cells TH ∈ EH .
Furthermore, for each TH ∈ TH we denote by Th(TH) the restriction of Th to the
coarse finite element TH , Th(TH) is referred to as a fine triangulation of TH .

We denote by (VH ,WH) and (Vh,Wh) the mixed finite element spaces cor-
responding to TH(Ω) and Th(Ω), resprectively. Likewise, for each TH ∈ TH(Ω)
and eH ∈ E̊H let

(δVh(TH), δWh(TH)) ⊂ (H0(div;TH), L2
0(TH)) (2)

be mixed finite element spaces corresponding to Th(TH). We also consider the
direct sums of these local finite element spaces and set

(δVh, δWh) :=
⊕

TH∈TH

(δVh(TH), δWh(TH)),
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where functions in (δVh(TH), δWh(TH)) are extended by zero to Ω\TH .We, fur-
thermore, assume that the finite element spaces satisfy the following properties:

∇ · δVh = δWh and ∇ · VH = WH , (3a)

δWh ⊥ WH in the L2-inner-product, (3b)

and
VH ∩ δVh = {0}. (3c)

We note that if we choose (VH ,WH) and (δVh(TH), δWh(TH)), with TH ∈ TH ,
to be Brezzi-Douglas-Marini (BDM1) mixed finite element spaces of order one
(cf. e.g. [5, Section III.3, p. 126]), then (3) is satisfied. The velocity for the BDM1
space in 2-D is given by

P 2
1 + span{curl(x2

1x2), curl(x1x
2
2} = P 2

1 + span{(x2
1,−2x1x2), (2x1x2,−x2

2)}

on each cell, with the restriction that the normal component is continuous across
cell boundaries. In 3-D the spaces are defined in a similar manner, see, e.g. [5,
Section III.3, p. 127]. Due to (3b) and (3c) the following direct sum is well-defined

(VH,h,WH,h) := (VH ,WH)⊕ (δVh, δWh) . (4)

(a) (Vh, Wh). (b) (VH,h, WH,h) with 2 coarse cells.

Fig. 3. Degrees of freedom of different mixed finite element spaces corresponding to
BDM1 elements for the velocity and piece-wise constant functions for the pressure.

3 Subgrid Method for Brinkman’s Equations

Now we outline the numerical subgrid approach for problem (1) in the way
T. Arbogast applied it to Darcy’s problem in [4].

It is well known that the mixed variational formulation of (1) reads as follows:
Find (u, p) ∈ (H1

0 (Ω)n, L2
0(Ω)) such that for all (v, q) ∈ (H1

0 (Ω)n, L2
0(Ω))

a (u,v) + b (v, p) + b (u, q) =
∫

Ω

f · vdx, (5)
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where
b (v, q) := −

∫
Ω

∇ · vqdx, (6a)

a (u,v) :=
∫

Ω

(µ∇u : ∇v + µκ−1u · v)dx. (6b)

Now we consider a finite element approximation of (5) with respect to (VH,h,WH,h).
Note, that VH,h 6⊂ H1

0 (Ω)n, and therefore it is a nonconforming finite ele-
ment space. However, we have that VH,h ⊂ H0(div;Ω) and we can use the
discontinuous Galerkin approximation of Stokes equations, derived in [12]: Find
(uH,h, pH,h) ∈ (VH,h,WH,h) such that for all (vH,h, qH,h) ∈ (VH,h,WH,h) we have

ah (uH,h,vH,h) + b (vH,h, pH,h) + b (uH,h, qH,h) = F (vH,h), (7)

where

ah (u,v) :=
∑

Th∈Th

∫
Th

(
∇u : ∇v + κ−1u · v

)
dx

+
∑
e∈Eh

∫
e

( α

|e|
JuK JvK− {{ε(u)}} JvK− {{ε(v)}} JuK

)
ds

(8)

with the average {{ε(·)}} and the jump J·K defined by

{{ε(u)}} :=

{
1
2

(
n+ · ∇(u|T+

h
· τ+) + n− · ∇(u|T−h · τ−)

)
on e ∈ E̊h,

n+ · ∇(u|T+
h
· τ+) on e ∈ E∂

h

(9a)

and

JvK :=

{
v|T+

h
· τ+ + v|T−h · τ− on e ∈ E̊h,

v|T+
h
· τ+ on e ∈ E∂

h .
(9b)

Here α > 0 is a sufficiently large stabilization parameter, n and τ are normal
and tangential vectors to the edge e (with right orientation), the superscripts +

and − refer to the elements on either side of edge e, and E̊h and E∂
h denote the

sets of all internal and boundary edges, respectively.
If H = h, i.e. δVh = ∅, δWh = ∅, we have a single grid approximation of

Brinkman’s equations, a method proposed and studied by Wang and Ye in [12]
for Stokes equations. The approximate solution obtained on a single grid for H
sufficiently small will be further called a reference solution.

