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Abstract

In this paper, we study multiscale finite element methods (MsFEMs) using
basis functions that provide an optimal convergence in domain decomposition
methods. We consider second order elliptic equations with highly variable co-
efficients. Both multiscale finite element and domain decomposition methods
(considered here) use coarse spaces to achieve efficiency and robustness. In
MsFEMs, the spatial variability of the media affects the convergence rate (see
e.g., [14]). In domain decomposition methods, high variability of the coefficients
within coarse regions affects the number of iterations required for the conver-
gence. In this paper, we use coarse spaces designed for high-contrast problems
that provide an optimal convergence in domain decomposition methods. These
spaces are constructed locally. In particular, basis functions are constructed
using solutions of a local spectral problem. In our previous work [18], we show
that using these coarse spaces one can construct preconditioners such that the
condition number of the preconditioned system is independent of the contrast.
In this paper, these coarse spaces are used in MsFEMs to solve elliptic equations
with high-contrast heterogeneous coefficients on a coarse grid. Our numerical
results show that MsFEMs with coarse spaces constructed via local spectral
problems are more accurate compared to multiscale methods that employ tra-
ditional multiscale spaces, e.g., with linear boundary conditions. However, we
argue that these coarse spaces based on local eigenvalue problems are not suf-
ficient to capture the fine-scale behavior of the solution very accurately. In
particular, these coarse spaces identify high conducting regions accurately, but
they may not capture the detailed behavior of the solution in other regions,
such as between high-conductivity regions. The latter can be important for the
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convergence of MsFEMs. In the paper, we also show that one can construct
coarse spaces hierarchically by approximating the eigenvectors on a coarse grid.
This approximation, though does not reduce the dimension of the coarse space,
it provides CPU savings. The numerical results are presented for both MsFEMs
and domain decomposition methods for the sake of completeness.

1 Introduction

Subsurface properties typically vary several orders of magnitude over multiple
scales. A high contrast in the media properties brings an additional small scale
into the problem expressed as the ratio between low and high conductivity
values. For example, it is very common to have several orders of magnitude of
variations in the permeability field in natural porous formations. It is common
to use upscaled or multiscale models to solve flow and transport processes on
the coarse grid [23, 1, 2, 4, 5, 6, 10, 11, 13, 25]. These approaches approximate
the effects of the fine-scale features and attempt to capture their effects on a
coarse grid via localized basis functions. The main idea of the MsFEM is to
construct basis functions that are used to approximate the solution on a coarse
grid. It is found the accuracy of MsFEMs is very sensitive to the boundary
conditions imposed in computing basis functions (e.g., [14]).

Domain decomposition methods (considered in this paper), on the other
hand, use the solutions of local problems in constructing preconditioners for the
fine-scale system. Both MsFEMs and domain decomposition methods employ
coarse spaces to achieve efficiency and robustness. The number of iterations
required by domain decomposition preconditioners is typically affected by the
contrast in the media properties that are within each coarse grid block. In [18],
we introduce a coarse space based on local spectral problems (see also [9, 28]).
These spaces are motivated by weighted Poincaré estimates that arise in the
proofs of L2 approximation property of the coarse interpolation in the analysis
of domain decomposition preconditioners. In particular, the spectrum of local
eigenvalue problem contains eigenvalues that are small and asymptotically van-
ish as the contrast increases. The eigenvectors corresponding to these small,
asymptotically vanishing, eigenvalues represent the high-conducting features.
The number of these eigenvectors is the same as the number of disconnected
high-contrast inclusions. The coarse space is constructed such that the basis
functions span the eigenfunctions corresponding to these small, asymptotically
vanishing, eigenvalues as well as some nodal multiscale basis functions. In [18],
we prove that if the coarse space in domain decomposition methods includes
these eigenfunctions, then the condition number of the preconditioned matrix
is bounded independent of the contrast.

In this paper, we use multiscale finite element framework and project the
solution onto the coarse spaces obtained from local eigenvalue problem. As we
mentioned that the eigenvectors represent high-conducting regions, and, con-
sequently, multiscale basis functions represent high-conducting regions more
accurately. However, for the accuracy of multiscale methods one also needs to
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represent the fine-scale features of the solution away from these regions. Some
of these features one can observe in eigenvectors that correspond to eigenvalues
which are not asymptotically small. To capture these regions to some extend,
we solve local problems subject to boundary conditions that come from the
eigenvalue problem. As it was shown in [23, 14], the error in MsFEMs can
be large when the coarse mesh size is close to a characteristic length scale for
the coefficients with bounded variations. Thus, MsFEMs with proposed basis
functions contain such resonance or residual error. In [12], the authors propose
multiscale basis functions for high-contrast heterogeneities for problems with
isolated inclusions where resonance errors are removed by carefully selecting
boundary conditions. In [7], the authors propose global basis functions based
on eigenvalue problems to remove these resonance errors.

In the paper, we compare MsFEM with local spectral basis functions with
MsFEM that uses linear boundary conditions as well as energy minimizing ba-
sis functions. Our numerical results show that one can obtain more accurate
solutions when local spectral basis functions are used. In particular, the high-
conductivity features are captured more precisely with local spectral basis func-
tions. These basis functions identify high-conductivity regions and are capable
of separating them. Thus, the computed multiscale solutions capture high-
conductivity regions. However, these basis functions still introduce errors due
to the variations within high-conductivity regions and at the interfaces between
high and low conductivity regions. More information is needed to incorporate
these features into the basis functions. We discuss the use of global eigen-
value problem and the computation of it via local solutions. We propose the
approximation of the global eigenvectors on a coarse grid using local spectral
basis functions. We show that the number of small, asymptotically vanishing,
eigenvectors remains the same in this approximation.

The paper is organized as follows. In the next section, we discuss domain
decomposition and multiscale finite element frameworks. Section 3 is devoted
to the discussion on coarse spaces. Numerical results are presented in Section
4. The use of global eigenvectors in multiscale simulations, their hierarchical
approximations, and related numerical results are presented in Appendix.

