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Abstract

In this paper we propose a way to integrate data at different spatial scales using
the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially
estimated, subject to the available data at the coarse scale(s), as an additional
constraint. Relationship between various scales has been modeled via upscaling
techniques. The proposed coarse-scale EnKF algorithm is recursive and easily imple-
mentable. Our numerical results with static as well as dynamic, coarse-scale data
provide improved fine-scale field estimates when compared to the results with reg-
ular EnKF (which did not incorporate the coarse-scale data). We also tested our
algorithm with various precisions of the coarse-scale data to account for the inexact
relationship between the fine and coarse scale data. As expected, the results show
that higher precision in the coarse-scale data, yielded improved estimates.
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1 Introduction

The principal objective of data assimilation methods [28] is to combine the
information provided by measured data and a (numerical) forecast model to
obtain an improved estimate of the system state (and parameters). Unlike vari-
ational methods which require availability of complex adjoint models for data
assimilation, the ensemble Kalman filter (EnKF) can be quickly implemented
and one can also obtain uncertainty estimates via error variance-covariance
propagation; see [21] and references therein for further details. The EnKF is
a sequential Monte Carlo method based on Bayes theorem. The method is
increasingly being used for estimating unknown model state and parameters
in various geological and hydrological models [31,5,29].

Broadly speaking, the measured data used for description of reservoir porosity
and permeability characterization consist of static and dynamic data. Static
data such as well logs, core samples can resolve heterogeneity at a scale of
a few inches or feet with high reliability. However, dynamic data such as
fractional flow (defined as the ratio of the injection fluid to the total fluid
produced at the production wells; or water cut), pressure transient and tracer
test data typically scan the length scales comparable to the inter-well dis-
tances. Additional dynamic data such as time-lapse seismic images [30] can
provide improved spatial sampling, but at a lower precision. A majority of
previous studies on uncertainty quantification in reservoir performance fore-
casting using EnKF have mostly dealt with integration of dynamic data (for
e.g., [32,35,24]). However it is widely recognized that integration of additional
multiscale data could further reduce the uncertainty (see [27,14,15] and ref-
erences therein). We also note that when compared to fine-scale simulations,
coarse-scale simulations are many folds computationally efficient (for e.g., see
introduction in [36]). With that perspective, integration of data at coarse-and
fine-scales, is an important objective. We would like to emphasize that to the
best of our knowledge, integration of multiscale data using EnKF to estimate
fine-scale fields for subsurface characterization has not yet been addressed.
Also, our method could be generalized to other sequential data assimilation
methods such as particle filtering (where, rather than updating the ensemble
members model state, we update the probability assigned to each ensemble
member based on model data misfit). The main reason why we used EnKF in
this paper is because it requires fewer ensemble members than the particle
filters, see [29] and references therein for further details.

In this paper, apart from the water cut data, we consider two kinds of coarse-
scale measured data as well. The coarse-scale data are assumed to be perme-
ability and/or saturation at some specified level of precision. The unknown
variables: permeability, at the fine-scale, are estimated using a modification
to the EnKF algorithm, linking the data at different scales via upscaling. It
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is important to resolve fine-scale heterogeneity for various purposes such as,
enhanced oil recovery, environmental remediation, etc. The main idea behind
upscaling is to obtain an effective coarse-scale permeability which yields the
same average response as that of the underlying fine-scale field, locally. Single
phase flow upscaling procedures for two phase flow problem have been dis-
cussed by many authors; see e.g., [6,3,11] and also Section 3.1. We will refer to
our proposed variant of EnKF as coarse-scale EnKF. Assimilation using dynamic
data, such as fractional flow data only, is therefore referred to as regular EnKF.
First we consider coarse-scale permeability data, which can be obtained either
from geologic consideration or coarse-scale inversion of dynamic, fractional
flow data on a coarse grid as considered in [27,15]. We note that coarse-scale
inversion of the dynamic data usually uses more accurate and reliable prior
models and, thus, the inversion results have higher precision. In Section 5 we
illustrate a procedure for such a coarse-scale inversion. This coarse-scale, static
data can be viewed as a constraint, which is to be satisfied up to the prescribed
variance for obtaining the fine-scale estimates in every data assimilation cy-
cle. Upscaling methods relate the solution at the fine-scale to the coarse-scale,
therefore in the Kalman filter context, it amounts to modeling a nonlinear
observation operator. In our coarse-scale EnKF approach, we use the measured
data in batches, such that the estimate with one data becomes a prior while
assimilating the other observation (see Section 3 for further details). Though
in this paper we used coarse-scale data at only one scale, our approach can
be easily generalized to assimilate data at multiple scales by appropriately
modeling the linkage between different scales.

The second kind of coarse-scale observed data we consider is dynamic, and
is motivated based on the increasing availability of time-lapse seismic images
(or 4d seismic data). Integration of inverted 4d seismic data (at fine-scale)
using the EnKF has been addressed in [9] and [34]. In this article, we consider
the seismic data, not to correspond to the finest scale, but to a coarse-scale,
since time-lapse seismic data typically will have a lower resolution compared
to the fine-scale geologic model [22]. As the time-lapse seismic data is collected
only at specific time intervals, we used coarse-scale fluid saturation, as mea-
sured data to be available at a prescribed level of precision (which accounts
for the inaccuracies involved in inversion of 4d seismic data) and only for cer-
tain assimilation cycles. Therefore unlike the coarse-scale static permeability
data considered earlier, the coarse-scale saturation data is assimilated only in
certain assimilation cycles (see Section 4.3 for details).

For the purpose of self-contendness and notational clarity, we briefly review the
governing equations, sequential data assimilation using the ensemble Kalman
filter in Section 2, which is followed by a description of the coarse-scale EnKF al-
gorithm (Section 3). For our numerical results (Section 4), we consider a five-
spot pattern, with the injection well placed in the middle of a rectangular
domain and four production wells located at the vertices of the rectangle.
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A reference case is used to provide true data, which is randomly perturbed
to obtain synthetic measurements. A comparison of the regular EnKF with
the coarse-scale EnKF (Sections 4.1 and 4.2 respectively) shows that using
coarse-scale permeability data (via coarse-scale EnKF) significantly improves
the fine-scale estimates as well as future fractional flow prediction. We ob-
tained similar improvements with coarse-scale saturation data (Section 4.3).
But due to the fact that it was assimilated infrequently, the fine-scale estimates
and prediction is not as good as using coarse-scale permeability, nevertheless
better than those obtained using regular EnKF. In Section 5, we demonstrate
that the coarse-scale permeability data can be obtained in the absence of any
prior geologically derived or coarse-scale inverted permeability data. To ac-
complish this, we first develop a model which maps fine-scale to coarse-scale
water cuts. Thereafter, the mapped coarse-scale water cut is used to estimate
the coarse-scale permeability field.