The subsequent derivation, which follows the reasoning in [4], is the core of
the numerical subgrid approach and essentially yields a splitting of (7) into one
coarse global and several fine local problems. Due to (4) we know that each
element in (VH,h,WH,h) may be uniquely decomposed into its components from
(VH ,WH) and (δVh, δWh). Thus, (7) may be rewritten as

ah (uH + δuh,v + δvh) + b (v + δvh, pH + δph) = F (v + δvh),
b (uH + δuh, q + δqh) = 0,

∀(v, q) ∈ (VH ,WH) and ∀(δvh, δqh) ∈ (δVh, δWh).
(10)
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By linearity we may decompose (10) into

ah (uH + δuh,v) + b (v, pH + δph) + b (uH + δuh, q) = F (v),
∀(v, q) ∈ (VH ,WH), (11a)

ah (uH + δuh, δvh) + b (δvh, pH + δph) + b (uH + δuh, δqh)

= F (δvh), ∀(δvh, δqh) ∈ (δVh, δWh).
(11b)

Due to (3a), (3b), and (3c) we may simplify (11) to obtain the equation:

ah (uH + δuh,v) + b (v, pH) + b (uH , q) = F (v)
∀ (v, q) ∈ (VH ,WH) (12a)

ah (uH + δuh, δvh) + b (δvh, δph) + b (δuh, δqh) = F (δvh),
∀ (δvh, δqh) ∈ (δVh, δWh). (12b)

Remark 1. This last step is crucial to ensure the solvability of (12b). In fact,
the equivalence of (11b) and (12b) is a major reason for requiring the properties
of the finite element spaces in (3). The requirements (3), however, significantly
limit the possible choices of finite elements that might be used in the subgrid
method.

Now, by further decomposing (δuh, δph) = (δuh + δ̃uh, δph + δ̃ph) and using
superposition, (12b) may be replaced by the following systems of equations sat-
isfied by (δ̃uh, δ̃ph) and (δuh, δph), respectively, for all (δvh, δqh) ∈ (δVh, δWh):

ah

(
uH + δ̃uh, δvh

)
+ b

(
δvh, δ̃ph

)
+ b

(
δ̃uh, δqh

)
= 0 (13a)

and
ah

(
δuh, δvh

)
+ b

(
δvh, δph

)
+ b

(
δuh, δqh

)
= F (δvh). (13b)

We easily see by (13a) that (δ̃uh, δ̃ph) = (δ̃uh(uH), δ̃ph(uH)) is a linear oper-
ator in uH . Unfortunately, as written, these two problems do not lead to local
(over the coarse elements) computations since they are connected through the
penalty involving the tangential component of δ̃uh and δuh on ∂TH . We achieve
the desired localization by considering equations (13) over each coarse grid cell
with zero tangential component of the velocity imposed weakly by the penalty
term (for more details, see [13]). Keeping this in mind we further use the same
notation. In the following we refer to (δuh, δph) and (δ̃uh(uH), δ̃ph(uH)) as the
responses to the right hand side and uH , respectively.

Plugging δuh + δ̃uh(uH) into (12a) we arrive at an upscaled equation, which
is entirely posed in terms of the coarse unknowns, i.e. for all (v, q) ∈ (VH ,WH)

ah

(
uH + δ̃uh(uH),v

)
+ b (v, pH) = F (v)− ah

(
δuh,v

)
,

b (uH , q) = 0.
(14)

Now, due to the first equation in (13a) we see, by choosing δvh = δ̃uh(v), that

ah

(
uH + δ̃uh(uH), δ̃uh(v)

)
+ b

(
δ̃uh(v), δ̃ph(uH)

)
= 0.
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The second equation in (13a) in turn yields b
(
δ̃uh(v), δ̃ph(uH)

)
= 0 for any

v ∈ VH . Combining these two results with (14) we obtain the symmetric upscaled
problem: find (uH , pH) ∈ (VH ,WH) so that for all (v, q) ∈ (VH ,WH)

ah

(
uH + δ̃uh(uH),v + δ̃uh(v)

)
+ b (v, pH) + b (uH , q) = F (v)− ah

(
δuh,v

)
,

(15)
One can set up this linear system by first computing the responces δ̃uh(uH)
with uH being a coarse-grid basis function. This could be done in advance and
in parallel. Once (15) is solved for (uH , pH) we obtain the solution of (7) by

