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In this work we present an extension of Biot’s theory to describe wave propa-
gation in elastic and viscoelastic porous solids saturated by two-phase fluids under
variable confining and pore pressure conditions. The model takes into account the
capillary forces existing when the pore fluids are immiscible.

Appropriate bulk and pore volume compressibilities are defined in terms of the
coeflicients in the stress-strain relations, which lead to a generalization of the classic
effective pressure laws for the case of single-phase fluids.

Using a Lagrangian formulation, the coupled equations of motion for the solid
and the fluid phases are also derived, including dissipative effects due to matrix
viscoelasticity and viscous coupling between the solid and fluid phases, which are
used to model the levels of wave attenuation and dispersion observed in rocks.

Four different body waves can propagate in this type of media, three compres-
sional waves and one shear wave. The sensitivity of the phase velocities and quality
factors to variations in saturation and effective pressure in a sample of Boise sand-
stone saturated by a gas-water mixture is presented and analysed. Our results sug-
gest that a combined analysis of such measurable quantities can help to determine
the saturation and pressure states of a hydrocarbon reservoir.

Keywords: wave propagation, effective pressure, porous solids, immiscible
fluids, rock physics.

1. INTRODUCTION

The analysis of the variation of seismic and mechanical properties of rocks when
the saturant fluids are varied in their properties and composition is an active area
of research in exploration geophysics, with application in reservoir characterization
and engineering and also in petroleum geomechanics.

Theoretical formulations for the study of the deformation and elastic wave prop-
agation in porous rocks with full, partial, multiphase, or segregate fluid saturation
have been presented by different authors (see for example Biot 1956b,c; Biot 1962;
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Berryman et al. 1988; Dutta & Odé 1979; Mochizuki 1982; Toksoz et al. 1976).
However, none of these models incorporates the capillary forces existing when the
pore fluids are immiscible. Consequently, the pressure variations induced by wave
propagation in the different fluid phases are considered almost equal, neglecting
possible changes in capillary pressure.

In this work we present a general theory for this kind of problems, which at
the same time includes the effects of the ambient overburden pressure and the
reference pressures of the immiscible fluids on the mechanical response of the rock.
The theoretical basis were given by Santos et al. (1990a,b). In addition, generalizing
the ideas given in Zimmerman et al. (1986) and in Zimmerman (1991) for single-
phase fluids we define six compressibility coefficients to quantify the changes in
either the pore volume or the bulk volume associated with changes in confining,
wetting fluid and capillary pressures. Using these compressibilities, we established
effective pressure laws for this model, showing that the effective pressure in this case
depends not only on the wetting fluid pressure but also on the changes in capillary
pressure.

For the study of wave propagation processes, two possible sources of energy
dissipation are considered in this theory: Biot-type global flow and linear viscoelas-
ticity. The first one is included by means of a viscous dissipation density function
in the Lagrangian formulation and involves the relative flow velocities of the two
fluids respect to the solid frame (Santos et al. 1990a). The second one is incorpo-
rated by extending the elastic constitutive relations to the linear viscoelastic case
by means of a correspondence principle (see Biot 1956a). In this way the real poroe-
lastic coefficients in the constitutive equations are replaced by complex frequency
dependent poroviscoelastic moduli satisfying the same relations as in the elastic
case. Viscoelastic behaviour is included in order to model the levels of dispersion
and attenuation suffered by the different types of waves when travelling in real
rocks. A form of the frequency correction factors for the mass and viscous coupling
coeflicients in the equations of motion needed in the high-frequency range is also
presented. Moreover, generalizing a procedure previously applied to viscoelastic
solids by Fabrizio & Morro (1992) and also to porous media saturated by single-
phase fluids by Ravazzoli (1995), in the Appendix we analyse the resultant moduli
using the laws of continuum equilibrium thermodynamics, leading us to establish
some necessary restrictions. Finally, the theory is applied to predict and analyse
the influence of the saturation, pore fluid types, capillarity and effective pressures
on the phase velocities and quality factors in a sample of Boise sandstone.

2. A modified two-phase Biot model

Here we review the model presented by Santos et al. (1990a,b) describing the de-
formation and propagation of waves in an elastic isotropic, homogeneous, porous
solid saturated by two immiscible fluids such as oil and water or gas and water.
The original theory is modified to include explicitly in the formulation the absolute
reference pressure of both fluid phases. Next, we derive the stress—strain relations,
defining a set of elastic moduli and compressibilities for this kind of media.
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(a) Derivation of stress-strain relations

When two immiscible fluids occupy the voids of a porous solid one of them
(depending on their adhesion tension), tends to preferentially wet the solid surface,
spreading over it. In this way we can distinguish a wetting phase and a non-wetting
one, which will be denoted with the subscripts (or superscripts) “w” and “n”,
respectively. Let S, and S, denote the averaged wetting and non-wetting fluid
saturations, respectively. Further, let us assume that the two fluid phases completely
saturate the porous part of the bulk material so that S, + S, = 1.

The symbols S;,, and S,.,, will denote the residual wetting and non-wetting fluid
saturations, respectively. We assume that both fluids are allowed to move inside the
pore space, so that S., < S, < 1 — S, (see Bear 1972; Collins 1961; Peaceman
1977; Scheidegger 1974).

Let u®, 4", and 4" denote the averaged absolute displacement vectors for the
solid, non-wetting and wetting phases, respectively. Let ¢ denote the effective poros-
ity and for I = n,w set u! = (@' —u?®), & = -V -ul.

At a reference initial state, we consider a volume Vj of homogeneous bulk ma-
terial containing fluid volumes V,, and V,, at pressures P, and P,,. In such a state
we have V, = V,, + Vi, S; = Vi/Vp, L = n,w, ¢ =V,/V.

