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Abstract

In this paper, we study domain decomposition preconditioners for multiscale el-
liptic problems in high contrast media. We construct preconditioners such that
the condition number of the preconditioned system is independent of media
contrast. For this purpose, multiscale spaces for the interpolation on the coarse
grid is developed using a local weighted spectral problem. A main observation
is that the eigenvalues of this spectral problem control the condition number.
In the presence of high-contrast inclusions, there are small, asymptotically van-
ishing, eigenvalues, i.e., these eigenvalues decrease as we increase the contrast.
We propose the coarse space that includes the eigenfunctions corresponding to
these small, asymptotically vanishing, eigenvalues. We prove that domain de-
composition preconditioners with this coarse space result to the convergence of
the methods independent of the contrast. The coarse space constructed using
the eigenfunctions of local spectral problem can be large if there are many iso-
lated inclusions. We propose approaches to reduce the dimension of the coarse
space. Numerical results are presented. We compare the proposed methods
with domain decomposition methods where multiscale finite element basis or
energy minimizing basis functions are used in constructing coarse spaces. We
show that the number of iterations is smaller with proposed methods and they
remain bounded as the contrast increases.

1 Introduction

Many processes occur in a multiscale environment that have high variations
in the media properties. For example, subsurface flows are often affected by
heterogeneities in a wide range of length scales and the media properties often
vary significantly in short distances. A high contrast in the media properties
brings an additional small scale into the problem expressed as the ratio between
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low and high conductivity values. In fact, there may not be a distinct small scale
in the media properties. For example, it is common to have several orders of
magnitude of variations or even continuous variations in the permeability values
in natural porous formations. Moreover, low or high conductivity regions can
have complex geometry that can introduce connected regions at different scales.

In this paper we investigate domain decomposition preconditioners for flows
in heterogeneous porous media. Domain decomposition methods use the solu-
tions of small local and coarse problems in constructing preconditioners for the
fine-scale system. The number of iterations required by domain decomposition
preconditioners is typically affected by the contrast in the media properties that
are within each coarse grid block. It is known that if high and low conductivity
regions can be encompassed within coarse grid blocks such that the variation
of the conductivity within each coarse region is bounded, domain decomposi-
tion preconditioners result to a system with the condition number independent
of the contrast (e.g., [18, 23]). Because of complex geometry of fine-scale fea-
tures, it is often impossible to separate low and high conductivity regions into
different coarse grid blocks. E.g., low or high conductivity regions can have
small sizes in the shape of narrow channels. Encompassing these regions into
coarse grids can make the computations difficult because these regions are of-
ten difficult to identify due to changes in geometry, the sizes and conductivity
variations within them. Design of domain decomposition preconditioners when
coarse grids contain high media variability remains a challenging problem.

When the conductivity field varies significantly within each coarse-grid block,
domain decomposition methods may not yield preconditioners with bounded
(independent of the contrast) condition number. In a recent pioneering work
[15, 16], it has been shown that using domain decomposition methods, one
can precondition the fine-scale system such that the condition number of the
resulting preconditioned system is independent of the contrast when high con-
ductivity inclusions are embedded into the media of bounded conductivity. The
approach presented in [15] is not applicable to the general case considered in
this paper where we construct domain decomposition methods that result to
preconditioners with bounded (independent of the contrast) condition number.

The main idea of our work consists of modifying the coarse space that ap-
pears in the formulation of domain decomposition methods. We introduce a
coarse space based on local spectral problems. These spaces are motivated by
weighted Poincaré estimates that arise in the proofs of L2 approximation prop-
erty of the coarse interpolation in the analysis of domain decomposition precon-
ditioners. In particular, weighted Poincaré estimates suggest to use a particular
eigenvalue problem that is considered in this paper. It can be shown in the
presence of high-contrast inclusions this eigenvalue problem detects the basis
functions that are needed in the coarse space. These basis functions are the
eigenfunctions that correspond to the small, asymptotically vanishing, eigen-
values. We prove that if the coarse space in domain decomposition methods
includes these eigenfunctions, then the condition number of the preconditioned
matrix is bounded independent of the contrast. We use partition of unity func-
tions to span the eigenfunctions. Our construction of the coarse space automat-
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ically selects appropriate basis elements independent of the geometry or scale
separation in the problem.

The coarse space constructed using the eigenfunctions of the weighted spec-
tral problem can be large, in general. This is because the weighted eigenvalue
problem detects every isolated inclusion and channel. Consequently, if the num-
ber of inclusions and channels is large, then the dimension of the coarse space
also becomes large. In this paper, we discuss the dimension reduction for the
coarse space. We first propose an energy minimizing space for our local spectral
multiscale space. Then we consider the energies of the obtained basis func-
tions. The energies of the basis functions that correspond to the inclusions are
bounded independent of the contrast. We propose a procedure that selects these
basis functions and they are replaced by nodal multiscale finite element basis
functions.

In this paper, we study two level additive Schwartz preconditioners with
several coarse solvers. In the overlapping setting, since we would like to treat
heterogeneous media, we concentrate on the case of generous and big overlap.
In this case the size of the overlap is of the order of the size of the coarse trian-
gulation parameter. Numerical results are presented to show that the condition
number of the preconditioned system is independent of the contrast. In partic-
ular, we implement an approach where an arbitrary number of basis functions
per node can be chosen. For the coarse solvers, we consider various choices for
basis functions - piecewise linear basis, multiscale finite element basis functions,
energy minimizing basis functions, and new coarse spaces obtained using the so-
lutions of local weighted eigenvalue problem. We show that using new spectral
coarse spaces one achieves less number of iterations and moreover, the condition
number is bounded in contrast when other coarse spaces are used. Furthermore,
we show that one can reduce the number of basis functions and domain decom-
position preconditioners with reduced number of basis functions behave similar
to the ones without any reduction. This reduction can be significant if there are
many inclusions within coarse-grid blocks.