2 Preliminaries. Domain decomposition and mul-
tiscale finite element methods

In this section, we describe domain decomposition and MsFEMs. These meth-
ods share similarities, though there are important differences. In particular,
MsFEMs, as upscaling methods, compute the coarse-scale solution by using
multiscale basis functions. Domain decomposition methods, on the other hand,
use the information on the coarse grid and iteratively solve for the fine-scale
solution by correcting its approximation at each iteration.

Let D ⊂ R2 (or R3) be a polygonal domain which is the union of a dis-
joint polygonal subregions {Di}N

i=1, called coarse grid. We consider the elliptic
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equation with heterogeneous coefficients

div(κ(x)∇u) = f, (1)

where κ(x) is a heterogeneous field with high contrast. The variational formu-
lation of this problem is

a(u, v) = f(v) for all v ∈ H1
0 (D). (2)

Here the bilinear form a and the linear functional f are defined by

a(u, v) =
∫

D

κ(x)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D) (3)

and
f(v) =

∫

D

f(x)v(x)dx for all v ∈ H1
0 (D).

We assume H = maxi diam(Di). These coarse grids will be also denoted by
T H . Let T h be a fine triangulation which is a refinement of T H . We denote
by V h(D) the usual finite element discretization of piecewise linear continuous
functions with respect to the fine triangulation T h. Denote also by V h

0 (D) the
subset of V h(D) with vanishing values on ∂D. Similar notations, V h(Ω) and
V h

0 (Ω), are used for subdomains Ω ⊂ D.

The Galerkin formulation of (2) is to find u ∈ V h
0 (D) such that

a(u, v) = f(v) for all v ∈ V h
0 (D), (4)

or in matrix form
Au = b (5)

where for all u, v ∈ V h(D) we have

uT Av =
∫

D

κ∇u∇v and vT b =
∫

D

fv.

We denote by {D′
i}N

i=1 the overlapping decomposition obtained from the
original nonoverlapping decomposition {Di}N

i=1 by enlarging each subdomain
Di to

D′
i = Di ∪ {x ∈ D, dist(x, Di) < δi}, i = 1, . . . , N,

where dist is some distance function and let V i
0 (D′

i) be the set of finite element
functions with support in D′

i. We also denote by RT
i : V i

0 (D′
i) → V h the

extension by zero operator.
Using the coarse interpolation T H we introduce coarse basis functions {Φi}Nc

i=1

where Nc is the number of coarse mesh vertices. MsFEMs solve the underlying
fine-scale equations on the coarse grid. Given coarse-scale basis functions the
coarse space is given by

V0 = span{Φi}Nc
i=1, (6)
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and the coarse matrix A0 = R0ART
0 where

RT
0 = [Φ1, . . . , ΦNc ].

Multiscale finite element solution is the finite element projection of the fine-scale
solution into the space V0. More precisely, multiscale solution u0 is given by

A0u0 = f0,

where f0 = RT
0 b. One can also write the approximation on the coarse grid as

u0 =
∑

i ciΦi, where ci are determined from

a(u0, v) = (f, v), for all v ∈ V0.

Once u0 is determined, one can define a fine-scale approximation of the solution
by reconstructing via basis functions.

For domain decomposition methods, we use a two level additive precondi-
tioner of the form

B−1 = RT
0 A−1

0 R0 +
N∑

i=1

RT
i A−1

i Ri (7)

where the local matrices are defined by

vAiw = a(v, w) for all v, w ∈ V i
0 (D′

i), (8)

i = 1, . . . , N . See [27, 22]. This procedure involves solving coarse-scale sys-
tem and solving local problems in an iterative manner. This procedure involves
solving coarse-scale system and local problems at each iteration. Each of the
iteration can be used within an existing iterative methods, e.g., conjugate gra-
dient, to converge to the fine-scale solution. In domain decomposition methods,
a main goal is to reduce the number of iterations in the iterative procedure,
while in multiscale methods, we would like to obtain an accurate approximation
of the solution in a first iteration.

We denote by {yi}Nc
i=1 the vertices of the coarse mesh T H and define the

neighborhood of the node yi by

ωi =
⋃
{Kj ∈ T H ; yi ∈ Kj} (9)

and the neighborhood of the coarse element K by

ωK =
⋃
{ωj ∈ T H ; yj ∈ Kj}. (10)

3 Coarse space

As we mentioned previously that both MsFEMs and domain decomposition
methods use coarse spaces. In domain decomposition methods, one can do the
simulations without the coarse space; however, as it has been shown that the
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coarse spaces improve the convergence to a number of iterations independent of
H and independent of the contrast for some special cases (see e.g., [22]). In this
section we define local spectral multiscale coarse space using eigenvectors of high
contrast eigenvalue problems. These multiscale basis functions are designed to
improve the accuracy of multiscale methods for high-contrast problems. First,
we define some notations.

To define the coarse space, we introduce high-contrast eigenvalue problem.
For any Ω ⊂ D define the Neumann matrix AΩ by

vAΩw =
∫

Ω

κ∇v∇w for all v, w ∈ V h(Ω), i = 1, . . . , N, (11)

and the mass matrix of same dimension MΩ by

vMΩw =
∫

Ω

κvw for all v, w ∈ V h(Ω). (12)

We consider the finite dimensional symmetric eigenvalue problem

AΩφ = λMΩφ (13)

and denote its eigenvalues and eigenvectors by {λΩ
` } and {ψΩ

` }, respectively.
Note that the eigenvectors {ψΩ

` } form an orthonormal basis of V h(Ω) with
respect to the MΩ inner product. Note that λΩ

1 = 0. We assume that

λΩ
1 ≤ λΩ

2 ≤ · · · ≤ λΩ
i ≤ . . . . (14)

The eigenvalue problem above corresponds to the approximation of the eigen-
value problem

div(κ∇v) = λκv

in Ω with Neumann boundary condition. In particular, ψωi

` denotes the `-th
eigenvector of the Neumann matrix associated to the neighborhood of yi. Next,
we present simple numerical examples to discuss the eigenvalues of the high-
contrast eigenvalue problem. It turns out if the domain has m high-contrast
inclusions, then there are m small, asymptotically vanishing, eigenvalues. This
can be shown using min-max principles. In Figure 1, we present an example
where there are 2 inclusions and 2 channels. As we observe there are four
small, asymptotically vanishing, eigenvalues (see Figure 1). In general, if there
are m inclusions and channels, then one can observe m small, asymptotically
vanishing, eigenvalues. The eigenvectors corresponding to these eigenvalues will
be used to construct the coarse space V0. If Dirichlet boundary conditions are
imposed, then the small eigenvalues are due to interior inclusions (see Figure
2).