Note that for uniform porosity S,£" and S,&¥ represent the change in the
corresponding fluid contents per unit volume of bulk material (Santos et al. 1990a).
Thus, if AV,® denotes the part of the total change in volume AV, =V, — V; due to
changes AP, = P, — P, in the corresponding fluid pressures, since in equilibrium
VS; = 0, we see that

SiEl = (AVi— AV?) [Ty = $(AV = AV?) [Ty, I=mw.  (21)

Let K, = C;;! and K,, = C;! denote the bulk moduli of the non-wetting and
wetting fluids, respectively, C,, and C,, being the corresponding compressibilities.
Then, by definition

A‘/lc/‘_/vl = _API/KIJ l= n,w. (22)

Also, neglecting second order terms, AV, = V,AS; + S;AV,, | = n,w, and conse-
quently

& =¢(AS/Si+AV,/V, — AVE/V),  l=n,w. (2.3)
Setting &* = S,&" + S,£Y, it follows from (2.1) and (2.3) that
& =@ (AV, — AV7 — AV) [V, (2.4)

Next, let 7; = Ty; + ATy, 9,5 = 1,2,3, be the total stress tensor of the bulk
material, A7;; being the change in the total stress with respect to a reference value
7;; corresponding to the initial equilibrium state. In the same way, P, = P, +AP,
and P, = P, + AP, denote the absolute pressures of the fluid phases, AP, and
AP, representing small increments in the corresponding pressures with respect to
their reference values P, and P, and set AS,, = S, — S, = —AS,,. Recall that P,
and P, are related through the capillary relation (see Bear 1972; Peaceman 1977;
Scheidegger 1974), which can be regarded as an equation of state for this system:

Pea(Sn) = Pp — Py = Poa(Sn) + APy > 0. (2.5)
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Then, ignoring terms of the second order in AS,,,
AP.o(Sn + AS,) =2 Pl (S,)AS,. (2.6)

The function P.,(Sy) is a positive and strictly increasing function of the variable
Sn. Hysteresis effects are ignored.

Let us consider a volume 2 of bulk material of boundary 02 in static equilibrium
state under the action of the surface forces f7, f, f¥,i = 1,2, 3, acting on the solid
and fluid parts of 9Q per unit area of bulk material. These forces can be written in
the form (Santos et al. 1990a)

ff = I7ij + ¢(SnPn + SwPu)dijlvj,  fi = —¢SiPéijvj, 1=n,w, (2.7)

where d;; denotes the Kronecker symbol and v; is the unit normal to 6f).

If W* = W*(Ar;;, AP,, AP,) represents the complementary strain energy den-
sity of the system, then its complementary potential energy V* is given by (see
Santos et al. 1990a; Fung, 1965)

= [ wede [ gz gran + s, (28)
Q o0

where dz denotes an infinitesimal volume and do a surface element in the boundary
01). Here and in what follows summation convention is used, i.e., sum on repeated
indices is applied.

The principle of complementary virtual work for our system can be stated in
the form (Santos et al. 1990a):

/ oW dn = / (GF5 uf + 5 ful + 6 f2u) do (2.9)
Q o0
- / AAP, — APy — APoy) + A(GAP, — GAP, — 6APoy)|da
Q

where ¢ denotes virtual changes and A is a Lagrange multiplier used to introduce
the capillary relation as a constraint. Neglecting second order terms in the different
increments and using (2.6), it can be shown that

617 = 3 [SnbAP + P f2le ] 605, 610 =~ [SubAP — Puf2bas] 650,

618 = = [SndAP, + Su6APy + Pua(Sy) 225 | 63505 + 6Amjv5. (2.10)
Transforming the surface integral in (2.9) into a volume integral by means of
Gauss theorem, using equations (2.10), and following the argument given by Santos

et al. (1990a) it can be shown that

ow*r = Eij 0A Tij + (gn & — )\) 0AP, + (gw &Y+ A)&APU, + (2.11)
+(BE + A+ (§" —£Y)() 0AFeq,

where 8 = P.,(S,)/P!,(Sy), ¢ = Py/P!,(S,). Assuming that JW* is an exact
differential of the variables A7;;, AP,, AP,, and AP,,, the complementary strain
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energy W* is equal to the strain energy W, and using the capillary relation (2.5)
in (2.11) we obtain

W= ey Ary+ € [(a +8+00AP, - (B+0AP,]
+£&¥ [(Sw + AP, — (AP,)] }
= %{A Tijeij + [(Sn+ B+ ¢) € — (€°] AP,
+ [(Sw + Q)€Y — (B+)E"| AP, }. (2.12)

Restricting the analysis to linear stress—strain relations, for the isotropic elastic
case we obtain the following stress-strain relations:

i) ATU =2N 5ij + 51']' (/\ceb - Bl€” - B2£w)7

i) ATp = (Sn+B+() APy — (B+ () APy = —Biey + Mi&" + Ms€",

iil) ATy = (Sw+ () APy — (AP, = —Baey + M3&™ + MaE", (2.13)
where the magnitudes A7;;, AT, and AT, represent the generalized forces for
our system, €;; denotes the strain tensor, and e, = &;; = AV;/Vj. According to
Gassmann (1951), it will be assumed that N is identical to the shear modulus of
the dry rock Nyp,. Also, \c = K,—2N in 3D and A\, = K.—N in 2D, with K, = C,*
being the undrained bulk modulus, computed as in Santos et al. (1990b):

K. =K,(K, +E)/(K; +E), E=Ki(Kn—K,)/(¢(Ky — Ky)), (2.14)
— — 71 —
Kszt(’YSnCn+Swa) ’ a=1+(Sn+ﬂ)(’y_1)7
5\5 & S\a & —1
7= (14 Ply(80)5nSuCu) (1 + Ply(9)9n5uCn)
where K,,, = C,;! and K, = C,;! denote the bulk modulus of the empty matrix
and the solid grains, respectively. In the equations above, K; = C’f_1 defines an
effective bulk modulus for a two—phase fluid taking into account capillary forces.
Here we are assuming that the solid matrix is composed of a homogeneous material.
In the case of mixed mineralogy an effective average coefficient for K can be used

