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ABSTRACT

Least-squares Methods for Computational Electromagnetics. (August 2004)

Tzanio Valentinov Kolev, M.S., Sofia University “St. Kliment Ohridski”, Bulgaria

Co–Chairs of Advisory Committee: Dr. James H. Bramble
Dr. Joseph E. Pasciak

The modeling of electromagnetic phenomena described by the Maxwell’s equations

is of critical importance in many practical applications. The numerical simulation

of these equations is challenging and much more involved than initially believed.

Consequently, many discretization techniques, most of them quite complicated, have

been proposed.

In this dissertation, we present and analyze a new methodology for approximation

of the time-harmonic Maxwell’s equations. It is an extension of the negative-norm

least-squares finite element approach which has been applied successfully to a variety

of other problems.

The main advantages of our method are that it uses simple, piecewise polynomial,

finite element spaces, while giving quasi-optimal approximation, even for solutions

with low regularity (such as the ones found in practical applications). The numerical

solution can be efficiently computed using standard and well-known tools, such as

iterative methods and eigensolvers for symmetric and positive definite systems (e.g.

PCG and LOBPCG) and preconditioners for second-order problems (e.g. Multigrid).

Additionally, approximation of varying polynomial degrees is allowed and spurious

eigenmodes are provably avoided.
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We consider the following problems related to the Maxwell’s equations in the fre-

quency domain: the magnetostatic problem, the electrostatic problem, the eigenvalue

problem and the full time-harmonic system. For each of these problems, we present a

natural (very) weak variational formulation assuming minimal regularity of the solu-

tion. In each case, we prove error estimates for the approximation with two different

discrete least-squares methods. We also show how to deal with problems posed on

domains that are multiply connected or have multiple boundary components.

Besides the theoretical analysis of the methods, the dissertation provides various

numerical results in two and three dimensions that illustrate and support the theory.
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To my grandfather,
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in loving memory.
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CHAPTER I

INTRODUCTION

Computational electromagnetics is the science of applying modern computational

techniques to numerically simulate the physical interactions and phenomena between

electromagnetic waves and material structures. This is of critical importance in many

practical applications, including the design of various devices: antennas, radars, mi-

crowaves, waveguides and particle accelerators. Electromagnetic problems appear

naturally in diverse areas such as geophysics, relativity theory and optics. Specific

applications are discussed in many references, cf. [5, 59, 93, 47, 92]. The importance of

developing advanced methods in computational electromagnetics is illustrated by the

following excerpt from the SciDAC project “Advanced Computing for 21st Century

Accelerator Science & Technology” (see [103]):

Particle accelerators have helped enable some of the most remarkable discov-

eries of the 20th century. They have also led to substantial advances in applied

science and technology, many of which greatly benefit society. . . .Given the

importance of particle accelerators, it is imperative that the most advanced

high performance computing tools be brought to bear on their design, opti-

mization, technology development, and operation.

Consider an isotropic, linear medium Ω with electric permittivity ε and magnetic

permeability µ. Let E be the intensity of the electric field generated by charges with

volume density ρ, and B be the intensity of the magnetic field generated by current

with volume density J. Maxwell suggested (see [73] for the original and [18, 90, 10, 57]

for a modern presentation) that, when these fields depend on time, they are coupled

This dissertation follows the format of SIAM Journal of Numerical Analysis.
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by the following system of equations: 1⎧⎪⎨⎪⎩
∇×E = − ∂

∂t
B

∇·D = ρ

,

⎧⎪⎨⎪⎩
∇×H =

∂

∂t
D + J

∇·B = 0

. (1.1)

Here D and H are the densities of the electric and the magnetic flux, which in the

linear case are given by

D = ε E , H = µ−1 B . (1.2)

Theoretically (1.1) should be solved on all of R3. However, one usually computes in a

sufficiently large domain, which is assumed to be surrounded by a perfect conductor.

The boundary conditions in this case are:

E×n = 0 , B · n = 0 on ∂Ω , (1.3)

where n denotes the outward unit normal on the boundary.

Even though they will not be considered in this dissertation, we should remark

that physically more meaningful radiation boundary conditions are possible, see e.g.

[79]. A more advanced treatment can be achieved by using absorbing boundary

conditions as the perfectly matched layer technique given in [12, 13], see also [59].

We also note that there are more general frameworks in which to understand the

above equations. For example, in [56] the electromagnetic phenomena are described

in the language of differential geometry and algebraic topology. The discretization

is based on discrete differential forms, which are a generalization of the Lagrangian

finite elements.

Commonly in practice, only one or few frequencies of propagations are considered.

Based on that, or by applying the Fourier transform, one can reduce the Maxwell’s

1The equations involving the curl operator correspond to Faraday’s and Ampere’s
laws, while the divergence equations are called Gauss’ electric and magnetic laws.
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equations to their time-harmonic form. The assumption that the fields vary harmoni-

cally in time with frequency ω means that E(x, t) = e0(x) cos(ωt+φE) = �(e(x) eiωt)

and H(x, t) = h0(x) cos(ωt + φH) = �(h(x) eiωt), where e(x) = e0(x) eiφE and

h(x) = h0(x) eiφH are some complex fields. Assuming that the data are also time-

harmonic, J(x, t) = �(j(x) eiωt), the equations (1.1)–(1.3) take the following form,

known as the time-harmonic Maxwell system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×e = −λ µ h in Ω,

∇×h = λ ε e + j in Ω,

e×n = 0 on ∂Ω,

µ h · n = 0 on ∂Ω .

(1.4)

Here λ = i ω, the current density j is given, and we are looking for the magnetic and

electric fields h , e : Ω → C3.

In realistic computations this problem is posed on complicated, three-dimensional

domains where a natural choice for a discretization technique is the finite element

method. There is extensive literature on the use of finite elements in computational

electromagnetics, see [75, 59, 93, 58].

In two dimensions, most of the electromagnetic problems can be reduced to

second-order problems for one of the fields or for a potential. However, the three

dimensional problems are significantly more complicated, in particular due to the

large nullspace of the curl operator. This suggests that a new set of methods is

required for the problem (1.4). Indeed, the straightforward application of standard

piecewise linear elements to the eigenvalue problem (1.7), related to (1.4), leads to

spurious eigenmodes as shown in [16, 93].

A considerable amount of research has been targeted specifically to computa-

tional electromagnetics. Many methods have been proposed, each with its advantages
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and drawbacks. Some of them are discussed below.

A new set of finite element spaces that seems to fit the Maxwell problem was

given by Nédélec in [77]. Their curl-conforming property eliminates the spurious

modes and leads to optimal convergence. Since their introduction, Nédélec elements

have been considered the natural choice in many electromagnetic problems, and the

research activity on this topic has been very active (cf. [75]). However, the Nédélec el-

ements, especially those of higher order, have the drawback of being relatively difficult

to implement. The resulting algebraic system usually needs special, sophisticated so-

lution algorithms. There also seems to be a lack of clear theory for general hexahedral

meshes.

Some methods use the standard nodal finite element spaces but modify the bi-

linear form to ensure ellipticity. This is the approach taken in [43, 40, 42, 85]. The

drawback of these methods is that the added complexity in the form evaluation may

surpass the convenience of working with simple finite elements. Furthermore, when

applied to the eigenvalue problem, the modified form may introduce additional family

of eigenpairs as discussed in [41].

A different set of ideas, which are closest to the one considered in this dissertation,

are based on the least-squares finite element method. The standard functionals used

widely in the engineering community are L2-based (see [58, 96]). Related second-

order problems can be treated by these methods after the introduction of additional

variables which reduce the system to first-order system least-squares (FOSLS). For

example, in [70] a FOSLS method is applied to the scalar Helmholtz equation with

exterior radiation boundary conditions to derive an algorithm uniform with respect

to the wave number. This result is obtained under the assumption that the domain

is convex or has a smooth boundary.
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The least-squares finite element method is well studied, in particular, for second-

order problems. Among the many papers that deal with this subject are [14, 58,

31, 32, 33]. The dual, or negative-norm, approach is described in [21, 22, 23]. It

seems that [26] is the first time when such a method was applied to electromagnetic

problems.

Motivated by the previous discussion, in this dissertation we develop and analyze

a new methodology in computational electromagnetics—the least-squares method

based in a dual space. Specifically, this dissertation deals with the approximation of

the full time-harmonic system (1.4) and the following related problems:

the (generalized) magnetostatic problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×h = j in Ω,

∇ · (µh) = ρ in Ω,

µh · n = σ on ∂Ω,

(1.5)

which may model the magnetic fields produced by steady currents;

the (generalized) electrostatic problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×e = j in Ω,

∇ · (εe) = ρ in Ω,

e×n = σ on ∂Ω,

(1.6)

which may describe the electric fields produced by stationary source charges;
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and the eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×h = λ ε e in Ω,

∇×e = −λ µ h in Ω,

e×n = 0 on ∂Ω,

µ h · n = 0 on ∂Ω ,

(1.7)

which gives the frequencies of the fields that will propagate through a given medium.

The proposed method is based on natural weak variational formulations of (1.5),

(1.6) and (1.4) which assume minimal regularity of the solution. The solution oper-

ators for the first two problems are further used to obtain an approximation to the

eigenvalue problem.

The resulting discretization method has the advantages of avoiding potentials

and the use of Nédélec spaces. In fact, the mixing of continuous and discontin-

uous approximation spaces of varying polynomial degrees is allowed. The theory

and implementation for general hexahedral meshes is analogous to that on tetrahe-

dra. Additional advantages are that the matrix of the discrete system is uniformly

equivalent to the mass matrix and that spurious eigenmodes are completely avoided.

Finally, the method can be efficiently implemented using preconditioners for standard

second-order problems (e.g. Multigrid).

The outline of the contents of the dissertation is as follows. In Chapter II, we

discuss the needed notation and basic facts from finite element theory and functional

analysis. These results are standard and are needed in the subsequent development.

Next, we present and analyze an abstract least-squares algorithm in Chapter III.

Here we formulate general approximation results and address the question of imple-

mentation. The following chapter deals with the theory for the electrostatic and the

magnetostatic problems. We mostly follow the theory from [26]. This material is
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included for completeness, since it is the basis upon which the rest of the dissertation

is built. We give a detailed presentation and provide further results concerning stable

pairs of approximation spaces, regularity and extensions to domains with holes and

curved boundaries. In Chapter V, the eigenvalue problem is discussed. We start with

a reformulation of the original problem to an eigenvalue problem based on the solu-

tion operators for (1.5) and (1.6). Then we show how to approximate those solution

operators and investigate the convergence of eigenvectors and eigenvalues. The topic

of Chapter VI is the least-squares method for the full time-harmonic system. The

development here is similar to the one in Chapter IV, but it is also naturally con-

nected to the results for the eigenvalue problem. In the next chapter we present and

comment on various numerical experiments illustrating the theory. The last chapter

of the dissertation contains the conclusions including plans for possible future work.

A final note on notation: we use the symbol C with or without subscript to denote

a generic positive constant, which may be different in the different occurrences. This

constant may depend on explicitly stated quantities, but it will always be independent

of the mesh size h.
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CHAPTER II

FUNCTION SPACES

In this chapter, we recall a few concepts and results that will be needed later. We col-

lect material from various sources and try to present it briefly and with the appropriate

references. For notation, definitions, and further details, see [62, 3, 72, 74, 53, 97, 98].

A. Hilbert spaces and operators

Let X be a Hilbert space with an inner product (·, ·)X. In this dissertation, we assume

that X is separable and defined over the field K, which is either R or C.

The dual space of X is denoted by X∗ and consists of all bounded conjugate-linear

functionals � : X �→ K. Here, conjugate-linear means that �(λx + y) = λ �(x) + �(y)

for any λ ∈ K; x, y ∈ X. Clearly � is conjugate-linear if and only if �̄, defined by

�̄(x) = �(x), is linear. The norm on X∗ is defined by

‖�‖X∗ = sup
x∈X\{0}

|〈�, x〉|
‖x‖X

,

where 〈·, ·〉 ≡ 〈·, ·〉X∗×X denotes the duality pairing between X∗ and X. By the Riesz

Representation Theorem, there exists a linear isometry TX : X∗ �→ X, satisfying

(TX�, x)X = 〈�, x〉 ∀x ∈ X . (2.1)

It follows from the polarization identity

(x, y)X =
1

4

(
‖x + y‖2

X − ‖x − y‖2
X + i ‖x + i y‖2

X − i ‖x − i y‖2
X

)
, (2.2)

and the fact that a Banach space is a Hilbert space if and only if the parallelogram

identity

‖x + y‖2
X + ‖x − y‖2

X = 2 ‖x‖2
X + 2 ‖y‖2

X (2.3)
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holds, that X∗ is a Hilbert space with an inner product

(�, j)X∗ = 〈�, TXj〉 = 〈j, TX�〉 = (TX�, TXj)X . (2.4)

If L is a subspace of X, the quotient space X/L consists of all equivalence classes

under the equivalence relation u ∼ v ⇐⇒ u − v ∈ L. The orthogonal complement

of L in X is defined as L⊥X ≡ L⊥ = {x ∈ X : (x, l)X = 0 ,∀l ∈ L}. We recall that

when L is closed, X = L ⊕ L⊥, and X/L is isomorphic to L⊥.

Let X and Y be two Hilbert spaces. The set of all bounded linear operators from

X to Y is denoted by L(X, Y). This is a Banach space with respect to the operator

norm

‖A‖ ≡ ‖A‖X→Y ≡ ‖A‖L(X,Y) = sup
x∈X\{0}

‖Ax‖Y

‖x‖X

.

When X ⊆ Y and the identity operator is in L(X, Y) we use X ↪→ Y to denote that

X is continuously embedded Y. We say that A ∈ L(X, Y) defines an isomorphism

between X and Y if A is bijective, bounded and A−1 is also bounded. The operator

A ∈ L(X, Y) is said to be compact if it maps bounded sets in X into sets with compact

closure in Y. The following sets denote the kernel and the image of A:

N(A) = {x ∈ X : Ax = 0} , R(A) = {Ax ∈ Y : x ∈ X} .

Remark 2.1 Let X and Y be two Hilbert spaces that are continuously embedded in a

normed space Z. Then X ∩ Y is a Hilbert space with an inner product

(x, y)X∩Y = (x, y)X + (x, y)Y ∀x , y ∈ X ∩ Y .

Remark 2.2 Let X be a real Hilbert space. Analogous to the construction of C as

R × R, we can think of X × X as a complex Hilbert space, denoted with XC. In

particular ‖x + i y‖2
XC

= ‖x‖2
X + ‖y‖2

X, for any x , y ∈ X.
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The operator A ∈ L(X, Y) can be naturally extended to AC ∈ L(XC, YC) by defin-

ing AC(x + i y) = Ax + i Ay. Note that ‖AC‖XC→YC
= ‖A‖X→Y.

A form a : X×Y �→ K is said to be bilinear 1 if it is linear with respect to its

first argument and conjugate-linear with respect to the second. A bilinear form is

bounded, with a bound ‖a‖, if

|a(x, y)| ≤ ‖a‖ ‖x‖X‖y‖Y ∀(x, y) ∈ X×Y .

We say that a(·, ·) satisfies the inf-sup condition, if there exists a constant C ∈ R+

such that

C ‖x‖X ≤ sup
y∈Y\{0}

|a(x, y)|
‖y‖Y

, ∀x ∈ X . (2.5)

The following result is well known (see e.g. [7]).

Theorem 2.1 (Generalized Lax-Milgram) Suppose that a(·, ·) is a bounded bi-

linear form on X×Y satisfying the inf-sup condition (2.5). Define

Y0 = {y ∈ Y : a(x, y) = 0, for all x ∈ X} .

Then, for any f ∈ Y∗ there exists a unique x ∈ X satisfying

a(x, y) = 〈f, y〉 ∀y ∈ Y , (2.6)

if and only if

〈f, y〉 = 0 ∀y ∈ Y0 . (2.7)

Furthermore, the solution satisfies

C ‖x‖X ≤ ‖f‖Y∗ ≤ ‖a‖ ‖x‖X . (2.8)

1In the case K = C, the bilinear forms are also called sesquilinear.
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Next, we discuss the spectral properties of an operator A ∈ L(X, X). For any

λ ∈ C, the resolvent operator Rλ(A) is defined as Rλ(A) = (λI − A)−1. The

resolvent set ρ(A), and the spectrum σ(A), are defined by ρ(A) = {λ ∈ C :

Rλ(A) is an isomorphism on X}, and σ(A) = C \ ρ(A). We say that λ ∈ C is an

eigenvalue of A if there is x �= 0 such that Ax = λx. The set of all such x forms the

linear subspace of eigenvectors corresponding to λ, and is denoted with Vλ.

The adjoint operator A∗ ∈ L(X, X) is defined by

(Ax, y) = (x, A∗y) ∀x, y ∈ X .

The operator A is called symmetric, or Hermitian if A = A∗. When A = −A∗, the

operator is called skew-Hermitian. Clearly A is skew-Hermitian if and only if i A is

Hermitian. A Hermitian operator is positive semi-definite if

(Ax, x) ≥ 0 ∀x ∈ X .

When the equality above is achieved only for x = 0, the operator is called positive

definite. Using this notation, we can formulate some basic theorems from the spectral

theory of operators on Banach spaces.

Theorem 2.2 (Hilbert-Schmidt Theory) Let A ∈ L(X, X) be a compact opera-

tor. Let {λn} be the set of its nonzero eigenvalues. We have the following results:

1. Each of the spaces Vλn is of finite dimension, called the multiplicity of λn. The

spectrum of A is {λn} ∪ {0}.

2. The nonzero eigenvalues of A∗ are precisely {λn}. Furthermore λn and λn have

the same multiplicity.

3. If the number of nonzero eigenvalues is not finite, it is countable, and they can

be ordered in a sequence λn → 0.
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4. If A is also Hermitian, all the eigenvalues are real. If A is skew-Hermitian, all

the eigenvalues are purely imaginary. In both cases N(A)⊥ =
⊕

λn
Vλn.

5. If A is symmetric and positive semi-definite, the eigenvalues are positive and

‖A‖ = λ1 > λ2 > . . . > λn > . . . ≥ 0.

Theorem 2.3 (Fredholm Alternative) Let A ∈ L(X, X) be a compact and self-

adjoint operator. For λ �= 0 and b ∈ X consider the equation

Ax − λx = b . (2.9)

Then:

1. If λ �∈ σ(A) then (2.9) has a unique solution x for any b.

2. If λ is an eigenvalue, then (2.9) has a solution if and only if b ∈ V⊥
λ . The

solution is unique in the quotient space X/Vλ.

B. Sobolev spaces

Let Ω be a nonempty, bounded connected open set in Rd, d ∈ {2, 3}. Then Ω is

measurable and its Lebesgue measure, cf. [3], is denoted by µ(Ω). We assume that

the boundary ∂Ω is Lipschitz continuous (see [55] for the definition). In this case, the

outward unit normal n is well defined almost everywhere on ∂Ω.

The connected components of ∂Ω are denoted by Γi, i = 0, . . . , n1, where Γ0 is

the exterior boundary, i.e. Γi ⊂ int(Γ0) for i = 1, . . . , n1. As in Hypothesis 3.3 from

[4], we assume that there exist a finite number of cutting surfaces Σj, j = 1, . . . , n2,

so that the domain Ω0 = Ω \
⋃n2

j=1 Σj is simply connected.

The simplest example of such a domain is a convex open set Ω ⊂ Rd, in which

case n1 = n2 = 0. In two dimensions we always have n1 = n2. However, in R3, n1
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equals the number of connected bounded components of R3 \ Ω, while n2 is equal to

the genus of ∂Ω. Informally, we say that the domain has n1 “holes” and n2 “loops”.

Clearly these two numbers are independent.

Assumption (AΩ) The domain Ω is nonempty, open, bounded, connected and has

Lipschitz continuous boundary with n1 “holes” and n2 “loops”.

The above assumption allow us to consider domains as the one shown on Figure

2.1.

Γ0

Γ1

Γ2

Γ3

Σ1

Ω

Fig. 2.1. Typical geometry of the domain Ω.

We start with the following spaces of functions defined on Ω: D(Ω) ≡ C∞
0 (Ω) is

the set of all infinitely smooth functions with compact support in Ω, and D′(Ω) is

the set of all distributions (the continuous linear functionals on D(Ω) with the weak

star topology). For p ∈ [1,∞), Lp(Ω) is the Banach space of classes of Lebesgue-

measurable functions for which the norm

‖f‖Lp =

(∫
Ω

|f(x)|pdx

) 1
p

is finite.

Remark 2.3 In this section, we concentrate on spaces of real-valued functions, i.e.

the case K = R. The extension to complex-valued functions and vector fields is
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straightforward (see Remark 2.2). When we want to emphasize the field of scalars for

a given space, we will use a subscript notation like L
p
C
(Ω) and L

p
R
(Ω).

Let α = (αi)
d
i=1 ∈ Nd be a multiindex and ∂αf denote the distributional (or weak)

derivative of f ∈ D′(Ω) of order |α| =
∑d

i=1 αi. When |α| = 0, we set ∂αf = f. For

s ∈ N0 and integer p ∈ (1,∞), the Sobolev space Ws,p(Ω) consist of distributions f

which are in Lp(Ω) together with all their derivatives of order less or equal to s. This

is a Banach space with respect to the norm

‖f‖Ws,p =

(
s∑

k=1

|f|p
Wk,p

) 1
p

, where |f|Ws,p =

⎛⎝∑
|α|=s

‖∂αf‖p
Lp

⎞⎠ 1
p

.

In particular, Ws,2(Ω) is a Hilbert space, traditionally denoted by Hs(Ω). For conve-

nience we will use ‖ ·‖s, | · |s, and (·, ·)s for the norm, seminorm and the inner product

on Hs(Ω).

The definition of Sobolev spaces can be extended to s ∈ R+ as follows: if s =

m + σ, with m ∈ N0 and σ ∈ (0, 1), then ‖f‖Ws,p = (‖f‖p
Wm,p + |f|pWs,p)

1
p , where

|f|Ws,p =

⎛⎝∑
|α|=m

∫
Ω

∫
Ω

|∂αf(x) − ∂αf(y)|p
‖x − y‖d+σp

dx dy

⎞⎠ 1
p

. (2.10)

The spaces Hs(Ω), s ∈ R+ can be alternatively defined by the real method of

interpolation, see [91, 3] and Appendix A in [29]. This is particularly useful since it

allows for obtaining estimates for bounded linear operators in intermediate spaces by

“interpolation” (cf. Theorem 1.4 in [54]).

Introduce W
s,p
0 (Ω) as the closure of D(Ω) in ‖ · ‖Ws,p . The space W−s,p(Ω) ≡

W
−s,p
0 (Ω) is defined as the dual of W

s,q
0 (Ω), where 1

p
+ 1

q
= 1. In particular Hs

0(Ω) =

W
s,2
0 (Ω), and H−s(Ω) ≡ H−s

0 (Ω) = Hs
0(Ω)∗.

Denote D(Ω) to be the space of restrictions of functions in D(Rd) to Ω. It is
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well known that the trace operator γ0, defined on D(Ω), can be uniquely extended to

a bounded linear operator from Hs(Ω) onto Hs− 1
2 (∂Ω), for s ∈

(
1
2
, 1
]
. Moreover, for

s = 1 we have N(γ0) = H1
0(Ω). We recall that the Sobolev spaces on the boundary

can be defined by the use of local charts. In particular, Hs(Γi) is well defined for

s ∈
(

1
2
, 1
]
, i = 0, . . . , n1 and any u ∈ Hs(Ω) has traces u|Γi

∈ Hs− 1
2 (Γi).

For s ∈ R+, let H̃s
0(Ω) be the space of functions f for which f̃, the extensions of f

by 0 outside of Ω is in Hs(Rd). The dual of H̃s
0(Ω) is denoted with H̃−s(Ω) or H̃−s

0 (Ω).

In the next Theorem, we summarize some results that will be needed later. For

more details, including the Sobolev embedding theorem, an equivalent description of

Hs(Rd) in terms of the Fourier transform, and the case p = ∞ we refer to [3, 55, 54]

and Appendix A in [29].

Theorem 2.4 Let [X, Y]s denote the interpolation space between X and Y (with s = 0

corresponding to X). The following hold true

1. Hs1(Ω) is compactly embedded in Hs2(Ω) for any real s1 > s2. This means that

every bounded sequence in Hs1(Ω) has a convergent subsequence in Hs2(Ω).

2. D(Ω) is dense in Hs(Ω) for any s ≥ 0.

3. There exists a bounded linear extension operator E : Hs(Ω) �→ Hs(Rd), indepen-

dent of s > 0 such that Ef|Ω = f.

4. For any |α| = 1, and s ∈ R, s − 1
2
�∈ Z, the weak derivative ∂α is a bounded

linear operator from Hs(Ω) to Hs−1(Ω). In addition, ∂α is a bounded linear

operator from H
1
2 (Ω) to H̃− 1

2 (Ω).

5. For any s ∈ R+ there exists C = C(Ω, s) > 0 such that ‖u‖s ≤ C |u|s for all

u ∈ Hs
0(Ω) (Poincaré’s inequality).

6. There exists C = C(Ω) > 0 such that C ‖u‖0 ≤ ‖u‖−1 + ‖∇u‖−1 for all
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u ∈ L2(Ω) (Nečas inequality, see [80]).

7. Hs(Ω) = Hs
0(Ω), for |s| ≤ 1

2
.

8. H1+s
0 (Ω) = H1

0(Ω) ∩ H1+s(Ω), for 0 ≤ s ≤ 1
2
.

9. [L2(Ω), H1
0(Ω)]s = H̃s

0(Ω) for s ∈ [0, 1].

10. H̃s
0(Ω) = Hs

0(Ω) for s ∈ [−1, 1], |s| �= 1
2
.

11. [H1
0(Ω), H1

0(Ω) ∩ H2(Ω)]s = H1
0(Ω) ∩ H1+s(Ω) for s ∈ [0, 1], see [9].

Remark 2.4 The space H̃
1
2
0 (Ω) is a proper subspace of H

1
2
0 (Ω), usually denoted by

H
1
2
00(Ω). It is a Hilbert space with norm,

‖f‖
H

1
2
00(Ω)

=

(
‖f‖2

H
1
2 (Ω)

+ |f|2
H

1
2
00(Ω)

) 1
2

, where |f|
H

1
2
00(Ω)

=

∥∥∥∥ f√
ρ

∥∥∥∥
L2

and ρ(x) = infy∈∂Ω ‖x − y‖ denotes the distance from x ∈ Ω to the boundary.

C. Spaces of vector fields

We adopt the notation of using boldface symbols to denote vector quantities and

spaces. In particular, D(Ω) = D(Ω)d, D′(Ω) = D′(Ω)d, Lp(Ω) = Lp(Ω)d, Ws,p(Ω) =

Ws,p(Ω)d, Hs(Ω) = Hs(Ω)d and H̃
s
(Ω) = H̃s(Ω)d. The norm and the inner products

are naturally inherited. For example

(f, g)L2(Ω) =
d∑

i=1

(fi, gi)L2(Ω) ,

for any f = (f1, . . . , fd) ∈ L2(Ω), g = (g1, . . . ,gd) ∈ L2(Ω).

The distributional divergence ∇· ≡ div : D′(Ω) �→ D′(Ω) is defined by

〈∇·f, ϕ〉 = −〈f, ∇ϕ〉 ∀ϕ ∈ D(Ω) . (2.11)

The space H(div) = {v ∈ L2(Ω) : ∇·v ∈ L2(Ω)} is a Hilbert space (see Remark 2.1)
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with respect to the inner product

(u, v)H(div) = (u, v)L2(Ω) + (∇·u,∇·v)L2(Ω) .

The closure of its subspace D(Ω) is denoted by H0(div).

Let ∇× ≡ curl : D′(Ω) �→ D′(Ω) be the distributional curl operator, defined

by

〈∇×f, ϕ〉 = 〈f, ∇×ϕ〉 ∀ϕ ∈ D(Ω) . (2.12)

Depending on the argument, the standard curl operator on the right is given by one

of the matrices

∇× =

⎛⎜⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

⎞⎟⎟⎟⎟⎠ , ∇× =

(
−∂y ∂x

)
, or ∇× =

⎛⎜⎝ ∂y

−∂x

⎞⎟⎠ . (2.13)

Define H(curl) = {v ∈ L2(Ω) : ∇×v ∈ L2(Ω)}. This is a Hilbert space with

respect to the inner product

(u, v)H(curl) = (u, v)L2(Ω) + (∇×u, ∇×v)L2(Ω) .

An important subspace is H0(curl) = D(Ω)
H(curl)

. The next theorem summarizes

some results from [54].

Theorem 2.5 The spaces H(div) and H(curl) have the following properties.

1. D(Ω) is dense in H(div) and H(curl).

2. Any u ∈ D′(Ω) and v ∈ D′(Ω) satisfy

∇·(∇×v) = 0 , ∇×(∇u) = 0 , and ∇×(∇×v) = −∆v + ∇(∇·v) .

3. The mapping γn : v ∈ D(Ω) �→ v · n can be extended to a surjective continuous
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linear map γn : H(div) �→ H− 1
2 (∂Ω).

4. For any v ∈ H(div) and φ ∈ H1(Ω) we have the Green’s formula 2:

(v, ∇φ)L2(Ω) + (∇·v, φ)L2(Ω) = 〈v · n, γ0(φ)〉 . (2.14)

5. The mapping3 γτ : v ∈ D(Ω) �→ v×n can be extended to a continuous linear

map4 γτ : H(curl) �→ H−1
2 (∂Ω).

6. For any v ∈ H(curl) and u ∈ H1(Ω) we have the Green’s formula:

(∇×v, u)L2(Ω) − (v, ∇×u)L2(Ω) = 〈v×n, γ0(u)〉 . (2.15)

7. N(γn) = H0(div), N(γτ ) = H0(curl) and H1
0(Ω) = H0(div) ∩ H0(curl) 5.

8. If Ω is simply connected (n2 = 0) and v ∈ L2(Ω), then ∇×v = 0 if and only if

there exists a unique p ∈ H1(Ω)/R such that v = ∇p.