The paper is organized in the following way. In the next section, we present
an outline of the results. Problem setting and domain decomposition framework
are presented in Section 3. Section 4 is devoted to the high contrast eigenvalue
problem setting where some key inequalities are shown. In Section 5, we present
the analysis of domain decomposition methods and numerical results. In Section
6, we present an approach to reduce the energy of the basis functions and
corresponding numerical results. Section 7 is devoted to the discussions on
dimension reduction of the coarse space. We present an algorithm and numerical
results in this section.
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2 Outline of results. High-contrast eigenvalue
problem and coarse spaces

Previous approaches concerning overlapping domain decomposition address the
cases where the permeability fields are nearly homogeneous within each coarse-
grid block (e.g., [18, 23]) or high conductivity regions constitute disconnected
regions within a coarse-grid block [15, 16]. In this paper, we propose domain
decompositions preconditioners such that the condition number of the precon-
ditioned system is independent of the contrast. Our method is motivated by
weighted Poincaré estimates that are needed in proving L2 stability of the coarse
projection. In particular, one needs to show that

∫
κ(x)|v|2 ≤ C

∫
κ(x)|∇v|2

for all v that have zero component in the coarse space. Here, the integral is taken
over a coarse region and C is independent of the contrast κ(x). In our previous
work [14], we prove weighted Poincaré estimates for a class of heterogeneities.
However, this inequality is not valid for general heterogeneities unless the coarse
projection is properly chosen. The weighted Poincaré estimate suggests the use
of the following zero Neumann eigenvalue problem

div(κ(x)∇φi) = λiκ(x)φi (1)

in constructing the coarse-scale projection. In particular, the eigenvalue problem
(1) is considered locally in the union of coarse grid blocks with a common vertex.

The problem (1) has eigenvalues that scale as the inverse of the high contrast.
To demonstrate this, we plot eigenvectors for a particular case in Figure 1. There
are six inclusions, two channels and four inclusions that have high conductivity.
The background conductivity is one. As a result, there are six eigenvalues that
are small and asymptotically vanish as the high conductivity increases. These
eigenvalues are scaled as the inverse of the high contrast and the rest of eigen-
values are large and remain bounded below as the contrast increases. Assume
that the eigenvalues are ordered as λ1 ≤ λ2 ≤ ... ≤ λL < λL+1 ≤ ... ≤ λN ,
where λ1, ..., λL are small, asymptotically vanishing eigenvalues. We show that
if the coarse space includes the eigenfunctions corresponding to the eigenval-
ues λ1, ..., λL, then the condition number of the preconditioned matrix scales
as max(1/λL+1), where maximum is taken over all coarse grid blocks. This
result holds in general and depends on which eigenvectors are included in the
coarse space. Once the eigenfunctions corresponding to small, asymptotically
vanishing, eigenvalues are selected in the coarse space, one can show that the
condition number of the preconditioned system is bounded independent of the
contrast. An important feature of the proposed approach is that one can choose
the cut-off for the eigenvalues and control the condition number of the precon-
ditioned system. This is particularly important for porous media applications
when there is no clear separation in the contrast scales. Thus, by imposing a
threshold we control the condition number of the preconditioned system. If in
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Figure 1: Eigenfunctions for Neumann problem. Permeability is 106 in the in-
clusions and channels and 1 outside. Left top: permeability. Middle top: second
eigenfunction (fist eigenfunction is constant). Right top: third eigenfunction.
Left bottom: fourth eigenfunction. Middle bottom: fifth eigenfunction. Right
bottom: sixth eigenfunction. The six small eigenvalues are 0, 0.0873e − 3,
0.1879e− 3, 0.1879e− 3, 0.2693e− 3, and 0.3821e− 3.

the example above the inclusions have small conductivities (instead of large),
then there are three small (asymptotically vanishing) eigenvalues due to the fact
that the channels divide the domain into three connected regions.

In the case of many inclusions, the number of the small, asymptotically
vanishing, eigenvalues can be large. In this case, the dimension of the coarse
space is large (see Section 7 for numerical results). In this paper, we propose a
strategy to reduce the dimension of the coarse space. We show that it is possible
to reduce the dimension of the coarse space by combining the eigenfunctions that
correspond to the inclusions that are strictly inside the coarse-grid block. One
can identify the number of basis functions that are due to the inclusions which lie
strictly inside the coarse grid block by solving Dirichlet eigenvalue problem. In
Figure 2, we plot the eigenvectors for the eigenvalue problem considered above
with zero Dirichlet boundary conditions (instead of Neumann). As we see that
there are only four small, asymptotically vanishing, eigenvalues. In this case, the
channels do not enter in the eigenfunctions because of zero Dirichlet boundary
conditions. We can conclude from here that there are only two eigenfunctions
that represent channels. Thus, Dirichlet problem helps us to identify the number
of interior high-contrast inclusions. In general case, it is difficult to separate
eigenfunctions corresponding to channels that intersect the boundary of a coarse
block from those corresponding to inclusions. To identify the eigenvectors that
correspond to channels, we introduce local spectral energy minimizing basis
functions that have the least energy and span the eigenfunctions corresponding
to small, asymptotically vanishing, eigenvalues.
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Figure 2: Eigenfunctions for Dirichlet problem with the same permeability as
in Figure 1. Left top: first eigenfunction. Right top: second eigenfunction. Left
bottom: third eigenfunction. Right bottom: fourth eigenfunction. The four
small eigenvalues are 0.2894e− 3, 0.2895e− 3, 0.2946e− 3, and 0.2947e− 3.

3 Problem Setting and domain decomposition
framework

Let D ⊂ R2 (or R3) be a polygonal domain which is the union of a disjoint
polygonal subregions {Di}N

i=1. We consider the following problem. Find u∗ ∈
H1

0 (D) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (D). (2)

Here the bilinear form a and the linear functional f are defined by

a(u, v) =
∫

D

κ(x)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D) (3)

and
f(v) =

∫

D

f(x)v(x)dx for all v ∈ H1
0 (D).

We assume that the decomposition {Di}N
i=1 form a quasiuniform triangula-

tion of D with parameter H = maxi diam(Di). This coarse triangulation will be
also denoted by T H . Let T h be a fine triangulation which is a refinement of T H .

We denote by V h(D) the usual finite element discretization of piecewise lin-
ear continuous functions with respect to the fine triangulation T h. Denote also
by V h

0 (D) the subset of V h(D) with vanishing values on ∂D. Similar notations,
V h(Ω) and V h

0 (Ω), are used for subdomains Ω ⊂ D.