(see Mavko et al. 1998). The remaining coefficients can be obtained by using the
following relations:

B, = XKC[(Sn + B)’y - ﬂ + (’7 - l)C], B; = XKC[(SU) + (1 - ’7)(]} (215)
Ml = _MB - Blcmn_17 M2 = (TB2 + C) q_17 M3 = _M2 - B2Cm77_17
where
X = [77 + &(Cm - Cc)] {a [77 + (Z(Cm - Cf)]}71 y 4= & (Cn + I/Pcla(gn)gngw) >
r= (S’n +B8)Cs + (Cc — Cn) [qu + (gn +8) (1 - Cscc_l)] , M= Cs = Cp,

The inverse relations of (2.13) giving the generalized strains £;5, (Sp+ 8+¢)€" —
¢€™, and (Sy + Q)€Y — (B + ()€™ as linear functions of Ar;;, AP,, and AP, are:

1) Ei]‘ = 1/(2N) ATZ']'—i—(sij(DAT—F]_APn—FQAPw),
ii) (Sn + B+() €™ = (€Y = —Fi A7 + Hi AP, + H;AP,, (2.16)
iii) (Sw +¢) €° — (B+ () &" = —FAT + H3AP, + H2AP,,.

In the equations above AT = A7;; and D, Fy, F5, Hy, Hy, H3 are elastic coefficients
(Santos et al.1990a).
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(b) Definition of Bulk and Pore Compressibilities

Here we show that the model presented above enables us to establish a theory
for the compressibilities of the system. For the analysis that follows we consider
that the variable P. (applied external pressure) plays the role of the confining or
overburden pressure supported by the porous saturated sample at a given (fixed)
depth.

First we proceed to derive expressions for e, and e, = AV,/V, that will be
used to define the compressibilities for the saturated material. Consider tensional
changes Ar;; such that Ar;; =0 for ¢ # j and

ATH = ATQQ = AT33 = AT/S = —APC, APC > 0, (217)
Note that from (2.2), (2.4) and (2.16i) we can express e, and e, in the form:

es = (3D +1/2N)A7T — 3F, AP, — 3F, AP, (2.18)
ep =)o+ AVEV, = )¢ — §,Cr AP, — §,Cyy AP, (2.19)

Next, adding (2.16ii) and (2.16iii) we obtain
§* = —(F1 + FQ)AT + (Hl + H3)A_Pn + (H2 + H3)APw (220)

Using the relations (3D + 1/2N) = Cp,/3,F1 = (S, + B)n/3, F» = (S, — B)n/3
(see Santos et al. 1990b, pp. 1432) and combining (2.17), (2.20) and the capillary
relation AP, — AP, = AP,,, equations (2.18) and (2.19) become

ey = —Cn AP, —nAP,, — (S, + B)NAP.,, (2.21)
ep =n/¢ AP, + ([Hy + Hz + 2H3]/¢ — SnCp — SuCy) AP, + (2.22)
+ ([H1 + H3]/($ - ‘S_’TLCTL) A-Pca,-
Since there are two volumes V;, and V,, and three different pressures (P;, Py, P.q)

that may vary independently, from (2.21)—(2.22) we see that a set of six compress-
ibilities can be defined as:

1 [(AV,
c — ¥ =Um, 2.2
G =7 (AP)FWPM ¢ (229)
1 [ AV,
Chw = = ( ) =C,, —C,, (2.24)
5 \APy Pe,Pea
1 [ AV, .
Chea = — = (S, Crm — Cs), 2.25
=7 (a75), , =+ P(Cn=C) (229
1 [AV, 1
Cc:—_—< ”) = —(Cp — Cs), (2.26)
F » \AF; Py, Peq ¢
1 (AV, B - -
pr = V_p <APw)PC’Pm = [Hl + Hy + 2H3]/(i) SnCh chw; (227)
1 /A -
Cpea = = ( P > = [H1 + H3]/¢ — SnCh. (2.28)
» \APea/ p_p,
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Then, (2.21)—(2.22) can be stated in differential form as follows:

€p = _Cbc(Pc;Pw;Pca)ch + wa(Pc;Pw;Pca)de + Cbca(Pc;Pw;Pca)chw(z-Zg)
€p = _Cpc(Pc;Pw:Pca)ch + pr(Pc;Pw;Pca)de + Cpca(Pc;Pw;Pca)chz(z-30)

The coefficients Cpc, Chyy and Cp are similar to those defined in Zimmerman et
al. (1986) and Zimmerman (1991) for the case of single-phase fluids with analogous
interpretation and applications. The remaining coefficients Cpcq, Cpy and Cpe, are
strongly dependent on the saturation state and capillary pressure. This means that
the changes in such variables can also modify the pore and bulk volumes.

Next note that from (2.23)—(2.24) and (2.26) we deduce that

i) Chpw = Cpe — Cs, i) Chy = ¢Cle. (2.31)

Equations (2.31i,ii) correspond to equations (2.5) and (2.6) in Zimmerman (1991).
This shows the equivalence of the variable P, and the “pore pressure” P, used in
such references and that Cjp,, plays the role of the compressibility Cp, in Zimmerman
et al. (1986) and in Zimmerman (1991).

3. Effective pressure law for elastic bulk volume
deformations

The infinitesimal pore and bulk strains found in the preceding Subsection cor-
respond to pressure changes small enough so that the different compressibilities
involved can be considered constant during the process. That analysis would be
appropriate for elastic wave propagation problems. However, for other physical
problems, the total integrated strain is required (Zimmerman 1991). Examples of
such situations are the studies of subsidence and formation compaction due to pore
fluid migration from hydrocarbon or groundwater reservoirs, the evaluation of the
increase (decrease) in the pore volume of a rock due to a finite increase (decrease)
in the pressure of the pore fluids and the estimation of the true in-situ porosity of a
formation from laboratory measurements (usually made at zero confining pressure).