9. If ∂Ω is connected (n1 = 0) and v ∈ L2(Ω), then ∇·v = 0 if and only if there

exists w ∈ H1(Ω) with ∇·w = 0, such that v = ∇×w.

10. If Ω ⊂ R2, v = (v1, v2) and v⊥ = (−v2, v1), then ∇·v = ∇×v⊥. In particular,

H(curl) = H(div)⊥ = {v⊥ : v ∈ H(div)}.

We will need to work with spaces that depend on a real-valued function γ, which

may be the electric permittivity ε, the magnetic permeability µ or one of their recip-

rocals. In some physical applications these may be complex or nonlinear functions

2The case φ ≡ 1 is also known as the Divergence Theorem.
3In R2, v×n = v · t, where t = n⊥ is the vector, tangential to the boundary.
4γτ is not surjective, see the discussion in [75], pp.58-59.
5In fact, this is an isometry since for any v ∈ H1

0(Ω), we have by density

|v|2H1(Ω) = ‖∇×v‖2
L2(Ω) + ‖∇·v‖2

L2(Ω) .
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and may even exhibit hysteresis, depending on the solution and its history. However,

we shall only consider the case when ε and µ are piecewise smooth, real functions

that are bounded and bounded away from zero on Ω. This is formalized below.

Assumption (Aµ,ε) The functions ε , µ are in L2(Ω) and there exist constants µ0,

µ1, ε0, ε1 satisfying 0 < µ0 ≤ µ(x) ≤ µ1 and 0 < ε0 ≤ ε(x) ≤ ε1, a.e. x ∈

Ω. Furthermore, Ω can be split into non-overlapping Lipschitz subdomains {Ωi},

satisfying (AΩ), such that ε|Ωi
, µ|Ωi

∈ H1(Ωi).

In practice, different Ωi correspond to different materials and the nonempty inter-

sections ∂Ωi ∩ ∂Ωj are called (material) interfaces. The vector fields in H(div) and

H(curl) satisfy continuity conditions across the interfaces as described below.

Theorem 2.6 Suppose that Ω is split into non-overlapping Lipschitz subdomains

{Ωi} which are either polygonal or have boundaries of class C1,1 (see [54]). Let

v ∈ L2(Ω) be such that v|Ωi
∈ H1(Ωi). Then

v ∈ H(div) if and only if �v · n� = 0

and similarly

v ∈ H(curl) if and only if �v×n� = 0 ,

where �·� denotes the jump across the interfaces ∂Ωi ∩ ∂Ωj.

Proof Define w ∈ L2(Ω) by w|Ωi
= ∇·

(
v|Ωi

)
. For any ϕ ∈ D(Ω) we have

〈∇·v, ϕ〉 = −
∑

i

(v|Ωi
, ∇ϕ)L2(Ωi)

= (w, ϕ)L2(Ω) −
∑

i

〈v|Ωi
· n, ϕ〉 .

The assumption on ∂Ωi implies that v|Ωi
· n ∈ L2(∂Ωi). Therefore ∇·v = w in L2(Ω)

if and only if v|Ωi
· n = v|Ωj

· n in L2(∂Ωi ∩ ∂Ωj). The argument for H(curl) is

similar.
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Relative to the partition, for any real power s, we define the family of piecewise

spaces

PHs(Ω) =
⊕

Hs(Ωi) , PHs
0(Ω) =

⊕
Hs

0(Ωi) . (2.16)

Note that for s ∈ [0, 1/2), we have PHs(Ω) = PHs
0(Ω) = Hs(Ω)

For γ ∈ {ε, µ, ε−1, µ−1}, let L2
γ(Ω) be the space L2(Ω) equipped with the weighted

inner product (u, v)γ = (γ u, v)L2(Ω). The induced norm on L2
γ(Ω) will be denoted

with ‖ · ‖γ. Additionally, define

H(div; γ) = {v ∈ L2(Ω) : ∇·(γv) ∈ L2(Ω)},

H0(div; γ) = {v ∈ H(div; γ) : n · v = 0 on ∂Ω} ,

X1(µ) = H(curl) ∩ H0(div; µ) ,

X2(ε) = H0(curl) ∩ H(div; ε) .

These are Hilbert spaces according to Remark 2.1.

Physical, as well as mathematical, considerations imply that the natural spaces

for the electromagnetic fields are h ∈ X1(µ) and e ∈ X2(ε). Thus, the regularity of

these spaces is of primary interest.

Theorem 2.7 The continuous embeddings

X1(µ), X2(ε) ↪→ Hs(Ω) , (2.17)

hold true in the following cases:

1. If ε and µ are smooth and the domain is a convex polygon/polyhedron, then

s = 1 (proved by Saranen in [86]).

2. If ε and µ are smooth and the domain is Lipschitz polygon/polyhedron, then

s > 1/2 (proved by Amrouche, Bernardi, Dauge and Girault in [4]).
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3. If ε and µ are piecewise constants, then s can be arbitrarily close to 0 (proved

by Costabel, Dauge and Nicaise in [45]).

4. For any ε and µ satisfying (Aµ,ε), the embeddings for s = 0 are compact (proved

by Weber in [94]). The boundary conditions are essential since the embedding

of H(curl) ∩ H(div) in L2(Ω) is not compact, as shown in [4].

For constant ε and µ, the paper [42] gives an explicit representation of the fields

X1(µ) and X2(ε) as a regular part plus a gradient of the solution of Neumann and

Dirichlet problems posed on Ω. In this case, s in (2.17) can be chosen as the regularity

of the above problems minus 1. For piecewise constant ε and µ, as shown in [45],

the regularity of X1(µ), X2(ε) is related to the operators −∆Dir
ε and −∆Neu

µ defined

below.

For f ∈ H−1(Ω), we set −∆Dir
ε u = f, where u ∈ H1

0(Ω) satisfies

(ε∇u, ∇ϕ) = 〈f, ϕ〉 ∀ϕ ∈ H1
0(Ω) . (2.18)

Similarly, for f ∈ (H1(Ω))∗, with 〈f, 1〉 = 0 we set −∆Neu
µ u = f, where u ∈ H1(Ω)/R

satisfies

(µ∇u, ∇ϕ) = 〈f, ϕ〉 ∀ϕ ∈ H1(Ω) . (2.19)

Recall that if Ω is convex, the operator −∆ : u �→ −∆u is an isomorphism of

H1
0(Ω) ∩ H2(Ω) onto L2(Ω). In general, e.g. on polygonal/polyhedral domains, the

presence of reentrant corners leads to lower regularity. This is characterized by a

number s > 0 such that −∆ is an isomorphism of H1
0(Ω) ∩ H1+ε(Ω) onto H̃−1+ε

0 (Ω)

for any 0 ≤ ε ≤ s. The above is a motivation for the next two assumptions.

Assumption (AL2

∆Dir
ε ,∆Neu

µ
) There exists s ∈ (0, 1] such that when f ∈ L2(Ω), the

solutions of the problems (2.18) and (2.19) are in H1+s(Ω) and ‖u‖1+s ≤ C ‖f‖.
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Assumption (A∆Dir
ε ,∆Neu

µ
) There exists s0 ∈ (0, 1] such that when 0 ≤ s ≤ s0 and

f ∈ H̃−1+s
0 (Ω), the solutions of the problems (2.18) and (2.19) are in H1+s(Ω) and

‖u‖1+s ≤ C ‖f‖−1+s.

The validity of regularity results related to the above assumptions for piecewise

smooth coefficients was investigated in [45, 46].

We finish this section with a list of Helmholtz-like decomposition results 6. For

simplicity, we assume that Ω is either simply connected (n2 = 0) or it has one bound-

ary component (n1 = 0). The more general cases will be addressed in Chapter IV,

§C.3.b.

Theorem 2.8 (cf. [26]) Let u be in L2(Ω). Then it can be decomposed as

u = ∇×w + µ∇ψ (2.20)

in the following spaces

1. For n2 = 0, w ∈ H0(curl) and ψ ∈ H1(Ω) with ∇·w = 0.

2. For n2 = 0, w ∈ H1
0(Ω) and ψ ∈ H1(Ω).

3. For n1 = 0, w ∈ H1(Ω) and ψ ∈ H1
0(Ω) with ∇·w = 0.

The decompositions are orthogonal in L2
µ−1(Ω). In the last two cases, we additionally

have

‖w‖H1(Ω) ≤ C ‖∇×w‖.

Proof Let ψ be the unique element of H1(Ω)/R satisfying

(µ ∇ψ, ∇θ) = (u, ∇θ) , (2.21)

6i.e. a splitting of a field in a solenoidal and irrotational parts, see [57].
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for any θ ∈ H1(Ω). Then ∇·(u−µ ∇ψ) = 0 and (u − µ ∇ψ) · n|∂Ω = 0. By Theorem

3.6, 2o) from [54], there exists w ∈ H0(curl) such that u − µ ∇ψ = ∇×w. This

gives the first decomposition. Using Lemma 2.2 from [83], proven in the case n1 > 0 as

Lemma IV.2 in [99], one can decompose w = w̃ + ∇ξ where w̃ ∈ H1
0(Ω), ξ ∈ H1(Ω)

and ‖w̃‖H1(Ω) ≤ C‖∇×w̃‖. This proves Decomposition 2. For the last result, choose

ψ to be the unique element of H1
0(Ω), satisfying (2.21) for any θ ∈ H1

0(Ω). Again,

∇·(u − µ ∇ψ) = 0 and the rest follows from the proof of Theorem 3.4 in [54].

D. Finite element subspaces

Let Ωh ⊆ Ω be a polygonal/polyhedral subdomain satisfying assumption (AΩ) 7.

Unless stated otherwise, we assume Ωh = Ω.

Let Th be a finite element mesh on Ωh. This means that Ωh is decomposed in

the non-overlapping set Th ≡ {τ} of closed “elements” τ . For each τ ∈ Th, we denote

by hτ and ρτ its diameter and the radius of the largest inscribed ball. We assume

that the mesh Th is aligned with the jumps of µ and ε and is shape regular (see [37]).

Furthermore, we require that Th is locally quasi-uniform, i.e. there exists C ∈ R+

such that

C ≥ hτ

ρτ

, ∀τ ∈ Th .

In particular, we allow for meshes obtained by local refinement.

The theory presented in the dissertation is applicable to Th composed of triangles,

quadrilaterals, tetrahedra and hexahedra. We assume that there exists a reference

element τ̂ such that each τ ∈ Th is obtained from τ̂ by a linear, bilinear or trilinear

transformation (depending on the type of the mesh). Below, we consider the case

7There are simple polyhedral domains which are not Lipschitz, for example the
“crossed bricks” domain shown on Figure 3.1 in [75].



24

of triangular or tetrahedral mesh. The extension to quadrilateral and hexahedral

meshes is routine.

Let Pk(τ) be the space of polynomials on τ of degree k. We will use the following

standard finite element spaces (see [37])

Ŝh(k) = {vh ∈ L2(Ω) : vh|τ ∈ Pk(τ) , ∀τ ∈ Th} ,

Sh(k) = Ŝh(k) ∩ H1(Ω) , Sh,0(k) = Sh(k) ∩ H1
0(Ω) .

(2.22)

For convenience, we set Ŝh = Ŝh(0), Sh = Sh(1) and Sh,0 = Sh,0(1).

Remark 2.5 It is possible to consider the case where the order of the polynomials

change from element to element, see Corollary 4.5.

By mapping to the reference element one can prove various inequalities as

C hτ‖v‖2
L2(∂τ) ≤ ‖v‖2

L2(τ) + h2
τ |v|2H1(τ) ∀v ∈ H1(τ) (2.23)

and

C hτ

(
‖v · n‖2

L2(∂τ) + ‖v×n‖2
L2(∂τ)

)
≤ ‖v‖2

L2(τ) + h2s
τ |v|2Hs(τ) (2.24)

for any v ∈ Hs(τ) with 1 ≥ s > 1
2
. The last inequality follows from the existence of

bounded trace operator from Hs(τ) to L2(∂τ) and from the definition (2.10).

We recall the following approximation property for u ∈ Hs(Ω):

inf
uh∈Ŝh(k)

{∑
τ∈Th

h−2s
τ ‖u − uh‖2

L2(τ)

}
≤ C‖u‖2

Hs(Ω) s ∈ [0, k + 1] , (2.25)

and the existence of a stable approximation operator Ihu : L2(Ω) �→ Sh, such that

∑
τ∈Th

{
h−2

τ ‖u − Ihu‖2
L2(τ) + ‖Ihu‖2

H1(τ)

}
≤ C‖u‖2

H1(Ω) . (2.26)

For (2.26), one can choose uh = Chu, the Clément interpolation operator (see [38]

and [54, pp. 109-111]). In this case, we additionally have Ihu : H1
0(Ω) �→ Sh,0.
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We next describe the spaces of “bubble” functions associated with the faces.

Denote with Fh the set of all faces of Th. Fix F ∈ Fh, and let TF be the union

of all elements τ ∈ Th which have F as a face. Let hF be the diameter of F . By

the quasiuniformity hτ ≈ hF for any τ ∈ TF . The bubble function βF (x) associated

with F should be in H1(Ω) with support equal to TF . In particular, βF (x) should be

nonzero on F and should vanish on all other faces in Fh. The simplest definition of

such face bubble function is

βF |τ (x) = cF

NF∏
i=1

�i(x) ∀τ ∈ TF , (2.27)

where NF is the number of vertices of F , {�i(x)}NF
i=1 are the barycentric coordinates

for x ∈ τ corresponding to those vertices, and cF is a scaling parameter. For example,

the choice cF = 2d NF guarantees that βF ≥ 0 with a maximum of 1 in the barycenter

of F .

We define the space of face bubble functions BFh
as the linear span of {βF (x) :

F ∈ Fh}. The space with zero boundary conditions, BFh,0, is defined, similarly, by

ignoring the faces on the boundary of Ω. A typical element of BFh
on a triangular

mesh and the bubbles for each face of a tetrahedron are shown in Figure 2.2.

Fig. 2.2. Face bubble functions: element of BFh
in 2D and the bubbles for each face

of a tetrahedron in 3D.
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One can construct face bubble functions of higher degree as follows: let Pk(F )

be the space of polynomials of degree k on a fixed face F . Let dk be the dimension

of this space and {ρj
F}dk

j=1 be the usual nodal basis. Each function ρF ∈ Pk(F ) can

be extended to a polynomial ρ̂F of degree k on Rd by setting it to be constant in the

direction normal to F . The basis bubble functions are defined by

βj
F

∣∣
τ
(x) = cF ρj

F (x)

NF∏
i=1

�i(x) ∀τ ∈ TF , (2.28)

for each 1 ≤ j ≤ dk. The linear span of all these functions form the space Bk
Fh

. The

space Bk
Fh,0 is defined, similarly, using only the interior faces.

We next describe the spaces of bubble functions associated with the elements.

For τ ∈ Th, the bubble function βτ (x) is in H1(Ω) with support equal to τ . In

particular, βτ (x) should be nonzero on τ and should vanish on all other elements.

The simplest definition is

βτ (x) = cτ

Nτ∏
i=1

�i(x) ∀x ∈ τ , (2.29)

where Nτ is the number of vertices of τ , {�i(x)}Nτ
i=1 are the barycentric coordinates

for x ∈ τ , and cτ = 2d Nτ is a scaling factor which guarantees that βτ ≥ 0 with a

maximum of 1 in the barycenter of τ . The space of element bubble functions BTh
, is

defined as the linear span of {βτ (x) : τ ∈ Th}. We note that the restriction of a

face bubble function βF to F gives the element bubble function for F . One can also

introduce the space Bk
Th

of element bubbles of order k analogous to (2.28).
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CHAPTER III

AN ABSTRACT LEAST-SQUARES METHOD

In this chapter we present and analyze a least-squares method in abstract settings.

The name least-squares can be attached to a variety of approaches including Galerkin

least-squares, stabilized mixed methods and discrete least-squares in which discretiza-

tion is performed before the formulation of the least-squares functional, see [34]. How-

ever, in this dissertation, we will consider only the standard least-squares approach

in which one minimizes a quadratic functional based on some a priori estimate.

Methods of this type have been extensively developed and analyzed in recent

years. They have been applied to a variety of problems ranging from standard second-

order elliptic equations to first-order systems, elasticity, Stokes and Navier-Stokes

equations, hyperbolic problems and electromagnetics. Some of the advantages of the

least-squares methods are that they always result in a symmetric and positive definite

discrete problem, and the essential boundary conditions can be weakly imposed. We

are interested in methdos for which optimal order error estimates can be derived,

even if the solutions has low regularity.

Least-squares method, where the functional involves only ‖·‖2
L2 terms, have been

well-known and often applied in the engineering community, see [58, 96]. We refer

to this variant of the method as L2-based. Recent trends in the area have been the

recasting of the initial problem into first-order systems (FOSLS method) and the use

of dual norms in the functional (negative-norm least-squares). Below, we comment

on some of these approaches.

The naive application of L2-based least-squares to a second-order problem has the

drawbacks of higher requirements on the smoothness of the solution, which does not

allow the use of standard finite element spaces. Additionally, the condition number
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of the discrete system is the square of the corresponding system obtained by the

Galerkin method.

The FOSLS method overcomes this difficulty by introducing physically meaning-

ful, new dependent variables. Usually, this has to be complemented with additional

compatability equations. This method has the advantage that it can be implemented

in a two-stage scheme where one sequentially minimizes the terms corresponding to

different unknowns. Additionally, the functional is usually local and therefore can be

used for a posteriori error estimation.

The consideration of the negative-norm least-squares methods was made possible

by the advances in the multilevel preconditioning theory for second-order problems.

The paper [27], for example, constructs efficiently computable discrete norms equiv-

alent to the norm on Hs(Ω) for |s| < 3
2
.

Next, we present the abstract approach, which is convenient for the subsequent

development of the least-squares methods in the next chapters. Here, we will provide

only a few examples to illustrate the theory. For specific applications we refer to

[31, 21, 22, 33, 23, 25, 81, 70, 28] as well as to the survey [14] and the references

therein.

A. Operator equations

Let X and Y be two Hilbert spaces. In our theory, it will be natural to consider

operators A ∈ L(X, Y∗). In this case, the operator A∗ ∈ L(Y, X∗) is uniquely defined

by the equality

〈A∗y, x〉X∗×X = 〈Ax, y〉Y∗×Y ∀x ∈ X , y ∈ Y . (3.1)
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Introduce the operators A ∈ L(X, Y) and A∗ ∈ L(Y, X), by

A = TYA , A∗ = TXA∗ . (3.2)

Then

(Ax, y)Y = (x, A∗y)X ∀x ∈ X , y ∈ Y . (3.3)

Note that ‖A‖X→Y∗ = ‖A‖X→Y, and the following diagrams commute

X
A � Y

�
�

A
�

��

X∗

T−1
X

�

TX

�

Y∗

TY

�

T−1
Y

�

,

X � A∗
Y

��
�

A∗�
�

X∗

T−1
X

�

TX

�

Y∗

TY

�

T−1
Y

�

.

For a given b ∈ Y∗, A �= 0, we consider the problem: Find x ∈ X such that

A x = b . (3.4)

This is the same as

A x = b , (3.5)

where b = TYb. Clearly (3.4) has a solution if and only if b ∈ R(A). The solution is

unique if and only if N(A) = {0}.

Assume that the operator is bounded from below, i.e. there exists C1 > 0 such

that

C1 ‖x‖X ≤ ‖Ax‖Y∗ = ‖Ax‖Y ∀x ∈ X . (3.6)

When X = Y, this is satisfied, for example, if the operator is strongly monotone, i.e.

C1 ‖x‖2
X ≤ 〈Ax, x〉 = (Ax, x) ∀x ∈ X .

The condition (3.6) means that ‖Ax‖Y∗ is a norm on X, equivalent to ‖x‖X. In
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particular, N(A) = {0} and R(A) is closed1. Therefore, (3.4) has a unique solution if

and only if b is orthogonal to R(A)⊥Y∗ . We summarize this in the following result.

Proposition 3.1 Assume (3.6). The problem (3.4) has a solution if and only if the

data b satisfy the compatability condition

〈b, y〉 = 0 ∀y ∈ N(A∗) . (3.7)

If it exists, the solution is unique and satisfies: C1 ‖x‖X ≤ ‖b‖Y∗ ≤ ‖A‖ ‖x‖.

Proof By (3.1), TYy ∈ N(A∗) ⇔ y ∈ R(A)⊥Y∗ .

When the compatability condition is not satisfied, one can still try to solve a

problem that is naturally related to, but weaker than, (3.4). The least-squares idea

is to consider the functional F : X �→ R, defined by

F(x) = ‖A x − b‖2
Y∗ = ‖A x − b‖2

Y , (3.8)

and replace (3.4) by the problem: Find x ∈ X such that

F(x) = min
y∈X

F(y) . (3.9)

This is appealing, in particular, because it provides a minimization principle for

problems that may not have naturally associated optimization form.

The functional F(·) is convex, and its Frechet derivative is

〈F′(x), h〉 = lim
t→0

F(x + th) − F(x)

t
= 2�{(A x − b, Ah)Y∗} ∀h ∈ X .

1If A is bounded from below, then it is injective. The converse is true only in
finite dimensional spaces. Indeed, take an infinite dimensional space X and let Y be
X equipped with any non-equivalent norm ‖ · ‖Y �� ‖ · ‖X. Then, the identity operator
from X to Y is injective, but not bounded from below.
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Therefore, x ∈ X is a solution of (3.9), if and only if

(A x, Ah)Y∗ = (b, Ah)Y∗ ∀ h ∈ X . (3.10)

This is equivalent to: Find x ∈ X such that

A∗A x = A∗b . (3.11)

Introduce the subspaces

X0 = N(A) , X1 = X0
⊥ = R(A∗) , Y0 = N(A∗) , Y1 = Y0

⊥ = R(A) ,

and let QY0
: Y �→ Y0 denote the Y-orthogonal projection onto N(A∗). Consider the

following problem:

A x = (I − QY0
)b . (3.12)

Note that the right-hand side of (3.12) is probably the most natural way to obtain

compatible data from any b ∈ Y.

Proposition 3.2 Assume (3.6). Then the problems (3.9), (3.10), (3.11) and (3.12)

are equivalent and have a unique solution (for any data b). The solution satisfies the

stability estimate

C1 ‖x‖X ≤ ‖b‖Y∗ (3.13)

If b satisfies the compatability condition (3.7), then the solution of these problems

coincides with the solution of (3.4).

Proof Condition (3.6) implies that R(A) is closed in Y∗. Now (3.9) has a unique

solution by the uniqueness of orthogonal projection onto a closed subspace. The

equivalence of (3.11) and (3.12) follows from the fact that I − QY0
is the orthogonal

projection onto R(A). This, together with (3.6), implies the estimate (3.13).

The above proof uses essentially the fact that R(A) is closed. Next, we investigate
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when this is true. To that end, instead of (3.6), we consider the weaker condition:

there exists C2 > 0 such that

C2 ‖x‖X ≤ ‖Ax‖Y∗ = ‖Ax‖Y ∀x ∈ X1 , (3.14)

or equivalently

C2 dist(x, X0) ≤ ‖Ax‖Y∗ ∀x ∈ X .

This is a natural condition which, as will follow from the next result, holds e.g.

if either X or Y is finite dimensional.

Proposition 3.3 The condition (3.14) holds if and only if R(A) is closed. It is

furthermore equivalent to

C2 ‖y‖Y ≤ ‖A∗y‖X∗ = ‖A∗y‖X ∀y ∈ Y1 . (3.15)

Proof Indeed, (3.14) implies that every Cauchy sequence in R(A) is Cauchy in X1,

and therefore R(A) is closed by the continuity of A. On the other hand, if R(A) is

closed, A : X1 �→ R(A) is a bijective linear operator and by the Banach Continuous

Inverse Theorem, its inverse is bounded. This is precisely (3.14).

To finish the proof it is enough to show that (3.14) implies (3.15). Indeed, assume

(3.14). Then y ∈ Y1 implies that y = Az, for some z ∈ X1. Furthermore, for any

x ∈ X

‖A∗Ax‖X = sup
h∈X\{0}

(A∗Ax, h)X

‖h‖X

= sup
h∈X1\{0}

(Ax, Ah)Y

‖h‖X

≥ sup
h∈X1\{0}

(Ax, Ah)Y

C−1
2 ‖Ah‖Y

= C2 ‖Ax‖Y ,

which proves (3.15). The proof in the other direction is analogous.

Corollary 3.1 Condition (3.6) holds if and only if R(A∗) = X.

Another corollary is that (3.14) implies C2
2 ‖y‖Y ≤ ‖A A∗y‖Y, which is a motiva-
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tion to consider the following problem: Find y ∈ Y1 such that

A A∗ y = b , x = A∗y . (3.16)

The equation for y has a solution if and only if the compatability condition (3.7)

holds. Therefore (3.16) is equivalent to (3.4).

Consider also the related problem: y ∈ Y1,

(A∗ y, A∗ h)X∗ = 〈b, h〉Y∗ ∀ h ∈ Y1 , x = A∗y . (3.17)

Assume (3.15). Then this problem will always have a unique solution, and for com-

patible data it is the same as (3.16). The equations (3.16) and (3.17) are the duals of

(3.11) and (3.10), respectively. They can be used to devise least-square type methods

(see the FOSLL* method in [33]).

Theorem 3.1 Assume (3.14). Then the problems (3.9), (3.10), (3.11), (3.12) and

(3.17) are equivalent. Without any restrictions on the data, each of them has exactly

one minimal-norm solution (i.e. the functional ‖ · ‖X achieves a unique minimum on

the set of solutions, or equivalently x ∈ X/N(A) ≈ X1). For this solution we have

the estimate (3.13). All solutions are obtained from this one by adding an arbitrary

element of N(A). If b ∈ Y1, these solutions coincide with the solutions of the problems

(3.4) and (3.16).

Proof Replace X by X1 and apply Proposition 3.2.

Next, we give a series of examples of applications of the least-squares method-

ology for approximation (or solution) of (3.4). We start with an algorithm proposed

by Gauss, which gives the origin of the name “least-squares.”

1. Gauss’ least-squares method.
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In this case t ∈ Rn is a fixed vector of n ≥ 2 distinct numbers corresponding to

observations of the quantity b ∈ Rn. We set X = R2, Y = Rn with the Euclidian

inner products. The operator A is defined as A

(
λ
µ

)
= λ t + µ e, where e ∈ Rn

with ei = 1, i = 1, . . . , n. Since X1 = {0}, the condition (3.6) holds. Thus, by

Proposition 3.2, the problem (3.9) has a unique solution corresponding to the

line λ t + µ which is “closest” to the points (ti, bi) in the sense that

n∑
i=1

|λ ti + µ − bi|2 → min .

Note that in this case the compatability condition (3.7) is not likely to be

satisfied. Finally, the solution of (3.11) can be computed efficiently, since

A∗A

(
λ
µ

)
=

(
(t, t) (t, e)
(e, t) (e, e)

)(
λ
µ

)
.

2. Systems of linear equations.

Let X = Kn, Y = Km with fixed bases. Let A be given by a m×n matrix and

b ∈ Y. The original problem A x = b has a unique solution for any right-hand

side, if and only if X0 = {0} and Y0 = {0}, i.e. if A has full column and row

rank. On the other hand, by Theorem 3.1, the problem A∗ A x = A∗ b always

have a (unique minimum-norm) solution. This solution will be unique if A has

full column rank.

In numerical computations, A is often large, sparse and invertible. The stability

of the iterative procedures for solving A x = b depends on the condition number

of A, defined by

κ(A) = ‖A‖ ‖A−1‖ . (3.18)

For a nonsymmetric matrix, it might be tempting to use the least-squares

method in order to obtain a symmetric and positive definite problem. However,
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this should be avoided since it leads to the effective squaring of the condition

number: κ(A∗ A) = κ(A)2.

3. Dirichlet problem, posed in L2(Ω).

For this example, assume that Ω has full elliptic regularity, i.e. the operator

∆ : H2(Ω) ∩ H1
0(Ω) �→ L2(Ω), is an isomorphism. Set X = H2(Ω) ∩ H1

0(Ω) and

Y = L2(Ω). Then A ∈ L(X, Y∗) satisfies the requirements of Proposition 3.2.

Fix f ∈ L2(Ω). Then the least-squares problem: Find y ∈ H2(Ω) ∩ H1
0(Ω), such

that

(∆x, ∆y)L2(Ω) = (f, ∆y)L2(Ω) ∀y ∈ H2(Ω) ∩ H1
0(Ω) ,

has a unique solution which satisfies ∆x = f.

We now turn to the drawbacks of this approach as a method for solving the

Dirichlet problem. First, we require full regularity. This holds only in some

limited cases, and there are many alternative methods that do not require it.

Moreover, the smoothness requirement does not allow for the use of standard

finite element spaces which are not in H2(Ω). Finally, the discretization of the

bilinear form (∆·, ∆·)L2(Ω) leads to a matrix with a significantly worse condition

number compared to the usual Galerkin method.

4. FOSLS for the Dirichlet problem.

Instead of the second-order problem −∆x = f, consider the equivalent first-

order system ∇x = u, ∇·u = −f. Let A be an operator that maps (x, u) to

(∇·u, ∇x − u).

It is proven in [31] that A is bounded and bounded from below as an operator

from H1
0(Ω) × H(div) to L2(Ω) × L2(Ω).

Even though this allows for the development of a least-squares method that
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avoids the discrete inf-sup condition, it leads to error estimates optimal in the

norm on H1
0(Ω)×H(div) but not with respect to the regularity of the solution.

This result was further improved in [21], where it was proven A is bounded and

bounded from below as an operator from H1
0(Ω) × H(div) to L2(Ω) × H−1(Ω).

These estimates use the ‖ · ‖L2(Ω) norm on H(div) and lead to quasi-optimal

error estimates.