The Galerkin formulation of (2) is to find u∗ ∈ V h
0 (D) such that

a(u∗, v) = f(v) for all v ∈ V h
0 (D), (4)
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or in matrix form
Au∗ = b (5)

where for all u, v ∈ V h(D) we have

uT Av =
∫

D

κ∇u∇v and vT b =
∫

D

fv.

Remark 1 It is enough to consider the case of piecewise constant coefficient κ
with respect to the fine-scale triangulation T h. From now on we will assume that
κ is piecewise constant coefficient with value κ = κe on each fine triangulation
element e ∈ T h.

We denote by {D′
i}N

i=1 the overlapping decomposition obtained from the
original nonoverlapping decomposition {Di}N

i=1 by enlarging each subdomain
Di to

D′
i = Di ∪ {x ∈ D, dist(x, Di) < δi}, i = 1, . . . , N,

where dist is some distance function and δ = max1≤i≤N δi. Let V i
0 (D′

i) be
the set of finite element functions with support in D′

i. We also denote by
RT

i : V i
0 (D′

i) → V h the extension by zero operator.

Using the coarse interpolation T H we introduce coarse basis functions {Φi}Nc
i=1

where Nc is the number of coarse mesh vertices. In the general setting of do-
main decomposition solvers the coarse triangulation may be independent of
the subdomain partition of the original domain D. Here, in order to simplify
the analysis we have assumed that the coarse triangulation coincides with the
nonoverlapping decomposition.

Given coarse-scale basis functions {Φi}Nc
i=1 we define the coarse space by

V0 = span{Φi}Nc
i=1, (6)

and the coarse matrix A0 = R0ART
0 where

RT
0 = [Φ1, . . . , ΦNc ].

We use a two level additive preconditioner of the form

B−1 = RT
0 A−1

0 R0 +
N∑

i=1

RT
i A−1

i Ri (7)

where the local matrices are defined by

vAiw = a(v, w) for all v, w ∈ V i = V h
0 (D′

i), (8)

i = 1, . . . , N . See [23, 18].
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We denote by {yi}Nc
i=1 the vertices of the coarse mesh T H and define the

neighborhood of the node yi by

ωi =
⋃
{K ∈ T H ; yi ∈ K} (9)

and the neighborhood of the coarse element K by

ωK =
⋃
{ωj ; yj ∈ K}. (10)

Throughout, a ¹ b means that a ≤ Cb where the constant C is independent
of the mesh size and contrast.

4 Main tools. Stability estimates

In this section we define the new local spectral multiscale coarse space using
eigenvectors of high contrast eigenvalue problems. Fist we introduce the nota-
tions for the eigenvalues problem.

For any Ω ⊂ D define the Neumann matrix AΩ by

vT AΩw =
∫

Ω

κ∇v∇w for all v, w ∈ Ṽ h(Ω), (11)

and the mass matrix of same dimension MΩ by

vT MΩw =
∫

Ω

κvw for all v, w ∈ Ṽ h(Ω). (12)

where Ṽh = Vh(Ω) if Ω ∩ ∂D = ∅ and Ṽh = {v ∈ Vh(Ω) : v = 0 on ∂Ω ∩ ∂D}
otherwise. We consider the finite dimensional symmetric eigenvalue problem

AΩφ = λMΩφ (13)

and denote its eigenvalues and eigenvectors by {λΩ
` } and {ψΩ

` }, respectively.
Note that the eigenvectors {ψΩ

` } form an orthonormal basis of V h(Ω) with
respect to the MΩ inner product. Assume that

λΩ
1 ≤ λΩ

2 ≤ . . . ≤ λΩ
i ≤ . . . , (14)

and note that λΩ
1 = 0. The eigenvalue problem above corresponds to the ap-

proximation of the eigenvalue problem

div(κ∇u) = λκu

in Ω with Neumann boundary condition. In particular, ψωi

` denotes the `-th
eigenvector of the Neumann matrix associated to the neighborhood of yi. In
Section 2, we showed an example case, where there are four high-conductivity
inclusions and two high-conductivity channels. As we observed there are six
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small, asymptotically vanishing, eigenvalues (see Figures 1 and 2). In general, if
there are n inclusions and channels, then one can observe n small, asymptotically
vanishing, eigenvalues. The eigenvectors corresponding to these eigenvalues will
be used to construct the coarse space V0. We note that for the proposed meth-
ods, we only need to specify the eigenvectors based on the quantities {1/λωi

l }
in each ωi. These eigenvectors are used to construct the coarse space.

We assume that the elements of T h contained in Ω form a triangulation of Ω.
Let nh(Ω) denote the number of degrees of freedom in Ω. Given any v ∈ V h(Ω)
we can write

v =
nh(Ω)∑

`=1

(
vT MΩψΩ

`

)
ψΩ

` =
nh(Ω)∑

`=1

(∫

Ω

κvψΩ
`

)
ψΩ

`

and compute

∫

Ω

κ|∇v|2 = vT AΩv =
nh(Ω)∑

`=1

(∫

Ω

κvψΩ
`

)2

λΩ
` (15)

and ∫

Ω

κv2 = vT MΩv =
nh(Ω)∑

`=1

(∫

Ω

κvψΩ
`

)2

. (16)

Given an integer L and v ∈ V h(Ω) define

IΩ
L v =

L∑

`=1

(∫

Ω

κvψΩ
`

)
ψΩ

` . (17)

From (14), (15), and (16) it is easy to prove the following inequality
∫

Ω

κ(v − IΩ
L v)2 ≤ 1

λΩ
L+1

a(v − IΩ
L v, v − IΩ

L v) ≤ 1
λΩ

L+1

a(v, v). (18)

When L = 1 we obtain the usual Poincaré inequality since it can be verified
that λΩ

2 = O(diam(Ω)−2) where diam(Ω) is the diameter of Ω (cf. [14]).