It is a well established fact that most of the mechanical and transport properties
of cracked or porous media subjected to both external and internal pressures de-
pend on effective pressure. This is a very important concept since the forementioned
properties remain the same at a constant effective pressure, even though the confin-
ing and pore fluid pressures are varied. Important contributions to the formulation
and analysis of effective stress rules, from both the theoretical and experimental
points of view, were presented by different authors, as for example Terzaghi (1936),
Geertsma (1957), Nur & Byerlee (1971), Christensen & Wang (1985), Zimmerman
(1991), Gangi & Carlson (1996), Berryman (1992) and Prasad & Manghnani (1997).

Next we will show that the equations obtained in §2 b lead us to an extension of
the effective pressure coefficients obtained by Zimmerman (1991) for uniform pore
pressure systems, when capillary forces are considered. Assuming that e; and e,
are exact differentials of the variables P,, P, and P., and that Cy is constant, from
(2.29) and (2.24) we get

9 [aeb] — _9Ck (3.1)

opP, |oP. opP,’
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0 861, - 6wa o 6[C’bc - Cs] . 80{,0

opP.|opP,| oP.  OP.  OP.°

Consequently Cy. = Cpe(P. — Py, Peg), and from (2.25) we also have that
Cbca = Cbca(Pc - Pw;-Pca) = (Sn + 6)(Cbc(Pc - PunPca) - Cs) (33)

Next, following Zimmerman (1991), to obtain the total strain through any given
process we integrate relations (2.29) and (2.30). To perform the integration in the
(P., Py, P.,) state variables, we move along the following paths:

Path1: (0,0,P.0(Sy)) = (Pe,0,P.4(S}))
Path 2: (P.,0,P.(Sk)) — (Pe,Pu,Pea(S)))
Path 3: (P.,Py,P..(S})) — (P.,Py,P.o(Sy)).
The symbol S;; denotes an unstrained reference saturation state within the range
Sppn < 8) <1 —8py.
For the Path 1, the sample is subjected to an external pressure P, and the
wetting fluid pressure is held at P, = 0, while non-wetting fluid is held at the

reference pressure P, = P..(S}) so that both pressures are constant during the
experiment. Then from (2.29) we have that

(3.2)

P
Bl =— / Cue(P1 = 0, Pea(S;,))dP .
0

Next, for the Path 2, the external pressure P, is held constant while both fluids
receive an equal increment in pressure from 0 to P,,. In this way there is no change
in capillary pressure. The resulting bulk deformation during this process is

P, P.—P, .
E} = /0 [Coe(Pe — Py, Py (SE)) — Cy]dPy = — /P Ce(P, Peo(SE))dP — C, P,.

Finally for the Path 3 experiment the wetting fluid pressure is held at the

pressure P, while the non-wetting fluid pressure is incremented from P,,(S}) to

P,,(Sy). This results in an increment in capillary pressure with constant P, and
P, with bulk volume deformation:

Pea(S0) )
E} = / Chca(P: — Py, P3)dPs.
P.o(SE)
The total strain Ej is then given by the sum: E, = Ej + E? + E}.
Next following Zimmerman (1991) we proceed to define the ”secant” compress-

ibilities Cle and Clrea t0 Obtain an effective stress form of the total strain Ejp. Set
R(Pca) = Pca(Sn) - Pca(S:b) and let

_ _ 1 [P ~
Cbc(PcaPca(Sn)) = FA Cbc(Pa Pca(Sn))dP

J— _ _ 1 Pca(gn) _
Cbca(Pc - PTUJPCQ(S:L)JPCQ(STL)) = R(P ) /p (55) Cbca(Pc - Pw;PB)dPS

1 Sn _
" R(Pua) /S [s + B()I[Cre(Pe = Pu, Pea(s) — CslPiy(s)ds,

*
n
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where we have used (2.25) and the fact that Py = P;(s) where the variable s takes
values in the saturation range [S,S,] and Ps(s) is the capillary pressure function.
Then we see that the elastic deformation Ej of the bulk volume can be written in
terms of an effective pressure Pe”Jc in the form

Eb = _6bc(Pc - Pwapca(S:b))(Pc - _w) - Cspw (34)
+6bca(Pc - Pw: Pca(s:;)y Pca(gn)) R(Pca)
= _ébc(Pc - Pw;Pca(S:))Pffa

where
Pebf =P, _ﬁblpw _ﬁb2R(Pca)7 (35)
ﬁbl = 1_Cs/€bc(Pc_Pw;Pca(S;;))a (36)

Np2 = ébca(Pc - Pw;Pca(S;)apca(Sn))/abc(Pc - Pwapca(s:;,))- (37)

It is therefore seen that, the effect of the confining pressure is not only counter-
acted by the wetting fluid pressure (as may be expected) but also by a new term
related to the capillary pressure change during the deformation process. A similar
expression can be obtained for the total elastic deformation P? ¥ of the pore volume
Vp. We do not include it here for brevity.

4. The equations of motion

First we will get an expression for the complementary potential energy density V;
of the system. Consider a perturbation of the system from the equilibrium state.
According to (2.8)

V" = / 5V do = / SW* d — / (WS f? + TS [T + a5 1) do. (4.1)
Q Q [o19]

Using equations (2.10) and (2.11), we obtain

x s 8ATZ'J' n 0 w 0 _ _
V" = /Q {—uf b+l S5 AT, 4 S5 ATy + AS[APe = (AP, = APy)] }do.