2 Preliminaries

2.1 Fine-scale model

In this paper, we consider two-phase flow in a subsurface formation under the
assumption that the displacement is dominated by viscous effects. For simplic-
ity, we neglect the effects of gravity, compressibility, and capillary pressure,
although our proposed approach is independent of the choice of physical mech-
anisms. Also, porosity will be considered to be constant. The two phases will
be referred to as water and oil (or a non-aqueous phase liquid), designated
by subscripts w and o, respectively. We write Darcy’s law for each phase as
follows:

vj = −krj(S)

µj

κf∇pr, (1)

∇ · (λ(S)κf∇pr) = h, , (2)

λ(S) =
krw(S)

µw

+
kro(S)

µo

, f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo

,

v = vw + vo = −λ(S)κf · ∇pr, (3a)

φ
∂S

∂t
+ v · ∇S = 0. (3b)

The above descriptions are referred to as the fine-scale model of the two-phase
flow problem. Here κf is the (fine-scale) permeability of the medium, λ(S) is
the total mobility, µj denotes phase viscosity, pr is the pressure, h is the
source term, φ and S denote porosity and water saturation (volume fraction),
respectively.
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2.2 Sequential estimation using EnKF

Using dynamic measured data such as water cut, we can sequentially estimate
the unknown parameters (permeability, porosity, etc.) and state variables such
as pressure, water saturation (two-phase flow) and production data at well
locations using the EnKF as discussed in [32,23,24,8,2,21]. Following these pre-
vious works, in this paper we assume that the only dynamic data available is
water cut data, and that porosity is known. The combined state-parameter
to be estimated are given by Ψ = [ln(κf ),pr,S,Wc]

T . Where ln(·) is natural
logarithm of permeability field and Wc denotes water cut; in order to distin-
guish observed water cut from model predicted water cut, now onwards we
will denote the observed water cut data Wo

c, by y.

The EnKF introduced by Evensen, 1994 [20] is a sequential Monte Carlo method
where an ensemble of model states evolve in state-space with mean as the best
estimate and spread of the ensemble as the error covariance, as summarized in
the following steps. Each of the ensemble members is forecasted independently
(in this work, we neglected modeling errors),

Ψ
(i)
n+1 = F [Ψ(i)

n ], (4)

where F [·] is the forecast operator (eqns. 1–3b), superscript (i) denotes the ith

ensemble member; now onwards we will drop the time subscript. The ensemble
mean and covariance are defined as,

Ψ =
1

Ne

Ne∑
i=1

Ψ(i), (5a)

Pf ≈ 1

Ne − 1
A′ (A′)T , (5b)

where A′ = (b(1),b(2), . . . ,b(Ne)), b(i) = Ψ(i) −Ψ, and Ne is the number of
ensemble members. The observation vector for each ensemble member is given
by,

y(i) = H[Ψt] + ν(i), (6)

where H[Ψt] is the observed data from the truth and ν(i) represents observa-
tional errors, which are i.i.d. samples [4] from a normal distribution with zero
mean and variance, R. We note that if only the water cut data is being mea-
sured, the mapping from model-to-observational space, H is trivially equal to
[0 0 0 I] , since Ψ = [ln(κ), pr, S, Wc]

T .

The forecasted ensemble (eqn. 4) is updated by assimilating the observed data,

Ψ̃(i) = Ψ(i) + K(y(i) −H[Ψ(i)]), (7)
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where K is the Kalman gain, given by

K = PfHT [HPfHT + R]−1.

Computationally efficient implementation of the EnKF is discussed for e.g.,
in [21,5]. We use the above set of corrected ensemble states, {Ψ̃(i)}Ne

i=1 in the
simulation model (eqn. 4) to predict until the next set of observational data
is available.

3 Coarse-scale constrained EnKF

The EnKF presented so far, used only the dynamic, production data (water
cut) y, with error ν = y − H[Ψt], ν ∼ N (0,R) to update the ensemble
(eqn. 7). In addition to y, if we are also given static data (as mentioned in
the Introduction), which is another set of independently measured data, z.
Assuming that the corresponding measurement error is given by ω = z −
U[Ψt], ω ∼ N (0,Q); U : Ψ 7→ z. Its likelihood is given by

p(z|Ψ) ∝ exp{−1

2
(z−U[Ψ])T Q−1 (z−U[Ψ])︸ ︷︷ ︸

Jz

}. (8)

If this static data z, corresponds to coarse-scale permeability data [15,27],
then U = [U 0 0 0]. Where U : κf 7→ κc, is a nonlinear mapping that maps
the fine-scale permeability field (κf ) to coarse-scale field (κc) via an upscaling
procedure (e.g., [10,11]), details are provided in Section 3.1.

Now, our goal is to obtain an estimate which is based on both of the above
dynamic and static data. The likelihood of y is given by

p(y|Ψ) ∝ exp{−1

2
(y−H[Ψ])T R−1 (y−H[Ψ])︸ ︷︷ ︸

Jy

}.

The probability distribution function (pdf) of the predicted ensemble,

p(Ψ) ∝ exp{−1

2
(Ψ−Ψ)T (Pf )−1 (Ψ−Ψ︸ ︷︷ ︸

Jf

)},

where Ψ and Pf are the predicted ensemble mean and covariance respectively
(eqns. 5a–5b). Then, using Bayes theorem, we obtain

p(Ψ|z,y) =
p(Ψ, z,y)

p(z,y)
=
p(z,y|Ψ) p(Ψ)

p(z,y)
∝ p(z,y|Ψ)p(Ψ) = p(z|Ψ) p(y|Ψ) p(Ψ).︸ ︷︷ ︸

∝ p(Ψ|y)
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The last term in above equation implies that the two independent data, y and
z can be sequentially assimilated in the following two steps. We first assimilate
observation y to obtain an intermediate ensemble, {Ψ̃(i)}Ne

i=1, as discussed in
Section 2.2.

p(Ψ̃) = p(Ψ|y) ∝ exp{−(Jf + Jy)}, (9)

This intermediate ensemble and likelihood in eqn. (8), can then be combined
to obtain the final estimate {Ψ̂(i)}Ne

i=1.

p(Ψ̂) = p(Ψ|z,y) ∝ exp{−(Jf + Jy + Jz)}. (10)

Therefore, in a least-squared sense, the final estimate maximizes the poste-
rior pdf p(Ψ|z,y), which corresponds to the minimum of J = Jz + Jy + Jf .