Note that for the discretization of both of these methods, one can not em-

ploy the standard piecewise linear finite element spaces but needs to work with

approximation spaces for H(div).

5. Dirichlet problem, posed in H−1(Ω).

Let X = Y = H1
0(Ω), with inner product (∇x, ∇y)L2(Ω).

Define A ≡ −∆ : H1
0(Ω) �→ H−1(Ω) by

〈Ax, y〉 = (∇x, ∇y)L2(Ω) ∀y ∈ H1
0(Ω) .

Clearly A ∈ L(X, Y∗), and Poincaré’s inequality implies that condition (3.6)

holds. Fix f ∈ H1
0(Ω), and consider the Dirichlet problem −∆x = f. By

Proposition 3.2, the least-squares formulation of this problem has a unique

solution. It is also a solution of the original problem since Y0 = {0}. Consider

(3.10) and note that TYAx = x for any x ∈ X. Therefore we get

(∇x, ∇h)L2(Ω) = 〈f, h〉 ∀h ∈ H1
0(Ω) .

Thus, in this case, the least-squares method reduces to the standard Galerkin

weak formulation.

Let us note that compared to the L2(Ω)-based algorithm, this method does
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not posses any of the aforementioned deficiencies. This is because the a priori

estimate used is the natural stability result for the problem. A similar idea can

be applied to a much more general second-order elliptic operator, as done in

[22].

As it is evident from the last few examples, the least-squares approach is not a

strictly defined method, but rather, a general methodology which produces different

methods depending on interpretation of the original problem.

B. Approximation

The operator A ∈ L(X, Y∗) is closely related to a bounded bilinear form on X×Y

defined by

a(x, y) = 〈Ax, y〉 ∀x ∈ X , y ∈ Y .

In this notation, the inf-sup condition (2.5) is the same as (3.6), and the problem

(2.6) coincides with (3.4). Furthermore, the result of the Lax-Milgram Theorem 2.1

is identical to Proposition 3.1. Finally, (3.11) can be rewritten as

a(x, y) = 〈b, y〉 ∀y ∈ Y1 ≡ {y = TY Ah : h ∈ X} . (3.19)

Let Xh ⊂ X, Yh ⊂ Y be a family of finite-dimensional subspaces with the inherited

inner products. We will refer to the original problem and spaces as continuous and to

the problem and spaces depending on h as discrete. We assume that Xh approximates

X as h → 0. To make that statement precise, let QXh
: X �→ Xh be the X-orthogonal

projection onto Xh. Furthermore, let X̂ ⊂ X be another Hilbert space, continuously

embedded in X, i.e.

‖x‖X ≤ Ĉ1 ‖x‖X̂ ∀x ∈ X̂ . (3.20)
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We assume that there exists a function χ(h) with limh→0 χ(h) = 0, such that

‖I − QXh
‖X̂→X ≤ χ(h) . (3.21)

Our goal is to construct a discrete operator Ah : Xh �→ Y∗
h and a discrete problem

Ahxh = bh that approximates (3.4). Similar to (3.6), it is natural to require that

C3 ‖x‖Xh
≤ ‖Ahx‖Y∗

h
∀x ∈ Xh , (3.22)

with C3 and ‖Ah‖ independent of h.

A straightforward way to define Ah is by

〈Ahx, y〉 = a(x, y) = 〈Ax, y〉 ∀x ∈ Xh , y ∈ Yh . (3.23)

In this case, we get a discrete problem similar to (3.19): x ∈ Xh satisfies

a(x, y) = 〈b, y〉 ∀y ∈ Yh,1 ≡ {y = TYh
Ah h : h ∈ Xh} . (3.24)

Note that this is a Petrov-Galerkin approximation, as opposed to the standard Galerkin

method, where the test and the solution spaces are the same.

Furthermore, ‖Ah‖ ≤ ‖A‖, and the condition (3.22), is equivalent to the fact

that (Xh, Yh) satisfy the discrete inf-sup condition

C3 ‖x‖X ≤ sup
y∈Yh\{0}

a(x, y)

‖y‖Y

, ∀x ∈ Xh . (3.25)

Often in the least-squares theory, a different approach is preferred which avoids

the discrete inf-sup condition. The idea is to start from (3.6) and use integration by

parts over each element. Then Ah corresponds to a form ah(·, ·) that includes the

resulting jump terms over the elements’ boundaries. To include this possibility, we

make the following assumption: There exists a function α(h) with limh→0 α(h) = 0,
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such that

‖A − Ah‖Xh→Y∗
h
≤ α(h) . (3.26)

In particular, if (3.25) holds, we can define Ah by (3.23) and set α(h) ≡ 0.

Next, we consider an approximation to (3.4). We start with the case when the

original problem is well-posed. Then, on the discrete level, we use the least-squares

method with the same right-hand side. This is natural because b is not likely to

satisfy the discrete compatability condition (even though it satisfies the continuous

one).

Theorem 3.2 Suppose that (3.6), (3.22) and (3.26) hold. Let b ∈ Y∗ satisfy the

compatability conditions (3.7) and x ∈ X be the unique solution of the problem Ax = b.

Let xh be the unique solution of the least-squares method for the equation Ahxh = b.

Then

C ‖x − xh‖X ≤ ‖(I − QXh
) x‖X + α(h) ‖x‖X . (3.27)

Proof The approximation xh ∈ Xh satisfies

(Ahxh, Ahζh)Y∗
h

= (Ax, Ahζh)Y∗
h

∀ζh ∈ Xh .

Fix ζh ∈ Xh. The above, together with (3.25) and (3.23), imply

C2
3 ‖xh − ζh‖2

X ≤ (Ah(xh − ζh), Ah(xh − ζh))Y∗
h

= 〈A(x − ζh), TYh
Ah(xh − ζh)〉Y∗×Yh

+

〈Aζh − Ahζh, TYh
Ah(xh − ζh)〉Y∗

h×Yh

≤ ‖A‖ ‖Ah‖ ‖x − ζh‖X‖xh − ζh‖X +

‖A − Ah‖ ‖Ah‖ ‖ζh‖X‖xh − ζh‖X .
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Let C̃ = C−2
3 ‖Ah‖. By the triangle inequality,

‖x − xh‖X ≤ (1 + C̃ ‖A‖) ‖x − ζh‖X + C̃ ‖A − Ah‖ ‖ζh‖X ∀ζh ∈ Xh .

The result follows by setting ζh = QXh
x.

Corollary 3.2 If, additionally, x ∈ X̂ \ {0}, then

lim
h→0

‖x − xh‖X

‖x‖X̂

≤ lim
h→0

{
(1 + C̃ ‖A‖)χ(h) + C̃ Ĉ1 α(h)

}
= 0 .

Corollary 3.3 Suppose that (2.5) and (3.25) hold. Let b, x and xh be as in the

theorem. Then the least-squares approximation is quasi-optimal, i.e.

‖x − xh‖X ≤
(

1 +
‖A‖2

C2
3

)
inf

ζh∈Xh

‖x − ζh‖X . (3.28)

Corollary 3.4 Replace (3.26) by

‖(A − Ah)QXh
‖X̂→Y∗

h
≤ α(h) . (3.29)

Repeating the proof of the theorem for x ∈ X̂ we get

C ‖x − xh‖X ≤ ‖(I − QXh
) x‖X + α(h) ‖x‖X̂ .

Next, we consider the case of arbitrary right-hand side, i.e. we have no compata-

bility conditions on b. This forces us to use the least-squares method on both the

continuous and discrete levels.

For an operator Q ∈ L(Y, Y), we introduce the notation Q̃ for the operator as

element of L(Y∗, Y∗), i.e. we set

Q̃ = T−1
Y Q TY . (3.30)

By (3.12), the least-squares solution operator S : Y∗ �→ X is defined by

Sb = x , where A x = (I − Q̃Y0
) b . (3.31)
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Up to this point there were no requirements for the approximation properties

of the spaces Yh. Now we assume the following: There exists a sequence of closed

subspaces Yh,0 ⊂ Yh ∩ Y0, such that the Y-orthogonal projectors QYh,0
: Y �→ Yh,0 are

approximations of QY0
. Specifically, let Ŷ ⊃ Y be another Hilbert space, such that Y

is dense and continuously embedded in it:

‖y‖Ŷ ≤ Ĉ2 ‖y‖Y ∀y ∈ Y . (3.32)

We assume that there exists a function γ(h) with limh→0 γ(h) = 0, and such that

‖Q̃Y0
−Q̃Yh,0

‖Ŷ∗→Y∗ ≤ γ(h) . (3.33)

Since the solution of (3.31) does not change if b is perturbed by an element of

Y0, we will need to use a modified right-hand side in the definition of the discrete

least-squares solution operator. Specifically, Sh : Y∗ �→ Xh is defined by

Shb = xh , where (Ah xh, Ah ζh)Y∗
h

= ((I − Q̃Yh,0
) b, Ah ζh)Y∗

h
∀ ζh ∈ Xh . (3.34)

Note that this is the standard least-squares method (3.10), but applied for the right-

hand side bh = (I − Q̃Yh,0
) b ∈ Y∗ ⊂ Y∗

h, instead of b.

Theorem 3.3 Assume (3.6), (3.22), (3.26), and the following additional condition:

C4 ‖x‖X̂ ≤ ‖Ax‖Ŷ∗ ∀x ∈ X̂ . (3.35)

Assume also that the spaces (Xh, Yh) approximate (X, Y) in the sense of (3.21) and

(3.33). Then we have the estimate

‖S − Sh‖Ŷ∗→X ≤ C−1
4 (1 + C̃ ‖A‖) χ(h) + C̃ γ(h) + C̃ Ĉ1 α(h) , (3.36)

where C̃ ≤ C−2
3 (1+α(h)) ‖A‖. In particular, the least-squares method (3.31) provides



42

a uniform approximation to (3.34) for any b ∈ Ŷ∗.

Proof As in the proof of Theorem 3.2, we have

C2
3 ‖xh − ζh‖2

X ≤ (Ah(xh − ζh), Ah(xh − ζh))Y∗
h

= 〈(I − Q̃Yh,0
) b − Ah ζh, TYh

Ah(xh − ζh)〉Y∗×Yh

= 〈A(x − ζh), TYh
Ah(xh − ζh)〉Y∗×Yh

+ 〈(Q̃Y0
−Q̃Yh,0

) b, TYh
Ah(xh − ζh)〉Y∗×Yh

+ 〈Aζh − Ahζh, TYh
Ah(xh − ζh)〉Y∗

h×Yh

Let C̃ = C−2
3 ‖Ah‖, then

‖x − xh‖X ≤ (1 + C̃ ‖A‖)‖x − ζh‖X + C̃ ‖(Q̃Y0
−Q̃Yh,0

) b‖Y∗ + C̃ ‖A − Ah‖ ‖ζh‖X ,

for any ζh ∈ Xh. The result follows by combining (3.33), (3.21) and (3.13).

Let Ŷ0 and Ŷh,0 be the closures of Y0 and Yh,0 in Ŷ. Denote with QŶ0
and QŶh,0

the

Ŷ-orthogonal projectors onto these subspaces. Furthermore, define Q̃Ŷ0
= T−1

Ŷ
QŶ0

TŶ

and Q̃Ŷh,0
= T−1

Ŷ
QŶh,0

TŶ. Next, we consider the case when Q̃Y0
and Q̃Yh,0

are replaced

by Q̃Ŷ0
and Q̃Ŷh,0

. This is of interest because the projections in the weaker inner

product might be easier to implement.

Corollary 3.5 Consider the operators S : Ŷ∗ �→ X defined by

Ŝb = x , where A x = (I − Q̃Ŷ0
) b , (3.37)

Sh : Ŷ∗ �→ Xh defined by

Ŝhb = xh , where (Ah xh, Ah ζh)Y∗
h

= ((I − Q̃Ŷh,0
) b, Ah ζh)Y∗

h
∀ ζh ∈ Xh , (3.38)

and the condition

‖Q̃Ŷ0
−Q̃Ŷh,0

‖Ŷ∗→Y∗ ≤ γ(h) . (3.39)
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Let b ∈ Ŷ∗, then

1. Ŝb = Sb, i.e. the problems (3.31) and (3.37) are equivalent.

2. The Theorem 3.3 holds for Ŝ and Ŝh with (3.33) replaced by (3.39).

Proof For b ∈ Ŷ∗ we have

(TYb, y)Y = 〈b, y〉 = (TŶb, y)Ŷ ∀y ∈ Y .

This implies

〈Q̃Y0
b, y〉 = 〈Q̃Ŷ0

b, y〉 ∀y ∈ Y0 .

In particular, the problems (3.31) and (3.37) have the same solution. The proof of

the theorem proceeds exactly as before.

To summarize the results from this section: under appropriate conditions on the

approximation space Xh and the discrete operator Ah, the least-squares approxima-

tion converges to the solution of the original problem when it is unique. In general,

when the solution is not unique, under further conditions on the approximation space

Yh and the operator Ah, we have convergence of the continuous least-square solution

operator to a discrete least-square solution operator. These results will be applied in

the convergence theory of the next chapters.

C. Implementation

We next consider the implementation of the discrete least-squares method (3.19).

Since the evaluation of the operator TYh
involves the solution of a linear system, we

first replace it with a spectrally equivalent preconditioner. Specifically, let T̂Yh
∈

L(Y∗
h, Yh) and there are constants Ĉ1 ≥ Ĉ0 > 0, independent of h, such that

Ĉ0 〈y, T̂Yh
y〉 ≤ ‖y‖2

Y∗
h
≤ Ĉ1 〈y, T̂Yh

y〉 ∀y ∈ Y∗
h .
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Furthermore, assume that T̂Yh
is symmetric, i.e. 〈x, T̂Yh

y〉 = 〈y, T̂Yh
x〉 for all x , y ∈

Yh
∗. We are interested in solving the problem: Find xh ∈ Xh satisfying

〈Ahxh, T̂Yh
Ahyh〉 = 〈b, T̂Yh

Ahyh〉 ∀yh ∈ Xh . (3.40)

Here 〈·, ·〉 denotes the duality pairing on Y∗
h×Yh. The next result shows that the

method is stable with respect to such a uniform perturbation of the form.

Proposition 3.4 Let xh be the solution of (3.40). Then under the additional condi-

tions in the corresponding theorems, we have

1. Theorem 3.2 holds with C̃ ≤ C−2
3 Ĉ1 Ĉ−1

0 (1 + α(h)) ‖A‖.

2. Theorem 3.3 holds with C̃ ≤ C−2
3 Ĉ1 Ĉ−1

0 (1+α(h)) ‖A‖, if (3.34) is replaced by

Shb = xh, where

〈Ah xh, T̂Yh
Ah yh〉 = 〈(I − Q̃Yh,0

) b, T̂Yh
Ah yh〉 ∀ yh ∈ Xh .

Next we address the solution of the discrete problem (3.40) in the case when Ah

is given by (3.23). Let {xi
h}n

i=1 and {yj
h}m

j=1 be the bases of Xh and Yh. In all our

applications those are real, piecewise polynomial finite element spaces.

Every element x ∈ Xh is uniquely determined by its coordinates ∼x ∈ Rn in the

basis {xi
h}, i.e. x =

∑
i ∼xi x

i
h. Define also the vector of dual coordinates

∼
x ∈ Rn by

∼
xi = (x, xi

h)Xh
. The vectors

∼
y ,

∼
y ∈ Rn are similarly defined for any y ∈ Yh.

Introduce the matrix
≈
A and the vector

∼
b by

≈
Aji = a(xi

h, yj
h),

∼
bj = 〈b, yj

h〉. Then,

for example, the problem Ahx = b corresponds to the linear system
≈
A∼x =

∼
b. Indeed,

〈Ahx, y〉 =
∼
yt

≈
A∼x =

∼
yt

∼
b = 〈b, y〉, for any y ∈ Yh. Similarly, the problem A∗

hx = b

corresponds to the linear system
≈
At

∼x =
∼
b. This can be summarized as

Ãhx =
≈
A∼x , Ã∗

hx =
≈
At

∼x . (3.41)
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The operator T̂Yh
takes a dual vector and produces a vector of coordinates. This

is the typical setup, for example, when T̂Yh
is a preconditioner, such as Multigrid.

Let ≈T be the matrix corresponding to the action of T̂Yh
, i.e. x = T̂Yh

b if and only if

∼x = ≈T
∼
b. In other words

T̂Yh
b

˜
= ≈T

∼
b . (3.42)

By the symmetry of T̂Yh
, the problem (3.40) is equivalent to

A∗
h T̂Yh

Ahxh = A∗
h T̂Yh

b .

By (3.41) and (3.42) this reduces to the following linear problem:

≈
At

≈T
≈
A∼x =

≈
At

≈T
∼
b . (3.43)

The matrix of this system is full and should not be assembled. Instead, we solve

(3.43) by a preconditioned iterative method for a symmetric and positive definite

matrix. These methods are very well understood, and the preconditioned conjugate

gradient (PCG) is a popular choice. To implement such a method, we only need to

compute the action of the matrix and that of a preconditioner.

Since the form 〈A∗
h T̂Yh

Ah·, ·〉 is uniformly equivalent to ‖ · ‖2
Xh

, the condition

number of the matrix
≈
At

≈T
≈
A is of the same order as the condition number of the

mass matrix for Xh. In the applications considered in this dissertation, this mass

matrix is well conditioned, and therefore, there is no need for a better preconditioner

than a simple diagonal scaling. In general, a necessary and sufficient condition for a

uniform (independent of h) convergence is to choose a preconditioner T̂Xh
∈ L(X∗

h, Xh)

satisfying

Ĉ2 〈x, T̂Xh
x〉 ≤ ‖x‖2

X∗
h
≤ Ĉ3 〈x, T̂Xh

x〉 ∀x ∈ X∗
h ,

where Ĉ3 ≥ Ĉ2 > 0 are constants independent of h.
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CHAPTER IV

THE MAGNETOSTATIC AND THE ELECTROSTATIC PROBLEMS

In this chapter we consider the generalized magnetostatic and electrostatic problems

(1.5) and (1.6). These problems have been studied by many authors as indicated

by the detailed literature review in [26]. Here, we just point out that L2(Ω)-based

least-squares discretization was considered in [36], and there are other studies based

in L2(Ω), e.g. [6]. These methods have well-known drawbacks, such as requirement

for smoothness of the boundary and restriction to two dimensional problems. Among

the more standard approaches are the introduction of a scalar or vector potential,

complemented with a “gauge” condition, and the mixed finite element methods based

on the Nédélec approximation spaces. These methods can also be problematic. In

particular, the implementation of Nédélec elements, especially those of higher order, is

quite complicated. The solution methods for the resulting algebraic systems have only

been recently developed. Finally, let us note that many authors have demonstrated, cf.

[18, 42], that the straightforward application of standard node-based finite elements

can lead to spurious discrete solutions.

In the subsequent development, we will always assume that (AΩ) and (Aµ,ε)

hold. By Theorem 2.5, see also Remarks 4.1 and 4.3 below, it is enough to consider

homogeneous boundary conditions, in which case, we are looking for the magnetic

and electric fields h , e : Ω → C3 satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×h = j in Ω,

∇ · (µh) = ρ in Ω,

µh · n = 0 on ∂Ω,

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×e = j in Ω,

∇ · (εe) = ρ in Ω,

e×n = 0 on ∂Ω.

(4.1)

The above systems differ essentially only in the boundary conditions, and we often
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refer to them together as div-curl systems. We distinguish between the two problems

by the use of a subscript k which equals 1 for the magnetostatic problem and is 2 for

the electrostatic problem. In particular, we call the problem for h, div-curl system of

type 1 and the problem for e, div-curl system of type 2.

The standard interpretation of (4.1) is to assume that j ∈ L2(Ω), ρ ∈ L2(Ω) and to

solve for h ∈ X1(µ) and e ∈ X2(ε). We call this the original form of the magnetostatic

and electrostatic problems. The next sections will be devoted to weaker formulations

that allow us to consider solutions with much lower regularity.

Let us note that it is enough to devise the theory for real-valued fields, since the

problems with complex fields can be split into problems for their real and imaginary

parts. In this case all the spaces are real and there is no use of complex arithmetic

in the implementation.

A. Weak formulation of the magnetostatic problem

In this section we assume that (AΩ) is satisfied with n2 = 0, i.e., Ω is simply connected.

Let h ∈ X1(µ) satisfy the magnetostatic problem (4.1). Integration by parts (see

Theorem 2.5) implies that the problem is equivalent to⎧⎪⎨⎪⎩
(h, ∇×φ)L2(Ω) = 〈j, φ〉 ∀φ ∈ D(Ω) ,

(µ h, ∇ψ)L2(Ω) = −〈ρ, ψ〉 ∀ψ ∈ D(Ω) .

By density (Theorems 2.4 and 2.5), this is the same as⎧⎪⎨⎪⎩
(h, ∇×φ)L2(Ω) = 〈j, φ〉 ∀φ ∈ H0(curl) ,

(µ h, ∇ψ)L2(Ω) = −〈ρ, ψ〉 ∀ψ ∈ H1(Ω) .

Introduce the operators curl1 : L2(Ω) �→ H0(curl)∗ and div1,µ : L2(Ω) �→ H1(Ω)
∗
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defined by

〈curl1h, φ〉 = (h, ∇×φ) ∀h ∈ L2(Ω), φ ∈ H0(curl),

〈div1,µh, ψ〉 = −(µh, ∇ψ) ∀h ∈ L2(Ω), ψ ∈ H1(Ω) .

(4.2)

Note that if h ∈ L2(Ω) then curl1(h) = curl(h), and for h ∈ H(div; µ) we have

div1,µ(h) = div(µ h) − γn(h).

Consider the mapping A1 : h �→ (curl1h, div1,µh). We can summarize that the

original magnetostatic problem is equivalent to

A1h = f , f = (j, ρ) , (4.3)

where A1 is considered as an operator from X1(µ) to L2(Ω) × L2(Ω).

In order to allow for solutions with very low regularity, we want to replace the

requirement h ∈ X1(µ) with h ∈ L2(Ω). A natural way to do that is to work with

A1 as an operator from L2(Ω) to H0(curl)∗ × H1(Ω)
∗
. We claim that, in this case,

the problem (4.3) will have a unique solution, provided the right-hand side satisfies

certain compatibility conditions. Indeed, we only need to show that A1 is bounded

from below. Recall that by Corollary 3.1 this is equivalent to R(A∗
1) = L2(Ω). In our

case, A∗
1 : H0(curl) × H1(Ω) �→ L2(Ω) is given by

A∗
1(φ, ψ) = ∇×φ − µ ∇ψ , (4.4)

and the first Helmholtz decomposition from Theorem 2.8 implies that A∗
1 is onto.

The above approach is attractive, but it will lead to a discretization method

involving curl-conforming finite element spaces which we want to avoid. Therefore,

as a compromise, we propose to introduce the spaces

X1 = L2
µ(Ω) , V1 = H1

0(Ω) , H1 = H1(Ω) , Y1 = V1 × H1 . (4.5)
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and consider (4.3) with A1 : X1 �→ Y∗
1 . This is stronger than the previous formulation

but still much weaker than (4.1). Moreover, the second Helmholtz decomposition

from Theorem 2.8 implies that A∗
1 (which is again given by (4.4)) is onto.

Remark 4.1 Before we continue with the properties of A1, let us remark that the

more general problem ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×h = j in Ω,

∇ · (µh) = ρ in Ω,

µh · n = σ on ∂Ω,

(4.6)

where σ ∈ H− 1
2 (∂Ω) can be reduced to the same weak formulation, if we define f =

(j, ρ′), where ρ′ = ρ − σ.

By the theory in Chapter III, we need to consider compatibility conditions related

to the space

N(A∗) ≡ Y1,0 = {(w, ψ) ∈ Y1 : ∇×w − µ ∇ψ = 0} .

By orthogonality, the fact that ‖∇ψ‖ is an equivalent norm on H1/R and Theorem

2.5, it follows that Y1,0 = V1,0 × H1,0, where

V1,0 = {w ∈ V1 : w = ∇ψ, ψ ∈ H1
0(Ω)} , H1,0 = {ψ ∈ H1 : ψ = const} .

(4.7)

Furthermore, Theorem 2.8 implies that

‖∇×w‖ + ‖∇ψ‖ is an equivalent norm on Y1/Y1,0 . (4.8)

Proposition 4.1 The operator A1 : X1 �→ Y∗
1 is linear, bounded and bounded from

below. Specifically, there exist constants C0 and C1 independent of µ and satisfying

C0 µ̃0 ‖x‖2
X1

≤ ‖curl1x‖2
V∗

1
+ ‖div1,µx‖2

H∗
1
≤ C1 µ̃1 ‖x‖2

X1
, (4.9)
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for all x ∈ L2(Ω), where µ̃0 = min{µ0, µ
−1
1 } and µ̃1 = max{µ−1

0 , µ1}.

Proof We first prove that C ‖x‖X1 ≤ ‖A1x‖Y∗
1
. As indicated before, this holds

for some C since R(A∗
1) = L2(Ω). In fact, see Proposition 3.3, the constant C is

characterized also as the optimal constant in the inequality C ‖y‖Y⊥
1,0

≤ ‖A∗
1y‖X∗

1
.

Let y = (w, ψ), with w ∈ V⊥
1,0 and ψ ∈ H⊥

1,0. Then, by (4.8)

‖∇×w − µ ∇ψ‖2
µ−1 ≥ µ−1

1 ‖∇×w‖2 + µ0 ‖∇ψ‖2 ≥ C µ̃0 (‖w‖2
V1

+ ‖ψ‖2
H1

) .

This proves the left inequality in (4.9). The right one follows from

(x, ∇×w) ≤ ‖x‖µ ‖∇×w‖µ−1 and (µ x, ∇ψ) ≤ ‖x‖µ ‖∇ψ‖µ .

An alternative proof, given in [26], is as follows: fix x ∈ X1, and let µ x =

∇×w + µ ∇ψ be the decomposition with w ∈ H1
0(Ω) and ψ ∈ H1(Ω)/R. Then

‖x‖2
µ = ‖∇×w‖2

µ−1 + ‖∇ψ‖2
µ =

(x, ∇×w)2

‖∇×w‖2
µ−1

+
(µ x, ∇ψ)2

‖∇ψ‖2
µ

.

Therefore

‖x‖2
µ ≤ Cµ1

(
(x, ∇×w)

‖w‖V1

)2

+ Cµ−1
0

(
(µ x, ∇ψ)

‖ψ‖H1

)2

.

Thus

‖x‖2
µ ≤ C max{µ1, µ

−1
0 }

{(
sup

w∈V1

(x, ∇×w)

‖w‖V1

)2

+

(
sup
ψ∈H1

(µ x, ∇ψ)

‖ψ‖H1

)2
}

.

Now we are in a position to characterize the solvability of the magnetostatic

problem in the proposed weak formulation, as well as in its original form. We start

with an application of Proposition 3.1.
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Theorem 4.1 Let f = (j, ρ) ∈ Y∗
1 . Then the problem⎧⎪⎨⎪⎩
curl1h = j in V∗

1 ,

div1,µh = ρ in H∗
1 ,

(4.10)

has a unique solution h ∈ X1 if and only if

〈j, w〉 = 0 and 〈ρ, ψ〉 = 0 ∀w ∈ V1,0 ,∀ψ ∈ H1,0 . (4.11)

The solution satisfies the estimate C0 µ̃0 ‖h‖2 ≤ ‖j‖2
V∗

1
+ ‖ρ‖2

H∗
1
.

Corollary 4.1 If h ∈ X1(µ) is such that ∇×h = 0 and ∇·µh = 0 then h = 0.

For the next results, recall that X1(µ) ↪→ Hs(Ω) denotes continuous embedding

Proposition 4.2 Assume that X1(µ) ↪→ Hs(Ω) for some s > 0, then there exists

C = C(µ) ∈ R+, such that

C(µ) ‖h‖ ≤ ‖∇×h‖ + ‖∇·µh‖ ∀h ∈ X1(µ) . (4.12)

In particular ‖∇×h‖ + ‖∇·µh‖ is an equivalent norm on X1(µ).

Proof Assume the converse, then there exist a sequence {hn} ⊂ X1(µ) with ‖hn‖s =

1 and ‖∇×hn‖ + ‖∇·µhn‖ ≤ 1
n
. Since Hs(Ω) is compactly embedded in L2(Ω), by

passing to a subsequence, we have hn → h in L2(Ω), for some h ∈ L2(Ω). By

the continuous embedding X1(µ) ↪→ Hs(Ω), it follows that {hn} is Cauchy in Hs(Ω).

Therefore, hn → h in Hs(Ω) and ‖h‖s = 1. On the other hand, ‖∇×h‖ = ‖∇·µh‖ =

0 and therefore, h = 0. This is a contradiction which proves the result.

Let V1,0 and H1,0 denote the closures of the spaces V1,0 and H1,0 in L2(Ω) and

L2(Ω) respectively, i.e.

V1,0 = {∇ψ : ψ ∈ H1
0(Ω)} , H1,0 = {ψ ∈ L2(Ω) : ψ = const} . (4.13)
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Next we give a result for the original magnetostatic problem (4.1). The proof is based

on the estimate (4.12) and Proposition 3.1.

Theorem 4.2 Let f = (j, ρ) ∈ L2(Ω) × L2(Ω). Then the problem⎧⎪⎨⎪⎩
∇×h = j in L2(Ω) ,

∇·µh = ρ in L2(Ω) ,

(4.14)

has a unique solution h ∈ X1(µ) if and only if

(j, w) = 0 and (ρ, ψ) = 0 ∀w ∈ V1,0 ,∀ψ ∈ H1,0 . (4.15)

The solution satisfies the estimate C(µ) (‖h‖2 +‖∇×h‖2 +‖∇·µ h‖2) ≤ ‖j‖2 +‖ρ‖2.

Remark 4.2 The conditions (4.15) are the same as ∇·j = 0 and (ρ, 1) = 0.