We choose the basis functions such that they span the eigenfunctions corre-
sponding to small, asymptotically vanishing, eigenvalues. We note that {ωi}yi∈T H

is a covering of Ω. Let {χi}Nc
i=1 be a partition of unity subordinated to the cov-

ering {ωi} such that χi ∈ V h(D) and |∇χi| ≤ 1
H , i = 1, . . . , Nc. Define the set

of coarse basis functions

Φi,` = Ih(χiψ
ωi

` ) for 1 ≤ i ≤ Nc and 1 ≤ ` ≤ Li (15)
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Figure 1: Eigenfunctions for Neumann problem. Permeability is 108 in the
inclusions and channels and 1 outside. Left top: permeability. Right top: second
eigenfunction (fist eigenfunction is constant). Left bottom: third eigenfunction.
Right bottom: fourth eigenfunction. The four small eigenvalues are 0, 0.1119e−
5, 0.2409e− 5, 0.3310e− 5
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in Figure 1. Left: first eigenfunction. Right: second eigenfunction. The two
small eigenvalues are 0.2922e− 5, 0.3183e− 4.
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where Li is an integer number for each i = 1, . . . , Nc. Denote by V0 the local
spectral multiscale space

V0 = span{Φi,` : 1 ≤ i ≤ Nc and 1 ≤ ` ≤ Li}. (16)

Define also the coarse interpolation I0 : V → V0 by

I0v =
Nc∑

i=1

Li∑

`=1

(∫

ωi

κvψωi

`

)
Ih(χiψ

ωi

` ) =
Nc∑

i=1

Ih
(
(Iωi

Li
v)χi

)
, (17)

where Ih is the fine-scale nodal value interpolation and Iωi

Li
was defined by

IΩ
L v =

L∑

`=1

(∫

Ω

κvψΩ
`

)
ψΩ

` . (18)

Note that we have

v − I0v =
Nc∑

i=1

Ih
(
χi(v − Iωi

Li
v)

)
.

We have the following weighted L2 approximation and weighted H1 stability
properties ([18]).

Lemma 1 For all coarse element K we have
∫

K

κ(v − I0v)2 ¹ 1
λK,L+1

∫

ωK

κ|∇v|2 (19)

∫

K

κ|∇I0v|2 ¹ max{1,
1

H2λK,L+1
}

∫

ωK

κ|∇v|2 (20)

where λK,L+1 = minyi∈K λωi

Li+1 and ωK is the union of the elements that share
common edge with K defined in (10).

Lemma 1 allows us to show that the condition number of the preconditioned
matrix is independent of contrast. In [18], we show that if the coarse space is the
local spectral multiscale space as introduced in (16), then the condition number
of the preconditioned matrix is independent of the contrast. In particular, the
following lemma was proved in [18].

Lemma 2 For all v ∈ V h, there exists a decomposition v =
∑N

i=0 vi, with
vi ∈ V i = V h

0 (D′
i), i = 1, 2, . . . , N, v0 ∈ V0, such that

a(v0, v0) +
N∑

i=1

a(vi, vi) ¹ C2
0a(v, v)

with C2
0 ¹ max{1 + 1

δ2λL+1
, 1 + 1

H2λL+1
} where λL+1 = min

1≤i≤Nc

λωi

Li+1.
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As a corollary, we have the following statement.

Corollary 3 Under the assumptions of Lemma 2 the condition number of the
preconditioned operator B−1A with B−1 defined in (7) is

cond(B−1A) ¹ C(1 +
H2

δ2
)

where C is independent of the contrast and the mesh size.

3.1 Dimension reduction for the coarse space

As the high-contrast eigenvalue problem suggests that one can have a large
number of basis functions if the number of separate high-contrast regions is
large. This will result to a large dimensional coarse space. It is known when
inclusions are strictly inside, one can use multiscale finite element basis functions
for constructing the coarse space. One can reduce the dimension of the coarse
space by identifying the basis functions with bounded energies. This procedure
is presented in [18] and we will briefly outline it.

Previously, we used general partition of unity functions. One can use the
partition of unity functions {χi}Nc

i=1 that provide the least energy. This can be
accomplished by solving

min
Nc∑

i=1

Li∑

`=1

∫

ωi

κ|∇Φi,`|2 =
Nc∑

i=1

Li∑

`=1

∫

ωi

κ|∇(χiψ
ωi

` )|2 (21)

where the local spectral multiscale basis functions Φi,` are defined in (15) and
the minimum is taken over all partition of unity functions {χi}Nc

i=1 subordinated
to the covering {ωi}Nc

i=1 of D. One can solve (21) following the similar procedure
as discussed in [29].

The numerical solution of the energy minimizing problem (21) is computa-
tionally expensive since it involves computing a global problem. One can use
instead multiscale basis functions that reduce the energy of the basis functions
defined via eigenfunctions. Following [17], we define the local spectral multi-
scale basis functions with reduced energy Φ̃i,` as the κ−harmonic extension of
Φi,` in each coarse block, that is, for each coarse element K and 1 ≤ ` ≤ Li

with 1 ≤ i ≤ Nc we have

div(κ∇Φ̃i,`) = 0 in K (22)

Φ̃i,` = Φi,` on ∂K.

We define local spectral multiscale coarse space with reduced energy by

V0 = span{Φ̃i}Nc
i=1. (23)

These basis functions are only used to reduce the dimension of the coarse space
by removing those basis functions with bounded energy. We also define standard
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multiscale finite element basis functions (as defined in [23]). In this case, we
only choose the constant eigenfunction and thus have only one function per node
defined as

div(κ∇Φ̃i) = 0 in K (24)

Φ̃i = χi on ∂K.