See Appendix A for further details (where we show that the solution Ψ̂(i)

corresponds to the minimum of J , for any ith ensemble member). The coarse-
scale EnKF algorithm is detailed in Appendix B, and a flow chart is given
in Fig. 2.

3.1 Upscaling methods

In brief, the main idea behind upscaling of absolute fine-scale permeability is
to obtain effective coarse-scale permeability for each coarse-grid block. Once
the upscaled absolute permeability is computed, the original equations are
solved on the coarse-grid, without changing the form of relative permeability
curves. This is an inexpensive calculation, since the pressure update involves
only solving the pressure equation on the coarse-grid, and one can take larger
time step for solving the transport equation. In our numerical simulations,
the fine-grid is coarsened 10 times in each direction. These kinds of upscaling
techniques in conjunction with the upscaling of absolute permeability have
been used in groundwater applications (see e.g., [13,12,11]).

The link between the coarse and the fine-scale permeability fields is usually
nontrivial because one needs to take into account the effects of all the scales
present at the fine level. In the past simple arithmetic, harmonic or power
averages have been used to link properties at various scales. These averages
can be reasonable for low heterogeneities or for volumetric properties such
as porosity. For permeabilities, simple averaging can lead to inaccurate and
misleading results. In this paper we use the flow-based upscaling methods
using local solutions of the equations [10,36].

First, we briefly describe flow based upscaling methods. Consider the fine-scale
permeability that is defined in the domain with underlying fine grid as shown
in Figure 1. On the same graph we illustrate a coarse-scale partition of the
domain. To calculate the coarse-scale permeability field at this level we need
to determine it for each coarse block, Ωc. The coarse block permeability can
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be defined both using the solutions of local or global problems. The main idea
used to calculate the coarse-scale permeability is that it should deliver the
same average response as that of the underlying fine-scale problem, locally.
The calculation of the coarse-scale permeability based on local solutions is
schematically depicted in Figure 1. For each coarse domain Ωc we solve the
local problems

∇ · (κf (x)∇φj) = 0, (11)

with some coarse-scale boundary conditions.

One of such boundary conditions is given by φj = 1 and φj = 0 on the opposite
sides along the direction ej and no flow boundary conditions on all other sides,
alternatively, φj = xj on ∂Ωc. For these boundary conditions the coarse-scale
permeability is given by

κcej · el =
1

|Ωc|

∫
Ωc

κf (x)∇φj · el dx, (12)

where φj is the solution of eqn. (11) with prescribed boundary conditions. Var-
ious boundary condition can have some influence on the accuracy of the cal-
culations, including periodic, Dirichlet, etc. These issues have been discussed
for e.g., in [36]. In particular, for determining the coarse-scale permeability
field one can choose local domains that are larger than target coarse block,
Ωc, for eqn. (11). Further eqn. (12) is used in the domain Ωc, where φj are
computed in the larger domains with correct scaling (see [36]). This way one
reduces the effects of the artificial boundary conditions imposed on Ωc (for
details see [36]).

The use of the local solutions eqn. (11) for determining the permeability field
at different scales gives non-explicit relation for conditional distribution. We
denote by U the local operator that maps the local fine-scale permeability field
κf into κc, defined as above. For our computations we assume

κc = U(κf ) + ε, (13)

where ε are some random fluctuations that represent inaccuracies in the coarse-
scale permeability. One of the sources of these fluctuations are the errors
associated with solving inverse problems on the coarse grid. The other source
of the inaccuracies of measured coarse-scale permeability is due to the fact
that the inversion on the coarse grid does not take into account the adequate
form of the coarse-scale models. Indeed, the inversion on the coarse grid for
flow problems often involves the same flow equations as the underlying fine
ones, for example, the same relative permeabilities are used for the coarse-scale
problems as those for the fine scale problems or the effects of macrodispersion
are neglected. It is known that [11,17–19] the flow equations at the coarse level
may have different form from the underlying fine-scale equations. In general
this form depends on the detailed nature of the heterogeneities which are very
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difficult to obtain in solving inverse problems. Thus, calculating the coarse-
grid permeability fields by matching the production history introduces some
errors. We present an algorithm in Section 5, which attempts to model the
relation between coarse- and fine-scale water cuts via a number of off-line fine
and coarse simulations.

4 Numerical results

For our numerical tests with the coarse-scale EnKF algorithm, we use a 50×50
fine grid (dimensionless domain size 50×50) and two kinds of coarse-scale data.
First we consider coarse-scale permeability, which could be obtained by coarse-
scale inversion of fractional flow data on a coarse grid [15,37]. In Section 5,
we discuss an alternative sequential coarse-scale inversion procedure to obtain
coarse-scale permeability. This coarse-scale field could be thought as static
data, which is to be honored as constraint (up to the data variance) in eqn. (8),
hence we need to always assimilate it in our coarse-scale EnKF algorithm.

For the second set of results, coarse-scale saturation, can be considered as
obtained from inversion of 4d seismic measurements (see Introduction, Sec-
tion 1). Here, the coarse-grid saturation was obtained by volume averaging of
true fine-scale saturation at some specific observation times (further details
are given in Section 4.3). Therefore unlike coarse-scale permeability, static
data constraint, which is to be always satisfied, the coarse-scale saturation
data is assumed to be available at only a few observation times. Following
the flowchart in Fig. 2 for the coarse-scale EnKF, we always have coarse-scale
data if it is coarse permeability; and only at those few observation times for
coarse-scale saturation data.