Proposition 4.3 For f = (j, ρ) ∈ L2(Ω)×L2(Ω), the problems (4.10) and (4.14) are

equivalent.

Proof Clearly any solution of (4.14) satisfies (4.10). Furthermore, if f = (j, ρ) ∈

L2(Ω) × L2(Ω), then the compatability conditions (4.11) and (4.15) are equivalent.

As in Chapter III, we can define a least-squares method for problem (4.10). The

least-squares functional is

F1(h) = ‖curl1h − j‖2
V∗

1
+ ‖div1,µh − ρ‖2

H∗
1
,

and its minimization over h ∈ L2(Ω) is equivalent (by Proposition 3.2) to

(curl1h, curl1y)V∗
1
+ (div1,µh, div1,µy)H∗

1
= (j, curl1y)V∗

1
+ (ρ, div1,µy)H∗

1
,

for any y ∈ L2(Ω).

Let QV1,0 and QH1,0 be the V1 and H1 orthogonal projectors onto V1,0 and H1,0,
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respectively. This means that, for w ∈ V1, QV1,0w = ∇ϕ, where ϕ ∈ H2
0(Ω) satisfies

(∇ϕ, ∇θ)V1,0 = (w, ∇θ)V1,0 ∀θ ∈ H2
0(Ω) .

Similarly, for ψ ∈ H1, QH1,0ψ = ψ, where ψ = 1
µ(Ω)

(ψ, 1) denotes the mean value of

ψ over Ω.

Define Q̃V1,0
: V∗

1 �→ V∗
1 and Q̃H1,0

: H∗
1 �→ H∗

1 similarly to (3.30), i.e.

〈Q̃V1,0
j, w〉 = 〈j, QV1,0w〉 and 〈Q̃H1,0

ρ, ψ〉 = 〈ρ, QH1,0ψ〉 ∀w ∈ V1 ,∀ψ ∈ H1 .

Then, by Proposition 3.2, the least-squares method for (4.10) is equivalent to⎧⎪⎨⎪⎩
curl1h = (I − Q̃V1,0

)j in V∗
1 ,

div1,µh = (I − Q̃H1,0
)ρ in H∗

1 .

(4.16)

By the definition of Y1,0, this can be rewritten as

a1(h; (w, ψ)) ≡ (h, ∇×w) + (h, µ∇ψ) = 〈j, w〉 + 〈ρ, ψ〉 (4.17)

for any (w, ψ) ∈ Y1,1, where

Y1,1 = Y⊥
1,0 ≡

{(
(I − QV1,0)w, (I − QH1,0)ψ

)
: (w, ψ) ∈ Y1

}
.

Theorem 4.3 The problem (4.16) has a unique solution h ∈ L2(Ω) for any data

f = (j, ρ) ∈ Y∗
1 . When f satisfies the compatability conditions (4.11), the problem is

equivalent to (4.10). When f ∈ L2(Ω)×L2(Ω) and (4.15) is satisfied, the least-squares

problem is equivalent to the original magnetostatic problem (4.14).

Corollary 4.2 Let Q1 : V1 �→ V1,0 be the L2(Ω)-projection, i.e. Q1w = ∇ϕ, where
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ϕ ∈ H1
0(Ω) satisfies

(∇ϕ, ∇θ) = (w, ∇θ) ∀θ ∈ H1
0(Ω) .

Then for any (j, ρ) ∈ L2(Ω) × L2(Ω), the problems (4.16), (4.10) and (4.14) with

right-hand side f = ((I − Q1)j, ρ − ρ), have the same unique solution.

B. Weak formulation of the electrostatic problem

In this section we assume that(AΩ) is satisfied with n1 = 0, i.e., ∂Ω is connected.

We proceed analogously to the previous section. Let e ∈ X2(ε) satisfy the

electrostatic equations (4.1). Introduce the operators curl2 : L2(Ω) �→ H(curl)∗ and

div2,ε : L2(Ω) �→ H1
0(Ω)

∗
defined by

〈curl2e, φ〉 = (e, ∇×φ) ∀e ∈ L2(Ω), φ ∈ H(curl),

〈div2,εe, ψ〉 = −(εe, ∇ψ) ∀e ∈ L2(Ω), ψ ∈ H1
0(Ω) .

(4.18)

Note that if e ∈ H0(curl) then curl2(e) = curl(e), and for e ∈ L2(Ω) we have

div2,ε(e) = div(εe).

Consider the mapping A2 : e �→ (curl2e, div2,εe). Then the original electro-

static problem is equivalent to

A2e = f , f = (j, ρ) , (4.19)

where A2 is considered as an operator from X2(ε) to L2(Ω) × L2(Ω).

We introduce the spaces

X2 = L2
ε(Ω) , V2 = H1(Ω) , H2 = H1

0(Ω) , Y2 = V2 × H2 . (4.20)

and propose to consider (4.19) with A2 : X2 �→ Y∗
2 . By the last Helmholtz decompo-
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sition from Theorem 2.8, A∗
2 : H(curl) × H1

0(Ω) �→ L2(Ω) given by

A∗
2(φ, ψ) = ∇×φ − ε ∇ψ (4.21)

is onto.

Remark 4.3 The more general problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×e = j in Ω,

∇ · (εe) = ρ in Ω,

e×n = σ on ∂Ω,

(4.22)

where σ ∈ H− 1
2 (∂Ω) can be reduced to the same weak formulation, if we define f =

(j′, ρ), where j′ = j − σ.

The compatibility conditions are related to the space Y2,0 = V2,0 × H2,0, where

V2,0 = {w ∈ V2 : w = ∇ψ, ψ ∈ H1(Ω)} , H2,0 = {0} . (4.23)

Moreover, by Theorem 2.8,

‖∇×w‖ + ‖∇ψ‖ is an equivalent norm on Y2/Y2,0 . (4.24)

Proposition 4.4 The operator A2 : X2 �→ Y∗
2 is linear, bounded and bounded from

below. Specifically, there exist constants C0 and C1 independent of ε and satisfying

C0 ε̃0 ‖x‖2
X2

≤ ‖curl2x‖2
V∗

2
+ ‖div2,εx‖2

H∗
2
≤ C1 ε̃1 ‖x‖2

X2
, (4.25)

for all x ∈ L2(Ω), where ε̃0 = min{ε0, ε
−1
1 } and ε̃1 = max{ε−1

0 , ε1}.

The proof is analogous to Proposition 4.1. As before, using Proposition 3.1, we get

the following results.
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Theorem 4.4 Let f = (j, ρ) ∈ Y∗
2 . Then the problem⎧⎪⎨⎪⎩
curl2e = j in V∗

2 ,

div2,εe = ρ in H∗
2 ,

(4.26)

has a unique solution e ∈ X2 if and only if

〈j, w〉 = 0 ∀w ∈ V2,0 . (4.27)

The solution satisfies the estimate C0 ε̃0 ‖e‖2 ≤ ‖j‖2
V∗

2
+ ‖ρ‖2

H∗
2
.

Corollary 4.3 If e ∈ X2(ε) is such that ∇×e = 0 and ∇·εe = 0 then e = 0.

Proposition 4.5 Assume that X2(ε) ↪→ Hs(Ω) for some s > 0, then there exists

C = C(ε) ∈ R+, such that

C(ε) ‖e‖ ≤ ‖∇×e‖ + ‖∇·εe‖ ∀e ∈ X2(ε) . (4.28)

In particular, ‖∇×e‖ + ‖∇·εe‖ is an equivalent norm on X2(ε).

Let V2,0 and H2,0 denote the closures of the spaces V2,0 and H2,0 in L2(Ω) and

L2(Ω), respectively, i.e.

V2,0 = {∇ψ : ψ ∈ H1(Ω)} , H2,0 = {0} . (4.29)

Theorem 4.5 Let f = (j, ρ) ∈ L2(Ω) × L2(Ω). Then the problem⎧⎪⎨⎪⎩
∇×e = j in L2(Ω) ,

∇·εe = ρ in L2(Ω) ,

(4.30)

has a unique solution e ∈ X2(ε) if and only if

(j, w) = 0 ∀w ∈ V2,0 . (4.31)

The solution satisfies the estimate C(ε) (‖e‖2 + ‖∇×e‖2 + ‖∇·ε e‖2) ≤ ‖j‖2 + ‖ρ‖2.
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Remark 4.4 The condition (4.31) is the same as ∇·j = 0 and j · n = 0.

Proposition 4.6 For f = (j, ρ) ∈ L2(Ω)×L2(Ω), the problems (4.26) and (4.30) are

equivalent.

We proceed with the least-squares method based on the functional

F2(e) = ‖curl2e − j‖2
V∗

2
+ ‖div2,εe − ρ‖2

H∗
2
,

which is minimized over e ∈ L2(Ω). This is the same as

(curl2e, curl2y)V∗
2
+ (div2,εe, div2,εy)H∗

2
= (j, curl2y)V∗

2
+ (ρ, div2,εy)H∗

2
,

for any y ∈ L2(Ω).

Let QV2,0 and QH2,0 be the V2 and H2 orthogonal projectors onto V2,0 and H2,0

respectively. This means that for w ∈ V2, QV2,0w = ∇ϕ, where ϕ ∈ H2(Ω)/R

satisfies

(∇ϕ, ∇θ)V2,0 = (w, ∇θ)V2,0 ∀θ ∈ H2(Ω)/R .

Define Q̃V2,0
: V∗

2 �→ V∗
2 by

〈Q̃V2,0
j, w〉 = 〈j, QV2,0w〉 ∀w ∈ V2 .

Then, by Proposition 3.2, the least-squares method for (4.26) is equivalent to⎧⎪⎨⎪⎩
curl2e = (I − Q̃V2,0

)j in V∗
2 ,

div2,εe = ρ in H∗
2 .

(4.32)

By the definition of Y2,0, this can be rewritten as

a2(e; (w, ψ)) ≡ (e, ∇×w) + (e, ε∇ψ) = 〈j, w〉 + 〈ρ, ψ〉 (4.33)



58

for any (w, ψ) ∈ Y2,1, where

Y2,1 = Y⊥
2,0 ≡

{(
(I − QV2,0)w, ψ

)
: (w, ψ) ∈ Y2

}
.

Theorem 4.6 The problem (4.32) has a unique solution e ∈ L2(Ω) for any data

f = (j, ρ) ∈ Y∗
2 . When f satisfies the compatability conditions (4.27), the problem is

equivalent to (4.26). When f ∈ L2(Ω)×L2(Ω) and (4.31) is satisfied, the least-squares

problem is equivalent to the original electrostatic problem (4.30).

Corollary 4.4 Let Q2 : V2 �→ V2,0 be the L2(Ω)-projection, i.e. Q2w = ∇ϕ, where

ϕ ∈ H1(Ω)/R satisfies

(∇ϕ, ∇θ) = (w, ∇θ) ∀θ ∈ H1(Ω)/R .

Then for any (j, ρ) ∈ L2(Ω) × L2(Ω), the problems (4.32), (4.26) and (4.30) with

right-hand side f = ((I − Q2)j, ρ), have the same unique solution.

C. Least-squares approximation

In this section, we consider the approximation of the magnetostatic and electrostatic

problems based on discrete least-squares methods. We concentrate on the magneto-

static problem, the results for the electrostatic problem are analogous.

Following Section III.B, let Xh,1 ⊂ X1, and Yh,1 = Vh,1 × Hh,1, with Vh,1 ⊂ V1,

Hh,1 ⊂ H1 be approximation subspaces. Our main example, using the definitions in

§II.D, is the case Ωh = Ω with Xh,1 = Ŝh, Vh,1 = (Sh,0 ⊕BFh,0)
3 and Hh,1 = Sh ⊕BFh

.

For the notation of operators, spaces and functions, we follow Chapter III with an

added subscript 1.

Let s ∈ [0, 1]. Then the space X̂1 = Hs(Ω) is continuously embedded in X1.
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Therefore, (3.20) holds with Ĉ1 = 1. We assume that the estimate (3.21) holds with

χ(h) = C hs, i.e.

inf
xh∈Xh,1

‖x − xh‖ ≤ C hs ‖x‖s ∀x ∈ Hs(Ω) , s ∈ [0, 1] . (4.34)

By (2.25), this is true for our reference choice of Xh,1.

The magnetostatic problem (4.3) involves the operator A1, and the objective is

to replace it with a discrete approximation Ah,1 : Xh,1 �→ Y∗
h,1. To insure stability, we

will require that Ah,1 is bounded from below, i.e. (3.22) holds. Next, we consider two

different choices for the discrete operator Ah,1, which satisfy this requirement. The

resulting discretizations will be shown to be stable in L2(Ω) and to yield first-order

convergence when the solution is in H1(Ω). By interpolation, we have hs convergence

when the solution is in Hs(Ω) for any s in [0, 1].

1. Approximation based on a discrete inf-sup condition

Recall that the operator A1 induces the bilinear form a1(·, ·) defined in (4.17). In this

subsection we assume that the spaces Xh,1 and Yh,1 are chosen appropriately, so that

the discrete inf-sup condition (3.25) holds.

C ‖h‖X ≤ sup
w∈Vh,1

(h, ∇×w)

‖w‖Vh,1

+ sup
ψ∈Hh,1

(h, µ∇ψ)

‖ψ‖Hh,1

∀h ∈ Xh,1 . (4.35)

Such a pair of spaces is called stable, and some examples will be considered later in

§a.

As discussed in (3.23), the discrete inf-sup condition is equivalent to the fact that

the operator Ah,1 defined by

〈Ah,1h, (w, ψ)〉 = (h, ∇×w) + (h, µ∇ψ) ∀h ∈ Xh,1 , (w, ψ) ∈ Yh,1 , (4.36)

is bounded from below. In this case, we get the estimate (3.26) with α(h) = 0.
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For a given f = (j, ρ), consider the magnetostatic problem A1x = f. A natural

discrete approximation will be Ah,1xh = f. However, the set N(A∗
h,1) is not easily

characterized, and therefore, the problem for Ah,1 will involve awkward discrete com-

patability conditions. To avoid those, we propose to use the least-squares method for

the discrete problem, i.e. solve

(Ah,1xh, Ah,1yh)Y∗
h,1

= (f, Ah,1yh)Y∗
h,1

∀yh ∈ Xh,1 . (4.37)

The implementation of this problem reduces to a system of equations with a sym-

metric and positive definite matrix as discussed in Section III.C.

The approximation obtained by this method is further examined below. If f

satisfies the compatability conditions (4.15), then by Corollary 3.3, xh is a quasi-

optimal approximation of x in Xh,1. The next result gives the rate of approximation

when f ∈ L2(Ω) × L2(Ω). The proof is a combination of Theorems 3.2 and 4.2.

Theorem 4.7 Assume that (Xh,1, Yh,1) is a stable pair, i.e. (4.35) holds. Let s ∈ [0, 1]

be such that X1(µ) ↪→ Hs(Ω) and (4.34) hold. Denote with x the solution of the

original magnetostatic problem (4.14) with data f ∈ L2(Ω)×L2(Ω) which satisfies the

compatability conditions (4.15). Let xh be the least-squares approximation obtained

by solving (4.37). Then we have the error estimate

‖x − xh‖ ≤ C(µ) hs ‖f‖ .

Next, we give a short summary of the analogous results for the electrostatic

problem. We define Xh,2 = Xh,1, and Yh,2 = Vh,2 × Hh,2, with Vh,2 ⊂ V2, Hh,2 ⊂ H2.

For example, in the case Ωh = Ω, one can use Xh,2 = Ŝh, Vh,2 = (Sh ⊕ Bh)
3 and

Hh,2 = Sh,0 ⊕ BFh,0. These spaces should be chosen in such a way, that

C ‖e‖X ≤ sup
w∈Vh,2

(e, ∇×w)

‖w‖Vh,2

+ sup
ψ∈Hh,2

(e, ε∇ψ)

‖ψ‖Hh,2

∀h ∈ Xh,2 . (4.38)
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Then the operator Ah,2 defined by

〈Ah,2e, (w, ψ)〉 = (e, ∇×w) + (e, ε∇ψ) ∀e ∈ Xh,2 , (w, ψ) ∈ Yh,2 , (4.39)

is bounded from below.

For a given f satisfying the compatability conditions (4.31), consider the elec-

trostatic problem A2x = f. Let xh be the least-squares approximation satisfying

(Ah,2xh, Ah,2yh)Y∗
h,2

= (f, Ah,2yh)Y∗
h,2

∀yh ∈ Xh,2 . (4.40)

Then xh is a quasi-optimal approximation of x in Xh,2. If furthermore, f ∈ L2(Ω) ×

L2(Ω) satisfies the compatability conditions (4.31), and X2(ε) ↪→ Hs(Ω) then we have

‖x − xh‖ ≤ C(ε) hs ‖f‖ .

a. Pairs of stable approximation subspaces

In this subsection, we discuss the construction of stable approximation pairs for the

div-curl systems (4.1). We concentrate on the magnetostatic problem, in which case

we need a pair (Xh,1, Yh,1) satisfying

C ‖x‖X1 ≤ sup
w∈Vh,1

(x, ∇×w)

‖w‖V1

+ sup
ψ∈Hh,1

(µ x, ∇ψ)

‖ψ‖H1

∀x ∈ Xh,1 .

This is similar to the famous LBB condition

C ‖x‖X1 ≤ sup
ψ∈Hh,1

(x,∇·ψ)

‖ψ‖H1

∀x ∈ Xh,1 (4.41)

for an approximation pair Xh,1 ⊂ X1 = L2(Ω)/R, Hh,1 ⊂ H1 = H1
0(Ω) for the Stokes

problem1.

1 The continuous LBB condition is equivalent to the Nečas inequality from Theo-
rem 2.4, see [19]
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For convenience, we restrict our discussion to tetrahedral partitioning of polyhe-

dral domains Ω = Ωh ⊂ R3 and assume that µ is piecewise constant. The construction

extends to other element shapes as well as problems on domains in R2.

The lowest order approximation is obtained for Xh,1 = Ŝh, i.e. when Xh,1 consists

of piecewise constant vector functions. As shown in [26], a compatible choice for the

test space is Yh,1 = Vh,1 × Hh,1, with Vh,1 = (Sh,0 ⊕ BFh,0)
3 and Hh,1 = Sh ⊕ BFh

.

The proof is based on the estimates

sup
ψ∈H1

(µ x, ∇ψ)

‖ψ‖H1

≤ C sup
ψ∈Hh,1

(µ x, ∇ψ)

‖ψ‖H1

∀x ∈ Xh,1 (4.42)

and

sup
w∈V1

(x, ∇×w)

‖w‖V1

≤ C sup
w∈Vh,1

(x, ∇×w)

‖w‖V1

∀x ∈ Xh,1 , (4.43)

with a constant C independent of h.

To get a better approximation, we can choose Xh,1 to be the space of piecewise

linear functions, i.e. Xh,1 = Ŝh(1). Then a compatible choice for the test space, see

[26], is Vh,1 = (Sh,0 ⊕ B1
Fh,0 ⊕ BTh

)3 and Hh,1 = Sh ⊕ B1
Fh

⊕ BTh
.

Instead of dealing with these specific cases, we present the proof of stability in

the following more general case. To keep the notation uniform, we set B−1
Th

= ∅.

Theorem 4.8 Let k ∈ N0. Then Xh,1 = Ŝh(k), Vh,1 = (Sh,0 ⊕ Bk
Fh,0 ⊕ Bk−1

Th
)3 and

Hh,1 = Sh ⊕ Bk
Fh

⊕ Bk−1
Th

satisfy (4.42)-(4.43). In particular (Xh,1, Vh,1 × Hh,1) is a

stable pair for the magnetostatic problem.

Similarly, (Xh,2, Vh,2 × Hh,2) is a stable pair for the electrostatic problem, where

Xh,2 = Ŝh(k), Vh,2 = (Sh ⊕ Bk
Fh

⊕ Bk−1
Th

)3 and Hh,2 = Sh,0 ⊕ Bk
Fh,0 ⊕ Bk−1

Th
.

Proof Fix x ∈ Xh,1. Let ψ ∈ H1 = H1(Ω) be arbitrary. To show (4.42) it is enough

to construct ψh ∈ Hh,1 such that

(µ x, ∇ψ) = (µ x, ∇ψh) and ‖ψh‖H1 ≤ C ‖ψ‖H1 . (4.44)
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Let Ihψ be an approximation operator satisfying (2.26). Using that, the barycentric

coordinate functions are nonnegative. One can choose ψTh
∈ Bk−1

Th
and ψFh

∈ Bk
Fh

such that

(ψFh
, q)L2(F ) = (ψ − Ihψ, q)L2(F ) ∀F ∈ Fh ,∀q ∈ Pk(F ) ,

(ψTh
, p)L2(τ) = (ψ − Ihψ − ψFh

, p)L2(τ) ∀τ ∈ Th ,∀p ∈ Pk−1(τ) .

(4.45)

By Schwartz inequality,

‖ψFh
‖L2(F ) ≤ ‖ψ − Ihψ‖L2(F ) and ‖ψTh

‖L2(τ) ≤ ‖ψ − Ihψ − ψFh
‖L2(τ) . (4.46)

Set ψh = Ihψ + ψFh
+ ψTh

. Then

(∇·x, ψ)L2(τ) = (∇·x, ψh)L2(τ) ∀τ ∈ Th ,

(x · n, ψ)L2(F ) = (x · n, ψh)L2(F ) ∀F ∈ Fh ,

(4.47)

which implies the equality in (4.44).

Using mapping to the reference element, the equivalence of norms on finite ele-

ment spaces, (4.46), (2.23) and (2.26) we get

‖ψFh
‖2

1 ≤ C
∑

F∈Fh

h−1
F ‖ψFh

‖2
L2(F ) ≤ C

∑
τ∈Th

h−1
τ ‖(I − Ih)ψ‖2

L2(∂τ)

≤ C
∑
τ∈Th

{
h−2

τ ‖(I − Ih)ψ‖2
L2(τ) + ‖(I − Ih)ψ‖2

H1(τ)

}
≤ C ‖ψ‖2

1 .

Similarly,

‖ψTh
‖2

1 ≤ C
∑
τ∈Th

h−2
τ ‖ψTh

‖2
L2(τ)

≤ C
∑
τ∈Th

{
h−2

τ ‖(I − Ih)ψ‖2
L2(τ) + h−2

τ ‖ψFh
‖2

L2(τ)

}
≤ C ‖ψ‖2

1 .

This implies that ψh satisfies (4.44), and therefore (4.42) holds.

Clearly the above construction works for the case of zero boundary conditions,
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provided that they are preserved by Ih. Furthermore, by applying the construction

to each component, the same proof yields the result (4.43).

Next, we show how the above proof can be extended to more general cases. To

that end, let τ ∈ Th and F ∈ Fh be any element and face of Ωh. Let Xτ = (Xτ )
3 ⊂

L2(Ω) be an approximation space for the solution on τ . Associated with this are two

additional spaces

XF =
⋃

τ∈TF

{x|F : x ∈ Xτ} , X′
τ =

d⋃
i=1

{∂ix : x ∈ Xτ} . (4.48)

Let XΩ ⊂ H1(Ω) be such that there exist an operator Ih : H1(Ω) �→ XΩ satisfying

(2.26). As before, this operator should preserve the homogeneous boundary condi-

tions. Finally, we need the spaces of face and element “bubbles”, which are just finite

dimensional spaces BF ⊂ H1
0(TF ) and Bτ ⊂ H1

0(τ) . Assume that these spaces are

defined through mappings to the reference element, i.e.

‖ψF‖2
H1(TF ) ≤ C h−1

F ‖ψF‖2
L2(F ) and ‖ψτ‖2

H1(τ) ≤ C h−2
τ ‖ψτ‖2

L2(τ) (4.49)

for any ψF ∈ BF and ψτ ∈ Bτ .

Theorem 4.9 Assume that

XF ∩ B⊥
F = {0} , X′

τ ∩ B⊥
τ = {0} . (4.50)

Then the condition (4.42) holds for the following spaces

Xh,1 =
⊕
τ∈Th

Xτ and Hh,1 = XΩ

⊕
(⊕F∈Fh

BF )
⊕

(⊕τ∈Th
Bτ ) .

Proof We follow the proof of the previous theorem by fixing x ∈ Xh,1, ψ ∈ H1 and
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considering problems similar to (4.8): ψτ ∈ Bτ and ψF ∈ BF satisfy

(ψF , q)L2(F ) = (ψ − Ihψ, q)L2(F ) ∀F ∈ Fh ,∀q ∈ XF ,

(ψτ , p)L2(τ) = (ψ − Ihψ − ψFh
, p)L2(τ) ∀τ ∈ Th ,∀p ∈ X′

τ ,

where ψFh
=
∑

F∈Fh
ψF . By Theorem 3.1, the conditions (4.50) imply that these

problems have unique minimum norm solutions which satisfy estimates similar to

(4.46):

‖ψF‖L2(F ) ≤ ‖ψ − Ihψ‖L2(F ) and ‖ψτ‖L2(τ) ≤ ‖ψ − Ihψ − ψFh
‖L2(τ) .

Define ψTh
=
∑

τ∈Th
ψτ and ψh = Ihψ+ψFh

+ψTh
. By the definitions (4.48), it follows

that the equalities (4.45) hold. This, together with (4.49), implies that ψh satisfies

(4.44) and therefore, (4.42) is satisfied.

Remark 4.5 As before, we can define Vh,1, just by taking into account the boundary

conditions in each component, i.e. Vh,1 = (Hh,1 ∩ H1
0(Ω))3. Then (Xh,1, Vh,1 × Hh,1)

is a stable pair for the magnetostatic problem. Similarly (Xh,1, Vh,2 ×Hh,2) is a stable

pair for the electrostatic problem, where Vh,2 = (Hh,1)
3 and Hh,2 = Hh,1 ∩ H1

0(Ω).

Corollary 4.5 One can approximate the solution with polynomials of varying degree,

i.e. Xτ = Pkτ (τ) with kτ ∈ N0 depending on τ . A typical example will be to use

higher order in the interior of each material (where the solution is smooth), and

lower order close to the interfaces between different materials (where the solution has

singularities). Set kF = max{kτ : τ ∈ TF}, then the conditions of the theorem are

satisfied for BF = (BkF
Fh

)
∣∣∣
F

and Bτ = (Bkτ−1
Th

)
∣∣
τ
.

Corollary 4.6 The introduction of special bubble functions may be avoided if the test

space is defined on a finer mesh. Specifically, consider the case of triangular mesh,

then Xh,1 = Ŝh(k) and Hh,1 = Sh/(2k+2) satisfy condition (4.42).
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Proof In this case Xτ = Pk(τ), XF = Pk(F ) and X′
τ = Pk−1(τ). Define BF as the

span of the basis functions in Sh/(2k+2) with degrees of freedom in the interior of F .

Similarly, Bτ is the span of the basis functions with degrees of freedom in the interior

of τ .

Since a nonzero polynomial in XF has at most k zeros, it follows that there exist

a basis function in BF such that their inner product in L2(F ) is positive. Similar

considerations in τ show that the second condition in (4.50) is satisfied.

Remark 4.6 This result can be extended to hexahedral and quadrilateral meshes. The

corresponding result for tetrahedral meshes can be obtained for Hh,1 = Sh/(2k+3). The

numerical results, however, indicate that the method is stable even if we use Sh/(2k+2).

2. Approximation based on form modification

It is possible to get a stable approximation even when the discrete inf-sup condition

does not hold. We illustrate this for the magnetostatic problem in the case Ωh = Ω

with Xh,1 = Ŝh, Vh,1 = (Sh,0)
3 and Hh,1 = Sh. For simplicity, we take µ to be piecewise

constant. The idea is to start with the lower bound for A1 given by inequality (4.9),

i.e.

C0µ̃0 ‖x‖2
µ ≤ ‖curl1x‖2

V∗
1
+ ‖div1,µx‖2

H∗
1

(4.51)

and to strengthen the form using integration by parts and discretely defined operators.

To that end, let divh
1,µ : Xh,1 �→ Hh,1 and curlh

1 : Xh,1 �→ Vh,1 be defined by

(divh
1,µxh, ψh) = −(µ xh, ∇ψh) ∀ψh ∈ Hh,1 ,

(curlh
1xh, wh) = (xh, ∇×wh) ∀wh ∈ Vh,1 .

These operators are well defined by the Riesz Representation Theorem, and their

computation can be reduced to the inversion of the mass matrices in Hh,1 and Vh,1.
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We first consider the second term in (4.51). For xh ∈ Xh,1 and any ψh ∈ Hh,1,

‖div1,µxh‖2
H∗

1
= sup

ψ∈H1

(µ xh, ∇ψ)2

‖ψ‖2
H1

≤ 2 sup
ψ∈H1

[
(µ xh, ∇ψh)

2

‖ψ‖2
H1

+
(µ xh, ∇(ψ − ψh))

2

‖ψ‖2
H1

]
.

(4.52)

Taking ψh = Ihψ, with Ih satisfying (2.26) and using integration by parts on

each element gives

‖div1,µxh‖2
H∗

1
≤ C sup

ψh∈Hh,1

(µ xh, ∇ψh)
2

‖ψh‖2
H1

+ C sup
ψ∈H1

∑
F∈Fh

(�µxh · n�, ψ − ψh)
2
L2(F )

‖ψ‖2
H1

,

where Fh is the set of all faces of Th and �·� denotes the jump across a given face 2.

Recall that hF denotes the diameter of the face F ∈ Fh and TF is the union of

all elements τ ∈ Th which have F as a face. Combining (2.23) and (2.26) we get

‖ψ − ψh‖L2(F ) ≤ Ch
1/2
F ‖ψ‖H1(TF ).

Therefore

‖div1,µxh‖2
H∗

1
≤ C ‖divh

1,µxh‖2
H∗

h,1
+ C

∑
F∈Fh

hF‖�µ xh · n�‖2
L2(F ). (4.53)

Similar manipulations imply that the first term of (4.51) is bounded by

‖curl1xh‖2
V∗

1
≤ C‖curlh

1xh‖V∗
h,1

+ C
∑

F∈Fh

hF‖�xh×n�‖2
L2(F ) . (4.54)

Consider the Hilbert space

L2(Fh) = ⊕F∈Fh
L2(F ),

2For a boundary face, the argument is assumed to be zero outside of Ω.
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with the inner product

(u, v)L2(Fh) =
∑

F∈Fh

hF (u, v)L2(F ) .