As stated previously, since we are in the linear case, the complementary strain
energy W* equals the strain energy W and consequently the same holds for their
corresponding densities V; = V;, (Santos et al. 1990a; Fung 1965). Then, assuming
that V; is an exact differential we have

s 6AT1']' 15]

Va=—ui 5=+l 5
7 %

ATy +u¥ ATy, + MAP. — (AP, — AP,)).  (4.2)

Thus, if u = (uf, u?, u¥) = (u;), 1 <i <3, 1 <j <9, are chosen as generalized
coordinates and assuming that the system is conservative we get

6Vd _ _aATi]‘ 6Vd _ 6 AT 6Vd _ 6
ou  Odz; * Oulr Oz " Ou¥ Oy

(2

AT,, 1<i<3. (4.3)
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Next, following Santos et al. (1990a) , in the isotropic case the kinetic energy density
E, and the dissipation density function D have the form

1 Ouf Ouf Ouf Ou? ous 6u_§"
Be = 3p % T TS g e TS (4.4)
+1 ¢ O Oui 1 . Ouf Ouf . Oui Ouf
29 o o 2% e e T e o
1, . 0uloul  Ou¥ du¥ ., Oul Ou¥
b = §(dn ot ot Tty ot ot ™ 9t ot )s (4.5)

where p,, and p,, are the mass densities of the wetting and the non-wetting fluids and
p is the density of the bulk material, i.e., p = (1—@)ps+Snpn~+Swpuw, With p, being
the mass density of the solid grains. Also, the mass coupling coefficients g, g< , 5.,
represent the inertial effects associated with dynamic interactions among the three
phases, while the coefficients df, d¢,, dS,, include the viscous coupling between the
solid and fluid phases. They can be computed by the formulae (see Santos et al.
1990a,b)

glc = g plsl/($7 dlc = /“Ll(’gl)2~’417 = n,w, (46)
grcuu =€G (pnpwgn‘gw) 2 /J)a dzw = (/‘l’nllfw)E S’n‘ngrnw/-Aa (47)

The factor G is known as a structure factor and is related to the tortuosity of the
pore space; it can be estimated as follows (Berryman 1981): G = % (1 + %) . The

constants fi,,, i, are the non-wetting and wetting fluid viscosities, respectively. Also,
A=K (KTn Korw — Kfnw), An = Krw/ A, Ay = Kpn/ A, with K, Ky, Ky and
K denoting the absolute and relative permeabilities, respectively. The relative
permeabilities are assumed to be functions of the non-wetting saturation S,, (Bear
1972; Peaceman 1977; Scheidegger 1974).

Remark: Note that (4.5) contains an additional viscous coupling coefficients df,,,
not present in the original formulation in Santos et al. (1990a).

Finally, the Lagrange formulation of the equations of motion is given by

d (OE, oD IV, .
— — = <j<09. 4.
dt <6UJ>+6UJ 6Uj, 1<j<9 ( 8)

5. Inclusion of viscoelastic dissipation

So far, the only source of energy dissipation considered in the equations of mo-
tion is associated to the viscous solid-fluid interaction (global flow effect) given by
(4.5), since the solid phase was assumed to be perfectly elastic. However, it is well
known that wave dispersion and attenuation phenomena in real saturated rocks
are higher than the associated to viscodynamic effects (Mochizuki 1982; Stoll &
Bryan 1970; Carcione 2001). This is mainly due to the complexity of pore shapes,
heterogeneities in the physical properties and in the distribution of the fluids and
the intrinsic anelasticity of the frame. These factors can be included in the for-
mulation by means of the theory of viscoelasticity. The theoretical basis for this
generalization was given by Biot (1956a,1962), who developed the general theory of
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deformation of porous materials saturated by viscous fluids when the solid phase ex-
hibits linear viscoelastic behaviour. Using principles of irreversible thermodynamics
he established a general operational relationship between generalized forces @; and
observed coordinates g;, of the form @; = T;;q;, where T;; is a symmetric matrix.
In this way Biot obtained a general correspondence rule between the elastic and
viscoelastic formulations in the domain of the Laplace transform and showed that
formally all the relations are identical. The poroviscoelastic formulation obtained
in this way was later applied by different authors for the study of wave propagation
problems (see Stoll 1974; Stoll & Bryan 1970; Keller 1989; Rasolofosaon 1991). It
follows from (2.13) that the eight generalized forces of our model are related to the
variables £,£" and €;; by means of a symmetric matrix, whose elements are func-
tions of the elastic coefficients. Thus, if we assume that the solid phase shows linear
viscoelastic behaviour, we are able to extend the constitutive relations (2.13) by
simply replacing the real elastic moduli N, \., By, By, M;, M5, M3 by appropriate
viscoelastic operators. Using Fourier transform in time (instead of Laplace), we can
state this relations in the space—frequency domain as follows:

i)A@(w)zzﬁ(w)@w)m,[A( )éb(w) - B, (w)€M(w) — By (w)€¥ ()],
i))ATn = —B1(w)a () + M ()€ (W) + My (w)€" (w),
iii) AT, = —Ba(w)é (W) + Ma(w)En (W) + Ma(w)€¥ (), (5.1)

N AN o~~~ o~~~

where w = 27 f is the angular frequency, N, A., By, Ba, M1, Ms, M3 are complex fre-
quency dependent poroviscoelastic moduli and the hat denotes time Fourier trans-
form. A similar extension can be done for the strain-stress relations (2.16).