We note that {ωi}yi∈T H is a covering of Ω. Let {χi}Nc
i=1 be a partition of

unity subordinated to the covering {ωi} such that χi ∈ V h(D) and |∇χi| ≤ 1
H ,

i = 1, . . . , Nc. Define the set of coarse basis functions

Φi,` = Ih(χiψ
ωi

` ) for 1 ≤ i ≤ Nc and 1 ≤ ` ≤ Li (19)

where Ih is the fine-scale nodal value interpolation and Li is an integer number
for each i = 1, . . . , Nc. Denote by V0 the local spectral multiscale space

V0 = span{Φi,` : 1 ≤ i ≤ Nc and 1 ≤ ` ≤ Li}. (20)
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It is easy to see that the new basis functions Φi,` defined in (19) are linearly
independent and dim(V0) =

∑Nc

i=1 Li. Define also the coarse interpolation I0 :
V h(D) → V0 by

I0v =
Nc∑

i=1

Li∑

`=1

(∫

ωi

κvψωi

`

)
Ih(χiψ

ωi

` ) =
Nc∑

i=1

Ih
(
(Iωi

Li
v)χi

)
, (21)

where Ih is the fine-scale nodal value interpolation and Iωi

Li
is defined in (17).

Note that we have

v − I0v =
Nc∑

i=1

Ih
(
χi(v − Iωi

Li
v)

)
.

We will use the following lemma.

Proposition 1 For any z ∈ P3(K) (the space of polynomials of degree 3 or
less) we have that ∫

K

κ|Ihz|2 ¹
∫

K

κ|z|2 (22)

and ∫

K

κ|∇Ihz|2 ¹
∫

K

κ|∇z|2. (23)

The proof of this proposition is given in Appendix A.
We have the following weighted L2 approximation and weighted H1 stability

properties.

Lemma 2 For all coarse element K we have
∫

K

κ(v − I0v)2 ¹ 1
λK,L+1

∫

ωK

κ|∇v|2 (24)

∫

K

κ|∇I0v|2 ¹ max{1,
1

H2λK,L+1
}

∫

ωK

κ|∇v|2 (25)

where λK,L+1 = minyi∈K λωi

Li+1 and ωK is the union of the elements that share
common edge with K defined in (10).

Proof. First we prove (24). Using (22) and the fact that χi ≤ 1 we have

∫

K

κ(v − I0v)2 ¹
∑

yi∈K

∫

K

κIh(χi(v − Iωi

Li
v)2 (26)

¹
∑

yi∈K

∫

K

κ(χi(v − Iωi

Li
v))2 (27)

¹
∑

yi∈K

∫

ωi

κ(v − Iωi

Li
v)2 (28)
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and using (18) with Ω = ωi to estimate the last term above, we obtain
∫

K

κ(v − I0v)2 ¹
∑

yi∈K

1
λωi

L+1

∫

ωi

κ|∇v|2 (29)

¹ max
yi∈K

1
λωi

L+1

∫

ωK

κ|∇v|2. (30)

To prove the stability (25) we note that in K
∑

yi∈K

∇χi = 0,

and then we can write ∇χj = −∑
yi∈K\{yj}∇χi. We obtain,

∇
∑

yi∈K

(Iωi

Li
v)χi =

∑

yi∈K

∇χi(Iωi

Li
v) +

∑

yi∈K

χi∇(Iωi

Li
v) (31)

=
∑

yi∈K\{yj}
(Iωi

Li
v − I

ωj

Lj
v)∇χi +

∑

yi∈K

χi∇(Iωi

Li
v) (32)

which gives the following bound valid on K,

|∇
∑

yi∈K

(Iωi

Li
v)χi|2 ¹ 1

H2

∑

yi∈K\{yj}
(Iωi

Li
v − I

ωj

Lj
v)2 +

∑

yi∈K

|∇(Iωi

Li
v)|2. (33)

Since
∑

yi∈K(Iωi

Li
v)χi ∈ P3(K) we can use (23) and (33) to get

∫

K

κ|∇I0v|2 =
∫

K

κ|∇Ih(
∑

yi∈K

(Iωi

Li
v)χi)|2 (34)

¹
∫

K

κ|∇
∑

yi∈K

(Iωi

Li
v)χi|2 (35)

¹
∑

yi∈K

1
H2

∫

K

κ(Iωi

Li
v − I

ωj

Lj
v)2 +

∑

yi∈K

∫

K

κ|∇(Iωi

Li
v)|2. (36)

To bound the first term above we use (18) with Ω = ωi as follows,
∫

K

κ(Iωi

Li
v − I

ωj

Lj
v)2 ¹

∫

ωi

κ(v − Iωi

Li
v)2 +

∫

ωj

κ(v − Iωi

Li
v)2 (37)

¹ 1
λωi

L+1

∫

ωi

κ|∇v|2 +
1

λ
ωj

L+1

∫

ωj

κ|∇v|2 (38)

¹ 1
λK,L+1

∫

ωK

κ|∇v|2. (39)

The second term in (36) is estimated using (15) and the orthogonality of the
eigenvectors in the Aωi inner product

∫

K

κ|∇(Iωi

Li
v)|2 ≤

∫

ωi

κ|∇(Iωi

Li
v)|2 ≤

∫

ωi

κ|∇v|2 ≤
∫

ωK

κ|∇v|2. (40)
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By combining (39), (40) and (36) we obtain (25).

Remark 3 Assume that κ(x) = 1 for all x ∈ D and Li = 1 for all i = 1, . . . , Nc.
Then (24) becomes

∫

K

κ(v − I0v)2 ¹ H2

∫

ωK

κ|∇v|2

and (25) ∫

K

κ|∇I0v|2 ¹
∫

ωK

κ|∇v|2

since λK,L+1 = maxyi∈K λωi

Li+1 ³ H−2.

5 Domain decomposition with the local spectral
multiscale space

In this section, we show that if the coarse space is the local spectral multiscale
space as introduced in (20), then the condition number of the preconditioned
matrix is independent of the contrast.

5.1 Analysis

In this section we estimate the condition number of the preconditioned oper-
ator B−1A with B−1 defined in (7) using the coarse space V0 in (20). From
the abstract domain decomposition theory we only need to prove the stable
decomposition property; see [18, 23].