An initial ensemble with different permeability realizations was generated us-
ing the sequential Gaussian simulation (SGSIM) 1 [7]. We specified a Gaussian
variogram model with a correlation length of 20 gridblocks in the x-direction
and 5 gridblocks in the y-direction; one of the realizations is used as the ref-
erence field (depicted in Fig. 3). The fractional flow will be calculated based
on the fine-scale model in Section 2.1. Porosity (φ) is assumed to be equal to
0.15 for all grid blocks. For simplicity, relative permeabilities, krj are assumed
to be linear functions of water saturation (S): krw(S) = S, kro(S) = 1 − S.
We note that this linearity assumption does not affect our data assimilation
results. When single-phase upscaling (i.e., upscaling of absolute permeability
only) is used, the errors in water cuts between coarse- and fine-scale simu-

1 For reservoir simulation applications, the SGSIM has been used [23,8] for gener-
ating initial ensemble members. This approach yields independent and identically
distributed multivariate normal random fields (conditioned to well log data)
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lations behave similarly for linear and nonlinear relative permeabilities (with
no extreme viscosity ratios) [12]. One injection well at the center of the field
(injection rate: 71.4 m3/day) and four producing wells at the four corners
(all with equal rate of 17.85 m3/day) were considered. The model equations
are solved with no flow boundary conditions, zero initial water saturation,
and discretizing the transport equation using first order upwind finite vol-
ume method. In Fig. 4, we provide the predicted fractional flow for 256 initial
ensemble members along with the true fractional flow (obtained from true
permeability field).

To compare our proposed coarse-scale constrained EnKF results with the reg-
ular EnKF we will use the following mean L2-norm error. Since we know the
true (fine and coarse-scale) field for our synthetic problem, i.e., the true per-
meability field, denoting it by κtrue, the error for any ensemble member is

e(i) = κ(i) − κtrue, i = 1, 2, . . . , Ne.

Consider the L2 norm of the error for each member, ‖e(i)‖2 =

√∑
j [e

(i)
j ]

2
,

using which we define the mean L2 error as

e =
1

Ne

Ne∑
i=1

‖e(i)‖2, (14)

so that e gives us an indication of the distance of entire ensemble from the
true solution κtrue. Since after every observation, we have updated ensemble
members, therefore we can monitor the variation of e over the time of assim-
ilation; the success of assimilation can therefore be related to the decrease in
e.

4.1 EnKF with fractional flow data only

We start with a presentation of results with regular EnKF, assimilating only
water cut data. Next we will discuss results with the coarse-scale EnKF.

The water cut data from the reference field is assumed to be available every 200
days, with mean zero and standard deviation of 0.01 (therefore R1/2 = 0.01I4,
where I4 is unit matrix of size 4 × 4, since there are four producing wells).
The observed data is assumed to be available up to 2400 days, hence we will
perform assimilation between 200 and 2400 days. A prediction beyond interval
of data assimilation, up to 4000 days is also provided.

The choice of ensemble size (Ne) is very important for successful data assim-
ilation using EnKF. This is because a finite size ensemble prediction is used
to estimate the prior error covariance, Pf (eqn. 5b). For small sample sizes,
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sampling errors in the covariance estimates result in insufficient variance for
Pf , so that observations which lie outside the small ensemble spread are com-
pletely ignored [5] (we are trying to sample a covariance matrix for unknown
variables: ln(κ),pr,S,Wc, i.e., an unknown of size 3 × 2500 plus four frac-
tional flow data in this case, using sample sizes that are far lesser, resulting
in severely reduced rank covariance matrices; see Fig. 5 for a plot of variance
during assimilation for various ensemble sizes). Different approaches such as
covariance inflation, localization, have been proposed to alleviate this prob-
lem of ensemble inbreeding, which are discussed elsewhere, see [1,26,25,2,8] for
further details. Therefore we need to select a sufficiently large ensemble size,
which would not severely suffer from the above described problem. Based on
Fig. 5, we select an ensemble of size 256 for our data assimilation results,
which has about 13% loss in variance.

We assimilated the above described measured data, and using the assimilated
permeability field, in Fig. 6 we plot the assimilated water cut data along
with the true data. Comparing with the initial forecast in Fig. 4, we observe
that the assimilated ensemble better envelopes the true data. We compare
the final permeability field after assimilation (Fig. 22(a)–22(d)) for a few en-
semble members with the true field in Fig. 3 (also given are the initial values
Fig. 21(a)– 21(d)); note that the central, South East– North West channel is
prominent but the features at the South West and North East corners are not
well captured. Therefore assimilation of only water cut data helps in identify-
ing only some of the important features.

4.2 Coarse-scale constrained EnKF with fractional flow and coarse-scale per-
meability data

In addition to water cut production data, the coarse-scale permeability data,
as described in Section 3.1 has been used as additional measured data. Flow-
based upscaling of reference permeability field is used as a proxy for inverted
coarse field (coarse-scale inversion was discussion in Section 3.1). Following
our previous notation, this coarse-scale permeability data will be denoted by z
(eqn. 8). The mapping between state variables (at fine-scale) and observations
(at coarse-scale) is given by U = [U 0 0 0], U , denotes flow-based upscaling.

Exactly as in the previous section, we prescribed the same frequency (of avail-
ability) and precision, R for the fractional flow data. Since we use coarse-scale
permeability as additional data, it is to be assimilated whenever we assimi-
late water cut data. A 5 × 5 coarse-scale data with mean zero and variance,
Q = qI25 (we will present results with q = 4, 2, 1, 0.5 and 0.1,) so that we can
consider the impact of coarse-scale data precision. In Fig. 7 we plot the vari-
ation of mean L2 error, e (eqn. 14) with observation time, at the coarse-scale
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for different values of q. Figures 8(a) and 8(b) depict the correlation between
coarse-scale ensemble mean and true fields for q = 4 and 0.1, respectively. As
the precision of coarse-scale data is increased, i.e., for smaller variance, we
observe a larger decrease in coarse-scale mean L2 error and higher correlation
with true coarse-scale field (correlation coefficient for q = 4, 2, 1, 0.1 respec-
tively are 0.976, 0.992, 0.995, 0.999), because smaller variance Q implies more
stricter coarse-scale data constraint in eqn. (8). Fig. 9(a)–9(d) depict the frac-
tional flow using the final permeability field after assimilation, for different
coarse-scale data precisions. Fig. 7 and 8(a)–8(b) show that the coarse-scale
data is being more accurately assimilated as it is made more precise. Also, no-
tice the improved fit of ensemble prediction to the true data, for more precise
coarse-scale data; also when compared to the regular EnKF results in Fig. 6.