The standard multiscale basis functions are defined by

V ms−lin
0 = span{Φ̃i}Nc

i=1. (25)

Energy minimizing nodal basis functions are defined by taking only the constant
eigenfunction in (21), i.e.,

min
Nc∑

i=1

Li∑

`=1

∫

ωi

κ|∇Φi|2 (26)

and we denote the span of these basis functions by V EM
0 .

Our motivation for the reduction stems from the fact that when high-contrast
inclusions are isolated and away from the boundaries of coarse-grid blocks, the
energies of the basis functions are bounded unlike the energies of the basis func-
tions corresponding to channels. For this reason, we perform local singular value
decomposition and isolate the basis functions that represent high-conductivity
channels from basis functions that represent the inclusions with bounded energy.
The approach is as follows. Given a coarse mesh node yi we consider the space
spanned by all the coarse basis functions associated to this node. Then divide
this space according to the energy, keeping the part of the space with higher
energy. More precisely, consider the Li basis functions associated to this node,
that is

Φi,`, with 1 ≤ ` ≤ Li

and define the matrix
RiT

0 = [Φi,1, . . . , Φi,Li
].

We have that the coarse space spanned by multiscale basis functions (see (16))
can be written as V0 = span1≤i≤Nc

RiT
0 . We define the local coarse matrix of

dimension Li × Li by
Ai

0 = RiT
0 ARi

0.

In the case of V0 defined by (23) the basis functions Φi,1 are usual multiscale
basis functions with linear boundary conditions. We write the eigenvalue de-
composition of this symmetric matrix as

Ai
0 = QTi

0 Di
0Q

i
0, Qi

0 = [qi,1, . . . , qi,Li ] (27)

where the matrix Qi
0 is an orthogonal matrix and Di

0 = diag(µ1, . . . , µLi) with

µ1 ≤ · · · ≤ µLi .
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The idea is to keep only the part of span{RiT
0 } associated with larger energy. To

do this we remove the first Mi eigenvectors in (27) that have bounded energies
independent of the contrast. In case of interior high-contrast inclusions and
channels, Mi can be chosen as the number of small, asymptotically vanishing,
eigenvalues corresponding to the zero Dirichlet local high-contrast eigenvalue
problem. Define the matrix of eigenvalues of larger energy by

Q̂i
0 = [0, . . . , 0, qi,Mi+1 . . . , qi,Li ].

The new basis functions associated to the coarse mesh node yi will be given
by the columns of the matrix Ri

0Q̂
i
0 and the multiscale basis function Φ1,i (or

energy minimizing basis functions as defined in [20, 29]). We define the new
reduced local spectral multiscale space

V0 = span{Φi,1, R
i
0Q̂

i
0}Nc

i=1. (28)

Note that one can determine the number of basis functions associated with
interior inclusions by solving zero Dirichlet eigenvalue problem instead of zero
Neumann problem. However, to identify the eigenvectors that represent chan-
nels is not easy because many eigenvectors have components in the channel
regions. By using local spectral multiscale coarse space with reduced energy,
our goal is to identify the basis corresponding to inclusions.

If isolated inclusions intersect the boundaries, multiscale finite element ba-
sis functions with linear boundary conditions can give large (contrast depen-
dent) energies for such isolated inclusions. In [19], the authors construct multi-
scale basis functions with bounded energies for isolated high-contrast inclusions
intersecting the boundary by using reduced one-dimensional boundary condi-
tions. These boundary conditions provide more accurate representation of high-
contrast features. These basis functions can be used to reduce the dimension of
the coarse space defined by local spectral problem (as in (16)). In this case the
basis functions with bounded energies will be replaced by energy minimizing
basis functions as defined in [20].

4 Numerical studies

In this section, we present representative numerical results for MsFEMs and
the additive preconditioner with the local spectral multiscale coarse spaces. In
particular, we will use the following notations. LSM1 will refer to multiscale
or domain decomposition methods with local spectral multiscale coarse space
as defined in (16), where the eigenvectors corresponding to small, asymptoti-
cally vanishing eigenvalues, are multiplied by piecewise linear partition of unity
functions. LSM-RE will refer to multiscale or domain decomposition methods
with local spectral multiscale coarse space as defined in (23), where we use basis
functions with reduced energy. RLSM will refer to multiscale or domain decom-
position methods with local spectral multiscale coarse space as defined in (28),
where the coarse space dimension is reduced. We take D = [0, 1]× [0, 1] that is
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divided into 10 × 10 equal square subdomains. Inside each subdomain we use
a fine-scale triangulation where triangular elements constructed from 10 × 10
squares are used.

In our first numerical example, we use the coefficient depicted in Figure 3
that corresponds to a coefficient with background one and high conductivity
channels and inclusions with varying conductivities within each region. In par-
ticular, we choose the high conductivities between η/10 and η randomly for
each region. Here η is a fixed large number. In Figure 4, we depict fine-scale
solution and the solution obtained with various coarse space for the coarse mesh
size H = 1/10. In the title of the figures, the relative errors in energy norm
as well as H1 norm are shown. The errors are the following: the errors with
multiscale basis functions obtained using local solutions with linear boundary
conditions (see (25)) are 98.25% (in energy norm) and 97.9% (in H1 norm); the
errors with multiscale basis functions obtained using energy minimizing basis
functions (see (26)) are 24.66% (in energy norm) and 24.9% (in H1 norm); the
errors with multiscale basis functions obtained using local spectral basis (see
(16)) are 11.88% (in energy norm) and 11.88% (in H1 norm); the errors with
multiscale basis functions obtained using reduced local spectral basis (see (23))
are 6.11% (in energy norm) and 6.11% (in H1 norm); the errors with multiscale
basis functions obtained using local spectral basis with reduced dimension (see
(28)) are 10% (in energy norm) and 10% (in H1 norm). We observe that Ms-
FEM with spectral basis functions perform better than other standard MsFEM
methods. In particular, MsFEM with reduced energy basis gives the most ac-
curate results. In Tables 1 and 2, we present the errors between the fine-scale
solution and the multiscale solution in energy norm and weighted L2 norm. The
errors are shown for two different contrasts and two different coarse mesh sizes,
H = 1/10 and H = 1/20. We observe from this table that the weighted L2 norm
are small for all the methods; however, the errors in energy norms can be large.
In particular, multiscale basis functions with linear boundary conditions and
energy minimizing basis functions give large errors. The errors are smallest for
MsFEM with LSM-RE basis functions, though we observe that the error does
not decrease as the mesh size is reduced and there is some residual error that
MsFEM with spectral basis can not remove. In Figure 5, we depict logarithm of
the square of the velocity field, κ2|∇p|2. It is evident from this figure that Ms-
FEM with spectral basis functions capture the sharp features more accurately;
however, it may not accurately capture the features that are smoother and away
from sharp interfaces. To make MsFEM with spectral basis more accurate, one
can include more basis elements that capture the features in low conductivity
regions. For example, one can include eigenfunctions that correspond to eigen-
values that are not asymptotically small. In Table 3, we show the number of
iterations for different methods with varying contrast. As we observe that do-
main decomposition methods that use spectral basis functions provide the least
number of iterations and the condition number is bounded independent of the
contrast.