Lemma 4 For all v ∈ V h, there exists a decomposition v =
∑N

i=0 vi, with
vi ∈ V i = V h

0 (D′
i), i = 1, 2, . . . , N, v0 ∈ V0, such that

a(v0, v0) +
N∑

i=1

a(vi, vi) ¹ C2
0a(v, v)

with C2
0 ¹ max{1 + 1

δ2λL+1
, 1 + 1

H2λL+1
} where λL+1 = min

1≤i≤Nc

λωi

Li+1.

Proof. Define v0 := I0vh where I0 is a coarse interpolation defined in (21) and

vi = Ih(ξi(v − v0)).

Here {ξi} is a partition of unity subordinated to the overlapping partition {D′
i}

such that ξi ∈ V h and |∇ξi| ≤ 1
δ , i = 1, . . . , N . First we bound the energy of
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the local functions vi, i = 1, . . . , N .

a(vi, vi) =
∫

D′
i

κ|∇Ih(ξi(v − v0))|2

¹
∫

D′
i

κ|∇(ξi(v − v0))|2

¹
∫

D′
i

κξ2
i |∇(v − v0)|2 +

∫

D′i

κ|∇ξi|2|v − v0|2

≤
∫

D′
i

κ|∇(v − v0)|2 +
1
δ2

∫

D′i\Di

κ|v − v0|2

¹
∫

D′
i

κ|∇v|2 +
∫

D′i

κ|∇v0|2 +
1
δ2

∫

D′i\Di

κ|v − v0|2. (41)

Now we bound the last two terms of (41).

The second term in (41) can be bounded using (25) of Lemma 2 as follows
∫

D′i

κ|∇v0|2 ≤
∑

K∩Di 6=∅

∫

K

κ|∇v0|2 ¹ max{1,
1

H2λL+1
}

∑

K∩Di 6=∅

∫

ωK

κ|∇v|2.

To bound the third term of (41) observe that, using (24) in Lemma 2

1
δ2

∫

D′
i\Di

κ|v − v0|2 ¹ 1
δ2

∑

K∩Di 6=∅

∫

K

κ|v − v0|2 (42)

¹ 1
λL+1δ2

∑

K∩Di 6=∅

∫

ωK

κ|∇v|2.

The bound for the energy a(v0, v0) follows from (25) of Lemma 2,

a(v0, v0) ≤ max{1,
1

H2λL+1
}a(v, v).

We have the following bound for the condition number of the preconditioned
operator.

Corollary 5 Under the assumptions of Lemma 4, the condition number of the
preconditioned operator B−1A with B−1 defined in (7) is of order

cond(B−1A) ¹ C2
0 ¹ max{1 +

1
δ2λL+1

, 1 +
1

H2λL+1
}

where λL+1 = min
1≤i≤Nc

λωi

Li+1.
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We note that the eigenvalues of the local problem scale as H−2. This can be
easily shown by mapping the local eigenvalue problem corresponding to ωi to
the union of reference elements, say ω̂i. In this case we have that H2λi ³ λ̂ω̂i

`

and if we use δ ³ H the bound for C0 in Lemma 4 can be seen to be independent
of the parameter H of the coarse triangulation. Thus, we have the following
result.

Corollary 6 Under the assumptions of Lemma 4 the condition number of the
preconditioned operator B−1A with B−1 defined in (7) is

cond(B−1A) ¹ C(1 +
H2

δ2
)

where C is independent of the contrast and the mesh size.

5.2 Numerical results

In this section, we present representative numerical results for the additive
preconditioner (7) with the local spectral multiscale coarse space defined in
(20). We show numerically that the condition number of the resulting precon-
ditioned system is independent of the contrast as our theory shows. We take
D = [0, 1]× [0, 1] that is divided into 10× 10 equal square subdomains. Inside
each subdomain we use a fine-scale triangulation where triangular elements con-
structed from 10× 10 squares are used. We use the coefficient in Figure 3 that
corresponds to a coefficient with background one and (7× 7) circular inclusions
with high coefficient η inside each inclusion. We run the preconditioned conju-
gate gradient until the `2 norm of the initial residual is reduced by a factor of
10−10.

Figure 3: Coefficient. Red designates the regions where the coefficient is η and
blue designates the regions where the coefficient is 1. The numerical results are
presented in Table 1.
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η One level Linear MS EMF LSM1 LSM2

104 65(1.6e+3) 81(3.8e+3) 68(2.1e+3) 52(3.8e+2) 53(54.29) 46(32.04)
105 70(1.5e+4) 88(3.8e+4) 73(2.1e+4) 60(3.8e+3) 41(56.25) 40(32.73)
106 78(1.5e+5) 111(3.8e+5) 91(2.1e+5) 68(3.8e+4) 40(56.53) 37(33.40)
107 93(1.5e+6) 141(3.8e+6) 112(2.1e+6) 76(3.8e+5) 37(56.52) 36(41.35)
108 103(1.5e+7) 156(3.8e+7) 129(2.1e+7) 86(3.8e+6) 37(56.42) 33(42.47)
109 111(1.5e+8) 175(3.8e+9) 143(2.1e+8) 73(2.3e+7) 30(54.88) 30(42.59)

Table 1: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient depicted in
Figure 3. We set the tolerance to 1e-10. Here H = 1/10 with h = 1/100. The
classical (one basis per node) coarse problems size is 81 × 81. The new coarse
problem is of size 321× 321.

To test our new method we implemented two level additive preconditioner
with three of the classical coarse spaces: P 1−linear functions (Linear), mul-
tiscale functions with linear boundary condition (MS) and energy minimizing
functions (EMF). The definition of the new local spectral multiscale coarse space
V0 in (20) depends on the choice of a partition of unity. In the first numerical
experiments we will use two partition of unity functions: P 1 bilinear functions
(LSM1) and usual multiscale functions (see [19]) with linear boundary condi-
tions (LSM2). In next sections, we will discuss other choices of the partition of
unity. In Table 1 we set

Li = L = max
λ`≤2

` (43)

for all i = 1, . . . , Nc. We note that Li ≤ 4 for all i = 1, . . . , Nc in this case.