Now we discuss the results regarding fine-scale field. In Fig. 10 we plot the
fine-scale mean L2 error for different values of q; the coarse-scale EnKF yields
much lesser error than regular EnKF which assimilated only fractional flow
data. The correlation coefficient between fine-scale ensemble mean and true
fields, after assimilating using regular EnKF is equal to 0.409, while with the
coarse-scale EnKF for q = 4, 2, 1, 0.1, in that order were 0.644, 0.652, 0.638, and
0.626; note higher correlation with the coarse-scale EnKF. We observe that
higher precision, i.e., lower q does not necessarily imply least e or highest
correlation, since highly precise coarse-scale data is relatively more weighted
than the fractional flow data. Optimal value for the coarse-scale data variance
can be obtained by prior calculation, which will be addressed in a future study.

The final permeability field, for a few ensemble members after assimilating
with coarse-scale EnKF, for q = 1 is shown in figures 23(a)– 23(d); all shown
samples seem to be more closer to the true field (Fig. 3) than those obtained
with regular EnKF (Fig. 22(a)–22(d)). In particular note that the low perme-
ability region at the North East and high permeability at the South West
corners are well captured.

4.3 Coarse-scale constrained EnKF with fractional flow and coarse-scale sat-
uration data

As mentioned in the Introduction and Section 3.1, by coarse-scale inversion of
4d-seismic data, we could obtain dynamic data such as coarse-scale pressure
and saturation. In this section we will use our proposed coarse-scale EnKF al-
gorithm to study the impact of usage of coarse-scale saturation as measured
data. To this end, the saturation obtained by using the reference permeability,
is saved at three different times: 200, 1200 and 2400 days which correspond to
the start, middle and end of the time window of data assimilation. This saved
fine-scale saturation field is then upscaled (see Section 3.1) by volume averag-
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ing to a 5 × 5 coarse-scale grid and used as observed coarse-scale saturation
data. If we denote the volume averaging by operator A, acting on fine-scale
saturation Sf , to give coarse-scale saturation Sc = ASf , then the mapping be-
tween state variables at fine-scale and measured data at coarse-scale is given
by U = [0 0 A 0]. Therefore in Steps 2.1 and 2.4, of the coarse-scale EnKF al-
gorithm (Appendix B), we use this operator to compute the misfit: z−U[Ψ].
Unlike the coarse-scale permeability data which is to be taken into account
at every assimilation step, by construction, the coarse-scale saturation data is
available only at a few assimilation steps, in this particular case, assimilation
after 200, 1200 and 2400 days.

To be consistent with our previous results, the frequency (of availability) and
precision, R for the fractional flow data has been kept the same. The coarse-
scale saturation data with mean zero and variance, Q = qsI25 (we will consider
results with qs = 0.5, 0.1, 0.01) such that the precision is varied from low- high.
Since the saturation ranges between zero and one, and the fractional flow
data is usually more accurately measured than 4d-seismic data, we picked
qs to be always larger than the variance in fractional flow data. In Fig.11
we plot the variation of mean L2 error for the coarse-scale saturation (while
assimilating) versus observation time (for our test case, we had assumed zero
initial water saturation, therefore the water saturation increases with time,
hence the inherent, increasing trend in Fig. 11). Note that whenever the coarse-
scale saturation is assimilated the error decreases for all three values of qs.Once
the data has been assimilated using the coarse-scale EnKF algorithm, we predict
using the assimilated ensemble members. The correlation of predicted coarse-
scale saturation with the true coarse-scale field at 200, 1200 and 2400 days, for
different values of qs is given in figures 12(a)–14(c); note the higher correlation
for more precise coarse-scale data. The improved fit of the fractional flow data
prediction using the assimilated ensemble members is given in Fig.15(a)–15(c).
For less precise data, such as qs = 0.5 : Fig.15(a), the results are somewhat
similar to the regular EnKF results (Fig. 6), but as the precision is increased
(qs = 0.01) the coarse-scale EnKF prediction is certainly improved and is closer
to the truth.

We discuss the fine-scale results, starting with fine-scale saturation and then
the fine-scale permeability. The true fine-scale saturation at certain times, is
plotted in Fig. 16(a)–16(g). The mean saturation with initial ensemble mem-
bers (before data assimilation) is given in Fig. 17(a)–17(g) and Fig. 18(a)–
18(g) show the field after assimilating only fractional flow data using regu-
lar EnKF. Using the coarse-scale EnKF, with qs = 0.01 is shown in Figures 19(a)–
19(g). Note that we are able to capture many of the subtle features that are
present in the true saturation field, such as the fingers that develop off the cen-
ter toward the North East corner and sharp contrast between different levels of
saturation, throughout the entire time interval (up to 4000 days) considered.
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Next we discuss the fine-scale permeability results after assimilation with our
coarse-scale EnKF. A comparison of the mean L2 error for the fine-scale perme-
ability field for varying qs and that obtained using the regular EnKF is shown
in Fig. 20. Note that the error variation with qs = 0.5 is very close to that with
regular EnKF , which probably explains why the fractional flow (Fig. 15(a)) is
not much different from the assimilation of water cut data only (regular EnKF).
Similarly improved results with qs = 0.01 could be explained based on smallest
mean L2 error for the fine-scale permeability. Finally the fine-scale permeabil-
ity field for a few ensemble members is plotted in Fig. 24(a)–24(d). Notice that
though the South East– North West features are captured, unlike the results
obtained with coarse-scale permeability data (Fig. 23(a)– 23(d)), the South
West and North East features are not well represented. In general the results
with coarse-scale permeability data are better, in terms of fine-scale mean
L2 error decrease and permeability samples, when compared to usage coarse-
scale saturation data, which is anticipated, since the fine scale permeability
is more correlated to coarse-scale permeability than coarse-scale saturation.
Also, these results highlight the importance of accurate coarse-scale data and
modeling, since more accurate measurements lead to further decrease in un-
certainty at the fine-scale.

5 Coarse-Scale Inversion

We assume that the observed water cut data corresponds to the model’ s finest
scale response. This relationship will be written as,

yo
f (tn) =Mf (tn)[κtrue

f ], (15)

where yo
f (tn) is the observed water cut, superscript ‘o′ denotes observed data,

subscript ‘f ′, fine-scale and tn, the time step. The fine-scale model and true
permeability are respectively denoted byMf and κtrue

f . Once κtrue
f is upscaled,

we get κtrue
c , which could be used to obtain the so-called coarse-scale water

cut,
y∗c (tn) =Mc(tn)[κtrue

c ], (16)

using the coarse-scale model, Mc. Hence to obtain the coarse-scale true per-
meability, κtrue

c , we first need to generate coarse-scale water cut data that
corresponds to the reference fine-scale water cut. This coarse-scale data could
then be inverted to obtain the coarse-scale field, for e.g., using coarse-scale
gradient sensitivity [37]; here we will instead use regular EnKF algorithm on a
coarse-grid and, sequentially estimate the coarse-scale permeability field. The
assimilated coarse-scale ensemble mean permeability obtained after a certain
number of days could then be used as a constraint for coarse-scale EnKF de-
scribed in section 4.2. In other words, this methodology could be used to
obtain coarse-scale permeability data, using the observed water cut data, say
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between time: [t1, t2], 0 < t1 < t2. Then we can use coarse-scale permeability
and observed water cut within (t2, T ], for coarse-scale EnKF (the final water
cut observation is at time, T ). However, the first step is to obtain the coarse-
scale production data (which will be denoted by ỹc(tn)) using the observed
fine-scale data, yo

f (tn).