In our second numerical example, we use the coefficient depicted in Figure
6 that corresponds to a coefficient with background one and high conductivity
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Figure 3: Permeability field.

H MS EMF LSM1 LSM-RE RLSM
1/10 0.98(0.98) 0.24(0.24) 0.11(0.11) 0.06( 0.06) 0.10(0.10 )
1/20 1.46(1.47) 0.85(0.87) 0.14(0.14) 0.09(0.09) 0.13(0.13)

Table 1: Relative energy error for the permeability depicted in Figure 3. Here
h = 1/100, η = 104 (η = 106).

channels and inclusions with varying conductivities within each region. In par-
ticular, we add a long channel in this example compared to the previous one.
We choose the high conductivities between η/10 and η randomly for each region,
where η is a fixed number. In Figure 7, we depict the fine-scale solution and
the solution obtained with various coarse spaces for the coarse mesh H = 1/10.
In the title of the figures, the relative errors in energy norm as well as H1 norm
are shown. The errors are the following: the errors with multiscale basis func-
tions obtained using local solutions with linear boundary conditions (see (25))
are 68% (in energy norm) and 68% (in H1 norm); the errors with multiscale
basis functions obtained using energy minimizing basis functions (see (26)) are
24.45% (in energy norm) and 24.45% (in H1 norm); the errors with multiscale
basis functions obtained using local spectral basis (see (16)) are 18.19% (in en-
ergy norm) and 18.19% (in H1 norm); the errors with multiscale basis functions
obtained using reduced local spectral basis (see (23)) are 12.81% (in energy

H MS EMF LSM1 LSM-RE RLSM
1/10 0.03(0.03) 0.001(0.001) 0.0003(0.0003) 0.0003(0.0003) 0.0002(0.0002)
1/20 0.06(0.07) 0.03(0.04) 0.00004(0.00006) 0.0001(0.0001) 0.0004(0.0003)

Table 2: Relative weighted L2 error for the permeability depicted in Figure 3.
Here h = 1/100, η = 104 (η = 106).
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Figure 4: Multiscale finite element approximation on a coarse grid H = 1/10.
In the title, the dimension of the coarse space is shown. η = 104.

η MS EMF LSM1 LSM-RE RLSM
106 238(1.52e+006) 89(4.22e+002) 37(1.08e+001) 33(1.06e+001) 35(1.13e+001)
108 345(1.45e+008) 99(4.22e+002) 38(1.08e+001) 33(1.06e+001) 36(1.13e+001)
1010 455(1.52e+010) 132(4.22e+002) 41(1.08e+001) 38(1.06e+001) 36(1.13e+001)

Table 3: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient in Figure 3.
We set the tolerance to 1e-10. Here H = 1/10 with h = 1/100.

norm) and 12.81% (in H1 norm); the errors with multiscale basis functions ob-
tained using local spectral basis with reduced dimension (see (28)) are 15.84%
(in energy norm) and 15.84% (in H1 norm). Again, we observe that MsFEM
with spectral basis functions perform better than other methods. In particular,
MsFEM with reduced energy basis gives the most accurate results among the
methods are considered. In Tables 4 and 5, we present the errors between the
fine-scale solution and the multiscale solution in energy norm and weighted L2

norm. The errors are shown for two different contrasts and two different coarse
mesh sizes, H = 1/10 and H = 1/20. We observe that the weighted L2 norm
are small for all the methods; however, the errors in energy norms can be large.
In particular, multiscale basis functions with linear boundary conditions and
energy minimizing basis functions give large errors. Moreover, we note that Ms-
FEM with local spectral basis functions is robust with respect to coarse mesh
size and the contrast. We again observe that MsFEM with reduced energy basis
gives the smallest error, though there is some residual error that is not removed.
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Figure 5: Logarithm of the velocity square (κ2|∇p|2) is depicted for the fine-
scale solution (left), standard MsFEM with basis functions that have linear
boundary conditions (middle), and MsFEM with reduced energy basis (right).
This corresponds to the permeability field depicted in in Figure 3. η = 106

In Table 6, we show the number of iterations for different methods with varying
contrast. As we observe that domain decomposition methods that use spectral
basis functions provide the least number of iterations and the condition number
is bounded independent of the contrast.

Figure 6: Permeability field.

In our third numerical example, we use the coefficient depicted in Figure
8 that corresponds to a coefficient with background one and high conductiv-
ity channels and inclusions with varying conductivities within each region. In
particular, we add a long tortuous channel in this example compared to the
previous one. We choose the high conductivities between η/10 and η randomly
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Figure 7: Multiscale finite element approximation on a coarse grid H = 1/10.
In the title, the dimension of the coarse space is shown. η = 105.