By definition, viscoelastic behaviour is characterized by the time dependent
relationship between stresses and strains (memory effect). This can be clearly ap-
preciated formulating (5.1) in the time domain. To obtain expressions analogous
to the Boltzmann’s integral formulation in viscoelasticity, first we need to intro-
duce the stress relazation functions Ry(t),J = N, A, By, Ba, M1, Mo, M3, whose
time derivatives R (t) are related to the complex moduli in (5.1) as stated in (5.3)
below. These relaxation functions characterize the response of the system when
step-like strains are applied. In order to preserve the causality of the model it is
necessary to assume that all the relaxation functions are zero for times ¢ < 0, so
that the stress at time ¢ cannot be influenced by future strains. Taking this into
account in the inverse Fourier integrals of eqns. (5.1) and integrating by parts as-
suming that e;;(—o00) = £"(—00) = £¥(—00) = 0, equations (5.1) can be stated in
the space-time domain as follows:

i)  A7;(t) = 2Rn(0+)e45(t) + 6i5 [Rr.(0+)en(t) — Bp, (0+)E™ (1) — Rp, (0+)€™ ()]
+2 /0 R (s)eiy(t = )ds +5,; [ [Bs.()en(t — 5)

R, ()€™ (t — 8) — R, (s)€" (t - 5)] ds, (5.2)
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ii) AT,(t) = —Rp, (0+)es(t) + Rz, (04+)E™(t) + Rars (0+)E%(t)

# [ [ Rmoen(t - ) + R ()E( - 5) + Ry ()™ (¢ - 9)] i,
iti) ATw(t) = —RB,(0+)es(t) + Rar (0+)E™(t) + Rar, (04+)E7(t)

+ [T R @antt =) + R - 5) + R o)e"(e — )] ds.

In general, the notation R;(0+) denotes lim,_,o+ R;(t). Let F'S(w) and F€(w)
be the half-range Fourier sine and cosine transforms of the function f(t). Then,
the following frequency-domain relations between complex moduli and relaxation
functions can be shown:

J(w) = Jp(w) +iJr(w) = Ry(01) + RS (w) — iR5 (w), (5.3)

where J stands for N, A., B1, Ba, My, M2, M3.

As pointed out in Zimmerman (1991), although the derivatives appearing in the
different compressibilities (2.23)—(2.28) can be also defined for irreversible defor-
mation processes, such coefficients are generally computed only for purely elastic
cases. Then for consistency, the compressibilities of the model could be extended to
the present case by considering the relazed limits (i.e. limw — 0 or lim¢ — o0) of
the complex moduli appearing in (5.3). In Appendix A we give a set of restrictions

imposed by the Laws of Thermodynamics on the imaginary parts of the coefficients
n (5.1).

6. The equations of motion for the full frequency range.

It is known that for single—phase fluids, in the high—frequency range the viscous and
mass coupling coefficients become frequency dependent (see Biot 1956¢; Johnston
et al. 1987, Carcione 2001). This effect is associated with the departure of the flow
from the laminar Poiseuille type at the pore scale, which occurs for frequencies
greater than some characteristic value. Since we have two immiscible fluids flowing
within the poral space and three relative permeability functions, following the ideas
in Berryman et al. 1988, we define for this model three characteristic frequencies of
the form

wh = SyudA/(Gp), 1=mn,w, (6.1)
_ 1, - - 1 1

Wi = ¢ (Unfiw)? (SnSw) > Krnw/(€AG (prpw)?)- (6.2)
These frequencies are obtained by equating the inertial and viscous drag terms
associated with each fluid phase and using (4.6) and (4.7). For frequencies bigger
than the minimum of the three characteristic frequencies defined above, the mass
and viscous coupling coefficients are defined as follows:

gi(w) = gi + ,u,(S‘,)ZA,FI(al)/ l=n,w,

Inw(W) = gny + (,unllfw) 5,8 wEKrnwF1(Onw)/ (WA) , (6.4)
di(w) =df Fr(61), [!=n,w,nw (6.5)
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The complex valued frequency dependent function F(6;) = Fgr(8;) + iFi(6;),
j =n,w,nw in (6.3)—(6.5) is the “universal” frequency correction function defined
by Biot (1956¢) for single phase fluids:

_ ber'(9) + ibei (6)
) = ber(6) + ibei(6) ’

1
41-2T(9)’

with ber(f) and bei(#) being the Kelvin functions of the first kind and zero order.
The arguments 6; for F(6;), j = n,w,nw in (6.3)—(6.5) can be estimated as in Biot
(1956¢) and Santos et al. (1992):

0; = al\Jwpi/ui, a =21/KkrjAc/d, j =n,w,nw, (6.6)

where Ag denotes the Kozeny-Carman constant (see Bear 1972; Hovem & Ingram
1979).

Next, combine (4.8) with (4.3), (4.4), (4.5) and (5.1) and assume that S, is
independent of time (see Santos et al. 1990a for the argument justifying this as-
sumption). For a spatially homogeneous medium, the equations of motion (4.8)
formulated in the space-frequency domain take the following form:

—w? (pB° + pn ST + pu S @®) = (K, + %Kr)vv -
~NVXxVx@ +BV(V-0" +BV(V-i¥)

—? (pn Sn T + Gn U™ + Gy B°) + iwdy, U™ — iwdyyy B = B1V(V - 7°)
FMLV(V -G + MaV(V - 3Y) (6.7)

—? (pu S T + G 8" + gu 0°) + itwdyy B — iwdpy, 0" = ByV(V - T°)
+MV(V - @") + MpV(V - %),

Taking into account the fact that Fr(d) — 1 and Fr(¢)/w — 0 as w — 0 we may
regard (6.7) as the general form of the equations of motion for frequencies ranging
from the seismic to the ultrasonic range.

The plane wave analysis performed in Santos et al. (1990a) shows that in these
type of media, three different compressional waves (Type I, Type II and Type III)
and one shear wave (or S-wave) can propagate. The Type-I wave is the analogue
of the classical fast P-wave propagating in elastic or viscoelastic isotropic solids
and is associated with the motion of both solid and fluids moving nearly in phase.
The Type-IT and Type-IIT are slow waves strongly attenuated in the low frequency
range. The first one is analogous to the classical Biot’s slow wave, with the two
fluids moving nearly in phase and in opposite phase with the solid. For the Type
ITT waves, both fluids move in nearly opposite phase with each other. This is a new
mode not present in the case of single-phase fluids.