Furthermore, denote with Fh the subspace of L2(Fh) consisting of functions that are

constants on each face. Set L2(Fh) = (L2(Fh))
3 and Fh = (Fh)

3.

Combining the estimates (4.53) and (4.54) gives

Cµ̃0 ‖xh‖2
µ ≤ ‖Ah,1xh‖2

Y∗
h,1×F∗

h×F∗h
,

where Ah,1 : Xh,1 �→ Y∗
h,1 × F∗

h × F∗h is defined by

Ah,1xh = (curlh
1xh, divh

1,µxh, �xh×n�, �µ xh · n�) . (4.55)

It is standard to see that Ah,1 is bounded. Moreover

‖(A1 − Ah,1)xh‖2
Y∗

h,1×F∗
h×F∗h

=
∑

F∈Fh

hF

{
‖�xh×n�‖2

L2(F ) + ‖�µ xh · n�‖2
L2(F )

}
.

The next result shows that we get essentially the same approximation rate as in the

method with bubble functions.

Theorem 4.10 Let s ∈ [0, 1], s �= 1
2

be such that X1(µ) ↪→ Hs(Ω) and (4.34) hold.

Denote with x the solution of the original magnetostatic problem (4.14) with data

f ∈ L2(Ω) × L2(Ω) which satisfies the compatability conditions (4.15). Let xh be

the least-squares approximation obtained by solving (4.37). Then we have the error

estimate

‖x − xh‖ ≤ C(µ) hs ‖f‖ .

Proof First, consider the case s > 1
2
. We will apply Corollary 3.4 with X̂ = X1(µ).



69

Fix x ∈ X1(µ) and let ζh = QXh
x. Then

‖(A1 − Ah,1)ζh‖2
Y∗

h,1×F∗
h×F∗h

≤ C
∑
τ∈Th

hτ

{
‖(x − ζh)×n‖2

L2(∂τ) + ‖µ (x − ζh) · n‖2
L2(∂τ)

}
≤ C

∑
τ∈Th

‖x − ζh‖2
L2(τ) + h2s

τ |x|2Hs(τ) .

We used (2.24) and the fact that (2.10) implies |ζh|Hs(τ) = 0. The above inequality

means that (3.29) holds with α(h) = hs and therefore we get the result of the theorem

by Corollary 3.4.

The case s < 1
2

follows by interpolation as shown in [26]. We recall the details

of the proof below. First, by Schwarz inequality and the boundedness of A1, Ah,1 we

get ‖xh‖ ≤ C ‖x‖ which proves the case s = 0, i.e. we have the stability estimate

‖x − xh‖ ≤ C ‖x‖ .

On the other hand, recall the definitions (2.16) and let x ∈ (PH1
0(Ω))3. As in the case

s > 1
2

we can apply Corollary 3.4 with X̂ = (PH1
0(Ω))3 and conclude that

‖x − xh‖ ≤ C h ‖x‖H1(Ω) .

Thus, by interpolation, we get

‖x − xh‖ ≤ C hs ‖x‖Hs(Ω)

for any x ∈ (PHs
0(Ω))3 = Hs(Ω), which completes the proof.

Remark 4.7 When s > 1
2

it is straightforward to extend the above proof to the case

when X1(µ) ↪→ Hs(Ω) is replaced with the weaker regularity assumption X1(µ) ↪→

(PHs(Ω))3. This is a significant improvement over the result of the theorem, since

X1(µ) ↪→ Hs(Ω) only when µ ≡ const.
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In this case, the particular form of (4.37) is: Find xh ∈ Xh,1 satisfying

ah,1(xh, yh) = (j, curlh
1yh)V∗

h,1
+ (ρ, divh

1,µyh)H∗
h,1

, ∀yh ∈ Xh,1 , (4.56)

where the corresponding bilinear form is

ah,1(xh, yh) = (curlh
1xh, curlh

1yh)V∗
h,1

+ (divh
1,µxh, divh

1,µyh)H∗
h,1

+
∑

F∈Fh

hF

{
(�xh×n�, �yh×n�)L2(F ) + (�µxh · n�, �µyh · n�)L2(F )

}
.

We emphasize that even though it looks complicated, in some cases, the above form

might be easier to implement. For example, if µ = 1, the sum of the two jump terms

simplify to (�xh�, �yh�)L2(F ).

3. Extensions to more general domains

a. Domains with curved boundaries

In this section we consider domains with piecewise smooth boundaries. We concen-

trate on the case when Ω has piecewise smooth boundary and Ωh ⊂ Ω are constructed

such that

max
x∈∂Ω

dist(x, ∂Ωh) ≤ C h2 . (4.57)

Here h is the mesh size of a globally quasiuniform mesh that triangulates Ωh. The

above inequality, in particular, implies that the approximation of the boundary should

improve after refinement, as shown on Figure 4.1. Similar construction can be carried

out in 3D, as shown in [68].

For standard elliptic second-order problems, this situation has been investigated,

see [89], and is well understood. In particular, it is known that the “variational crime”

of computing on Ωh instead of Ω does not affect the approximation order for standard

piecewise linear finite elements.
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Fig. 4.1. Curved boundary approximation.

On the other hand, as stated in the preface of [75], the effects of the approxi-

mation of smooth boundaries is not well understood for Maxwell’s equations. Some

numerical results from computations on a domain with curved boundaries using a

weighted regularization method are reported in [44]. We note that their method in-

volves the distance to the reentrant corners and edges of ∂Ω. This means that the

implementation in more general domains will be quite sophisticated.

Below, we will show that the application of our method on Ωh gives an approx-

imation to the solution on Ω for small enough h. This will be further demonstrated

in Chapter VII, where we approximate the eigenvalues in a ball by computations on

a sequence of inscribed, non-nested hexahedral meshes.

Let Ωh ⊂ Ω and ω = Ω \ Ωh. Then (4.57) implies that

µ(ω) ≤ C h2 .

It is well known that for any x ∈ H1
0(Ω),

‖x‖L2(ω) ≤ C h‖x‖H1
0(Ω) .

By interpolation, it follows that for any s ∈ [0, 1],

‖x‖L2(ω) ≤ C hs‖x‖Hs
0(Ω) . (4.58)
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Consider the weak formulation of a magnetostatic problem defined on Ω which

involves the solution space X1 = L2(Ω) and the test space Y1 = V1 × H1 = H1
0(Ω) ×

H1(Ω). Let (X̌h,1, Y̌h,1) be an approximation pair for the above spaces on Ωh, i.e.

X̌h,1 ⊂ L2(Ωh) and Y̌h,1 = V̌h,1 × Ȟh,1 ⊂ H1
0(Ωh) × H1(Ωh).

Using extension by zero in ω, we consider X̌h,1 and Ȟh,1 as subspaces of X1 and

H1. Specifically if E0 : L2(Ωh) �→ L2(Ω) denotes the extension by zero operator, then

we set Xh,1 = E0(X̌h,1) and Vh,1 = E0(V̌h,1). Assume that the same can be done

for Ȟh,1 using a bounded extension operator Eh, i.e. we set Hh,1 = Eh(Ȟh,1). The

extension Eh can be chosen to satisfy

‖Ehψh‖Hs(ω) ≤ C hs‖ψh‖Hs(Ωh) ∀ψh ∈ Hh,1 s ∈ [0, 1] . (4.59)

Such extensions are based on reflections of the values of the function in Ωh, and a

specific example is discussed in detail in [68]. However, in our development we will

only use the fact that Eh : H1(Ωh) �→ H1(Ω) is bounded.

Consider the least-squares approximation based on Xh,1 and Yh,1 = Vh,1 × Hh,1.

For any x ∈ X1 and ξ̌h ∈ X̌h,1, we have

‖x − E0ξ̌h‖L2(Ω) ≤ ‖x‖L2(ω) + ‖x − ξ̌h‖L2(Ωh) .

By (4.58), if x ∈ Hs
0(Ω) then

inf
ξh∈Xh,1

‖x − ξh‖L2(Ω) ≤ hs ‖x‖Hs
0(Ω) + inf

ξ̌h∈X̌h,1

‖x − ξ̌h‖L2(Ωh) .

In particular, when X̌h,1 consists of piecewise constants, we get an order of approx-

imation s for any x ∈ Hs(Ω) with s ∈ [0, 1/2). This is the same as the order of

approximation in L2(Ωh).

Next, we look at the construction of a stable approximation operator. For sim-

plicity, consider the specific case when the test spaces on Ωh contain Sh or Sh,0. Denote
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with Ǐh an operator from either H1(Ωh) or H1
0(Ωh) to Sh or Sh,0, respectively, which

satisfies (2.26) on Ωh. An examination of the proofs of discrete stability from the

previous sections shows that we need an operator Ih satisfying

h−2‖u − Ihu‖2
L2(Ωh) + ‖Ihu‖2

H1(Ωh) ≤ C‖u‖2
H1(Ω) . (4.60)

For u ∈ H1(Ω) we can set Ihu = EhǏh(u|Ωh
), and the inequality above is satisfied.

The construction of Ih : H1
0(Ω) �→ E0(Sh,0) proceeds as follows: for u ∈ H1

0(Ω)

let ũ ∈ Sh be the function Ǐh(u|Ωh
) modified by setting all degrees of freedom on ∂Ωh

equal to zero, i.e. if {vi} are the set of vertices of Ωh, we set

ũ(vi) =

⎧⎪⎨⎪⎩Ǐhu(vi) if vi �∈ ∂Ωh ,

0 if vi ∈ ∂Ωh .

Define Ihu = E0ũ. Using that for functions uh ∈ Sh, the norm ‖uh‖ is equivalent to

hd
∑

uh(vi). As well as (2.23), we get

C ‖(Ih − Ǐh)u‖2
L2(Ωh) ≤

∑
vi∈∂Ωh

h2 Ǐhu(vi)
2 ≤ h ‖u − Ǐhu‖2

L2(∂Ωh) + h ‖u‖2
L2(∂Ωh)

≤ ‖u − Ǐhu‖2
L2(Ωh) + h2 ‖u − Ǐhu‖2

H1(Ωh) + h ‖u‖2
L2(∂ω) .

Applying (2.23), (4.58) and the definition of Ǐh, we can conclude that

‖(Ih − Ǐh)u‖2
L2(Ωh) ≤ C h2 ‖u‖2

H1(Ω) .

Similarly,

‖(Ih − Ǐh)u‖2
H1(Ω) ≤ C

∑
vi∈∂Ωh

Ǐhu(vi)
2 ≤ C ‖u‖2

H1(Ω) ,

and therefore Ih satisfies (4.60).

Using the operator Ih, we can repeat the analysis in the case of stabilization by

form modification. The result is summarized below.
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Theorem 4.11 Let s ∈ [0, 1
2
) be such that X1(µ) ↪→ Hs(Ω). Denote with x the solu-

tion of the original magnetostatic problem (4.14) with data f ∈ L2(Ω) × L2(Ω) which

satisfies the compatability conditions (4.15). Let xh be the least-squares approximation

obtained by solving (4.37) with the form (4.55). Then we have the error estimate

‖x − xh‖L2(Ω) ≤ C(µ) hs ‖f‖L2(Ω) .

In the case of stabilization by adding bubble functions, we can perform the

analysis if we introduce bubbles on ∂Ωh, regardless of the boundary conditions. This

is because, for u ∈ H1
0(Ω), the difference u − Ihu is not zero on ∂Ωh. However, we

show below that this can be avoided, provided that the mesh size is small enough.

Fix xh ∈ Xh,1, and let ψ ∈ Hh,1. Integration by parts yields

(xh, ∇ψ)

‖ψ‖1

=
∑

F∈Fh, F �⊂∂Ωh

(�xh · n�, ψ)L2(F )

‖ψ‖1

+
∑

F∈Fh, F⊂∂Ωh

(xh · n, ψ)L2(F )

‖ψ‖1

.

The sum over the boundary faces can be estimated as

∑
F⊂∂Ωh

|(xh · n, ψ)L2(F )| ≤
∑

F⊂∂Ωh

‖xh‖L2(F )‖ψ‖L2(F ) ≤ C h− 1
2 ‖xh‖L2(Ωh) h ‖ψ‖H1(Ωh) .

Therefore

(1 − C h
1
2 )

(xh, ∇ψ)

‖ψ‖1

≤
∑

F∈Fh, F �⊂∂Ωh

(�xh · n�, ψ)L2(F )

‖ψ‖1

,

and the result follows from the previous considerations, provided that h < C−2.

We can conclude that we get the result of the previous theorem for the least-

squares method based on discrete inf-sup condition obtained by enriching the test

spaces with bubble functions. Specifically, we can either add face bubble functions

on the whole boundary, regardless of the boundary conditions, or we can skip the

bubbles on the boundary, provided that the mesh size is sufficiently small.
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b. Multiply-connected domains with holes

Here we consider a general domain Ω = Ωh, as the one shown in Figure 2.1, which

satisfies assumption (AΩ). Specifically, we allow for domains with multiple boundary

components {Γi}n1
i=0, where Γ0 is the outer boundary and domains that are multiply-

connected, depending on the number of cuts {Σj}n2
j=1. The extension, especially the

case n2 > 0, is based on the theory developed in [4] and §5 of [20]. Some discussion

of the definition and the implementation of the cuts Σj can be found in §8.3.4 of [18].

Recall that Ω0 = Ω \
⋃n2

j=1 Σj is simply connected. For ψ ∈ H1(Ω0), we denote

with ∇̃ψ its distributional gradient with respect to Ω0, considered as an element of

L2(Ω). This is generally different from ∇ψ ∈ D′(Ω).

In contrast to the special cases considered before, when n1 > 0 and n2 > 0,

the magnetostatic and the electrostatic problems (4.1) does no longer have unique

solutions. Namely, there are nonzero fields that solve the corresponding homogeneous

problems. These fields form the spaces K1(µ) and K2(ε) introduced below

K1(µ) = {u ∈ X1(µ) : ∇×u = 0 and ∇·µu = 0} ,

K2(ε) = {u ∈ X2(ε) : ∇×u = 0 and ∇·εu = 0} .

(4.61)

It is shown in [4] that these spaces are fundamentally related to the topological

characteristics n1 and n2. In fact,

dim(K1(µ)) = n2 and dim(K2(ε)) = n1 .
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It is also known, see Theorem 8’ in [35], that the followig graph

H1(Ω)
∇� H(curl)

∇×� H(div)
∇·� L2(Ω)

K1(1)

�

K2(1)

�

L2(Ω) �∇·
H0(div)

�
�∇×

H0(curl)
�

�∇
H1

0(Ω)

(4.62)

is “exact”, i.e. the kernel of each operator is the (direct) sum of the images of the

previous operators in the sequence.

Moreover, K2(ε) has the basis {∇ψi}n1
i=1, where ψi ∈ H1(Ω) satisfies⎧⎪⎨⎪⎩

−∇·ε∇ψi = 0, in Ω ,

ψi = δij, on Γj , 0 ≤ j ≤ n1 .

(4.63)

Here δij denotes the Kronecker Delta. The functions {ψi}n1
i=1 form a linear space

which we denote with K2(ε).

Similarly, K1(µ) has the basis {∇̃ζj}n2
j=1, where ζj ∈ H1(Ω0) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∇·µ∇ζj = 0, in Ω0,

µ
∂ζj

∂n
= 0, on ∂Ω,

�ζj�i = δij and

�
µ

∂ζj

∂n

�
i

= 0 on Σi , 1 ≤ i ≤ n2 .

(4.64)

Here �·�i denotes the jump across Σi. The functions {ζj}n2
j=1 form a linear space

denoted by K1(µ).

These characterizations, together with a compactness argument similar to the

one in Proposition 4.2, can be used to prove that

‖∇×h‖ + ‖∇·µh‖ +

n2∑
j=1

|〈µh · n, 1〉Σj
| is an equivalent norm on X1(µ) .
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Similarly,

‖∇×e‖ + ‖∇·εe‖ +

n1∑
i=1

|〈εe · n, 1〉Γi
| is an equivalent norm on X2(ε) .

It is therefore natural to consider the following generalized magnetostatic and elec-

trostatic problems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×h = j in Ω,

∇ · (µh) = ρ in Ω,

µh · n = σ on ∂Ω,

〈µh · n, 1〉Σj
= Cj 1 ≤ j≤ n2 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×e = j in Ω,

∇ · (εe) = ρ in Ω,

e×n = σ on ∂Ω,

〈εe · n, 1〉Γi
= Ci 1 ≤ i≤ n1 .

(4.65)

As a straightforward corollary of the norm equivalence we get that for data j ∈ L2(Ω),

ρ ∈ L2(Ω), σ ∈ H− 1
2 (∂Ω), σ ∈ H− 1

2 (∂Ω), and {Ck} ⊂ R satisfying appropriate

compatability conditions, the above problems have unique solutions h ∈ H(curl) ∩

H(div; µ) and e ∈ H(curl) ∩ H(div; ε).

Next, we discuss how we can extend our weak formulations to include these

systems. We start with a generalization of Theorem 2.8. We will need the following

results proven as Theorem 3.4 in [54] and Theorem 3.17 in [4].

Lemma 4.1 Let v ∈ L2(Ω) with ∇·v = 0. Then there exist a vector potential

v = ∇×w

in the following cases:

1. If 〈v · n, 1〉Γi
= 0, 0 ≤ i ≤ n1 then w ∈ H1(Ω).

2. If v · n = 0, 〈v · n, 1〉Σj
= 0, 0 ≤ j ≤ n2 then w ∈ H0(curl).

Using the Lemma, we can extend the Helmholtz decomposition results.
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Theorem 4.12 Let u be in L2(Ω). Then it can be decomposed as

u = ∇×w + µ∇ψ (4.66)

in the following spaces 3

1. w ∈ H0(curl) and ψ ∈ H1(Ω) ⊕ K1(µ).

2. w ∈ H1
0(Ω) and ψ ∈ H1(Ω) ⊕ K1(µ).

3. w ∈ H1(Ω) and ψ ∈ H1
0(Ω) ⊕ K2(µ).

In the last two cases, we additionally have

‖w‖H1(Ω) ≤ C‖∇×w‖L2(Ω).

Proof Let ϕ be the unique element of H1(Ω)/R satisfying

(µ ∇ϕ, ∇θ) = (u, ∇θ) , (4.67)

for any θ ∈ H1(Ω). Then ∇·(u − µ ∇ϕ − µ ∇̃ζ) = 0 and (u − µ ∇ϕ − µ ∇̃ζ) · n = 0

on ∂Ω, for any ζ ∈ K1(µ). Furthermore, for fixed Σj with 1 ≤ j ≤ n2

〈µ ∇̃ζ · n, 1〉Σj
=

n2∑
i=1

〈µ ∇̃ζ · n, ζj〉Σi
= (µ ∇ζ, ∇ζj)L2(Ω0) ,

by the generalization of the Green’s formula given as Lemma 3.10 in [4]. This implies

that ζ can be chosen appropriately, so that u− µ ∇ϕ− µ ∇̃ζ satisfies the second set

of conditions in Lemma 4.1. This gives the first decomposition.

Examining the proofs of Lemma IV.1 and Lemma IV.2 in [99], one can conclude

that the decomposition w = w̃ + ∇ξ with w̃ ∈ H1
0(Ω), ξ ∈ H1(Ω) and ‖w̃‖H1(Ω) ≤

C‖∇×w̃‖ holds in the general case n1 > 0, n2 > 0. This proves decomposition 2.

3For ψ = φ + ζ ∈ H1(Ω) ⊕ K1(µ), ∇ψ is understood as ∇φ + ∇̃ζ.
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For the last result, choose ϕ to be the unique element of H1
0(Ω), satisfying (4.67)

for any θ ∈ H1
0(Ω). Then ∇·(u−µ ∇ϕ−µ ∇ψ) = 0 for any ψ ∈ K2(µ). Furthermore,

for fixed Γi with 1 ≤ i ≤ n1

〈µ ∇ψ · n, 1〉Γi
= 〈µ ∇ψ · n, ψi〉Γ = (µ ∇ψ, ∇ψi)L2(Ω) ,

and therefore ψ can be chosen in such a way that 〈(u − µ ∇ϕ − µ ∇ψ) · n, 1〉Γi
= 0.

Now, the result follows from the proof of the existence for the first vector potential

in Lemma 4.1.

Since the weak formulations for the magnetostatic and electrostatic problems pre-

sented in the first two sections of this chapter were essentially based on the Helmholtz

decompositions, it follows that the theory presented there will work if we increase the

spaces H1 and H2 as

H1 = H1(Ω) ⊕ K1(µ) and H2 = H1
0(Ω) ⊕ K2(ε) . (4.68)

Specifically, the weak formulation of the magnetostatic problem from (4.65) is⎧⎪⎨⎪⎩
curl1h = j′ in V∗

1 ,

div1,µh = ρ′ in H∗
1 ,

where div1,µh was naturally extended to a bounded linear functional on K1(µ)∗ by

〈div1,µh, ζ〉 = −(µh, ∇̃ζ)L2(Ω) ∀h ∈ L2(Ω), ζ ∈ K1(µ) .

Furthermore, j′ = j is in H1
0(Ω)

∗
and ρ′ ∈ (H1(Ω) ⊕ K1(µ))∗ is defined as follows: if

ψ = φ +
∑n2

j=1 αjζj ∈ H1(Ω) ⊕ K1(µ), then

〈ρ′, ψ〉 = 〈ρ, ψ〉 − 〈σ, ψ|∂Ω〉 −
n2∑

j=1

αjCj ,

where ρ ∈ H1(Ω)∗ and σ ∈ H− 1
2 (∂Ω).
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Similarly, the weak formulation of the electrostatic problem from (4.65) reads⎧⎪⎨⎪⎩
curl2e = j′ in V∗

2 ,

div2,εe = ρ′ in H∗
2 ,

where, div2,εe was naturally extended to a bounded linear functional on K2(ε)
∗,

j′ = j − σ with j ∈ H1(Ω)
∗
, σ ∈ H− 1

2 (∂Ω) and ρ′ ∈ (H1
0(Ω) ⊕ K2(ε))

∗ is defined as

follows: if ψ = φ +
∑n1

i=1 αiψi ∈ H1
0(Ω) ⊕ K2(ε), then

〈ρ′, ψ〉 = 〈ρ, ψ〉 −
n1∑

i=1

αiCi ,

where ρ ∈ H1
0(Ω)∗.

We next consider discretization. Without loss of generality, we may assume that

the cuts {Σj} align with the mesh. Note that an alternative characterization of (4.68)

is

H1 = {ζ ∈ H1(Ω0) : �ζ�j = const , 1 ≤ j ≤ n2} ,

H2 = {ψ ∈ H1(Ω) : ψ|Γ0
= 0 , ψ|Γi

= const , 1 ≤ i ≤ n1 .}
(4.69)

Therefore, to define Hh,1, we start with the usual approximation space for H1(Ω)

and append functions which are discontinuous on the cuts. Specifically, we add basis

functions which are 1 on the nodes on one side of Σj and vanish on all remaining

nodes (including those on the opposite side of Σj).

The discrete least-squares methods are still stable. For example, the method

with bubble functions was based on the fact that for given x ∈ Xh,1 and (v, h) ∈ Y1,

one then constructs a pair (vh, hh) ∈ Yh,1 satisfying

a1(x, (vh, hh) = a1(x, (v, h)) (4.70)

and

‖(vh, hh)‖Y1 ≤ C‖(v, h)‖Y1 .
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The construction started with a stable approximation operator Ih as an initial ap-

proximation and then used the bubble functions to enforce (4.70) on the remainder.

Similarly, the method based on form modification depended only on integration by

parts and the properties of Ih.

Thus, to prove stability of the two discrete least-squares methods, we only need

to demonstrate the construction of Ih satisfying (2.26). We simply use a modified

approximation operator for H1. Specifically, let Ĩh be a stable approximation operator

into the subspace of piecewise linear functions with arbitrary discontinuities across

the cuts, and define Ihh equal to Ĩhh on the nodes not on the cut and by a boundary

averaging operator (on each side of the cut) such as that given in [87]. This results

in a stable approximation operator. Moreover, since h differs by a constant on each

side of the cut, and the boundary averaging operator preserves constants, Ihh is in

Hh,1 and has the same jumps as h. Using Ih, the remainder of the proof considered

before goes through.

For Hh,2, we start with the finite element approximation of H1
0(Ω) and append

basis functions which are one on a given connected component of the boundary and

vanish at all remaining nodes. To prove the stability of the discrete least-squares

methods, we are again left with the construction of a suitable stable approximation

operator. If Ĩh denotes a stable approximation operator into the finite element sub-

space with arbitrary boundary values, we set Ihh to be Ĩhh at the interior nodes and

interpolate h at the boundary nodes. It is easy to prove, similar to the case of curved

boundary, that Ih is a stable interpolation operator which reproduces h on ∂Ω. With

this operator, the proof proceeds as before.
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CHAPTER V

THE EIGENVALUE PROBLEM

In this chapter we consider the time-harmonic eigenvalue problem (1.7), i.e. we are

looking for the eigenvalues λ ∈ C and their corresponding magnetic and electric

eigenfunctions h , e : Ω → C3 satisfying1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×h = λ ε e in Ω,

∇×e = −λ µ h in Ω,

e×n = 0 on ∂Ω,

µ h · n = 0 on ∂Ω .

(5.1)

Clearly λ = 0 is an eigenvalue with an eigenspace consisting of gradients2. This

dissertation deals only with the physically more interesting case λ �= 0. Then a

standard interpretation of (5.1) is to look for h ∈ X1(µ) and e ∈ X2(ε). We refer to

this case as the original form of the eigenvalue problem.

Note that since λ �= 0, we can use Theorem 2.5 to deduce the usual divergence

equations from (5.1): ⎧⎪⎨⎪⎩
∇ · (µh) = 0 in Ω,

∇ · (εe) = 0 in Ω .

(5.2)

Even though (5.2) is a corollary of (5.1), we will see that a good approximation

method should take these equations into account explicitly.

One of the more popular approaches to the eigenvalue problem is to eliminate

1 The following additional terminology is often used: the Maxwell eigenvalues are
called eigenfrequencies, and the eigenfunctions are called eigenmodes, eigenfields or
eigenvectors.

2The eigenvectors in this case can be completely characterized using the exact
sequence with zero boundary conditions from (4.62).
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one of the fields, e.g. h, and reduce it to a second-order problem for e. The reduced

problem involves the curl-curl operator and reads

∇×µ−1∇×e = ω2ε e , (5.3)

where ∇·εe = 0, e×n = 0 and ω2 = −λ2. This, of course, is understood in the sense

that ω2 ∈ C and e ∈ HC

0 (curl) satisfy

(µ−1∇×e, ∇×w) = ω2 (ε e, w) ∀w ∈ HC

0 (curl) . (5.4)

A straightforward corollary of (5.4) is that ω2 ∈ R, and therefore, the eigenvalues

of the original eigenvalue problem (5.1)-(5.2) are purely imaginary and symmetric

with respect to the origin:

λ = ± i ω , ω ∈ R+ . (5.5)

Consequently, (e, h, λ) is an eigenpair of (5.1) if and only if (�(e), i�(h), λ) and

(�(e),−i�(h), λ) are eigenpairs of (5.1). This means that to exhibit a basis for the

eigenspace corresponding to an eigenvalue of the form (5.5), we can restrict to real

electric and purely imaginary magnetic eigenfunctions.

In practical applications ω corresponds to the frequency of propagation, and

the goal is to compute the first few minimal positive ω with their corresponding

eigenfields. This is critical, for example, in the design of accelerator structures where

the computed eigenfunctions are used as a “wake field”, see [2] as well as [103] and

the reports therein.

The importance of the Maxwell eigenvalue problem has led many authors to

investigate its numerical approximation. A detailed survey of a variety of different

methods was published recently in [44]. Early engineering approximations used con-

forming finite element spaces to approximate (5.4), transformed to a vector Helmholtz
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equation by Theorem 2.5. It was observed, see [84, 16], that the discrete method con-

verges, but to a wrong solution3! Such solutions are called spurious and can be

avoided if, e.g., the divergence equations (5.2) are properly taken into account.

Fig. 5.1. Cross-section of a coaxial cable with an offset center conductor: pollution by

spurious modes. After Paulsen and Lynch [84], c© 1991 IEEE.

This is illustrated by Figure 5.1 where we present an example taken from [84].

On the left, we have a mesh showing two regions with different material properties.

In the middle, we have the real part of the reference electric field computed by solving

the eigenvalue problem. On the right, we show the real part of the discrete solution

obtained by straightforward application of node-based finite elements. Clearly this

approximation is severely distorted by spurious modes. For more details see ??, or

[59], pp. 200–202.

Other approaches based on conforming finite elements are known to have prob-

3Specifically, recall the definition of PHs(Ω) in (2.16) and set

H1(µ) = X1(µ) ∩ (PHs(Ω))3 and H2(ε) = X2(ε) ∩ (PHs(Ω))3 .

It is shown in [45], that those spaces are closed in X1(µ) and X2(ε) respectively.
However, if Ω is not convex, H1(µ) � X1(µ) with infinite co-dimension. In fact,
X1(µ) = H1(µ) ⊕ ∇Sµ, where Sµ is a space of singular functions for the operator
−∆Neu

µ (see [50] for details). We conclude that there are elements in X1(µ), X2(ε)
which can not be approximated (in ‖·‖X1(µ) and ‖·‖X2(ε)) by continuous finite elements.
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lems due to low regularity solutions and multiple valued potentials [52, 61, 71].

Various alternatives have been proposed in order to avoid spurious solutions.