5.1 Fine-scale to coarse-scale production map

Using an ensemble of fine-scale fields: κ
(i)
f , i = 1, Ne, we obtain correspond-

ing fine-scale water cut, y
(i)
f (tn) = Mf (tn)[κ

(i)
f ]. By single phase flow based

upscaling of fine-scale ensemble permeability fields we obtain, κ(i)
c , i = 1, Ne.

Therefore using the coarse-scale model, we get y(i)
c (tn) = Mc(tn)[κ(i)

c ], such
that at any time step, tn, for every fine-scale fractional flow data value, there
is a corresponding coarse-scale image point. In Fig. 25, we plot for an arbi-
trary ensemble member the fine and coarse-scale fractional flow curves, with
the same configuration of wells as earlier including the fine and coarse-scale
grid sizes, namely, 50 × 50 and 5 × 5 respectively. A plot of fine-scale versus
coarse-scale water cut for one of the four producers at the end of 3000 days is
shown in Fig. 26 with Ne = 100 realizations. Given the discrete sets: {y(i)

f (tn)}
and {y(i)

c (tn)}, here we adopt a simple linear least-squares approach to obtain
coarse-scale water cut, ỹc(tn) correspoding to observed fine scale data, yo

f (tn).
We start by writing any coarse-scale fractional flow value as,

y(i)
c (tn) = α(tn)y

(i)
f (tn) + β(tn), (17)

where α(tn) and β(tn) are scalar coefficients. Least-squares fit values (α∗(tn)
and β∗(tn)) of these parameters are obtained by minimizing,

Ne∑
i=1

(y(i)
c − αy

(i)
f − β)2

at every tn (a similar approach was studied by Omre and Lødøen [33] to
model a mapping of coarse-scale to fine-scale water cut). Therefore ỹc(tn) =
α∗(tn)yo

f (tn)+β∗(tn) and, could be seen as an approximation to y∗c (tn), the true
coarse-scale water cut (eqn.16). This off-line method therefore relies on a num-
ber of fine and coarse-scale simulations. As mentioned in section 2.1, coarse-
scale simulation is relatively inexpensive when compared to the compuational
cost of a corresponding fine-scale simulation and since this entire procedure
can be implemented offline, it is affordable. Moreover, for our results we map
the observed fractional flow only in the early time period, to obtain ỹc. The
same fine-scale reference field as earlier in Section 4 (Fig. 3), when upscaled
(flow based) yields coarse-scale field, when used in coarse-scale simulation pro-
vides y∗c . The observed fractional flow data, yo

f , is also the same as used earlier,
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for e.g., in regular EnKF, Section 4.1. A comparison of ỹc (obtained from above
described mapping of yo

f ) and y∗c is given in Fig. 27. The mapped coarse-scale
fractional flow, ỹc deviates slightly from y∗c , however, this could be minimized
by considering a larger sample size and/or a different fit other than the linear
fit, to be studied in future research work.

5.2 EnKF on coarse-grid

Our goal is to sequentially estimate coarse-scale state (including coarse-scale
permeability) using the above obtained coarse-scale water cut. The regu-
lar EnKF algorithm is implemented for the coarse-scale permeability samples,
κ(i)

c , i = 1, Ne and ỹc, as coarse-scale observed data. This can be accomplished
with minimal computational resources since the size of the coarse-grid is rel-
atively much smaller than the fine-scale grid. Because upscaled permeability
fields are used for imposing a constraint in EnKF, we can also use MCMC tech-
niques (e.g., [16]) to obtain coarse-scale permeability samples conditioned to
water-cut data. In Fig. 28 we compare the assimilated coarse-scale ensemble
mean permeability with the reference coarse-scale field (flow upscaled fine-
scale permeability). We observed that the ensemble mean coarse-scale perme-
ability after coarse grid data assimilation, is approximately the same as coarse-
scale permeability field obtained by flow-based upscaling of the fine-scale ref-
erence permeability field. As a result, we observed that coarse-scale EnKF gives
similar results to those presented earlier (in Section 4.2), which used flow-based
upscaling of the fine-scale reference permeability field.

6 Conclusions

The EnKF is increasingly being used for subsurface characterization in various
geological and groundwater applications to identify fine-scale state and pa-
rameters. So far, various implementations have been based on using dynamic,
production data, such as water cut, well pressures, etc, for sequential data as-
similation. Only recently dynamic data other than production data has been
considered in the EnKF context ([9,34]), nevertheless the observed data to be
assimilated was assumed to be at the finest scale. For a number of reasons,
it is widely recognized that usage of additional multiscale data could further
reduce the uncertainty at the fine scale. This is further motivated by the in-
creasing popularity of coarse-scale modeling. In this light, here we proposed
assimilation of coarse-scale data along with water cut, production data us-
ing coarse-scale EnKF. The modification to the regular EnKF (assimilation of
only water cut data) is completely recursive and easily implementable. The
relation between fine and coarse scales has been modeled via physics based
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upscaling, which could be thought of as a nonlinear observation operator link-
ing the coarse-scale data to the unknown fine-scale variables. In addition, the
proposed methodology could be used in any other sequential data assimilation
method as well.