(uH,h, pH,h) = (uH + δ̃uh(uH) + δuh, pH + δ̃ph(uH) + δph). (16)

4 Subgrid Method and Alternating Schwarz Iterations

As noted in the previous section we presented a special way of computing
the solution of (7), i.e., the finite element solution corresponding to the space
(VH,h,WH,h). The difference between the spaces (VH,h,WH,h) and (Vh,Wh) is
that the former has no fine degrees of freedom across coarse cell boundaries.
Thus, fine-scale features of the solution (u, p) across those coarse cell bound-
aries are poorly captured by functions in (VH,h,WH,h). Algorithm 1 addresses
this problem by performing alternating Schwarz iterations between the spaces
(VH,h,WH,h) and (V τ

h (eH),W τ
h (eH)) that consist of fine-grid functions defined

on overlapping subdomains around each coarse-mesh interface eH ∈ E̊H of size
H. Now, problem (17) is of exactly the same form as (7). Thus, by the same

Algorithm 1 Alternating Schwarz extension to the numerical subgrid approach
for Darcy’s problem – first formulation.
1: Set (u0

h, p0
h) ≡ (0, 0).

2: for j = 0, . . . until convergence do
3: if j > 0 then
4: Starting from (uj

h, pi
h) perform an additive Schwarz step with respect to

(V τ
h (eH), W τ

h (eH)) for all eH ∈ EH to get (u
j+1/3
h , p

j+1/3
h ).

5: else
6: (u

1/3
h , p

1/3
h ) = (u0

h, p0
h)

7: end if
8: Find (eH,h, eH,h) ∈ (VH,h, WH,h) such that for all (v, q) ∈ (VH,h, WH,h) we have8<: ah (eH,h, v) + b (v, eH,h) = F (v)− ah

“
u

j+1/3
h , v

”
− b

“
v, p

j+1/3
h

”
,

b (eH,h, q) = −b
“
u

j+1/3
h , q

”
.

(17)

9: Set
(uj+1

h , pj+1
h ) = (u

j+1/3
h , p

j+1/3
h ) + (eH,h, eH,h). (18)

10: end for
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reasoning as in the previous section we may replace (17) by the following two
problems: Find (δeh, δeh) ∈ (δVh, δWh) such that for all (δvh, δqh) ∈ (δVh, δWh)

Algorithm 2 Alternating Schwarz extension to the numerical subgrid approach
for Darcy’s problem – second formulation.

1: Compute fδuh for all coarse velocity basis functions, i.e., solve (13a) with uH re-
placed by basis functions.

2: Set (u0
h, p0

h) ≡ (0, 0).
3: for j = 0, . . . until convergence do
4: Steps 3:–7: of Algorithm 1
5: Solve (19a) for (δeh, δeh).

6: Set (u
j+2/3
h , p

j+2/3
h ) = (u

j+1/3
h , p

j+1/3
h ) + (δeh, δeh).

7: Solve (22) for (eH , eH).

8: Set (uj+1
h , pj+1

h ) = (u
j+2/3
h + eH + fδuh(eH), p

j+2/3
h + eH + eδph(eH)).

9: end for

ah (δeh, δvh) + b (δvh, δeh) = F (δvh)− ah(uj+ 1
3

h , δvh)− b(δvh, p
j+ 1

3
h ),

b (δeh, δqh) = −b(uj+ 1
3

h , δqh).
(19a)

Find (eH , eH) ∈ (VH ,WH) such that for all (v, q) ∈ (VH ,WH) we have

ãH (eH ,v) + b (v, eH) = F (v)− ah(uj+ 1
3

h ,v)− b(v, p
j+ 1

3
h )− ah(δeh,v),

b (eH , q) = −b(uj+ 1
3

h , q).
(19b)

Here, (19a) and (19b) correspond to (13b) and (15), respectively, and analogous
to (16), (eH,h, eH,h) from (17) is obtained by

(eH,h, eH,h) = (eH , eH) +
(
δ̃uh(eH), δ̃ph(eH)

)
+ (δeh, δeh) . (20)

Now, define
(uj+ 2

3
h , p

j+ 2
3

h ) := (uj+ 1
3

h , p
j+ 1

3
h ) + (δeh, δeh).