Denoting by k7, j = I,II,III, S, the complex wavenumbers, the phase velocities
C and quality factors ) are obtained by using the formulae:

Cj = w/Re(k‘j), QJ' = —Re(k‘j)/2lm(kj), (68)
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Py Yo Ay t1 Ao ts

(Km)71 0.536626645088 | 0.092089 | 0.01766 | 7.634 | 0.01828 | 38.53
(Nm)™" | 4.427347752235 0.10113 0.012 | 1.925 | 0.01259 | 23.71

Table 1. Coefficients of equation (7.1) for Boise sandstone. For pressures given in MPa
the moduli result in GPa.

7. Application to a real sandstone

We use the model to analyse the combined effects of saturation and effective pressure
on the attributes of the different waves propagating in a sample of Boise sandstone,
a well consolidated feldespathic graywacke (see King 1966 and Mann & Fatt 1960).
Its material properties are ¢=0.25, K=1400 10~ '° m?, K,= 34.5 GPa and p,=
2550 kg/m3. To introduce the variation of the matrix properties with effective
pressure, we obtained the dependence of the shear and bulk dry-rock moduli N, (P,)
and K,,(P.) versus confining pressure by assuming that for each P., the measured
velocities correspond to the elastic isotropic approximation. Then, we performed
exponential regressions of the form:

F(P.) =yo+ Arexp (—(P. — Py)/t1) + Ay exp (—(P. — Po) /ta), (7.1)

where f stands for N, or K,,. The coefficients are given in Table I. Since for the
dry sample the effective pressure equals the confining pressure, to obtain the elastic
properties of the skeleton for a given combination of confining and fluid pressures,
we simply replace P, by the effective pressure Pg’f (given by (3.5)) in equation
(7.1). The sample is subjected to a fixed confining pressure of 60 MPa and the pore
space is assumed to be filled with water (as the wetting phase) and a hydrocarbon
gas. Their properties are: p,= 1000 kg/m?, p,= 0.01 N s/m?, K,, = 2.223 GPa,
pn=100 kg/m3, u, = 0.00015 N s/m?, K,, =0.022 GPa. For the computations the
pressure of the water was varied within the range: 25 MPa < P,, < 60 MPa.

The capillary pressure function P,,(S,) and the relative permeability functions
K. (S,) and K, (S,) needed to describe our system are taken to be (see Douglas
et al. 1993):

Peo(Sn) = A (1/(Sn + Srw — 1)% = 52, /1Sn(1 = Spn — Srw)]?) s (7.2)
Krn(Sn) = (1 - (1 - Sn)/(l - Srn))2 ) Krw(sn) = ([1 —Sn — Srw] / (1 - Srw))2 .

These relations are based on laboratory experiments performed on different porous
rocks during imbibition and drainage processes (neglecting hysteresis effects). We
chose Sy, = S, = 0.05, and A = 30 kPa. In the absence of proper experimental
data, the coupling permeability function K., (Sy) used in this work is assumed to
be Krnw(Sn) = \/€ Krn(Sn) Krw(Sn)- The parameter € in (4.7) and the definition of
K,y is equal to 0.1, as in Santos et al. (1990b). The whole set of poroelastic mod-
uli is computed using (2.14)-(2.15). The viscoelastic behaviour is introduced using
the phenomenological model defined by Liu et al. (1976) to describe attenuation by
making the shear and undrained modulus complex and frequency dependent, while
all the other coefficients remain real. This is a linear and causal model, whose asso-
ciated complex modulus behaves properly in all the frequency range, and satisfies
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the restrictions imposed by the Laws of Thermodynamics (see Appendix A). Using
this model, the complex moduli K. = K.(w, P}, Sn), N = N(w, P?;) are computed
as

)
7 K1(PY,S,)

; N"(PY)
- ’ , N = . . (73)
RKc(waPé)f)_lTKc(wapeb ) RN(waPéJf)_zTN(wanf)

The real coefficients K7 (P?;) and N"(P?;) denote the relaxed closed bulk and
shear moduli, respectively. They are chosen so that the high frequency limits of
(7.3) match the values of N(P?;) and K.(P?;,S,) obtained from (7.1) and (2.14),
respectively. The frequency dependent functions R; and Tj, [ = K., N, associated
with a continuous spectrum of relaxation times, characterize the viscoelastic be-
haviour and are given by (see Liu et al. 1976, Carcione 2001)

1 1+ w?T3,
Ry(w,P’) =1-— n =, (7.4)
ef TQu(PY) 1+ w?T3,
2 T, —T
Ty(w,Pl) =————tan™! M I=K,N.  (75)
TQi(PY;) 1+ w?T1 Ty

The parameters in (7.4)-(7.5) are taken such that the resulting quality factors Q; =
T,/ R; are approximately equal to the reference values @Q; in the range of frequencies

where the model is applied. For the computations we take T7; = lOIOmLS, T, =

10° mst forl! = K., N. We also introduced the dependence of the quality factors @ x
and Q v on effective pressure (Winkler & Nur, 1979), disregarding for simplicity any
possible dependence of such coefficients on saturation. The value of the Kozeny-
Carman constant Ag in (6.6) is equal to 5.

According to (6.1)—(6.2) the characteristic angular frequencies at 10 % gas sat-
uration are about w? = 430 kHz,w? = 89 kHz and w]* = 182 kHz.