One of the more popular approaches for this problem is based on the curl-conforming

spaces, such as those developed by Nédélec (cf. [77, 78]). Analysis of the eigenvalue

problem using these spaces either involves proving collective compactness4 [69, 76] or

proving convergence in norm [17, 15]. The discrete eigenvalue problem is then solved

by the use of a shift-and-invert algorithm. A prerequisite for this algorithm is an

estimate for the eigenvalue, which may be difficult to obtain.

New methods for dealing with these problems have been introduced recently

[43, 48, 85]. The methods of [43] depend on a weighted functional with weights

depending on the strength of the singularities at corners and edges. In [48] the authors

proved discrete compactness in two dimensions for a class of hp finite elements. An

interior penalty discontinuous Galerkin method is proposed in [85].

The approach which is presented in this chapter is based on [20]. We first relate

the problem to a block system involving the solution of two div-curl systems. These

systems are formulated as variational problems corresponding to a magnetostatic and

an electrostatic problems following the theory developed in Chapter IV. We then show

that the eigenfunctions with non-zero eigenvalues are also eigenfunctions of a compact

skew-Hermitian problem and use our div-curl approximation to derive a sequence of

approximation operators. Note that since the curl-curl operator is not elliptic, its

inverse is not compact which leads to much more complicated analysis. In contrast,

our formulation involves the compact “pseudo” inverse mentioned above. To obtain

a system which is more amenable to iterative computation, we next show that the

original eigenpairs can be computed from those of a compact symmetric real operator.

4 We say that {Kn} ⊂ L(X, Y) are collectively compact if for any bounded set
M ⊂ X, the set ∪nKn(M) has a compact closure in Y. See [75], pp. 32.
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This represents a significant computational advantage since the iterative techniques

for computing the eigenvalues of large symmetric problems are more efficient and

robust than those developed for non-symmetric and/or indefinite systems.

A. Reformulation of the eigenvalue problem

For simplicity, we shall assume that Ω = Ωh is simply connected with a connected

boundary, i.e. n1 = 0, n2 = 0. The case of more general domains will be addressed in

§D.

We quote the following result for the original eigenvalue problem, in the form

(5.4), given as Theorem 4.18 in [75].

Theorem 5.1 There is an infinite discrete set of eigenvalues 0 < ω2
1 ≤ ω2

2 ≤ . . . with

corresponding eigenfunctions en �= 0, such that ωn → ∞ and (en, em)L2
ε(Ω) = 0 for

m �= n.

Next, we reformulate (5.1)-(5.2) by showing that it is related to an eigenvalue

problem involving a compact Hermitian semidefinite operator.

Suppose that e ∈ X2(ε), h ∈ X1(µ) is an eigenpair corresponding to a nonzero

eigenvalue λ. The idea is to split the original problem into two independent mag-

netostatic and electrostatic systems. Namely, it is natural to consider the following

source problems ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×h = f1 in Ω,

∇ · (µh) = 0 in Ω,

µh · n = 0 on ∂Ω,

(5.6)
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×e = f2 in Ω,

∇ · (εe) = 0 in Ω,

e×n = 0 on ∂Ω.

(5.7)

Clearly these are equivalent to (5.1)-(5.2) if we set f1 = λ ε e and f2 = −λ µ h. Below

we refer to both of these problems by the use of the subscript k which equals 1 for

(5.6) and is 2 for (5.7).

Recall that the weak formulations introduced in Chapter IV, involved the solution

spaces Xk and the test spaces Yk = Vk×Hk defined by (4.5) and (4.20). Furthermore,

recall definitions (4.13) and (4.29) of the spaces Vk,0 related to the compatability

conditions. Let Q1 : L2(Ω) �→ V1,0 be the L2
ε(Ω) orthogonal projection onto V1,0, i.e.

Q1w = ∇ϕ, where ϕ ∈ H1
0(Ω) satisfies

(ε∇ϕ, ∇θ) = (εw, ∇θ) ∀θ ∈ H1
0(Ω) .

Similarly, Q2 : L2(Ω) �→ V2,0 is the L2
µ(Ω)-projection defined by Q2w = ∇ϕ, where

ϕ ∈ H1(Ω)/R satisfies

(µ∇ϕ, ∇θ) = (µw, ∇θ) ∀θ ∈ H1(Ω)/R .

By Theorem 4.1, for any g1 ∈ L2
ε(Ω), the weak formulation of the magnetostatic

problem (5.6) with data f1 = ε (I − Q1)g1 will have a unique solution h ∈ L2
µ(Ω).

Therefore, we can define the solution operator S1 : L2
ε(Ω) �→ L2

µ(Ω), by x1 = S1g1,

where x1 ∈ L2
µ(Ω) satisfies

a1(x1, (v, h)) ≡ (x1, ∇×v) + (x1, µ∇h) = (ε(I − Q1)g1, v), ∀(v, h) ∈ Y1 . (5.8)
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Furthermore, Corollary 4.2 implies that

S1 : L2
ε(Ω) �→ X1(µ) , ∇×S1g1 = ε(I − Q1)g1 and ∇·(µS1g1) = 0 . (5.9)

Similarly, Theorem 4.4, implies that for any g2 ∈ L2
µ(Ω), the weak formulation of

the electrostatic problem (5.7) with data f2 = µ (I − Q2)g2 will have unique solution

e ∈ L2
ε(Ω). Therefore, we can define the solution operator S2 : L2

µ(Ω) �→ L2
ε(Ω), by

x2 = S2g2, where x2 ∈ L2
ε(Ω) satisfies

a2(x2, (v, h)) ≡ (x2, ∇×v) + (x2, ε∇h) = (µ(I − Q2)g2, v), ∀(v, h) ∈ Y2 .

By Corollary 4.4

S2 : L2
µ(Ω) �→ X2(ε) , ∇×S2g2 = µ(I − Q2)g2 and ∇·(εS2g2) = 0 . (5.10)

The first result of this section is that the solution operators Sk can be used to

obtain an equivalent formulation of the eigenvalue problem.

Theorem 5.2 Consider the block-matrix operator B : L2
ε(Ω) × L2

µ(Ω) �→ L2
ε(Ω) ×

L2
µ(Ω) defined by

B =

⎛⎜⎝ 0 −S2

S1 0

⎞⎟⎠ . (5.11)

Then, (e, h, λ) with λ �= 0 is an eigenpair of the original eigenvalue problem (5.1)-

(5.2) if and only if

B

⎛⎜⎝e

h

⎞⎟⎠ = σ

⎛⎜⎝e

h

⎞⎟⎠ , (5.12)

with σ = λ−1.
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Proof Let e ∈ X2(ε), h ∈ X1(µ), λ �= 0 satisfy (5.1). By density (Theorem 2.5),

(∇×h, ∇ψ) = 0 = λ(εe, ∇ψ) ∀ψ ∈ H1
0(Ω) ,

(∇×e, ∇ψ) = 0 = −λ(µh, ∇ψ) ∀ψ ∈ H1(Ω) .

It follows that the eigenfunctions define compatible data

Q1e = 0 and Q2h = 0 .

Therefore,

S1(λe) = h and S2(−λh) = e .

On the other hand, let e ∈ L2
ε(Ω), h ∈ L2

µ(Ω) and σ �= 0 satisfy (5.12). By (5.9)

and (5.10), it follows that e ∈ X2(ε), h ∈ X1(µ) and

∇×σh = ε(I − Q1)e , ∇×σe = −µ(I − Q2)h .

Furthermore, the divergence equations from (5.9) and (5.10) plus the boundary con-

ditions in X1(µ) imply

Q2S1e = 0 and Q1S2h = 0 ∀e ∈ L2
ε(Ω) , h ∈ L2

µ(Ω) . (5.13)

Therefore, (e, h, σ−1) is an eigenpair of the original eigenvalue problem.

Next we investigate the properties of B. Theorem 2.7 implies that Sk, and

therefore B, is a compact operator. We claim that B is also skew-Hermitian on

L2
ε(Ω) × L2

µ(Ω). Indeed,⎛⎜⎝B

⎛⎜⎝e

h

⎞⎟⎠ ,

⎛⎜⎝ẽ

h̃

⎞⎟⎠
⎞⎟⎠ = −(S2h, εẽ) + (S1e, µh̃).
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Using (5.9), (5.10) and (5.13) gives

(S2h, εẽ) = (S2h, ε(I − Q1)ẽ) = (S2h, ∇×S1ẽ)

= (∇×S2h, S1ẽ) = (µ(I − Q2)h, S1ẽ) = (µh, S1ẽ)

from which it follows that B is skew-Hermitian. Note that the above identity is just

S∗
1 = S2 , (5.14)

where S1 is considered as an operator from L2
ε(Ω) to L2

µ(Ω). When S1 is considered

as an operator on L2(Ω), we will denote its adjoint by St
1. Clearly S∗

1 = ε−1St
1µ.

The eigenvectors and eigenvalues of B are related to the compact positive semidef-

inite operator

−B2 =

⎛⎜⎝S2S1 0

0 S1S2

⎞⎟⎠ . (5.15)

This operator is Hermitian relative to the inner product on L2
ε(Ω) × L2

µ(Ω). The

nonzero eigenvalues and the corresponding eigenvectors for B can be recovered from

those of either diagonal block above. For example, S2S1 : L2
ε(Ω) → L2

ε(Ω) is Hermitian

and if the real function e satisfies

S2S1e = τ 2e (5.16)

then, ⎛⎜⎝ e

i
τ
S1e

⎞⎟⎠ and

⎛⎜⎝ e

−i
τ

S1e

⎞⎟⎠
are eigenvectors for B with eigenvalues −iτ and iτ , respectively. We get all nonzero

eigenvalues and their corresponding eigenvectors this way. Indeed, (e, h, σ) satisfy

5.12 if and only if S1e = σh and S2h = −σe. By elimination of h, this is clearly

equivalent to S2S1e = −σ2e and h = σ−1S1e. The rest follows from the fact that σ
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is purely imaginary (since B is skew-Hermitian).

Remark 5.1 Parallel to B, consider the real compact Hermitian operator

B̃ =

⎛⎜⎝ 0 S2

S1 0

⎞⎟⎠ . (5.17)

Clearly (e,∓ i h) is an eigenfunction of B corresponding to the eigenvalue σ = ± i τ

if and only if (e, h) is an eigenfunction of B̃, corresponding to the eigenvalue τ .

We summarize the above considerations, plus the Hilbert-Schmidt theory from

Theorem 2.2, in the main result of this section:

Theorem 5.3 The operator S2S1 : L2
ε(Ω) → L2

ε(Ω) is compact, Hermitian and pos-

itive semi-definite. It has a countable sequence of nonzero positive eigenvalues τ 2
n ∈

R+, τ 2
1 > τ 2

2 > . . . > 0, each of finite multiplicity and such that τn → 0. The

eigenvectors corresponding to different eigenvalues are orthogonal in L2
ε(Ω).

Furthermore, the eigenvalues of the original eigenvalue problem (5.1)-(5.2) are

given by λ = ±i τ−1. Therefore, the problem of computing the few minimal (in modu-

lus) eigenvalues λ translates into computing the few maximal eigenvalues of S2S1. A

basis for the eigenspace corresponding to λ is given by (e, λS1e), where e is a basis

of the real eigenfunctions of S2S1 corresponding to τ 2.

Finally, the problems (5.3) and (5.16) are equivalent, with ω2 = τ−2. In partic-

ular, this theorem is equivalent to Theorem 5.1.

Remark 5.2 Analogous result holds for the lower right diagonal block of −B2, i.e.

S1S2 : L2
µ(Ω) → L2

µ(Ω) is compact, Hermitian (in L2
µ(Ω)) and positive semi-definite.

The difference is that, this way, we exhibit a different basis for the eigenspace con-

sisting of real magnetic and purely imaginary electric fields.
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B. Approximation of the least-squares solution operators

We next consider approximation to the eigenvalue problem for the operator S2S1. Our

first goal is to define discrete approximations to each of S2 and S1.

Let Xh,1 = Xh,2 = Xh ⊂ L2(Ω) and Yh,k ⊂ Yk be approximation subspaces as

discussed in §IV.C. We consider both of the discrete least-squares methods (based

on a discrete inf-sup condition and based on form modification) presented there. The

simplest discretization involved setting Xh to be the space of piecewise constant vector

fields with respect to the mesh, with companion spaces Yh,k consisting of continuous

piecewise linear functions (satisfying the appropriate boundary conditions). For the

method based on a discrete inf-sup condition, Yh,k had to be enriched with bubble

functions on the faces.

As before, we assume that (AΩ) and (Aµ,ε) hold, and that there exists s ∈ [0, 1],

such that the estimate (3.21) holds with χ(h) = C hs, i.e.

inf
xh,k∈Xh,k

‖xk − xh,k‖ ≤ C hs ‖xk‖s ∀xk ∈ Hs(Ω) . (5.18)

Additionally, we assume the continuous embeddings (see Theorem 2.7)

X1(µ) , X2(ε) ↪→ Hs(Ω) . (5.19)

Below, we briefly recall the setup of the discrete least-squares approximations to

the magnetostatic and electrostatic problems as presented in Chapter IV. We first

set Th,k ≡ TYh,k
: Y∗

h,k → Yh,k by

(Th,k�, v)1 = 〈�, v〉 ∀v ∈ Yh,k .

The approximation xh,k is then defined to be the unique function in Xh satisfying

〈Ah,kxh,k, Th,kAh,ky〉 = 〈fk, Th,kAh,ky〉, ∀y ∈ Xh, (5.20)
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where Ah,k is a map of Xh into Y∗
h,k. The definition of Ah,k is given by (4.36)-(4.39)

or (4.55) depending on the method.

To define our approximation for Sk, we fix gk ∈ L2(Ω) and set fk in (5.20) by

〈f1, (v, h)〉 = (ε(I − Qh,1)g1, v) , 〈f2, (v, h)〉 = (µ(I − Qh,2)g2, v)

and define Sh,kgk = xh,k. The operators Qh,k, k ∈ {1, 2}, are defined in terms of the

approximation subspace for Vk,0. For example, if Hh,k is the approximation subspace

associated with Yh,k, then we define Qh,1v = ∇φ where φ ∈ Hh,2 satisfies

(ε ∇φ,∇θ) = (ε v, ∇θ) ∀θ ∈ Hh,2. (5.21)

Similarly, we define Qh,2v = ∇φ where φ ∈ Hh,1 satisfies

(µ ∇φ,∇θ) = (µ v, ∇θ) ∀θ ∈ Hh,1. (5.22)

Remark 5.3 Actually, as will become clear later, the bubble functions are not needed

for Qh,k. For example, for the case when Xh is piecewise constant, it suffices to use

the subspaces of piecewise linear functions with appropriate boundary conditions.

To analyze the approximation properties of the above operators, we shall need

regularity results for second-order problems with piecewise smooth coefficients. Specif-

ically, we will assume that either (AL2

∆Dir
ε ,∆Neu

µ
) or (A∆Dir

ε ,∆Neu
µ

) holds.

Additionally, we will need the following

Assumption (Aε,µ×) There exists γ0 ∈ (0, 1] such that the operators of multiplica-

tion by ε and µ are bounded from H1(Ω) to Hγ(Ω) for any 0 ≤ γ < γ0.

This assumption holds for 0 < γ < 1
2

when the coefficients are piecewise smooth with

respect to the polygonal subdomains {Ωi} from (Aµ,ε). Indeed, for 0 < γ < 1
2

and

Lipschitz continuous domains D, Hγ(D) = H
γ
0(D) by Theorem 2.4, from which it
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follows, by interpolation between
∑

i H
1
0(Ωi) and L2(Ω), that Hγ(Ω) is isomorphic to∑

i H
γ(Ωi). Since ε is piecewise smooth, multiplication by ε is a bounded operator

on
∑

i H
γ(Ωi). For smooth coefficients, one can take γ = 1.

Remark 5.4 The boundedness of multiplication by a function ε in general Sobolev

spaces is characterized in Corollary 1.1 from [54]. For example, if ε ∈ Hs(Ω), s > 1
2

then we can take γ0 = s, if d = 2, and γ0 = s − 1
2
, if d = 3.

In the next result, we characterize the rate with which Qh,k approximates Qk in

the space L(L2(Ω), H−γ(Ω)).

Lemma 5.1 Let s ∈ [0, 1] be such that (5.18) and (AL2

∆Dir
ε ,∆Neu

µ
) hold. For any γ ∈

[0, 1] and k ∈ {1, 2} there exists C = C(s) independent of h, such that

‖(Qk − Qh,k)gk‖−γ ≤ C hsγ‖gk‖ , ∀gk ∈ L2(Ω) . (5.23)

If we assume the stronger shift theorem (A∆Dir
ε ,∆Neu

µ
), then

‖(Qk − Qh,k)gk‖−γ ≤ C hmin(γ,s)‖gk‖ , ∀gk ∈ L2(Ω) . (5.24)

Proof We concentrate on the case k = 1. Let w = (Qh,1 − Q1)g1. Recall that

Q1g1 = ∇u where u ∈ H1
0(Ω) satisfies (2.18) with 〈f, θ〉 = (εg1, ∇θ). In addition,

Qh,1g1 = ∇uh where uh is the elliptic projection of u into Hh,2, i.e., w = ∇(u−uh).

Now,

‖∇(u − uh)‖ ≤ C‖g1‖.

Furthermore, by finite element duality and (AL2

∆Dir
ε ,∆Neu

µ
),

‖∇(u − uh)‖−1 ≤ ‖u − uh‖ ≤ Chs‖u‖1 ≤ Chs‖g1‖.

By interpolation,

‖w‖−γ = ‖∇(u − uh)‖−γ ≤ Chsγ‖g1‖.
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If we assume (A∆Dir
ε ,∆Neu

µ
), then by finite element duality

‖∇(u − uh)‖−s ≤ ‖u − uh‖1−s ≤ Chs‖u‖1.

This implies (5.24) in each of the cases γ ≤ s and γ > s.

We now can formulate the main result of this section, which states that Sh,k

approximates Sk in norm.

Theorem 5.4 Let γ and s be two numbers in [0, 1], such that (Aε,µ×), (5.18), (5.19)

and (AL2

∆Dir
ε ,∆Neu

µ
) hold. Then, there is a positive constant C = C(γ, s) independent of

h such that for k = 1, 2,

‖Sk − Sh,k‖ ≤ Chsγ.

Here ‖ · ‖ is the operator norm in L(L2(Ω), L2(Ω)).

If the stronger shift theorem (A∆Dir
ε ,∆Neu

µ
) holds, then we get the improved estimate

‖Sk − Sk,h‖ ≤ Chmin(γ,s).

Proof We consider k = 1. The case of k = 2 is similar.

We are going to apply Corollary 3.5 of Theorem 3.3 with X̂ = Hs(Ω) and Ŷ =

L2(Ω). In this case, the condition (3.35) follows by combining (4.12) and (5.19). We

also have χ(h) ≈ hs, and α(h) = 0 for both least-squares approximation methods.

Due to the weight in the projectors, the proof of the theorem should be slightly

modified. Specifically, for g1 ∈ L2(Ω) we need the following additional estimate based

on (Aε,µ×):

|(ε(Q1 − Qh,1)g1, Th,1Ah,1(xh − ζh))| ≤ ‖(Q1 − Qh,1)g1‖−γ‖Th,1Ah,1(xh − ζh)‖1 .

This allows us to obtain the estimate (3.36):

‖S − Sh‖L2(Ω)→L2(Ω) ≤ C (χ(h) + γ(h) + α(h))
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with γ(h) = ‖Qk − Qh,k‖L2(Ω)→H−γ(Ω)). Now the result follows from Lemma 5.1.

An alternative presentation of the proof, given in [20], proceeds as follows: fix

g1 ∈ L2(Ω), let x1 and xh,1 be the solutions of (5.8) and (5.20), respectively, with

data

〈f1, (v, h)〉 = (ε(I − Q1)g1, v).

Then,

S1g1 − Sh,1g1 = x1 − xh,1 + Rh,1(Qh,1 − Q1)g1 .

Here Rh,1 denotes the operator on L2(Ω) defined by Rh,1w = xh,1 where xh,1 solves

(5.20) with data 〈f1, (v, h)〉 = (ε w, v). By Theorems 4.7 and 4.10

‖x1 − xh,1‖ ≤ C hs ‖ε(I − Q1)g1‖ ≤ C hs ‖g1‖.

Let w = (Qh,1 − Q1)g1. To complete the proof we only need to estimate ‖Rh,1w‖.

Recall that ‖Ah,1x‖Y∗
h,1

is equivalent to the norm ‖x‖Xh
, uniformly in h. Thus,

‖Rh,1w‖2 ≤ C (εw, Th,1Ah,1Rh,1w) ≤ C ‖w‖−γ‖εTh,1Ah,1Rh,1w‖γ

≤ C‖w‖−γ‖Th,1Ah,1Rh,1w‖1.

Moreover,

‖Th,1Ah,1Rh,1w‖1 ≤ ‖Ah,1Rh,1w‖Y∗
h,1

≤ C‖Rh,1w‖.

The result follows from Lemma 5.1.

C. The eigenvalue and eigenvector discretization

In this section, we define and analyze an approximation to the original Maxwell

eigenvalue problem (1.7). As previously observed, this reduces to approximating the

eigenvalues and eigenvectors for either of the symmetric semi-definite operators S2S1

or S1S2. We could directly use the discrete operators Sh,k, k = 1, 2. However, this
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will be avoided for two reasons. First, one would have to code both Sh,1 and Sh,2.

In addition, even though the product of the continuous operators is symmetric, the

product of their discrete counterparts is not likely to be symmetric.

We circumvent the above mentioned problems by implementing only one of the

discrete operators, e.g., Sh,1. Then, instead of implementing Sh,2, we implement the

adjoint S∗
h,1 of Sh,1 considered as an operator of L2

ε(Ω) into L2
µ(Ω). The implementa-

tion of S∗
h,1 = ε−1St

h,1µ is relatively straightforward given the implementation of Sh,1.

Indeed, Sh,1 is implemented as a sequence of matrix operations and the implementa-

tion of St
h,1 just reduces to transposing the matrix operations, and running them in

reverse order. Note that S∗
h,1Sh,1 is symmetric by definition.

The symmetry of the approximation is an important property. This is because re-

alistic computations for three dimensional electromagnetic devices necessarily involve

minimal problem sizes on the order of 106 unknowns. The eigenvalues and eigenvec-

tors of such systems cannot be computed by direct methods. As we mentioned, it

is often of interest to compute a block of the smallest eigenvalues and eigenvectors

of (5.1) [60, 88]. This means that we are required to iteratively compute the largest

eigenvalues and their corresponding eigenvectors for the problem S∗
h,1Sh,1x = τ 2x.

The problem of iteratively computing the largest eigenvalues of a symmetric positive

semi-definite problem has been well studied, see, for example, [63, 51, 65]. Even block

versions of the power method work, although not as well as other iterative strategies.

A survey of iterative methods for eigenvalue problems can be found in [64].

By Theorem 5.4, Sh,1 converges to S1 in norm. It immediately follows that S∗
h,1

converges to S∗
1 = S2. It follows from the identity

S∗
h,1Sh,1 − S2S1 = (S∗

h,1 − S2)Sh,1 + S2(Sh,1 − S1)

that S∗
h,1Sh,1 converges to S2S1 in norm. By standard perturbation theory, see Theo-
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rem 3.16, as well as IV-§3.5 in [62], one can conclude that if τ 2 > 0 is an eigenvalue

of S2S1 of multiplicity k and ν > 0 is given, such that there are no other eigenvalues

in the interval δ = (τ 2 − ν, τ 2 + ν), then for h small enough there will be exactly k

discrete eigenvalues {τ 2
i (h)}k

i=1 (counted up to multiplicity) in δ. Thus, there will be

no spurious discrete eigenvalues.

Alternatively, we can use Sh,1S
∗
h,1 to approximate S1S2, Sh,2S

∗
h,2 to approximate

S2S1, and S∗
h,2Sh,2 to approximate S1S2. The analogous results for eigenvalue/eigenvector

convergence follow for these operators as well.

Using the general results for spectral approximation of compact operators (see

e.g. [24, 82, 8]), we get that there is a constant C = C(τ) > 0, such that if V is

the eigenspace corresponding to τ 2, and Vh is the eigenspace corresponding to the

eigenvalues of S∗
h,1Sh,1 in δ, then for small enough h

δ̂(V, Vh) ≡ sup
v∈V,‖v‖=1

dist(v, Vh) ≤ C ‖S2S1 − S∗
h,1Sh,1‖ . (5.25)

The quantity δ̂(V, Vh) is called the “gap” between V and Vh. It is a measure for

closeness of subspaces which, in this case, is related the angle between them 5. Fur-

ther details and results concerning δ̂ can be found in [62], pp. 197–198. Related

estimates demonstrating that each orthonormal basis of V can be approximated by

an orthonormal basis of Vh, with the same rate, are given in [24], pp. 532–533.

Combining (5.25) with Theorem 5.4, we obtain the following convergence result

for the eigenvectors.

Theorem 5.5 Let ω > 0 be fixed, such that λ = iω is an eigenvalue of (5.1). Let

5In fact δ̂(V, Vh) = sin(θ), where θ is the (acute) “angle” between the two spaces,
i.e. the maximum of the angles between elements of V and their orthogonal projec-
tions on Vh. This relation can be used to compute the rate of approximation of the
eigenspaces, see [66].



99

τ = ω−1, and V , Vh are the eigenspaces defined above. Then, for small enough h,

there is a positive constant C = C(ω) independent of h such that,

δ̂(V, Vh) ≤ Chsγ .

Regarding the eigenvalues, the general theory states that there exists a constant

C = C(τ) > 0, such that if h is small enough

|τ 2 − τ 2
i (h)| ≤ C ‖S2S1 − S∗

h,1Sh,1‖ ,

for all i = 1, . . . , k. Thus, in general, we get the following convergence result for the

eigenvalues.

Theorem 5.6 Let ω > 0 be fixed, such that λ = iω is an eigenvalue of (5.1). Let

τ = ω−1, and {τ 2
i (h)}k

i=1 are the eigenvalues defined above. Then, for small enough h,

there is a positive constant C = C(ω) independent of h such that for all i = 1, . . . , k,

|τ 2 − τ 2
i (h)| ≤ Chsγ .

1. Improved estimate of the eigenvalue convergence rate for smooth eigenfunctions

on a convex domain

The Theorems 5.5 and 5.6 imply that the convergence rate of the eigenvectors and

eigenvalues are the same. Our numerical results however, indicate that sometimes

the rate of convergence of the eigenvalues is significantly better than the rate of

convergence of the eigenvectors. Below, we outline a proof of this fact in the case of

“smooth” eigenvectors.

For the remainder of this subsection, we assume that Ω is a convex polyhedron,

ε = µ = 1, Th,k corresponds to a direct solve (not a preconditioner) and the eigen-
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vectors are such that e · n ∈ H
3
2 (F ) on each face F of ∂Ω 6. This is the case, for

example, if the domain is the unit cube. By Theorem 5.4 we have ‖Sk − Sh,k‖ ≤ Ch,

for k = 1, 2.

Fix an eigenvector e of S2S1 corresponding to an eigenvalue τ 2 and let 0 < ε < 1
2
.

We will prove that the approximation of τ 2 converges at rate at least h2−ε.

Consider the biharmonic problem

∆2ψ = 0 in Ω,

ψ = 0 on ∂Ω,

∂ψ

∂n
= θ on ∂Ω.

(5.26)

with data θ = e · n. By our assumptions, θ ∈ H
3
2 (F ) and θ = 0 on ∂F on every face

F of ∂Ω. By examination of the proof of the regularity result from [55], one can show

that this implies ψ ∈ H3−ε(Ω).

Set w = τ−2e + ∇∆ψ and consider the div-curl system

∇×v = w in Ω,

∇·v = 0 in Ω,

v · n = 0 on ∂Ω.

(5.27)

By construction, w is in H−ε(Ω) and satisfies the compatability conditions, so the

above problem is well-posed. Moreover, we show in Appendix A that the solution is

in H1−ε(Ω) and there exist C > 0 such that ‖v‖1−ε ≤ C‖w‖ε.

Define T1 : H−1(Ω) �→ H1
0(Ω) by

(∇T1�, ∇z) = 〈�, z〉 ∀z ∈ H1
0(Ω) .

6By Theorem 3.10 from [75] this implies that e · n can be extended to a function
in Hs(Ω) for any 3

2
< s < 2.
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We claim that

∇×T1∇×v = ∇×e . (5.28)

Indeed, e − ∇ψ ∈ H1
0(Ω) by (5.26), and therefore

e − ∇ψ = T1(−∆(e − ∇ψ)) = T1(τ
−2 e + ∇∆ψ)) .

The result follows by applying the curl operator to both sides.

Let τ 2
h and eh be the eigenvalue and eigenvector approximations to τ 2 and e,

respectively. Set u = (e, τ−1S1e)t and uh = (eh, τ
−1
h Sh,1eh)

t. We assume that u and

uh are scaled so that ‖u‖ = ‖uh‖ = 1 where ‖ · ‖ denotes the square root of the sum

of the squares of the L2(Ω)-norms on the two components. We then have, see Remark

5.1, B̃u = τu and B̃huh = τhuh where

B̃ ≡

⎛⎜⎝ 0 S2

S1 0

⎞⎟⎠ and B̃h ≡

⎛⎜⎝ 0 S∗
h,1

Sh,1 0

⎞⎟⎠ .

Simple algebraic manipulations show that

τ − τh =((τI − B̃)(u − uh), u − uh) − ((B̃ − B̃h)(u + uh), u − uh)

+ ((B̃ − B̃h)u, u) .

Note that eigenvector convergence implies that

‖u − uh‖ ≤ Ch.

In addition, ‖B̃− B̃h‖ ≤ Ch, so it will be enough to get a higher order bound for the

term ((B̃ − B̃h)u, u).

Let x1 = S1e and xh,1 = Sh,1e. Then ((B̃ − B̃h)u, u) = 2(x1 − xh,1, h̃) where

h̃ = τ−1S1e = τ∇×e.
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Introduce AV
h,1 as the map of Xh into V∗

h,1 defined by

〈AV
h,1x, vh〉 = (x, ∇×vh) ∀vh ∈ Vh,1.