The coarse-scale EnKF was tested and compared with the regular EnKF for a
2D synthetic 50× 50 heterogenuous true field. Two kinds of coarse-scale data
were considered. In the first implementation, coarse-scale permeability data
was considered. In the second, we considered volume averaged coarse-scale
saturation from the reference case as coarse-scale data; in both cases, a 5× 5
coarse grid was used. The coarse-scale saturation was assimilated only three
times in the entire time window of data assimilation (beginning, middle and
end). Therefore unlike coarse-scale permeability data which was always as-
similated along with water cut data, coarse-scale saturation was only thrice
assimilated. The data variance was varied from low to high, to study its im-
pact on assimilated results. In all cases, we observed that the assimilated,
ensemble mean coarse-scale field for all variances was highly correlated to
the true coarse-scale field. In addition, lower variance in the coarse-scale data
yielded higher correlation. The water cut data was better honored, both for
higher precision of coarse data, and when compared with regular EnKF. As
for the fine-scale permeability field, the coarse-scale EnKF yielded lesser error
in an averaged L2 norm, error taken w.r.t. the reference field. In addition,
a few individual samples were picked to compare the assimilated fields with
different EnKF procedures; experiment with coarse-scale permeability data pro-
vided final samples which captured most closely the features in the reference
fine-scale field. We also compared the fine-scale water saturation profile for
different times, a comparison with the regular EnKF showed that the profile
with coarse-scale EnKF (with coarse saturation) replicated many of the subtle
features present in the true saturation profile.

Though in our current paper we used only one coarse-scale, the proposed
method can be easily implemented to integrate as many scales as required by
the available data. We also discussed an alternative method to obtain coarse-
scale permeability data, if it was not available from prior geological considera-
tion. This procedure was based on first modeling an approximate relationship
between fine- and coarse-scale fractional flows. The mapped coarse-scale frac-
tional flow was then used in sequential estimation of coarse-scale permeability.
Our results indicated that the estimated coarse-scale ensemble mean perme-
ability is similar to the one obtained via a flow-based upscaling of the fine-scale
reference field.

Our current and future work is directed toward assimilating observations at
multiple scales into three dimensional models.

APPENDIX A Two step coarse-scale constrained Kalman filter es-
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timate

From Section 3,

Jf =
1

2
(Ψ−Ψ)T (Pf )−1 (Ψ−Ψ),

and

Jy =
1

2
(y−H[Ψ])T R−1 (y−H[Ψ]).

For notational simplicity we will denote µΨ as µ and denote Pf by B.

Step 1 (minimize Jf + Jy):

First we minimize the sum, J1 = Jf + Jy. The gradient 2 of above quadratic
cost functional with respect to (w.r.t.) Ψ is given by

∇ΨJ1 = B−1 (Ψ− µ)−HT R−1 (y−H[Ψ]).

Then the minimizer µ̃, of J1 satisfies (we assume H to be linear)

B−1 (µ̃− µ)−HT R−1 (y−Hµ̃) = 0.

Rearranging the above equation we get,

[B−1 + HT R−1H]µ̃ = B−1µ+ HT R−1y. (18)

Note that the Hessian of J1 w.r.t. Ψ is given by B−1+HT R−1H, and for linear
quadratic cost functionals, the Hessian inverse is equal to the error covariance
matrix. Therefore the error covariance matrix, B̃ for µ̃ is given by

B̃ = [B−1 + HT R−1H]−1. (19)

Step 2 (minimize Jg + Jz):

We use µ̃, B̃ in

Jg =
1

2
(Ψ− µ̃)T (B̃)−1 (Ψ− µ̃).

Jz =
1

2
(z−U[Ψ])T Q−1 (z−U[Ψ]).

Therefore the minimum µ̂, of Jg + Jz satisfies

[(B̃)−1 + UT Q−1U]µ̂ = (B̃)−1µ̃+ UT Q−1z.

2 We note in passing that B and R are covariance matrices and are positive definite
by construction, and hence for our derivation purposes, are formally invertible.
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Using equations (19) and (18) we can rewrite above as

[B−1 + HT R−1H︸ ︷︷ ︸
(B̃)−1

+UT Q−1U]µ̂ = B−1µ+ HT R−1y︸ ︷︷ ︸
r.h.s. of eqn. (18)

+UT Q−1z.

It is trivial to show that µ̂ also satisfies

∇Ψ[Jf + Jy + Jz] = 0.

Therefore the two step method to obtain the final estimate µ̂, gives the same
results as a one shot approach of minimizing Jf + Jy + Jz.

APPENDIX B The coarse-scale EnKF algorithm
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Algorithm 1 Coarse-scale EnKF algorithm

Run the simulation model up to a particular observation time for entire en-
semble
to get predicted samples: {Ψ(i)}Ne

i=1, A = (Ψ(1),Ψ(2), . . . ,Ψ(Ne)).
• Step 1: Using measured water cut data y with variance R, get updated

ensemble: {Ψ̃(i)}Ne
i=1.

· Step 1.1 Find ensemble mean (eqn. 5a), Ψ.
· Step 1.2 Subtract deviation from mean A′ = (b(1),b(2), . . . ,b(Ne)), b(i) =

Ψ(i) −Ψ.
· Step 1.3 Apply H to each column of A′ to get S = H A′. i.e., simply pick

the water cut deviations in A′.
· Step 1.4 for i = 1, 2, . . . , Ne,

Sample ν(i) i.i.d.∼ N (0,R).
y(i) = y + ν(i),
R1/2 = (ν(1),ν(2), . . . ,ν(Ne)),
D = (d(1),d(2), . . . ,d(Ne)), d(i) = y(i) −W(i)

c ; W(i)
c is predicted water

cut for each ensemble member.
end for
· Step 1.5 Compute SVD [S + R1/2] = XLΣXR.

Get Σ̂ retaining first few singular values which explain most variability in
Σ, corresponding left singular vectors: X̂L.
· Step 1.6 Update ensemble: eqn. (7), Ã = (Ψ̃(1), Ψ̃(2), . . . , Ψ̃(Ne)),

Ã = A + A′ST X̂LΣ̂−2X̂
T

L D.
• Step 2: Using coarse-scale data z with variance Q, get updated ensemble:
{Ψ̂(i)}Ne

i=1.
· Step 2.1 Compute coarse-scale ensemble prediction: u(i) = UΨ̃(i), i =

1, 2, . . . , Ne.
· Step 2.2 Coarse-scale mean: µ′ = 1

Ne

∑Ne
i=1 u(i).

· Step 2.3 Coarse-scale deviations: S′ = (s(1), s(2), . . . , s(Ne)), s(i) = u(i)−µ′.
· Step 2.4 Repeat Step 1.4, using coarse-scale measurement. for i =

1, 2, . . . , Ne,

Sample ω(i) i.i.d.∼ N (0,Q).
z(i) = z + ω(i),
Q1/2 = (ω(1),ω(2), . . . ,ω(Ne)),
D′ = (d(1),d(2), . . . ,d(Ne)), d(i) = z(i) − u(i).

end for
· Step 2.5 Compute SVD [S′ + Q1/2] = XLΣXR. Get Σ̂ and X̂L as in step

1.5
· Step 2.6 Compute fine-scale mean: µ = 1

Ne

∑Ne
i=1 Ψ̃(i).