In Table 1 we present the number of iterations until convergence and in
parenthesis the conjugate gradient estimate for the condition number of the
preconditioned operator for the methods mentioned above. The results show
an agreement with our theory. We observe that for the classical coarse spaces
the number of iterations and the condition number depend on the contrast (η)
while for the new coarse spaces (last two columns) the number of iterations
and the condition number remains bounded as the contrast increases. The
dimension of the classical coarse matrix is 81×81 and the dimension of the new
coarse problem is 321 × 321. This is even smaller than the dimension of one
local problem 400× 400. In Section 7 we will introduce a smaller local spectral
coarse problem with less basis functions and with the condition number still
independent of the contrast of the media.

6 The least energy basis approach

6.1 Energy minimizing partition of unity

In previous section, we used general partition of unity functions. One can use
the partition of unity functions {χi}Nc

i=1 that provide the least energy. This can
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be accomplished by solving

min
Nc∑

i=1

Li∑

`=1

∫

ωi

κ|∇Φi,`|2 = min
Nc∑

i=1

Li∑

`=1

∫

ωi

κ|∇(χiψ
ωi

` )|2 (44)

where the local spectral multiscale basis functions Φi,` are defined in (19) and
the minimum is taken over all partition of unity functions {χi}Nc

i=1 subordinated
to the covering {ωi}Nc

i=1 of D. In [24], the authors considered energy minimizing
partition of unity basis for κ(x). This is the same if we take one constant
unity eigenfunction in our formulation. One can solve (44) following the similar
procedure as discussed in [24].

The numerical solution of the energy minimizing problem (44) is compu-
tationally intensive and requires computing a global problem. One can use
instead multiscale basis functions that share similarities with energy minizing
basis functions. In particular, they reduce the energies of the basis functions.
In this section, we consider the multiscale framework that can compute basis
functions with less energy by solving one local problem per coarse block.

We define the local spectral multiscale basis functions with reduced energy
Φ̃i,` as the κ−harmonic extension of Φi,` in each coarse block, that is, for each
coarse element K and 1 ≤ ` ≤ Li with 1 ≤ i ≤ Nc we have

∫

K

κ∇Φ̃i,`∇z = 0 for all z ∈ V h
0 (K), (45)

Φ̃i,` = Φi,` on ∂K.

We define local spectral multiscale coarse space with reduced energy by

V0 = span{Φ̃i}Nc
i=1. (46)

Next, we will present numerical results with these basis functions. Furthermore,
the functions (44) or (45) will be used to reduce the dimension of the coarse
space.

6.2 Numerical results

In this section, we present numerical results using local spectral coarse space V0

with reduced energy defined in (45) and (46). In the next section, these basis
functions will be used to reduce the dimension of the coarse space by replacing
the basis functions with bounded, independent of the contrast, energies with
multiscale finite element basis functions. They can also be replaced by energy
minimizing basis functions as defined e.g., in [24, 16]. Our numerical results
show that the number of iterations required by domain decomposition methods
is independent of contrast and smaller compared when using local spectral coarse
space V0 defined in (20). We consider D = [0, 1] × [0, 1] that is divided into
8×8 equal square subdomains with a fine scale triangular elements constructed
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from 10 × 10 squares. We use the coefficient in Figure 4 that corresponds to
the case with the background conductivity one and broken channels with high
conductivity η. Similar results hold for the coefficient in Section 5.2. We run
the preconditioned conjugate gradient until the `2 norm of the initial residual
is reduced by a factor of 10−10.

Figure 4: Coefficient and coarse mesh. Red designates the regions where the
coefficient is η and blue designates the regions where the coefficient is 1. The
numerical results are presented in Table 2.

η Linear MS EMF LSM1 LSM2 LSM-RE
104 92(3.5e+3) 77(2.3e+3) 57(364.12) 33(8.54) 32(8.40) 29(8.25)
105 109(3.4e+4) 93(2.2e+4) 58(404.85) 34(8.56) 34(8.42) 28(8.27)
106 124(3.4e+5) 107(2.3e+5) 67(409.46) 35(8.56) 34(8.42) 29(8.27)
107 144(3.4e+6) 137(2.3e+6) 77(409.93) 36(8.56) 35(8.42) 31(8.27)
108 163(3.4e+7) 159(2.3e+7) 82(409.97) 37(8.56) 36(8.41) 32(8.27)
109 206(3.4e+8) 198(2.3e+8) 86(409.98) 37(8.56) 38(8.39) 32(8.27)

Table 2: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient in Figure 4.
We set the tolerance to 1e-10. Here H = 1/8 with h = 1/80. The classical
coarse space is of dimension 49× 49 and the dimension of the new coarse space
is 126× 126.

As before we compare domain decomposition methods with spectral coarse
spaces and domain decomposition methods with classical spaces: P 1−linear
functions (Linear), multiscale functions with linear boundary condition (MS),
energy minimizing functions (EMF). We also use two partition of unity func-
tions: P 1 bilinear functions (LSM1) and usual multiscale functions with linear
boundary conditions (LSM2). The local spectral multiscale coarse space with
reduced energy (LSM-RE) uses the space V0 defined in (46). The number of
eigenvalues in each node is computed as before, see (43).
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In Table 2 we present the number of iterations until convergence and in the
parenthesis the conjugate gradient estimate for the condition number of the
preconditioned operator. We observe that for the new coarse space (last three
columns) the number of iterations and the condition number remain bounded as
the contrast increases. We see that the domain decomposition methods with lo-
cal spectral coarse space with reduced energy (defined in (46)) performs slightly
better than the local spectral coarse space (defined in (20)).

Next, we repeat the previous experiment with the coefficient in Figure 5.
The results are presented in Table 3. For these coefficients we use non-horizontal
broken channels. We observe similar results as in the previous example. In this
case, domain decomposition methods with the local spectral multiscale coarse
space with reduced energy perform better than domain decomposition methods
with local spectral multiscale space.

Figure 5: Coefficient and coarse mesh. Red designates the regions where the
coefficient is η and blue designates the regions where the coefficient is 1. The
numerical results are presented in Table 3.