Similarly, let TV
h,1 : V∗

h,1 �→ Vh,1 be defined by

(∇TV
h,1�, ∇vh) = 〈�, vh〉 ∀vh ∈ Vh,1 . (5.29)

We assume that TV
h,1 is used to define the Vh,1 component in the definition of Sh,1. It

follows that for any vh ∈ Xh, Th,1Ah,1vh consists of two components TV
h,1A

V
h,1vh and

TH
h,1A

H
h,1vh where TH

h,1 is the H1 part of Th,1 and AH
h,1 is the H1 part or Ah,1, i.e.,

〈AH
h,1x, ψh〉 = (x, ∇ψh) ∀ψh ∈ Hh,1.

The definition of xh,1 states that

(xh,1, ∇×TV
h,1A

V
h,1vh) + (xh,1, ∇TH

h,1B
H
h,1vh) = (e, TV

h,1A
V
h,1vh), ∀vh ∈ Xh. (5.30)

Note that we used the fact that Qh,1e = 0 above.

Using (5.30), the definition of x1 and (5.28) gives

(x1 − xh,1, h̃) = τ(x1 − xh,1, ∇×T1∇×v − ∇×TV
h,1A

V
h,1vh)

− τ(x1 − xh,1, ∇TV
h,1A

V
h,1vh),

(5.31)

for any vh ∈ Xh. The first term in (5.31) can be estimated by

C h ‖e‖
{
‖TV

h,1

(∇×v − AV
h,1vh

)
‖1 + ‖

(
T1 − TV

h,1

)∇×v‖1

}
.

We then have

‖TV
h,1

(∇×v − AV
h,1vh

)
‖1 ≤ sup

φ∈Vh,1

〈∇×v − AV
h,1vh, φ〉

‖φ‖1

= sup
φ∈Vh,1

(v − vh, ∇×φ)

‖φ‖1

≤ inf
vh∈Xh

‖v − vh‖ ≤ Ch1−ε‖v‖1−ε
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and

‖(T1 − TV
h,1)∇×v‖1 ≤ Ch1−ε‖∇×v‖−ε ≤ Ch1−ε‖v‖1−ε.

Finally, the second term in (5.31) is the same as

τ(x1 − xh,1, ∇TV
h,1(∇ · v − AV

h,1vh)) ≤ Ch sup
φ∈Hh,1

((∇ · v − AV
h,1vh), φ)

‖φ‖1

= Ch sup
φ∈Hh,1

(v − vh, ∇φ)

‖φ‖1

≤ Ch2−ε‖v‖1−ε.

Combining the above results we conclude that |(x1 − xh,1, h)| ≤ C(τ) h2−ε for any

0 < ε < 1
2
, and therefore, we proved the following improved convergence estimate.

Theorem 5.7 Assume that Ω is a convex polyhedron, ε = µ = 1, Th,1 is defined in

terms of the direct solve (5.29), and the eigenvectors are such that e · n ∈ H
3
2 (Γ) for

each face Γ of ∂Ω.

Let λ = iω be a fixed eigenvalue of (5.1), τ 2 = ω−2, and {τ 2
i (h)}k

i=1 be the

eigenvalues of S∗
h,1Sh,1 that are approximation of τ 2. Fix 0 < ε < 1

2
. Then there exists

a positive constant C = C(λ) independent of h such that for all i = 1, . . . , k,

|τ 2 − τ 2
i (h)| ≤ Ch2−ε .

D. Extensions to more general domains

In this section, we discuss the modifications necessary to deal with curved domains

or non-simply connected domains with holes.

We first consider the case Ωh ⊂ Ω, in the settings of §IV.C.3.a. By the theory

developed there, and presented in Theorem 4.11, we know that the discrete solutions

of the div-curl systems on Ωh approximate the solutions on Ω with order hs, s < 1
2
,

provided that the right-hand side is compatible. To extend this result to the eigenvalue

problem, it is enough to obtain an upper bound for ‖Qk − Qh,k‖L2(Ω)→H−γ(Ω)), where
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Qk is defined on Ω, while Qh,k is defined on Ωh.

Fix gk ∈ L2(Ω). For simplicity, we assume that Qh,k is defined by using only

piecewise linear functions, see Remark 5.3, in which case the extension of Qh,kgk to

Ω is trivial. Furthermore, we still have that Qh,kgk is the elliptic projection of Qkgk,

and therefore, the term ‖(Qk − Qh,k)gk‖H−γ(Ωh)) can be estimated by Lemma 5.1.

Thus, it remains to estimate the term ‖Qkgk‖H−γ(ω) which is done below.

Lemma 5.2 Let 0 ≤ γ < 1
2
. There exists C ∈ R+ independent of h, such that

‖Qkgk‖H−γ(ω) ≤ Chγ‖gk‖ .

for any gk ∈ L2(Ω).

Proof Let E0 be the extension by zero from L2(ω) to L2(Ω). By Theorem 2.4, this is

a bounded operator from Hγ(ω) to Hγ(Ω). First, consider the case ε = µ = 1. Using

the definitions we get

‖Qkgk‖H−γ(ω) = sup
w∈Hγ(ω)

(Qkgk, w)L2(ω)

‖w‖Hγ(ω)

= sup
w∈Hγ(ω)

(Qkgk, E0w)L2(Ω)

‖E0w‖Hγ(Ω)

≤ Chγ sup
w∈Hγ(ω)

(gk, QkE0w)L2(Ω)

‖w‖L2(ω)

≤ Chγ‖gk‖ ,

where we applied the estimate (4.58) in the form ‖E0w‖Hγ(Ω) ≤ C hγ‖w‖L2(ω). The

case of piecewise smooth ε and µ presents no additional difficulties, since the operators

of multiplication by ε, µ, ε−1 and µ−1 are bounded from Hγ(ω) to Hγ(ω).

We summarize the above considerations in the next result.

Theorem 5.8 Let s ∈ [0, 1
2
] be such that (5.18), (5.19) and (A∆Dir

ε ,∆Neu
µ

) hold. Let

ω > 0 be fixed, such that λ = iω is an eigenvalue of (5.1). Let τ 2 = ω−2 be an

eigenvalue of S2S1 of multiplicity k and ν > 0 is given, such that there are no other

eigenvalues in the interval δ = (τ 2 − ν, τ 2 + ν). Then, for small enough h, there will
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be exactly k discrete eigenvalues {τ 2
i (h)}k

i=1 of S∗
h,1Sh,1 (counted up to multiplicity) in

δ. Furthermore, there exists C = C(ω) independent of h such that for all i = 1, . . . , k,

|τ 2 − τ 2
i (h)| ≤ Chs .

Let V be the eigenspace corresponding to τ 2 and Vh be the eigenspace correspond-

ing to the eigenvalues of S∗
h,1Sh,1 in δ. Then, there is a positive constant C = C(ω)

independent of h such that

δ̂(V, Vh) ≤ Chs .

This completes the analysis for domains with curved boundary. Next we consider

the case Ω = Ωh with n1 > 0, n2 > 0. As in §IV.C.3.b, the only essential difference

is that we shall have to increase the spaces H1 and H2 with an analogous increase in

their discrete counterparts.

Specifically, we define H1 and H2 by

H1 = H1(Ω) ⊕ K1(µ) and H2 = H1
0(Ω) ⊕ K2(ε) , (5.32)

where K1(µ) and K2(ε) have bases defined in (4.63) and (4.64). Note that if (e, h)

are eigenfunctions of (5.1) corresponding to λ �= 0, then by density (Theorem 2.5)

and (4.61) we have

(∇×h, ∇ψi) = 0 = λ(εe, ∇ψi) ∀ψi ∈ K2(ε) ,

(∇×e, ∇̃ζj) = 0 = −λ(µh, ∇̃ζj) ∀ζj ∈ K1(µ) .

Therefore, the eigenvectors of (5.1) with nonzero eigenvalues still satisfy (5.12) with

Sk defined using (5.32). Furthermore, Sk still satisfy (5.9) and (5.10), so the rest of

the proof of Theorem 5.2 goes through as well.

The rest of the analysis in Sections A and B does not need to be changed. As a

result, we get the same theorems for convergence of the eigenvectors and eigenvalues
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as the one presented in Section C.
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CHAPTER VI

THE TIME-HARMONIC MAXWELL SYSTEM

In this chapter, we consider the full time-harmonic system (1.4). We will analyze a

more general version in which, given the data j, m and the number λ = −i ω, ω ∈ R,

we are looking for the magnetic and electric fields h , e : Ω → R3 satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×h = λ ε e + j in Ω,

∇×e = −λ µ h + m in Ω,

µ h · n = 0 on ∂Ω ,

e×n = 0 on ∂Ω.

(6.1)

The field m represents the source magnetic current density.

For simplicity, we consider only the case Ω = Ωh which is simply connected with

a connected boundary, i.e. n1 = 0, n2 = 0. The extension to the more general cases

follows the previously presented theory in §IV.C.b and §V.D.

As in Chapter V, we assume λ �= 0 and formally obtain the following divergence

equations1 ⎧⎪⎨⎪⎩
∇ · (µh) = λ−1 ∇·m in Ω,

∇ · (εe) = −λ−1 ∇·j in Ω .

(6.2)

Now, a standard interpretation of (6.1)-(6.2) is to assume j , m ∈ H(div) and to look

for h ∈ X1(µ) and e ∈ X2(ε). We call this the original form of the time-harmonic

problem.

In some problems, the electric and magnetic charge densities vanish in the whole

1 When λ = 0, the problem splits into independent magnetostatic and electrostatic
problems which have been already analyzed.



108

domain, see [50, 49]. This means that the following compatability conditions hold

∇·j = 0 , ∇·m = 0 , m · n = 0 . (6.3)

Usually in practice m = 0. Then, a popular reformulation of the above systems

is to reduce them to a curl-curl problem for the electric field e. Specifically, by

eliminating the magnetic field, we get

∇×µ−1∇×e = ω2 ε e + j̃ , (6.4)

where j̃ = −λ j, e×n = 0 and ω2 = −λ2. The introduction of j̃ is in accordance with

(1.10a)–(1.11b) from [75]. The weak formulation of (6.4) reads: Find e ∈ HC

0 (curl)

such that

(µ−1∇×e, ∇×w) = ω2 (ε e, w) + (̃j, w) ∀w ∈ HC

0 (curl) . (6.5)

Similar to the eigenvalue problem, since ω ∈ R, we can split the above problem into

two real problems.

Note that (h, e, j, m) is solution to (6.1) with λ = −i ω, ω ∈ R if and only

if (�(h),�(e),�(j),�(m)) and (−�(h),�(e),−�(j),�(m)) satisfy the related real

problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇×h = ω ε e + j in Ω,

∇×e = ω µ h + m in Ω,

µ h · n = 0 on ∂Ω ,

e×n = 0 on ∂Ω ,

(6.6)

with corresponding divergence equations⎧⎪⎨⎪⎩
∇ · (µh) = −ω−1 ∇·m in Ω,

∇ · (εe) = −ω−1 ∇·j in Ω,

(6.7)
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In the implementation, one may prefer to restrict to real fields and consider (6.6)-

(6.7) instead of (6.1)-(6.2). In doing so, one would be able to avoid using any complex

arithmetic.

There have been a variety of methods for approximation of the time-harmonic

Maxwell’s equations. See, for example, [39, 40, 85, 50, 49, 70, 11, 95, 75]. Most of

these discretization methods are based on the curl-conforming Nédélec spaces (cf.

[77, 78]). In this case, the resulting matrix problem is indefinite and it is well known

that the efficient solution of such systems presents a serious challenge.

Recently, an interior penalty discontinuous Galerkin method was analyzed in

[85]. This method allows for different orders of approximation in the different regions

of the grid. Error estimates were proven in the case of smooth coefficients. However,

we remark that the resulting bilinear form is quite complicated.

A different approach proposed in [50] (where they also address the more general

problem of regions with screens) is based on the singular function method. The

method uses the splitting of the solution into regular part, which can be approximated

by nodal finite elements, and a singular part which is treated explicitly by adding the

singular functions to the space. The implementation of this procedure may be quite

involved, since one needs to deal explicitly with the singular functions.

In some applications, e.g. in the mixed digital and analog signal packages, one

needs a methodology that is independent of the frequency ω. In [49], such results

were obtained for the case of ω in a neighborhood of zero. The approach there uses

a mixed formulation with a “dummy” Lagrange multiplier (one that is identically

zero). Further results in this direction are given in [70], where a FOSLS method is

applied to the scalar Helmholtz equation with exterior radiation boundary conditions.

The convergence of the resulting Multigrid algorithm is uniform with respect to the

wave number ω, under the assumption that the domain is convex or has a smooth
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boundary.

We finish the overview of the available literature on the subject by mentioning

some other approaches as the mortar and the FETI methods applied to the Maxwell’s

equations, see [11, 95]. Adaptive hp solvers have also been implemented, see [49].

In this chapter, we describe a new approximation technique for the time-harmonic

system, which is a natural extension of the ideas from the previous chapters. The main

advantage of this approach is that it directly approximates the variables of interest,

avoiding potentials and “gauge conditions”. In fact, we approximate simultaneously h

and e. This is in contrast to many methods where one of the unknowns is eliminated

and is later computed by differentiation of the approximate solution. Furthermore,

the resulting numerical algorithm can be efficiently implemented and is convergent

for problems with low regularity which appear in practical applications.

In the next sections, we present the weak variational formulation of (6.1) and

relate it to the eigenvalue problem from Chapter V. We then discuss discretization

based on a least-squares method similar to the ones developed for the magnetostatic

and electrostatic problems in Chapter IV.

A. Weak formulation

The following result for the original time-harmonic problem in the form (6.5) is given

as Corollary 4.19 in [75].

Theorem 6.1 Suppose that ω2 �= 0 is not a Maxwell eigenvalue, i.e. does not satisfy

(5.4). Then the curl-curl problem (6.5) has a unique solution e for any data j̃ ∈

L2(Ω), and we have the stability estimate

‖e‖H0(curl) ≤ C ‖j̃‖ . (6.8)

Remark 6.1 Assume that j ∈ H(div) and m ∈ H0(div) satisfy (6.3). Let f and g
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be the unique solutions to the div-curl problems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×f = j in Ω,

∇ · (µf) = 0 in Ω,

f · n = 0 on ∂Ω,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×g = m in Ω,

∇ · (εg) = 0 in Ω,

g×n = 0 on ∂Ω,

(6.9)

i.e.

B

⎛⎜⎝ j

m

⎞⎟⎠ =

⎛⎜⎝−g

f

⎞⎟⎠ .

Then, analogous to §V.A, it can be shown that (e, h) is a solution to (6.1)-(6.2) with

data (j, m) and λ �= 0 if and only if h ∈ L2
µ(Ω), e ∈ L2

ε(Ω), f, g and τ = λ−1 satisfy

B

⎛⎜⎝e

h

⎞⎟⎠− τ

⎛⎜⎝e

h

⎞⎟⎠ = −τ

⎛⎜⎝g

f

⎞⎟⎠ . (6.10)

By the Fredholm Alternative (Theorem 2.3), when τ is not an eigenvalue of B, the

above problem has unique solution.

As a natural extension of the weak formulations in Chapter IV, we propose

to replace the differential operators in (6.1)-(6.2) with the weaker operators curl1,

curl2, div1,µ and div2,ε defined in (4.2) and (4.18). Then we can consider an even

more general problem: given j ∈ V∗
1, m ∈ V∗

2, ρ ∈ H∗
1 and q ∈ H∗

2 find h , e ∈ L2(Ω)

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl1h − λεe = j

curl2e + λµh = m

div1,µh = q

div2,εe = ρ

(6.11)
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Let Aλ : L2(Ω) × L2(Ω) �→ Y∗
1 × Y∗

2 denote the operator on the left. Then our weak

formulation of the time-harmonic problem is

Aλ

⎛⎜⎝e

h

⎞⎟⎠ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

curl1h − λεe

curl2e + λµh

div1,µh

div2,εe

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

j

m

q

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6.12)

First, we note that any solution to the original time-harmonic problem satisfies

(6.12) with q = λ−1∇·m and ρ = −λ−1∇·j. On the other hand, if j , m ∈ L2(Ω),

then (6.12) implies (6.1). In particular,

Aλ(e, h) = 0 if and only if (h, e, λ) satisfy (5.1) . (6.13)

It follows that if λ is not a Maxwell eigenvalue, then the kernel of Aλ is trivial. In

fact, a stronger statement is true.

Lemma 6.1 Assume that (Aε,µ×) holds for some γ < 1
2
. Then Aλ is bounded from

below, i.e.

‖e‖ + ‖h‖ ≤ C ‖Aλ(e, h)‖Y∗
1×Y∗

2
, (6.14)

provided that λ �= 0 is not a Maxwell eigenvalue, i.e. does not satisfy (1.7).

Proof Assume that (6.14) does not hold. Then there exist a sequence {xn =

(en, hn)} ⊂ L2(Ω)×L2(Ω) such that ‖xn‖2 ≡ ‖en‖2+‖hn‖2 = 1, while ‖Aλxn‖2
Y∗

1×Y∗
2
≤

1
n
. Using the compact embedding L2(Ω) ↪→ H−γ(Ω) and passing to a subsequence,

we get hn
H−γ

−→ h and en
H−γ

−→ e for some h , e ∈ H−γ(Ω). Since γ < 1
2
, we also have

the continuous embeddings ‖v‖V∗
k
≤ C ‖v‖−γ for k = 1, 2. In particular, h ∈ V∗

1 and

e ∈ V∗
2. Note that (Aε,µ×) implies

‖µ hn‖V∗
1
≤ C sup

w∈Hγ

|(hn, µ w)|
‖w‖γ

≤ Cµ sup
v∈Hγ

|(hn, v)|
‖v‖γ

= ‖hn‖−γ (6.15)



113

for any hn ∈ L2(Ω). By (4.9) and (4.25), for m, n ∈ N,

‖xm−xn‖2 ≤ Cε,µ

{
‖Aλ(xm − xn)‖2

Y∗
1×Y∗

2
+ ω2‖µhm − µhn‖2

V∗
1
+ ω2‖εem − εen‖2

V∗
2

}
.

Using (6.15), ‖Aλ(xm − xn)‖2
Y∗

1×Y∗
2
≤ 2

(
1
n

+ 1
m

)
and the above inequality we get that

{xn} is Cauchy in L2(Ω)×L2(Ω). Therefore, we can conclude that x = (e, h) ∈ L2(Ω)
2

and xn
L2(Ω)

2

−→ x.

After passing to a limit, we get ‖x‖ = 1, while Aλx = 0. Since ω is not an

eigenvalue, (6.13) implies x = 0, which is a contradiction.

To characterize the solvability of the weak formulation (6.11), we need to deter-

mine what are the compatability conditions on the data. To that end, let us consider

the bilinear form aλ(·, ·), corresponding to Aλ, which is defined on L2(Ω)
2× (Y1×Y2)

by

aλ(h, e;v1, v2, h1, h2) =

a1(h; v1, h1) − λ(εe, v1) + a2(e; v2, h2) + λ(µh, v2) ,

(6.16)

where the forms ak(·, ·) were introduced in (4.17) and (4.33).

Let (v1, v2, h1, h2) belong to the compatability space

N(A∗
λ) = {(v1, v2, h1, h2) ∈ Y1×Y2 : aλ(h, e; v1, v2, h1, h2) = 0 ∀(h, e) ∈ L2(Ω)

2} .

Then ⎧⎪⎨⎪⎩
∇×v1 + λ µ v2 + µ ∇h1 = 0

∇×v2 − λ ε v1 + ε ∇h2 = 0 .

Set ṽ1 = −v1 + λ−1 ∇h2 and ṽ2 = v2 + λ−1 ∇h1. It follows that ṽ1 ∈ X2(ε) and

ṽ2 ∈ X1(µ) satisfy the eigenvalue problem (5.1). This implies

v1 = λ−1 ∇h2 and v2 = −λ−1 ∇h1 . (6.17)
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Conversely, if (6.17) holds then (v1, v2, h1, h2) ∈ N(A∗
λ). The above considerations

prove the following result.

Lemma 6.2 Assume that λ is not a Maxwell eigenvalue. Then the compatability

space for (6.12) is given by

Vλ,0 ≡ N(A∗
λ) = {(∇h2,−∇h1, λ h1, λ h2) : h1 ∈ H2(Ω) , h2 ∈ H2

0(Ω)} . (6.18)

Consequently, the data (j, m, q, ρ) are compatible if and only if

〈ρ, h2〉 = λ−1〈j, ∇h2〉 , 〈q, h1〉 = −λ−1〈m, ∇h1〉 , (6.19)

for all h2 ∈ H2
0(Ω), h1 ∈ H2(Ω). When j ∈ H(div), m ∈ H0(div), the above

conditions simplify to

ρ = −λ−1∇·j , q = λ−1∇·m . (6.20)

We combine the results of Lemma 6.1, Lemma 6.2 and Proposition 3.1 in the

main result of this section.

Theorem 6.2 Assume that (Aε,µ×) holds for some γ < 1
2
, and λ �= 0 is not a

Maxwell eigenvalue. Then the weak formulation (6.12) has unique solution for any

data satisfying the compatability conditions (6.19), and the following stability estimate

holds

‖h‖ + ‖e‖ ≤ C ‖j‖V∗
1
+ ‖w‖V∗

2
+ ‖q‖H∗

1
+ ‖ρ‖H∗

2
.

When j ∈ H(div), m ∈ H0(div) and ρ and q are defined by (6.20), the weak solution

coincides with the solution of the original time-harmonic problem (6.1)-(6.2). In

addition, if X1(µ) and X2(ε) are compactly embedded in Hs(Ω) for some s > 0, then

we have the stability estimate

‖h‖X1(µ) + ‖e‖X2(ε) ≤ C ‖j‖H(div) + ‖w‖H0(div) .
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Proof We only need to show how to get the second stability estimate. Using (4.12)

and (4.28) for any h ∈ X1(µ) and e ∈ X2(ε) we get

C (‖e‖2
X1(µ) + ‖h‖2

X2(ε)) ≤ ‖∇×h − λεe‖2 + ‖∇·µh‖2

+ ‖∇×e + λµh‖2 + ‖∇·εe‖2

+ ω2 ‖µh‖2 + ω2 ‖εe‖2 .

By a compactness argument, identical to the one in the proof of Lemma 6.1, we can

conclude that

C (‖e‖X1(µ) + ‖h‖X2(ε)) ≤ ‖∇×h − λεe‖ + ‖∇·µh‖ + ‖∇×e + λµh‖ + ‖∇·εe‖

for any λ �= 0 which is not a Maxwell eigenvalue. This implies that the operator

corresponding to the original time-harmonic problem is bounded from below, and

hence, the stability estimate follows from Proposition 3.1.

Remark 6.2 Theorem 6.1 is a special case of the above result.

B. Least-squares approximation

We next consider the discrete approximation to our weak formulation. As in the

previous chapters, see §IV.C, we choose approximation subspaces Xh,1 = Xh,2 =

Xh ⊂ L2(Ω) and Yh,k ⊂ Yk.

We will consider extensions of both of the discrete least-squares methods—the

one based on a discrete inf-sup condition and the one based on form modification. For

simplicity, we concentrate on the case of real fields, i.e. we approximate (6.6)-(6.7).

The weak form, in this case, is based on the operator

AR

λ(e, h) = Aω(e, h) = (curl1h − ωεe, curl2e − ωµh, div1,µh, div2,εe) , (6.21)
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where all fields, spaces and operators are real. The corresponding bilinear form is

aR

λ(·, ·) = aω(·, ·) given by

a1(h; v1, h1) − ω(εe, v1) + a2(e; v2, h2) − ω(µh, v2) .

1. Approximation based on a discrete inf-sup condition

First, consider the method from §IV.C.1.a. There, for fixed xk ∈ Xh,k and any

ψk ∈ Hk, vk ∈ Vk, we showed that one can choose ψh,k ∈ Hh,k and vh,k ∈ Vh,k such

that (µx1, ∇ψ1) = (µx1, ∇ψh,1) , (εx1, ∇ψ2) = (εx2, ∇ψh,2) and

(xk, ∇×vk) = (xk, ∇×vh,k) (6.22)

with ‖ψh,k‖1 ≤ C ‖ψk‖1 and ‖vh,k‖1 ≤ C ‖vk‖1. The idea was to use a stable ap-

proximation operator, plus face and element bubble functions, in order to satisfy the

equalities. For the time-harmonic problem, (6.22) should be replaced by

(h, ∇×v1) − ω (εe, v1) = (h, ∇×vh,1) − ω (εe, vh,1) (6.23)

for h , e ∈ Xh.

Below, we illustrate the needed modifications in the case Xh = Ŝh(k) and piece-

wise constant ε and µ. Let v1 = (vc)d
c=1 and vh,1 = (vc

h)
d
c=1. Set vc

h = Ihv
c +vc

Fh
+vc

Th
,

where Ih is an approximation operator satisfying (2.26) and

(vc
Fh

, q)L2(F ) = (vc − Ihv
c, q)L2(F ) ∀F ∈ Fh ,∀q ∈ Pk(F ) ,

(vc
Th

, p)L2(τ) = (vc − Ihv
c − vc

Fh
, p)L2(τ) ∀τ ∈ Th ,∀p ∈ Pk(τ) .

This implies

(∇×h − ω ε e, v1)L2(τ) = (∇×h − ω ε e, vh,1)L2(τ) ∀τ ∈ Th ,

(h×n, v1)L2(F ) = (h×n, vh,1)L2(F ) ∀F ∈ Fh ,
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and therefore (6.23) follows. Clearly the difference with Theorem 4.8 is that we need

element bubbles of degree k instead of k − 1. This is summarized in the next result.

Theorem 6.3 Let k ∈ N0. Then the least-squares method for the time-harmonic

problem based on the spaces Xh,1 = Xh,2 = Ŝh(k), Vh,1 = (Sh,0 ⊕ Bk
Fh,0 ⊕ Bk

Th
)3,

Hh,1 = Sh ⊕ Bk
Fh

⊕ Bk−1
Th

, Vh,2 = (Sh ⊕ Bk
Fh

⊕ Bk
Th

)3 and Hh,2 = Sh,0 ⊕ Bk
Fh,0 ⊕ Bk−1

Th
is

stable (i.e. the discrete inf-sup condition for the form aω(·, ·) holds).

As a corollary, the discrete least-squares method based on the form aω(·, ·) will have

unique solution, provided that λ = −i ω is not a Maxwell eigenvalue.

2. Approximation based on form modification

Next, we consider the least-squares approach based on form modification and pre-

sented in §IV.C.2. The only difference here is that we have to estimate two additional

terms:

sup
v1∈V1

(ω ε e, v1)

‖v1‖V1

and sup
v2∈V2

(ω µ h, v2)

‖v2‖V2

for e , h ∈ Xh. For any v1 ∈ V1, let vh,1 ∈ Vh,1 be obtained by applying the stable

approximation operator Ih to each component of v1. Then

sup
v1∈V1

(ε e, v1)
2

‖v1‖2
V1

≤ C sup
v1∈V1

(ε e, v1 − vh,1)
2

‖v1‖2
V1

+ C sup
vh,1∈Vh,1

(ε e, vh,1)
2

‖vh,1‖2
V1

.

Define projh
1,ε : Xh �→ Vh,1 by

(projh
1,εe, vh,1) = (ε e, vh,1) ∀vh,1 ∈ Vh,1 . (6.24)

Using this definition and (2.26), we obtain

sup
v1∈V1

(ε e, v1)
2

‖v1‖2
V1

≤ C
∑
τ∈Th

h2
τ ‖ε e‖2

L2(τ) + C ‖projh
1,εe‖2

V∗
h,1

.



118

Similarly,

sup
v2∈V2

(µ h, v2)
2

‖v2‖2
V2

≤ C
∑
τ∈Th

h2
τ ‖µ h‖2

L2(τ) + C ‖projh
2,µh‖2

V∗
h,2

,

where projh
2,µ : Xh �→ Vh,2 is defined by

(projh
2,µh, vh,2) = (µ h, vh,2) ∀vh,2 ∈ Vh,2 . (6.25)

Combining this with the results for the magnetostatic and electrostatic problems, we

get that the least-squares problem

ah,ω(h, e; h̃, ẽ) = (j, curlh
1h̃)V∗

h,1
+ (m, curlh

2 ẽ)V∗
h,2

+ (q, divh
1,µh̃)H∗

h,1
+ (ρ, divh

2,εẽ)H∗
h,2

∀h̃ , ẽ ∈ Xh .

will have a unique solution, provided the conditions of Theorem 6.2 are met. The

bilinear form on the left is given by

ah,ω(h, e; h̃, ẽ) = (curlh
1h, curlh

1h̃)V∗
h,1

+ (divh
1,µh, divh

1,µh̃)H∗
h,1

+ (projh
2,µh, projh

2,µh̃)V∗
h,2

+
∑
τ∈Th

h2
τ (µ h, µ h̃)L2(τ)

+
∑

F∈Fh

hF

{
(�h×n�, �h̃×n�)L2(F ) + (�µh · n�, �µh̃ · n�)L2(F )

}
+ (curlh

2e, curlh
2 ẽ)V∗

h,2
+ (divh

2,εe, divh
2,εẽ)H∗

h,2

+ (projh
1,εe, projh

1,εẽ)V∗
h,1

+
∑
τ∈Th

h2
τ (ε e, ε ẽ)L2(τ)

+
∑

F∈Fh

hF

{
(�e×n�, �ẽ×n�)L2(F ) + (�εe · n�, �εẽ · n�)L2(F )

}
.
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3. Error estimates

In this subsection we assume that (AΩ) and (Aµ,ε) hold, and that there exists s ∈

[0, 1], such that the estimate (3.21) holds with χ(h) = C hs, i.e.

inf
xh,k∈Xh,k

‖xk − xh,k‖ ≤ C hs ‖xk‖s ∀xk ∈ Hs(Ω) . (6.26)

Additionally, we assume the continuous embeddings (see Theorem 2.7)

X1(µ) , X2(ε) ↪→ Hs(Ω) . (6.27)

By combining the results of Theorem 3.2 and Theorem 6.2, we get the following

estimate for the approximation error of each of the methods.