Combining this with (18) and (20) we obtain

(uj+1
h , pj+1

h ) = (uj+ 2
3

h , p
j+ 2

3
h ) + (eH , eH) + (δ̃uh(eH), δ̃ph(eH)). (21)

We observe that due to (3a) and (3b) we may simplify (19b) to obtain the
equality for all (v, q) ∈ (VH ,WH)

ãH (eH ,v) + b (v, eH) + b (eH , q)

= F (v)− ah

(
u

j+ 2
3

h ,v
)
− b(uj+ 2

3
h , q)− b(v, p

j+ 2
3

h ).
(22)

Thus, we may rewrite Algorithm 1 in form of Algorithm 2.
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Remark 2. Algorithm 2 also has a different interpretation than just being some
equivalent formulation of Algorithm 1. It is straightforward to see that for j = 0,
(u

2
3
h , p

2
3
h ) = (δuh, δph), i.e. it is the solution of (13b). For j ≥ 1 (uj+ 2

3
h , p

j+ 2
3

h ) is
the solution of (13b) with the homogeneous boundary conditions being replaced

by (in general) inhomogeneous ones defined by (uj+ 1
3

h , p
j+ 1

3
h ). Besides, (22) is of

exactly the same form as (15). Thus, Algorithm 2 can be viewed as a subgrid
algorithm that iteratively improves the local boundary conditions of the response
to the right hand side.

Remark 3. As a byproduct of our consideration we have a subgrid approxima-
tion of the Darcy’s equation. In this case the above algorithms reduce to an
overlapping Schwarz domain decomposition method. Such methods were stud-
ied in details in [8, 10] where a convergence rate independent of H has been
established.

5 Numerical Results

We consider the following example to test the numerical subgrid approach for
Brinkman’s problem and the enhanced version with alternating Schwarz itera-
tions. The model problems has non-homogeneous boundary conditions, namely,
u = g on ∂Ω. Extending this subgrid method to problems with non-homogeneous
boundary data is possible under the condition that g is contained in the trace
space of VH on the boundary ∂Ω.This has been elaborated in the PhD thesis of
J. Willems, [13].

Example 1. We choose Ω = (0, 1)2 and

f ≡ 0, g ≡
[

1
0

]
, µ = 1, κ−1 =

{
1e3 in dark regions,
1 in light regions,

where the position of the obstacles is shown in Figure 4(a) (periodic case) and
Figure 4(b) (media with small obstacles), and Figure 4(c) (media with relatively
large vuggs), respectively.

We have chosen a fine mesh of 128 × 128 cells that resolve the geometry.
For the subgrid algorithm we choose a coarse 8× 8 mesh and each coarse-cell is
further refined to 16× 16 fine cells. On all figures we plot the numerical results
for the velocity u1 for Example 1.

On Figure 5 we report the numerical results for periodically arranged ob-
stacles: Figure 5(a) shows the reference solution, computed on the global fine
128×128 grid, Figure 5(b) – the solution of the subgrid method, and Figure 5(c)
– the solution after five iterations of overlapping Schwarz domain decomposition
method (Schwarz DD). The relative L2-norm of the error for the the subgrid
solution shown in Figure 5(b) is 7.14e − 2, while after five Schwarz iterations
(see Figure 5(c)) the L2-norm of the error is an order of magnitude better.

Likewise, on Figure 6 we show the numerical results for the two geometries
shown on Figures 4(b) and 4(c). The first row represents the reference solution
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(a) Periodic geometry. (b) Media with obstacles. (c) Media with large vuggs.

Fig. 4. Three test geometries. The dark regions indicate obstacles or porous media, i.e.
κ−1 is large, and the light regions indicate (almost) free flow regions, i.e. κ−1 is small.

(a) Reference solution. (b) Subgrid solution. (c) Schwarz DD, 5 it.

Fig. 5. Velocity u1 for media with periodically arranged obstacles of Figure 4(a)

computed on the global fine grid with 128 × 128 cells. In the second row we
give the solution of the subgrid method and in the third row we show the so-
lution obtained after few Schwarz overlapping domain decomposition iterations.
In all cases we clearly see the error of the subgrid solution along the coarse-
grid boundaries. This error is due to the prescribed zero values for the fine-grid
velocity on the coarse-grid boundaries and is characteristic for the multiscale
methods (e.g. [14]). As we see in the numerical experiments, few Schwarz itera-
tions substantially decrease the error. For the geometry shown on Figure 4(c) the
improvement is achieved after just one iteration, while for the geometry shown
on Figure 4(b) the substantial improvement is achieved after 10 iterations. In all
cases the approximate solution of Schwarz overlapping method obtained in few
iterations is very close to the reference one.
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(a) Reference solution. (b) Reference solution.

(c) Subgrid FE solution. (d) Subgrid FE solution.

(e) Schwarz DD after 1 iteration (f) Schwarz DD after 10 iterations

Fig. 6. Velocity component u1 for Example 1; on the left – the results for geometry of
Figure 4(b) and the right row – the results for geometry of Figure 4(c)