H MS EMF LSM1 LSM-RE RLSM
1/10 0.67(0.68) 0.24(0.24) 0.18(0.18) 0.12(0.12) 0.15(0.15)
1/20 0.84(0.84) 0.55(0.56) 0.17(0.17) 0.12(0.13) 0.15(0.15)

Table 4: Relative energy error for the permeability depicted in Figure 6. Here
h = 1/100, η = 105 (η = 107).

for each region. In Figure 9, we depict fine-scale solution and the solution ob-
tained with various coarse spaces. In the title of the figures, the relative errors
in energy norm as well as H1 norm are shown. The errors are the following:
the errors with multiscale basis functions obtained using local solutions with
linear boundary conditions (see (25)) are 68% (in energy norm) and 68% (in H1

norm); the errors with multiscale basis functions obtained using energy mini-
mizing basis functions (see (26)) are 24.45% (in energy norm) and 24.45% (in
H1 norm); the errors with multiscale basis functions obtained using local spec-
tral basis (see (16)) are 18.19% (in energy norm) and 18.19% (in H1 norm); the

H MS EMF LSM1 LSM-RE RLSM
1/10 0.02(0.02) 0.001(0.001) 0.0003(0.0003) 0.0003(0.0003) 0.0003(0.0003)
1/20 0.03(0.03) 0.02(0.02) 0.0001( 0.0001) 0.0002(0.0002) 0.0003(0.0003)

Table 5: Relative weighted L2 error for the permeability depicted in Figure 6.
Here h = 1/100, η = 105 (η = 107).
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η MS EMF LSM1 LSM-RE RLSM
106 141(1.07e+005) 78(1.17e+002) 37(1.11e+001) 36(1.09e+001) 39(1.14e+001)
108 141(1.07e+005) 78(1.17e+002) 37(1.11e+001) 36(1.09e+001) 39(1.14e+001)
1010 141(1.07e+005) 78(1.17e+002) 37(1.11e+001) 36(1.09e+001) 39(1.14e+001)

Table 6: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient in Figure 6.
We set the tolerance to 1e-10. Here H = 1/10 with h = 1/100.

errors with multiscale basis functions obtained using reduced local spectral basis
(see (23)) are 12.81% (in energy norm) and 12.81% (in H1 norm); the errors
with multiscale basis functions obtained using local spectral basis with reduced
dimension (see (28)) are 15.84% (in energy norm) and 15.84% (in H1 norm).
Again, we observe that MsFEM with spectral basis functions perform better
than other methods. In particular, MsFEM with reduced energy basis gives the
most accurate results among the methods are considered. In Tables 7 and 8,
we present the errors between the fine-scale solution and the multiscale solution
in energy norm and weighted L2 norm. The errors are shown for two different
contrasts and two different coarse mesh sizes, H = 1/10 and H = 1/20. We
observe from this table that the weighted L2 norm are small for all the meth-
ods; however, the errors in energy norms can be large. In particular, multiscale
basis functions with linear boundary conditions and energy minimizing basis
functions give large errors. Moreover, we note that MsFEM with local spectral
basis functions is robust with respect to coarse mesh size and the contrast. We
again observe that MsFEM with reduced energy basis gives the smallest error.
In Table 9, we show the number of iterations for different methods with varying
contrast. As we observe that domain decomposition methods that use spectral
basis functions provide the least number of iterations and the condition number
is bounded independent of the contrast.

H MS EMF LSM1 LSM-RE RLSM
1/10 0.72(0.73) 0.38(0.56) 0.23(0.23) 0.09(0.09) 0.13(0.13)
1/20 0.57(0.58) 0.40(0.42) 0.19(0.19) 0.12(0.12) 0.12(0.12)

Table 7: Relative energy error for the permeability field depicted in Figure 8.
Here h = 1/100, η = 104 (η = 106).

H MS EMF LSM1 LSM-RE RLSM
1/10 0.03(0.03) 0.004(0.01) 0.0006(0.0006) 0.0002(0.0002) 0.0003(0.0003)
1/20 0.03(0.03) 0.01(0.01) 0.0005(0.0005) 0.00003(0.00003) 0.00005(0.00005)

Table 8: Relative weighted L2 error for the permeability field depicted in Figure
8. Here h = 1/100, η = 105 (η = 107).
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Figure 8: Permeability field

η MS EMF LSM1 LSM-RE RLSM
106 175(3.30e+005) 77(1.25e+003) 44(1.56e+001) 37(1.19e+001) 39(1.19e+001)
108 260(3.30e+007) 127(1.21e+005) 47(1.56e+001) 40(1.19e+001) 41(1.19e+001)
1010 455(1.52e+010) 132(4.22e+002) 41(1.08e+001) 38(1.06e+001) 36(1.13e+001)

Table 9: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient in Figure 8.
We set the tolerance to 1e-10. Here H = 1/10 with h = 1/100.

4.1 Discussions

Above numerical results show that MsFEMs with local spectral basis functions
can capture the high-conductivity features of the solution more accurately; how-
ever, they do not necessarily provide an accurate approximation of the solution.
In particular, the fine-scale behavior of the solution representing the interaction
of high-conductivity regions may not be accurately captured with these basis
functions. To discuss it further, we consider discrete spectral representation of
the fine-scale equation (see (5))

Au = b.

It is known that the matrix A can be written as

A =
N∑

i=1

λi(Mφi)(Mφi)T ,

where N is the total number of eigenvectors of

Aφi = λiMφi
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Figure 9: Multiscale finite element approximation on a coarse grid H = 1/10.
In the title, the dimension of the coarse space is shown. η = 106.

defined by (13). Similarly, we define

A0 =
L∑

i=1

λi(Mφi)(Mφi)T ,

where λ1, ..., λL are asymptotically vanishing eigenvalues. Note that we consider
the global eigenvalue problem here. In general, we have observed that one can
approximate global eigenvectors hierarchically by using local spectral basis func-
tions. This is because local eigenvectors corresponding to small, asymptotically
vanishing eigenvalues capture the high conductivity features of the solution. In
Appendix A, we include a discussion on computing global eigenvectors via local
ones and numerical results. We note that the number of small, asymptotically
vanishing, eigenvalues remain the same when local basis functions are used.
This can be easily verified. The approximation of the eigenvectors is accurate
as we observe in our simulations because local spectral basis functions contain
high-contrast features and are capable representing them on a larger scale.