Theorem 6.4 Let s, γ ∈ [0, 1] be such that (6.26), (6.27) and (Aε,µ×) hold. As-

sume that λ �= 0 is not an eigenvalue, and let (h, e) be the solution of the time-

harmonic problem with data j , m ∈ L2(Ω), q and ρ satisfying the compatability con-

ditions (6.20). Let (hh, eh) be the least-squares approximation obtained by either of

the methods presented in the previous two subsections (for the method based on form

modification s �= 1
2
). Then we have the error estimate

‖h − hh‖ + ‖e − eh‖ ≤ Cµ,ε,ω hs
(
‖j‖H(div) + ‖m‖H0(div)

)
.
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CHAPTER VII

NUMERICAL RESULTS

In this chapter, we discuss some results from computer simulations with a program

which implements the dual least-squares methods described in the previous chap-

ters (see [102]). It is written in C++, in the framework of the AggieFEM finite

element library, which supports complex geometries, local refinement, Multigrid pre-

conditioning and OpenGL visualization. The code is based on the solvers for the

magnetostatic and electrostatic problems. It works on triangular, tetrahedral and

hexahedral meshes. It provides an eigenvalue solver (based on [65]), which allows for

computations of blocks of eigenvalues, and a solver for the full time-harmonic system.

A. Implementation issues

We concentrate on the case of a simply connected domain Ωh, which is either polygonal

or polyhedral. As mentioned before, the theory of the previous chapters extends to

two-dimensional problems without difficulty. We give specific details in the following

sections.

In all of our examples, we partition the domain Ωh into a shape regular mesh,

which is triangular in 2D and either tetrahedral or hexahedral in 3D. We mainly

focus on the least-squares method with bubbles, i.e. we use piecewise constant vector

functions for the space Xh and piecewise linear, plus face bubble vector functions, for

each component of Yh,k. Instead of dealing with complex arithmetic, we recast each

of the problems as an equivalent real problem as discussed in the introductions of the

previous chapters.

The implementation basically follows the description in §III.C. We note the

following specifics:
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• The actions of TYh,k
for k = 1, 2, are implemented using a two level algorithm

involving a Gauss-Seidel sweep over the bubble functions and V-cycle Multi-

grid preconditioner for the remaining piecewise linear functions. A comparison

between this operator and the exact solver is given in §D.

• The operators Qh,k were defined using only the piecewise linear part of the test

spaces, i.e. disregarding the bubbles as discussed in Remark 5.3.

In the numerical tests, we start with a coarse mesh and apply few levels of uniform

refinement. On each mesh level, we either compute the solution by PCG or compute

a number of the maximal eigenvalues and eigenfunctions of S∗
h,1Sh,1 a modified version

of LOBPCG. The results are reported using the following notation: level denotes the

refinement level, h is the mesh size, ‖e‖0 denotes the error in L2(Ω), ratio is the ratio

between the errors on two consecutive levels, nit equals the number of iterations of

PCG/LOBPCG and N denotes the total number of unknowns.

Here are some highlights for the reminder of the chapter. The connection between

the memory requirements of our algorithm and the geometrical characteristics of the

mesh is discussed in Subsection 1. An optimal conversance rate for a low regularity

magnetostatic problem is presented in §B.2. A problem with jumping coefficients

and fairly anisotropic mesh is solved in §B.3. The case Ω �= Ωh is considered in

§C.2. The singular eigenvalue problem on a Fichera corner is compared in §C.3 with

other previously available results. Finally, some of the approximate solutions from

the problems with unknown exact solution are visualized in Appendix B.

Our general conclusion from the experiments is that the new method performs

quite well in a variety of applications. The eigenvalue approximation deals well with

multiple eigenvalues. Let us stress, again, that spurious eigenmodes are completely

avoided. We also conclude that LOBPCG seems to be a good choice for an eigensolver,
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yielding a constant number of iterations in the tests presented.

Finally, let us mention that further numerical experiments seem to suggest that

the use of the projectors Qh,k and the stabilizing face bubble functions are essential

for the convergence and cannot be avoided.

1. Mesh characteristics

Consider a finite element mesh Th on Ωh ⊂ R3. Let V, E, F and T denote, respectively,

the number of vertices, edges, faces and elements in the mesh. The Euler-Poincaré

formula (see e.g §5.3 in [18]) states that

V − E + F − T = 1 + n1 − n2.

The memory requirements for the discrete least-squares algorithm are directly

related to the above quantities. Consider, for example, the simplest method for the

magnetostatic problem in three dimensions. Recall that the solution space consists of

piecewise constants, while the test space is build of piecewise linears plus face bubble

functions. Let M be the dimension of the test space, and N denotes the dimension of

the solution space. Then,

M = 4(V + F) and N = 3E .

Suppose we have a sequence of meshes obtained by uniform refinement. Then,

the mesh characteristics are transformed as follows:

• for Th consisting of tetrahedra

(V, E, F, T) �→ (V + E, 4F + 8T, 2E + 3F + T, 8T) .
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• for Th consisting of hexahedra

(V, E, F, T) �→ (V + E + F + T, 4F + 12T, 2E + 4F + 6T, 8T) .

A typical example is shown in Figure 7.1, where we plot the ratio M/N after

uniform refinement of hexahedral and tetrahedral meshes.
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Fig. 7.1. Comparison of the dimensions of test and solution spaces after uniform re-

finement.

Observe that, in this model case, the dimension of the test space is always bigger,

but the ratio eventually stabilizes. In particular, we can conclude that the memory

requirements in both cases are proportional to N.

This is illustrated further in Table 7.1, where we examine the case of comparable

initial tetrahedral and hexahedral meshes on the unit cube, which are subject to 6

levels of uniform refinement. On each refinement level l, the mesh size in both cases

is of order 2−l, and therefore we get comparable order of approximation. However,

the above data indicate that the discretization with tetrahedral elements will require

significantly more memory.
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Table 7.1. Mesh characteristics after uniform refinement.

l V F T V F T

tetrahedral mesh hexahedral mesh

0 9 30 12 8 6 1

1 35 216 96 27 36 8

2 189 1632 768 125 240 64

3 1241 12672 6144 729 1728 512

4 9009 99840 49152 4913 13056 4096

5 68705 792576 393216 35937 101376 32768

6 536769 6316032 3145728 274625 798720 262144

B. The magnetostatic problem

In this section, we report the results of numerical experiments for the magnetostatic

problem (1.5). Some of the problems considered are two-dimensional, and below, we

summarize this special case of our theory. Specifically, for a polygonal domain Ω, the

magnetostatic problem is: Find h ∈ X1 ≡ (L2(Ω))2 satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×h = j in Ω,

∇·µh = ρ in Ω,

(µh) · n = σ on ∂Ω.

Here, we used the scalar curl defined in (2.13).

For this problem, both test spaces are scalar. In fact, we take Y1 = V1 × H1

where V1 ≡ H1
0(Ω) and H1 = H1(Ω). The least-squares approximation satisfies

(h, ∇×w) + (µh, ∇ψ) = 〈j, w〉 + (σ, ψ)∂Ω − (ρ, ψ) (7.1)

for all (w, ψ) ∈ Y1. Here we used the definition of vector curl from (2.13).
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As in three dimensions (see Theorem 3.2 of [54]), we have that each function

u ∈ X1 can be decomposed

u = ∇×w + µ ∇ψ with (w, ψ) ∈ Y1 .

Consequently (7.1) is well-posed.

1. A problem with a known smooth solution

The first test problem is posed on the unit square and involves known smooth solution.

We take µ = 1, j = 0, ρ = cos(πx) cos(πy) and σ = 0. Then the solution is

h =
1

2π
(sin(πx) cos(πy), cos(πx) sin(πy)) .

The numerical results on a uniform triangular mesh are presented in Table 7.2.

The error behavior in (L2(Ω))2 clearly illustrates the expected first-order convergence

Table 7.2. Numerical results for magnetostatic problem with a known smooth solution.

h ‖e‖0 ratio nit N

1/8 0.576961 6 256

1/16 0.290813 1.98396 6 1024

1/32 0.145741 1.99541 6 4096

1/64 0.072897 1.99926 5 16384

1/128 0.036451 1.99984 5 65536

1/256 0.018226 1.99997 4 262144

rate. Note that the number of iterations required to reduce the residual by a factor

of 10−6 remains bounded independently of the number of unknowns.
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2. Magnetostatics in a L-shaped domain

For the second example, we consider a problem on the L-shaped domain [−1, 1]2 \

[0, 1] × [−1, 0]. Solutions of problems on this domain are not smooth in general. To

illustrate the typical singularity, we take j, ρ, and σ so that the solution in polar

coordinates is given by

h = ∇(rβ cos(β θ)) with β = 2/3 .

Note that h is only in (Hs(Ω))2 for s < 2
3
. Therefore, we expect that a mesh reduction

of a factor of two should result in an error reduction of 22/3 ≈ 1.587.

This is clearly illustrated by the convergence results in Table 7.3. Again, we see

Table 7.3. Numerical results for magnetostatics in an L-shaped domain.

h ‖e‖0 ratio nit N

0.176777 0.223524 11 512

0.0883883 0.143219 1.56072 11 2048

0.0441942 0.091108 1.57196 11 8192

0.0220971 0.057727 1.57826 11 32768

0.0110485 0.036492 1.58188 11 131072

0.00552427 0.023038 1.58483 11 524288

that the number of iterations remains bounded as the mesh size is decreased.

The components of the computed approximation to the magnetic field are shown

on Figure 7.2.
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Fig. 7.2. Magnetostatics in an L-shaped domain, computed magnetic field.

3. Cross-section of a magnet

We next report numerical results for a problem with jumps in the coefficient µ. We

consider the geometry given in Figure 7.3, which models the cross-section of a mag-

net. This consists of a iron segment with fixed magnetic permeability µ1 = 1000

surrounded by an air region with permeability µ0 = 1. A uniform current of j and

−j (shaded regions) is applied in the z direction. There is also a small air gap of

size d = .01. For this problem, we do not report the error behavior as the analytic

solution is not available.
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Fig. 7.3. Cross-section of a magnet: geometry and coarse mesh.
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Our goal was to illustrate the iterative convergence rate. The numerical exper-

iments reported in Table 7.4 show that, even though there are large jumps in the

permeability, the iterative process still converges in relatively few iterations. It also

shows that the method performs well, even in the case of a fairly anisotropic mesh

(see Figure 7.3).

Table 7.4. Numerical results for the cross-section of a magnet.

hmin hmax nit N

0.0316111 0.316228 9 152

0.0158055 0.158114 11 608

0.0079027 0.079056 12 2432

0.0039513 0.039528 11 9728

0.0019756 0.019764 13 38912

Fig. 7.4. Magnetostatic in transformer, geometry and coarse mesh.
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4. Magnetic field in a transformer

Our last magnetostatic example models a three-dimensional transformer. The geom-

etry and the initial mesh are given in Figure 7.4. Specifically, we have an iron core,

where µ = 103, and three coils, on the exterior two of which a rotational current f is

applied. We set µ = 0 and f = 0 in the rest of the region.

Numerical experiments were performed on three tetrahedral meshes obtained by

uniform refinement. Their characteristics are listed in Table 7.5

Table 7.5. Numerical results for magnetostatics in a transformer.

hmin hmax V F T

0.632805 4.32786 784 8302 4094

0.316402 2.16393 5775 65960 32752

00.158201 1.08197 44757 525856 262016

Different views of the computed approximate solution are shown in Appendix B

on pages 157 and 158. As expected, we observe a magnetic field following the iron

core.

C. The eigenvalue problem

In this section, we report results from some numerical experiments with the least-

squares method for the problem (5.16).

We report computations involving both tetrahedral and hexahedral meshes. Al-

though there are many analyses available for tetrahedral meshes using methods based

on curl conforming finite element approximations [17, 69, 75], very little has been done

for general hexahedral meshes. In contrast, our analysis easily extends to general hex-
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ahedral meshes.

The eigensolver that we use is based on the Locally Optimal Block Precondi-

tioned Conjugate Gradient Method (LOBPCG), introduced in [65]. A very detailed

description of LOBPCG from implementation point of view is given in [67], §8. Orig-

inally, LOBPCG was designed to compute a block of few minimal eigenvalues of a

symmetric and positive definite matrix with their corresponding eigenvectors. The

algorithm uses only the action of the matrix and is based on a local optimization

of a three term recurrence, similar to the one from the Conjugate Gradient method.

This produces a sequence of discrete approximation subspaces for the eigenvectors.

The Rayleigh-Ritz procedure, combined with the soft-locking1 of the converged eigen-

vectors, is then used to determine the approximate eigenvalues on each step. Let

us recall, that the Rayleigh-Ritz method computes optimal approximation to the

eigenvalues and eigenvectors of the matrix, given a trial subspace. It employs the

solution of generalized eigenvalue problem of dimension k, where k is the number of

eigenvalues we wish to compute (typically 10-20).

As it was shown in Chapter V, the Maxwell eigenvalue problem reduces to com-

putation of a block of few maximal eigenvalues of a symmetric and positive definite

matrix. LOBPCG can be applied to that problem after a simple modification in the

generalized eigenvalue problem solver mentioned above. Our experience is that with

this modification, LOBPCG is a very robust eigensolver. The number of iterations

for our (well-conditioned) problems is usually independent of the mesh parameter h.

1 This means that even if an approximate eigenvector has already converged, it
still participates in the Rayleigh-Ritz procedure (which, in particular, can change it).
For more details, see §7 in [67]
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1. Eigenvalues of the unit cube

The first test problem is posed on the unit cube partitioned into a uniform tetrahedral

mesh. The eigenvalues and eigenfunctions of this problem can be computed exactly,

see [2]. Specifically, the eigenfunctions are tensor products of trigonometric functions,

and the eigenvalues are of the form {τ 2
i } =

{
1

k π2

}
, where k = k2

1 +k2
2 +k2

3 and {ki}3
i=1

are non-negative integers satisfying k1k2 + k2k3 + k3k1 > 0. Triplets with k1k2k3 > 0

generate two linearly independent eigenfunctions.

Figure 7.5 gives the eigenvalue approximation error (S∗
h,1Sh,1 approximating S2S1)

as a function of the number of refinement levels. Observe that the method performs

well with multiple eigenvalues. In addition, the eigenvalue convergence appears to be

monotone.
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Fig. 7.5. Unit cube, eigenvalue convergence.

Figure 7.6 presents the same results in different formats. On the left side, we

show the approximation in the error for each {τ 2
i }. We note that the approximation

becomes slightly worse with the increase of the eigenvalue number. This is further

examined on the right, where we are looking at the error in three representative
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Fig. 7.6. Unit cube, approximation error.

eigenvalues, τ 2
1 , τ 2

5 and τ 2
9 , on the different levels of approximation. As expected from

§V.C.1, we have almost quadratic convergence of the eigenvalues, twice the order of

approximation of the eigenfunctions.

2. Eigenvalues of the unit ball

Our second example is the computation of the eigenmodes of the unit ball. The

eigenvalues and eigenfunctions are known, see §10.4 in [10], but they are not as

simple as in the previous test.

Specifically, the eigenvalues {ω2
i } = {ω2

mn, ω̂2
mn : m, n = 1, 2, ...} are split into

two groups:

• Transverse Electric (TE), which satisfy

jm(ω2
mn) = 0 ,

and
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• Transverse Magnetic (TM), which satisfy

jm(ω̂2
mn) + ω̂2

mn j′m(ω̂2
mn) = 0 .

Here jm is the m-th order spherical Bessel function and j′m is its derivative. They are

obtained by the formulas

j0(x) =
sin(x)

x
, j1(x) =

sin(x)

x2
−cos(x)

x
, . . . jn(x) = (−x)n

(
1

x

d

dx

)n(
sin(x)

x

)
.

They are also related to the Bessel functions of first kind by

jn(x) =

√
π

2x
Jn+ 1

2
(x) .

There are tables with the zeros of jn (e.g. in §10.1 of [1]), but there are no simple

formulas for the zeros of j′n.

The numerical values for the first few eigenvalues {ω2
i }, together with their mul-

tiplicities, are given in Table 7.6. We used a set of hexahedral meshes, starting with

the coarse mesh shown in Figure 7.7. Their characteristics, together with the number

of iterations of the eigensolver, are given in Table 7.7.

Fig. 7.7. Unit ball, initial mesh.
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Table 7.6. Unit ball, exact eigenvalues.

i ω2
i type multiplicity

1 7.5279e+00 TM (ω̂2
11) 3

2 1.4979e+01 TM (ω̂2
21) 5

3 2.0191e+01 TE (ω2
11 ) 3

4 2.4735e+01 TM (ω̂2
31) 7

5 3.3217e+01 TE (ω2
21 ) 5

6 3.6747e+01 TM (ω̂2
41) 9

7 3.7415e+01 TM (ω̂2
12) 3

Table 7.7. Unit ball, test meshes and number of LOBPCG iterations.

level hmin hmax V F T nit

1 0.109665 0.255241 976 2700 875 22

2 0.046295 0.124278 9736 28314 9317 13

3 0.023515 0.066545 66256 195804 64827 13
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Fig. 7.8. Unit ball, eigenvalue convergence.
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We proceed to compute the first ten eigenfunctions. The approximation errors

for the eigenvalues of (1.7) and S∗
h,1Sh,1 are presented in Figure 7.8. The results are

similar to the previous test problem.

Each of the first ten computed electric eigenfields, both as a magnitude plot on

the surface and as a vector field in the interior, are shown in Appendix B on pages

159 to 162.

3. Eigenvalues of the Fichera corner

Our third example is the computation of the eigenvalues in the Fichera corner [−1, 1]3\

[−1, 0]3. The exact eigenfunctions are not known, but some of them have singularities

at the origin which makes the problem difficult to approximate. We will compare our

results with the ones from Table 7.8. These are taken from M. Dauge’s benchmark

website [100], see also the survey [44].

Table 7.8. Fichera corner, benchmark results from [100].

i ω2
i reliable digits conjectured eigenvalue

1 3.31381e+00 1 3.2???e+00

2 5.88635e+00 3 5.88??e+00

3 5.88635e+00 3 5.88??e+00

4 1.06945e+01 4 1.0694e+01

5 1.06945e+01 4 1.0694e+01

6 1.07006e+01 2 1.07??e+01

7 1.23345e+01 3 1.232?e+01

8 1.23345e+01 3 1.232?e+01

Two tests were performed for this problem using unstructured tetrahedral and

uniform hexahedral meshes. The initial meshes are shown in Figure 7.9.
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Fig. 7.9. Fichera corner, initial meshes.

The computations were performed on refined grids consisting of 28489 vertices,

323072 faces and 159744 tetrahedra and 31841 vertices, 89088 faces and 28672 hexa-

hedra, respectively.

The results of the eigenvalue approximations for the first eight eigenfunctions of

S∗
h,1Sh,1, in each case, are reported in Table 7.9.

Table 7.9. Fichera corner, results for tetrahedral mesh (column 3) and hexahedral

mesh (column 4).

i ω2
h,i |ω2

i − ω2
h,i| |ω2

i − ω2
h,i|

1 3.23432e+00 7.94855e-02 2.63062e-02

2 5.88267e+00 3.67742e-03 1.69117e-02

3 5.88371e+00 2.64462e-03 1.69511e-02

4 1.06789e+01 1.55709e-02 6.22111e-02

5 1.06832e+01 1.12777e-02 6.22377e-02

6 1.06945e+01 6.08114e-03 1.03244e-01

7 1.23653e+01 3.07189e-02 1.20678e-01

8 1.23723e+01 3.77137e-02 1.22141e-01

We note that the hexahedral mesh offers better approximation with significantly
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less memory usage. This can be explained by the fact that the mesh is uniform and

that the dimensions of Xh and Yh,k are balanced better in this case.

4. Eigenvalues of a linear accelerator cell

Our final problem involves complicated geometry modeled with fine hexahedral mesh.

It is a linear accelerator induction cell taken from Lawrence Livermore National Lab-

oratory’s EMSolve project, see [101]. The mesh has 46382 vertices, 128992 faces and

41344 elements and comes from a real-world application.

Our code successfully computed the first ten eigenvalues of this difficult problem.

The magnitudes of the first ten electric eigenmodes are visualized in Appendix B on

pages 162 to 165.

D. The time-harmonic problem

In this section, we report the results of computation for the full time-harmonic system.

For ease of implementation, we report results in two dimensions. We also, assume

that the fields are real, i.e. we are approximating the problem (6.6)-(6.7).

Specifically, the weak formulation is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(e,∇×v) + ω (µh, v) = 0 ∀v ∈ V1 = H1(Ω) ,

(h, ∇×w) + ω (εe, w) = 〈j, w〉 ∀w ∈ V2 = H1
0(Ω) ,

(µh, ∇ψ) = 0 ∀ψ ∈ H2 := H1(Ω) .

Here, we used the scalar and vector curls defined in (2.13).

As in the three-dimensional case, we get that when ω is not an eigenvalue, the

least-squares method is well posed (i.e. has unique solution for compatible data). As

an illustration, we consider an application involving a known smooth solution. We
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Table 7.10. Numerical results for the time-harmonic test using exact solver.

h ||e||0 ratio nit N time

0.125 0.57812 9 384 0.03

0.0625 0.29133 1.9844 9 1536 0.15

0.03125 0.14599 1.9955 9 6144 0.93

0.015625 0.07302 1.9992 9 24576 5.49

0.0078125 0.03645 1.9998 9 98304 46.7

0.00390625 0.01826 1.9999 9 393216 425.

let Ω be the unit square and take ω = µ = ε = 1. This problem has solution

e = x (1 − x) sin(πy) , h = ∇(cos(πx) cos(πy)). (7.2)

The numerical results on a uniform triuangular mesh with two different choices for

Th,k are given in Table 7.10 and Table 7.11.

The error behavior in L2(Ω) clearly illustrates the expected first-order conver-

gence rate. Note that, in both cases, the number of iterations required to reduce

the residual by a factor of 10−6 remains bounded independently of the number of

unknowns.

We also remark that using Multigrid, instead of the exact solver, leads to a

modest increase of the number of iterations, while significantly reducing the overall

solution time.
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Table 7.11. Numerical results for the time-harmonic test using Multigrid.

h ||e||0 ratio nit N time

0.125 0.57812 9 384 0.03

0.0625 0.29134 1.9844 11 1536 0.11

0.03125 0.14600 1.9956 12 6144 0.48

0.015625 0.07302 1.9993 12 24576 2.38

0.0078125 0.03645 1.9999 13 98304 11.5

0.00390625 0.01826 2.0000 13 393216 58.9
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CHAPTER VIII

CONCLUSIONS

This dissertation introduces the dual least-squares technique for approximation of a

variety of problems related to the time-harmonic Maxwell’s equations. We presented

theoretical results concerning the stability of the discrete problems, as well as results

characterizing the error of approximation. We also showed that the methods can be

efficiently implemented.

The abstract least-squares framework was introduced and analyzed in Chapter

III. The results concerning the approximation of the solution and the least-squares

solution operator can possibly be applied to other problems. The theory for the mag-

netostatic and electrostatic problems from [26] was expanded in Chapter IV to more

general stable spaces and to domains with curved boundaries. Improved regularity

results were obtained in Appendix A. The eigenvalue problem was treated in Chapter

V by introducing a new reformulation based on a compact skew-Hermitian operator.

We gave estimates for the convergence of the eigenvalues and eigenvectors and showed

that spurious modes are avoided. This method is new and appears to be quite differ-

ent from the previously available algorithms for this problem. Finally, we extended

the method to the full time-harmonic system and characterized its solvability and

approximation error in Chapter VI.

As with any introduction of new methodology in a well-developed field, there

are many interesting open questions related to the topic of the dissertation. For

example, it will be interesting to investigate the existence of other pairs of stable

spaces. Also, the application of similar ideas to the more general equations describing

photonic crystals looks promising. Additional models that might be of interest are

those involving perfectly matched layers and eddy current problems.
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APPENDIX A

REGULARITY RESULT ON A CONVEX DOMAIN

In this appendix, we will provide a regularity estimate for the solution of a

magnetostatic div-curl system of a special type. Assume that the domain Ω is convex.

Let f ∈ H−1(Ω), and ∇·f = 0 in the sense of distributions. As discussed earlier, the

system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇×x = f in Ω,

∇·x = 0 in Ω,

x · n = 0 on ∂Ω,

(A.1)

has a unique “weak” solution x ∈ L2(Ω) satisfying

(x, ∇×v) + (x, ∇h) = 〈f, v〉 ∀(v, h) ∈ Y1 . (A.2)

For g ∈ (H ε(Ω))∗, consider the problem of finding ψ ∈ H̃1−ε
0 (Ω) such that

〈−∆θ, ψ〉 = 〈g, ∇θ〉 ∀θ ∈ H1
0(Ω) ∩ H1+ε(Ω). (A.3)

This problem has a unique solution since the operator −∆ defines an isomorphism of

H1
0(Ω) ∩ H1+ε(Ω) onto H̃−1+ε(Ω), see [30]. Additionally, we have

‖∇ψ‖
H̃

−ε
(Ω)

≤ ‖ψ‖H̃1−ε
0 (Ω) ≤ C ‖g‖(Hε(Ω))∗ ,

and therefore, by setting Q1g = ∇ψ we get the unique continuous extension of Q1 as

an operator from (H ε(Ω))∗ to H̃
−ε

(Ω). Thus, in particular,

‖Q1g‖H̃
−1

(Ω)
≤ C ‖g‖(H1(Ω))∗ .

Analogous to the definition in §V.A, let S1 be the solution operator defined as
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S1g = x, where x solves (A.2) with data f = (I − Q1)g.

Lemma A.1 For any ε ∈ [0, 1], S1 : (H ε(Ω))∗ �→ H1−ε(Ω) is a bounded linear oper-

ator.

Proof For any g ∈ (H ε(Ω))∗ we have that (I − Q1)g ∈ H̃
−1

(Ω) and

〈(I − Q1)g, ∇θ〉 = 0 (A.4)

for arbitrary θ ∈ D(Ω). Therefore, the compatability condition (4.11) is satisfied,

and S1g is well defined. Moreover, the convexity of Ω and the inf-sup condition

(Proposition 4.1) imply that

‖S1g‖1 ≤ C ‖(I − Q1)g‖0 , and ‖S1g‖0 ≤ C ‖(I − Q1)g‖H̃
−1 ,

for g ∈ L2(Ω) and g ∈ (H 1(Ω))∗, respectively. Using the boundedness of Q1 we get

‖S1g‖1 ≤ C ‖g‖0 , and ‖S1g‖0 ≤ C ‖g‖(H1(Ω))∗ .

Thus, by interpolation,

‖S1g‖1−ε ≤ C ‖g‖(Hε)∗ , ∀g ∈ (H ε(Ω))∗ .

Corollary A.1 Let ε ∈
(
0, 1

2

)
. There exists C = C(ε) > 0, such that for data

f ∈ H−ε(Ω), with ∇·f = 0, the solution of (A.2) is in H 1−ε(Ω) and we have the

stability estimate

‖x‖1−ε ≤ C‖f‖−ε . (A.5)

Proof Since ε < 1
2
, we have H−ε(Ω) = H̃

−ε
(Ω) = (H ε(Ω))∗, see Theorem 2.4. By

(A.3) and the fact that D(Ω) is dense in H1
0(Ω) ∩ H1+ε(Ω), it follows that Q1f = 0
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when f ∈ H−ε(Ω) and ∇·f = 0. For such f, S1f coincides with the solution x of (A.2).

The corollary follows from Lemma A.1.

Remark A.1 When f ∈ (Hε(Ω))∗ with ε ∈
[

1
2
, 1
]
, the condition Q1f = 0 implies

∇·f = 0 by (A.4). The converse is false. Indeed, for example, let ε = 1 and φ ∈ L2(Ω)

be a non-constant harmonic function. Define f ∈ (H1(Ω))∗ by

〈f, v〉 = −(φ,∇·v) ∀v ∈ H1(Ω) .

Clearly ∇·f = 0. On the other hand, (A.3) implies that Q1f = f|H−1 = ∇φ �= 0.
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APPENDIX B

VISUALIZATION OF SOME APPROXIMATE SOLUTIONS

Fig. B.1. Approximation to the magnetic field in the iron core of the transformer.

Fig. B.2. Cross-section of the approximate solution field for the transformer problem.
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Fig. B.3. Approximation to the magnetic field in the transformer.



159

Fig. B.4. Unit ball, eigenmode 1.

Fig. B.5. Unit ball, eigenmode 2.

Fig. B.6. Unit ball, eigenmode 3.



160

Fig. B.7. Unit ball, eigenmode 4.

Fig. B.8. Unit ball, eigenmode 5.

Fig. B.9. Unit ball, eigenmode 6.
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Fig. B.10. Unit ball, eigenmode 7.

Fig. B.11. Unit ball, eigenmode 8.

Fig. B.12. Unit ball, eigenmode 9.
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Fig. B.13. Unit ball, eigenmode 10.

Fig. B.14. Linear accelerator cell, eigenmode 1.
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Fig. B.15. Linear accelerator cell, eigenmode 2.

Fig. B.16. Linear accelerator cell, eigenmode 3.

Fig. B.17. Linear accelerator cell, eigenmode 4.
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Fig. B.18. Linear accelerator cell, eigenmode 5.

Fig. B.19. Linear accelerator cell, eigenmode 6.

Fig. B.20. Linear accelerator cell, eigenmode 7.
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Fig. B.21. Linear accelerator cell, eigenmode 8.

Fig. B.22. Linear accelerator cell, eigenmode 9.

Fig. B.23. Linear accelerator cell, eigenmode 10.
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