η Linear MS EMF LSM1 LSM2 LSM-RE
104 114(6.21e+3) 96(2.38e+3) 62(2.45e+2) 41(1.32e+1) 33(6.58) 27(6.16)
105 138(6.20e+4) 125(2.37e+4) 64(2.71e+2) 42(1.32e+1) 33(6.58) 28(6.16)
106 162(6.20e+5) 151(2.37e+5) 64(2.74e+2) 43(1.32e+1) 33(6.58) 31(6.16)
107 184(6.20e+6) 173(2.37e+6) 74(2.75e+2) 44(1.32e+1) 34(6.58) 27(6.16)
108 209(6.20e+7) 219(2.37e+7) 81(2.75e+2) 45(1.32e+1) 36(6.58) 28(6.16)
109 281(6.20e+8) 249(2.37e+8) 87(2.75e+2) 48(1.32e+1) 38(6.57) 30(6.16)

Table 3: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient in Figure 5.
We set the tolerance to 1e-10. Here H = 1/8 with h = 1/80. The classical
coarse space is of dimension 49× 49 and the dimension of the new coarse space
is 166× 166.

We note that in both cases, several eigenfunctions per node are used for
constructing the coarse spaces. As a result, the coarse dimensional problems
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are 126 × 126 and 166× 166 in the examples corresponding to Tables 2 and 3,
respectively. In the next section, we discuss how one can reduce the dimension
of the coarse space by using local spectral multiscale space with reduced energy.

7 Reducing the dimension of the coarse space

7.1 Reduced local spectral multiscale

As the high-contrast eigenvalue problem suggests that one can have a large
number of basis functions if the number of separate high-contrast regions is
large. This will result to a large dimensional coarse space. On the other hand,
it is known that for problems when high contrast inclusions are separated and
away from the boundaries of coarse-grid blocks, one can use multiscale finite
element basis functions for constructing the coarse space. In this section, we
propose an approach that allows reducing the dimension of the coarse space.
The analysis of this approach is a subject of the future research.

Our motivation for the reduction stems from the fact that when high-contrast
inclusions are isolated and away from the boundaries of coarse-grid blocks, the
energies of the basis functions are bounded unlike the energies of the basis func-
tions corresponding to channels. For this reason, we perform local singular value
decomposition and isolate the basis functions that represent high-conductivity
channels from basis functions that represent the inclusions with bounded energy.
The approach is as follows. Given a coarse mesh node yi we consider the space
spanned by all the coarse basis functions associated to this node. Here, we take
local spectral coarse space with reduced energy as defined in (46) with multi-
scale or energy minimizing partition of unity basis functions defined in (44).
Then divide this space according to the energy, keeping the part of the space
with higher energy. More precisely, consider the Li basis functions associated
to this node, that is

Φi,`, with 1 ≤ ` ≤ Li

and define the matrix
RiT

0 = [Φi,1, . . . , Φi,Li ].

We have that the coarse space spanned by multiscale basis functions (see (20))
can be written as V0 = span1≤i≤Nc

RiT
0 . We define the local coarse matrix of

dimension Li × Li by
Ai

0 = RiT
0 ARi

0.

In the case of V0 defined by (46) the basis functions Φi,1 are usual multiscale
basis functions with linear boundary conditions. We write the eigenvalue de-
composition of this symmetric matrix as

Ai
0 = QTi

0 Di
0Q

i
0, Qi

0 = [qi,1, . . . , qi,Li ] (47)

where the matrix Qi
0 is an orthogonal matrix and Di

0 = diag(µ1, . . . , µLi) with

µ1 ≤ . . . ≤ µLi .
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The idea is to keep only the part of span{RiT
0 } associated with larger energy. To

do this we remove the first Mi eigenvectors in (47) that have bounded energies
independent of the contrast (see Section 7.2 for numerical implementation).
In case of interior high-contrast inclusions and channels, Mi can be chosen as
the number of small, asymptotically vanishing, eigenvalues corresponding to
the zero Dirichlet local high-contrast eigenvalue problem. Define the matrix of
eigenvectors of larger energy by

Q̂i
0 = [0, . . . , 0, qi,Mi+1 . . . , qi,Li

].

The new basis functions associated to the coarse mesh node yi will be given
by the columns of the matrix Ri

0Q̂
i
0 and the multiscale basis function Φ1,i (or

energy minimizing basis functions as defined in [16, 24]). We define the new
reduced local spectral multiscale space

V0 = span{Φi,1, R
i
0Q̂

i
0}Nc

i=1. (48)

Note that one can determine the number of basis functions associated with
interior inclusions by solving zero Dirichlet eigenvalue problem instead of zero
Neumann problem. However, to identify the eigenvectors that represent chan-
nels is not easy. Many eigenvectors have components in the channels and they
all have the same energy. By using local spectral multiscale coarse space with
reduced energy, we can identify the basis corresponding to inclusions simply
by identifying the elements of the span of these basis functions with bounded
energies. This is the main idea of the presentation above.

If isolated inclusions intersect the boundaries, multiscale finite element basis
functions with linear boundary conditions can give large (contrast dependent)
energies for such isolated inclusions. In [15], the authors construct multiscale
basis functions with bounded energies for isolated high-contrast inclusions in-
tersecting the boundary. These basis functions are constructed using one di-
mensional solutions as boundary conditions. In [16], the authors show that one
can also use energy minimizing concept to obtain basis functions with bounded
energies for the case of high-contrast isolated inclusions intersecting the bound-
ary of a coarse block. In our formulation, local spectral basis functions given by
(44), instead of (45), can be used to reduce the coarse space for the case with
isolated inclusions intersecting the boundary of a coarse block. In this case the
basis functions with bounded energies will be replaced by energy minimizing
basis functions as defined in [16].

7.2 Numerical experiments

In this section, we present numerical results using the reduced coarse space as
defined in (48). We show numerically that the condition number of the resulting
preconditioned system is independent of the contrast. In this case, we again
consider D = [0, 1] × [0, 1] that is divided into equal 8 × 8 square subdomains
with fine-scale triangular elements constructed from 10×10 squares. We use the
coefficient shown in Figure 6 that has background one conductivity with three
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high conductivity channels and several square inclusions with high conductivity.
Here we only consider the case of isolated interior inclusions and channels. We
run the preconditioned conjugate gradient until the `2 norm of the initial residual
is reduced by a factor of 10−10.