We denote

Â = A−A0 =
N∑

i=L+1

λi(Mφi)(Mφi)T .

Similarly,

u0 =
L∑

i=1

(u,Mφi)φi, û =
N∑

i=L+1

(u,Mφi)φi,
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such that
A0u0 = b0, Âû = b̂.

Multiscale basis functions introduced above span the eigenfunctions correspond-
ing to asymptotically vanishing eigenvalues. These basis functions also span χj

that represent partition of unity functions. The eigenfunctions ψl are designed
to capture the high-conducting regions, while χj can be regarded as basis func-
tions for approximating the solution of the equation Âû = b̂. This equation
is independent of the contrast and we use standard multiscale techniques for
approximating its solution. It is possible that one needs more information to
capture the fine-scale details of the solution. In this case, more basis functions
χj can be taken or some limited global information can be used in computing
χj .

5 Conclusions

In this paper, we studied MsFEMs using basis functions that provide optimal
convergence in domain decomposition methods. These basis functions are de-
signed to capture high-conducting regions in the solution. Both multiscale finite
element and domain decomposition methods (considered here) use coarse spaces
to achieve efficiency and robustness. In MsFEMs, the spatial variability of the
media affects the convergence rate. In domain decomposition methods, high
variability of the coefficients within coarse regions affects the number of itera-
tions required for the convergence, and thus it is important to represent these
features in the coarse space. While in MsFEMs, one needs also to represent the
fine-scale behavior of the solution away from high-conducting regions. In this
paper, we used coarse spaces designed for high-contrast problems that provide
an optimal convergence in domain decomposition methods. In particular, basis
functions are constructed using solutions of a local spectral problem. In our
previous work [18], we show that using these coarse spaces one can construct
preconditioners such that the condition number of the preconditioned system is
independent of the contrast. In this paper, these coarse spaces are used in Ms-
FEMs to solve elliptic equations with high-contrast heterogeneous coefficients
on a coarse grid. Our numerical results show that MsFEMs with coarse spaces
constructed via local spectral problems are more accurate compared to multi-
scale methods that employ traditional multiscale spaces with linear boundary
conditions. However, these basis functions may not accurately capture the fea-
tures of the solution within high-conducting regions or outside. As a result,
some residual error remains that can not be removed by MsFEM with local
spectral basis functions. One can lower the error by adding additional basis
functions, for example, using eigenvectors that correspond to eigenvalues that
are not asymptotically small. This is a subject of future research. In this paper,
we also discuss hierarchical approximation of the basis functions that provides
CPU savings when using large coarse grids. The numerical results are presented
for both MsFEMs and domain decomposition methods for the sake of complete-
ness. We consider several basis functions. We show that the basis functions
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with reduced energy that uses local spectral information provides the smallest
error in the energy norm. These basis functions use the information on the
boundaries and solves the local problems within the region. We observe that
MsFEMs with standard and energy minimizing basis functions give large errors.

6 Acknowledgments

The work of YE and JG is partially supported by Award Number KUS-C1-016-
04, made by King Abdullah University of Science and Technology (KAUST).
YE’s work is partially supported by NSF and DOE.

A Global eigenvectors and their hierarchical ap-
proximations

In general, it is not clear that one can obtain accurate multiscale approximation
with local basis functions (see [7]). In [7], the authors use eigenvectors of spe-
cial eigenvalue problem to show the convergence independent of contrast. Here,
we use eigenvectors of weighted eigenvalue problem and obtain convergence re-
sults. The computations of the eigenvectors are expensive and thus hierarchical
computations are needed.

Consider a global homogeneous Neumann problem in D for

div(κ(x)∇u) = f. (29)

Define the global eigenvalue problem with homogeneous Neumann boundary
conditions

div(κ(x)∇φg
i ) = λg

i κ∇φg
i .

It can be shown that for any v

v =
∑

αg
i (v)φg

i ,

where
αg

i (v) =
∫

D

kvφg
i =

1
λg

i

∫

D

k∇v∇φg
i .

Multiplying both sides of (29) by φg
i and integrating over D, we have

∫

D

κ∇u∇φg
i =

∫

D

fφg
i .

Consequently,

αg
i (u) =

1
λg

i

∫

D

fφg
i ≤

1
λg

i

(
∫

D

κ−1f2)1/2.
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If multiscale basis functions span φg
1, ..., φg

L (eigenvectors corresponding to small,
asymptotically vanishing, eigenvalues) then it can be shown that

∫
D

κ|∇(u− u0)|2∫
D

k|∇u|2 =
∑N

i=L+1 λg
i (α

g
i (u))2

∑N
i=1 λg

i (α
g
i (u))2

≤
∑N

i=L+1 1/λg
i∑N

i=1 1/λg
i

. (30)

From here, we see that the error is small provided that the right hand side of
(30) is small. We have observed that if one places sources and sinks within the
high-conducting regions, the approximation with leading order eigenvectors is
very accurate. Here, leading order eigenvectors refer to those that correspond
to small, asymptotically vanishing, eigenvalues. This approximation deteriotes
if the source terms are placed outside high-conducting regions.

A.1 Hierarchical computations of basis functions

The computations of eigenvectors corresponding to small, asymptotically van-
ishing, eigenvectors can be expensive if the coarse grid contains many fine-grid
blocks. In this case, one can compute the eigenvectors via hierarchical ap-
proaches as in multigrid methods. To demonstrate the main idea of this proce-
dure, we consider the computation of an eigenvector, Ψ

div(κ∇Ψ) = ΛkΨ in Ωi, (31)

where Λ is a small eigenvalue number in a larger domain and Ωi is a larger coarse-
grid block. We assume that Ωi is divided into coarse-grid blocks ωj and for
each ωj , the local eigenvectors corresponding to small, asymptotically vanishing,
eigenvalues are used to solve for Ψ. Next, we present rigorous formulation of
the hierarchical approximation.