· Step 2.7 Compute fine-scale deviations: A′′ = (b(1),b(2), . . . ,b(Ne)), b(i) =
Ψ̃(i) − µ.
· Step 2.8 Update ensemble: Â = (Ψ̂(1), Ψ̂(2), . . . , Ψ̂(Ne)),

Â = Ã + (A′′)(S′)T X̂LΣ̂−2X̂
T

L D′.
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Remark 1:
Note that steps 2.6 and 2.7 in above algorithm approximate the intermediate
fine-scale error covariance

P̃f ≈ 1

Ne − 1
A′′ (A′′)T .

Remark 2:
Steps 2.1– 2.3 accomplish 3

S′ = UA′′.

Note that the above algorithm is independent of the choice of upscaling proce-
dure and also, we can use the same algorithm for different kinds of coarse-scale
observed data (if available).

Remark 3:
Note that the above coarse-scale constrained EnKF algorithm can be readily
extended to incorporate data at multiple coarse scales, with appropriate up-
scaling procedure in U. To elaborate, if we had another independent data at
a scale different from z, we use the estimates ({Ψ̂(i)}Ne

i=1) obtained using z, as
intermediate solution, repeat Step 2 to assimilate the data at another scale.
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Fig. 1. Schematic description of the upscaling. Bold lines illustrate a coarse-scale
partitioning, while thin lines show a fine-scale partitioning within coarse-grid cells.
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Fig. 2. Coarse-scale EnKF algorithm
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Fig. 4. Fractional flow prediction with 256 initial ensemble members (no data assim-
ilation); ensemble members (green dots), ensemble mean (blue crosses) compared
with true water cut data (red open circles); clockwise, production wells: 1− 4.
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Fig. 5. Variance of error covariance Pf , for all observation times, normalized by
its initial value at time zero, for various ensemble sizes. Note that small ensemble
sizes lead to insufficiently small variance. As we assimilate data, the all ensemble
members converge to the truth, hence there will be a decrease in variance, as seen
for larger Ne as well.
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Fig. 6. Water cut prediction using assimilated (regular EnKF for 2400 days) ensemble
members, note the improved fit of ensemble when compared to that in Fig. 4.
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Fig. 7. Decrease in e computed at coarse-scale, as data (fractional flow and 5 × 5
coarse-scale permeability data at variance, Q = qI) is assimilated using the coarse-s-
cale EnKF algorithm.
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Fig. 8. Correlation between coarse-scale ensemble mean and true permeability after
assimilation for low and high precision in coarse data; (a) and (b): q = 4, 0.1.
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Fig. 9. Same as in Fig. 6, but using coarse-scale EnKF for data assimilation; clockwise,
(a)– (d): q = 4, 2, 1, 0.1.
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Fig. 10. Same as in Fig. 7, but at fine-scale, also shown is the error obtained with
assimilation of fractional flow data only.
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Fig. 11. Decrease in e computed at coarse-scale, as data (fractional flow and 5× 5
coarse-scale saturation data at variance, Q = qsI, supplied at 200, 1200 and 2400
days) is assimilated using the coarse-scale EnKF algorithm.
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Fig. 12. Correlation between coarse-scale ensemble mean and true saturations after
assimilation at time: left– right, 200, 1200 and, 2400 days. qs = 0.5.
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Fig. 13. Same as above, but with qs = 0.1.
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Fig. 14. qs = 0.01.
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Fig. 15. Same as in Fig. 9(d), but using coarse-scale EnKF for data assimilation of
fractional flow and coarse-scale saturation; (a)– (c): qs = 0.5, 0.1, 0.01. Note the
improved fit of the ensemble (as in Fig. 15(c)) when compared to assimilation with
regular EnKF Fig. 6.
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Fig. 16. Evolution true fine-scale saturation after (a) 200 days, (b) 600, (c) 1000,
(d) 1500, (e) 2000, (f) 3000, (g) 4000, days. The initial saturation was specified to
be zero.
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Fig. 17. Same as above, but prediction using the initial ensemble members (no data
assimilation). We plot the ensemble mean saturation.
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Fig. 18. Predicted ensemble mean using assimilated (regular EnKF with fractional
flow data) ensemble members.
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Fig. 19. Same as above, but assimilation was performed using coarse-s-
cale EnKF with fractional flow and 5× 5 coarse-scale saturation data with variance,
Q = qsI; qs = 0.01. Observe that the ensemble mean saturation profile and history
is more closer to the truth.
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Fig. 20. Same as in Fig. 10, but with coarse-scale EnKF using observed fractional flow
and coarse-scale saturation; the coarse-scale EnKF yields lesser error when compared
to regular EnKF.
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Fig. 21. Log permeabilities of a few i−th. initial ensemble members (before data
assimilation); left– right, (a) i = 50, (b) 100, (c) 150, (d) 200.
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Fig. 22. Same as above, but after assimilating water cut data with regular EnKF.
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(d)

Fig. 23. Same as above, but assimilated using coarse-scale EnKF with q = 1 for the
variance of coarse-scale permeability data.
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Fig. 24. As above, but assimilated using coarse-scale EnKF with coarse-scale satura-
tion data, variance qs = 0.01.
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Fig. 25. Fine and coarse-scale water cut for an arbitrary ensemble member. The
fine-scale permeability was upscaled using flow based upscaling to get the coarse-s-
cale field. Fine-grid was 10 times coarsened in each direction to get the coarse-grid.
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Fig. 26. Fine-scale (yf ) versus coarse-scale (yc) water cut (producer P1, tn = 3000
days), for a sample size of 100; also shown is a linear fit between yf and yc.
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Fig. 27. A comparison of the fine-scale data (yo
f ) mapped to the coarse-scale (ỹc) with

the true coarse-scale water cut (y∗c ). The linear least-squares mapping is described
in section 5.1, yo

f was mapped every 50 days, upto 600 days.
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Fig. 28. Correlation between coarse-grid ensemble mean and reference coarse-scale
permeabilities after data assimilation using EnKF on coarse-grid. ỹc was used as
observed data with standard deviation of 0.01
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