Figure 6: Coefficient and coarse mesh. Red designates the regions where the
coefficient is η and blue designates the regions where the coefficient is 1. The
numerical results are presented in Table 4.

η MS EMF LSM1 LSM2 RLSM
104 38(1.97e+3) 34(3.30e+2) 35(3.85e+1) 27(6.26) 33(1.55e+1)
105 44(1.97e+4) 36(3.77e+2) 36(3.79e+1) 28(6.19) 32(1.59e+1)
106 48(1.97e+5) 44(3.83e+2) 40(3.88e+1) 30(5.82) 32(1.60e+1)
107 54(1.97e+6) 44(3.83e+2) 42(3.90e+1) 31(6.03) 32(1.60e+1)
108 89(1.97e+7) 47(3.83e+2) 43(3.91e+1) 31(6.24) 34(1.60e+1)
109 103(1.97e+8) 48(3.83e+2) 44(3.90e+1) 31(6.26) 38(1.60e+1)

Table 4: Number of iterations until convergence of the PCG and condition
number for different values of the contrast η with the coefficient depicted in
Figure 6. We set the tolerance to 1e-10. Here H = 1/4 with h = 1/80. The
classical coarse problem is of dimension 16×16, the dimension of the LSM space
is 232× 232 and the dimension of the reduced space RLSM is 36× 36.

In Table 4 we present the number of iterations until convergence and in
parenthesis the conjugate gradient estimate for the condition number of the
preconditioned operator. In our simulations we define Li as before, see (43),
and remove the eigenvectors of the local problem (47) with small energies. In
particular, in the presence of channels (that can be, in general, identified by
comparing Dirichlet and Neumann high-contrast eigenvalue problems) we elim-
inate the eigenfunctions with less than 5% of the total energy. These eigen-
functions represent interior high-contrast inclusions. If the media consist of
only interior inclusions (that can be identified by using Dirichlet high-contrast
eigenvalue problem), we simply use multiscale basis functions. In our current
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simulations, we do not perform any additional dimension reduction for those
high-contrast inclusions that intersect the boundary of a coarse grid. In Table
4, LSM1 and LSM2 refer to domain decomposition methods with local spectral
multiscale coarse space as defined in (20), LSM-RE refers to domain decomposi-
tion methods with local spectral multiscale coarse space as defined in (46), and
RLSM refers to domain decomposition methods with local spectral multiscale
coarse space as defined in (48). We observe that for local spectral coarse spaces
LSM1, LSM2 and RLSM the number of iterations and condition number remains
bounded as the contrast increases. This is also true for the energy minimizing
functions coarse space (EMF). The computations corresponding to the reduced
energy space LSM-RE are affected by the high condition number of the coarse
problem due to very large coarse space. This issue is not present in the reduced
space RLSM. The size of the classic coarse space (one basis per node) is 16× 16
while the size of the LSM space is 232 × 232. The size of the reduced coarse
space is 36×36. We see a significant reduction in the size of the coarse problem
with condition number still being independent of the contrast of the coefficient.
In future, we plan to investigate the dimension reduction for the coarse space in
the presence of isolated inclusions intersecting the boundary of a coarse block
using the energy minimizing functions defined in (44) (see the discussion at the
end of Section 7.1).

8 Conclusions

In this paper, we study domain decomposition preconditioners for multiscale el-
liptic problems in high contrast media. We assume that each coarse-grid block
can have large variations in the media properties. We construct domain decom-
position preconditioners such that the condition number of the preconditioned
system is independent of media contrast for general multiscale high-contrast
problems. The central part of this work is the construction of coarse spaces
that satisfy weighted L2 stability requirement with stability constant indepen-
dent of the contrast. The latter is needed to guarantee that the condition
number of domain decomposition methods is independent of the contrast. The
weighted L2 stability estimate suggests the use of weighted eigenvalue problems
for the construction of the coarse space. A main observation is that the eigen-
values of this spectral problem controls the condition number. In the presence
of high-contrast inclusions, there are small, asymptotically vanishing, eigen-
values. These eigenvalues decrease as we increase the contrast. We propose
the coarse space that includes the eigenfunctions corresponding to these small,
asymptotically vanishing, eigenvalues. We prove that domain decomposition
preconditioners with this coarse space have the condition number independent
of the contrast. In general, the coarse space can be large if there are many iso-
lated inclusions. We propose approaches to reduce the dimension of the coarse
space. Numerical results are presented. We compare the proposed methods
with domain decomposition methods where multiscale finite element basis or
energy minimizing basis functions are used in constructing coarse spaces. We
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show that the number of iterations is smaller with proposed methods and they
remain bounded as the contrast increases.
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A Proof of Proposition 1

First we prove (22). Let e ⊂ K be an fine scale element. We have
∫

e

|Ihz|2 ¹
∑
xk∈e

z(xk)2
∫

e

|φk|2 (49)

¹ ‖z‖2∞h2 ¹ ‖z‖2L2(e) =
∫

e

z2 (50)

where we have used an inverse estimate ‖z‖∞ ¹ h−1‖z‖L2(e) that is valid for all
third degree polynomials z on e; see [7, Lemma 4.5.3]. Multiplying by κ(x) = κe

and summing over all elements in e ⊂ K we get (22).
Analogously given any constant c if we define the second degree polynomial

ẑ = z − c we have
∫

e

|∇Ihẑ|2 ¹
∑
xk∈e

ẑ(xk)2
∫

e

|∇φk|2 (51)

¹ ‖ẑ‖2∞ ¹ ‖ẑ‖2H1(e) (52)

where we have used an inverse estimate ‖ẑ‖∞ ¹ ‖ẑ‖H1(e) that is valid for all
third degree polynomials ẑ on e, [7, Lemma 4.5.3]. Now by choosing c as the
mean value of z on the element e, we can apply a Poincaré inequality to obtain

∫

e

|∇Ihz|2 ¹ ‖z − c‖2H1(e) ¹
∫

e

|∇z|2. (53)

Multiplying by κe and summing over all elements in K we get (23).
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