A.1.1 Mathematical formulation

We introduce a triangulation T H̃ . We assume that h < H < H̃. We also assume
that T h is a refinement of T H which in turns is a refinement of T H̃ .

We denote by {z̃j}Ñc
j=1 the vertices of the coarse mesh T H̃ and define the

neighborhood of the node z̃j by

ω̃j =
⋃
{K̃ ∈ T H̃ ; z̃j ∈ K̃} (32)

and the neighborhood of the coarse element K̃ ∈ T H̃ by

ω̃K̃ =
⋃
{ω̃j ; z̃j ∈ K̃}. (33)

For each j = 1, . . . , Ñc we will restrict the coarse space V0 defined in (16) to
the coarse node neighborhood ω̃j , that is, we define

V
ω̃j

0 = span{Ih(χiψ
ωi∩ω̃j

` ) : yi ∈ T H , yi ∈ ω̃j and 1 ≤ ` ≤ Li}, (34)
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where the fine scale local eigenvector ψ
ωi∩ω̃j

` was define in (13) and Ih is the
fine-scale nodal value interpolation. Recall that if yi ∈ T H is a node interior to
ω̃j we have ωi ⊂ ω̃j . We define the local coarse matrices A

ω̃j

0 and M
ω̃j

0 by

A
ω̃j

0 = R
ω̃j

0 AR
ω̃jT
0 and M0 = R

ω̃j

0 MR
ω̃jT
0 (35)

where R
ω̃jT
0 is the matrix whose columns are the basis functions of V

ω̃j

0 define
in (34),

R
ω̃jT
0 = [Ih(χiψ

ωi∩ω̃j

` )]yi∈ω̃j ,1≤`≤Li
.

We denote by {λ̃ω̃j
m } and {φ̃ω̃j

m } the increasing ordered eigenvalues and eigen-
vectors of the T H−coarse level eigenvalue problem in ω̃j ,

A
ω̃j

0 φ̃ω̃j
m = λ̃ω̃j

m M
ω̃j

0 φ̃ω̃j
m .

Let {χ̃j}Ñc
j=1 be a partition of unity subordinated to the covering {ω̃j} such that

χ̃j ∈ V h and |∇χ̃j | ≤ 1

H̃
, j = 1, . . . , Ñc. Define the coarse basis functions

Φ̃j,m = Ih(χj(R
ω̃j

0 φ̃ω̃j
m )) for 1 ≤ j ≤ Ñc and 1 ≤ m ≤ L̃j (36)

where L̃j is an integer number for each j = 1, . . . , Ñc. Define

Ṽ0 = span{Φ̃j,m : 1 ≤ j ≤ Ñc and 1 ≤ m ≤ L̃i}. (37)

Define also the coarse interpolation Ĩ0 : V h(D) → Ṽ0 by

Ĩ0v =
Ñc∑

j=1

L̃j∑
m=1

(∫

ω̃j

κ(J ω̃j

0 v)ψ̃ω̃j
m

)
Ih(χ̃jψ̃

ω̃j
m ) =

Ñc∑

j=1

Ih
(
χ̃jI

ω̃j

L̃j
(J ω̃j

0 v)
)

, (38)

where

I
ω̃j

L̃j
(J ω̃j

0 v) =
L̃j∑

m=1

(∫

ω̃j

κ(J ω̃j

0 v)ψ̃ω̃j
m

)
ψ̃ω̃j

m

and J
ω̃j

0 v ∈ V
ω̃j

0 is defined by

J
ω̃j

0 v =
∑

yi∈ω̃j

Li∑

`=1

(∫

ωi∩ω̃j

κvψ
ωi∩ω̃j

`

)
Ih(χiψ

ωi∩ω̃j

` ) (39)

and it is the analogous to I0 defined in (38) but restricted to the coarse block
neighborhood ω̃j .

We have the following weighted L2 approximation and weighted H1 stability
properties.
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Lemma 4 For all coarse element K̃ ∈ T H̃ we have
∫

K̃

κ(v − Ĩ0v)2 ¹ 1

λ̃K̃,L̃j+1

max{1,
1

H2λω̃
K̃

,L+1
}

∫

ω̃
K̃

κ|∇v|2 (40)

∫

K̃

κ|∇Ĩ0v|2 ¹ max{1,
1

H̃2λ̃K̃,L̃j+1

}max{1,
1

H2λω̃
K̃

,L+1
}

∫

ω
K̃

κ|∇v|2 (41)

where λω̃
K̃

,L+1 = minyi∈ω̃
K̃

λωi

Li+1 and λ̃K̃,L̃+1 = minz̃j∈K̃ λω̃m

L̃m+1
and ω̃K̃ is the

union of the elements in T H̃ that share common edge with K̃ defined in (33).

The proof of this lemma is not difficult and follow from the argument in [18].

A.1.2 Discussion

We note that the computation of the eigenvector on a coarse grid does not
decrease the dimension of the coarse space. i.e., the number of the eigenvec-
tors corresponding to small, asymptotically vanishing eigenvalues, is the same
whether the eigenvalue problem is solved on a fine or a coarse grid. To demon-
strate this, we present two numerical examples. In the first example, we consider
the computation of the eigenvector in 3× 3 coarse block such that each coarse
block contains an inclusion (see Figure 10). As we observe from Figure 11, there
are 9 small, asymptotically vanishing, eigenvalues. Note that this is also true if
the eigenvalue problem is solved on a fine (resolved) grid. In Figure 11, we also
depict the eigenvalues corresponding to the fine-scale problem. As we observe
there are also 9 small, asymptotically vanishing, eigenvalues. In Figure 12, we
depict the eigenvector corresponding to one of the small eigenvalues computed
on a coarse and fine grid. We observe that these eigenvalues are close. In fact,
the error in the computation of small eigenvalues in weighted energy norm is
less than 1%. In Figure 13, we depict the eigenvalues for permeability shown
in Figure 3. The eigenvalue problem is solved on 10 × 10 coarse grid, while
the fine grid is 100 × 100. As we observe from this figure that there are 37
small, asymptotically vanishing, eigenvalues. This is the same if the eigenvalue
problem is solved on a fine grid, 100× 100.
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