Figure 1 (a) shows the resulting bulk effective pressure Pé’f versus wetting fluid
pressure for 40 % gas saturation. We compare our results with other estimates, such
as the wetting-differential pressure, defined as P,q = P. — P,, and a general law
proposed by Gangi & Carlson (1996) of the form:

P& =P, — ngP,, with ng =ng —ni1Puyq, no =1, ny =0.014 MPa ™%

e

Significant differences can be observed in almost all the pressure range. As expected,
the increase in wetting fluid pressure causes a reduction in the effective pressure
acting on the solid matrix, producing a “softening” effect in the sandstone.

Figure 1 (b) illustrates the coefficients ny; and nya versus P, for different satu-
ration states. We observe that when P,, approaches P, (i.e., near the fracture limit),
nypy — 1 and nyy — 0, and Pff — Py,q (since Cy. — oo for P, — P.). Unlike the
”classic” mpy coefficient, npo is strongly dependent on saturation, showing the influ-
ence of the capillary forces on effective pressure, an effect that should be carefully
investigated with laboratory measurements.

Next we analyse the behaviour of the phase velocities and quality factors for the
different wave propagation modes in the ultrasonic frequency range (for f =1 MHz).
In Figures 2 (a) and (b) we plot the phase velocities of the Type I compressional
wave and the Shear wave versus Pff for different saturation states. The marked
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increase observed in both velocities with effective pressure reflects the change in
the elastic properties of the skeleton with effective pressure given by (7.1). This
effect is mainly associated to the closure of microcracks, low aspect ratio pores
and loose grain contacts, which increase the stiffness of the rock. For low effective
pressures both velocities show a significant decrease, an effect usually observed in
formations with very high pore pressures (i.e. overpressured), and also predicted by
different theories (see Carcione & Gangi 2000; Toksoz et al. 1976).

Figures 3 (a) and (b) show the behaviour of the Type II and Type III com-
pressional waves. These “slow” propagation modes are clearly more sensitive to
saturation also showing a strong dependence on effective pressure.

Finally, the quality factors for the Type I and Shear waves are shown in Figure 4
(a) and (b). As observed in the phase velocities, these coefficients show an important
monotonic increase with effective pressure, in agreement with the observations made
by different authors (see Carcione & Gangi 2000; Schon 1996; Tao et al. 1995). The
quality factors associated to the slow waves are not included in the paper for brevity.

8. Conclusions

In this work we developed a theory to study the processes of deformation and wave
propagation in porous solids saturated by two immiscible fluids. The model allows
the inclusion of many parameters such as porosity, permeability, lithology, pore
fluid types, saturation state, confining pressure, fluid pressures and the capillary
pressure vs. saturation curve, which are very important in different fields such as
rock physics, interpretation of laboratory data and reservoir characterization.

We derived the elastic stress-strain relations, introducing appropriate elastic
moduli. Generalizing a classic approach we defined a set of compressibilities and
established a new effective pressure law for elastic bulk volume deformations. Its
behaviour is consistent with other estimates and models the well known effect of
decreasing of seismic velocities observed in overpressured formations. The new coef-
ficient np2 is strongly dependent on saturation, showing the influence of the capillary
forces on effective pressure. The procedure can be readily extended to analyse pore
volume deformations.

The equations of motion, valid from the seismic to the ultrasonic range, were
formulated in the space-frequency domain, taking into account attenuation and dis-
persion effects associated to frequency dependent viscodynamic effects and matrix
viscoelasticity.

The model was applied to study the influence of saturation and variable fluid
pressures on dilatational and shear wave velocities and the corresponding quality
factors in a sample of Boise sandstone. The wave velocities are very sensitive to
effective pressure and in particular, those of the Type II and Type III waves are
strongly dependent on saturation state. This is also observed in the corresponding
quality factors. This suggests that combined analysis of phase velocities and quality
factors can be used as indicators of the saturation and pressure states of a reservoir
rock.

The results relative to Type I and Shear waves are in good agreement with
published experimental and theoretical works. Those corresponding to the slow
waves should be checked in the laboratory and we hope this will motivate further
experimental work in this subject.
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Appendix A. Thermodynamic restrictions

Here we derive a set of restrictions imposed by the Laws of Thermodynamics on the
imaginary parts of the coefficients in (5.1). It will be assumed that the principles
of continuum thermodynamics are valid for our system at the macroscopic scale. A
different approach was presented by De la Cruz et al. (1993), based on the energy
balance equations in the solid and the fluid phases and using averaging techniques.

Combining the First and Second Laws of Thermodynamics and using a general-
ization of the argument given in Fabrizio & Morro (1992) for viscoelastic materials
and in Ravazzoli (1995) for poroviscoelastic solids saturated by single-phase fluids,
for any isothermic cycle of period 27 /w the following inequality must hold:

27 /w A .
/ (An]’éi]’ + ATE™ + A'ﬁbfw> dt > 0. (A1)
0

Next, we choose €;;, ™ and % in (A1) and in the stress—strain relations (5.2) to
be of the form e;; = A;j(coswt + sinwt), & = € (coswt + sinwt), w > 0, where A;;
is a symmetric matrix. Set e4 = A;; and note that e, (t) = €i; = ea(coswt + sinwt).
A lengthy calculation yields

eglRfc (W) 4 2R3 (w) Agj Ay — 2§"eAR%1 (w) — 2§weARJS32 (w) (A2)
+(EM)? Ry, (W) + (€9)* Ry, () + 2676 Ry, (w) <0, w >0,
which is an extension of Graffi’s inequality for this type of media (see Fabrizio

& Morro 1992). Setting I/(C\I(w) = XCI(w) + %J/V\I(w) and combining (5.3) and the
identity

24;;Ai; = < [€% + (A1n — Ax)? + (A1r — Ass)” + (Azz — Ass)?|+4 (47, + Al + 435) ,

Wl N

we see that equation (A 2) can be stated in the form

4 Kor(w) — 26"eaBi1(w) — 2€¥eaBar(w) + (€7)>My1(w) + (€°)* Moz (w)
+2€nE% Mar(w) + 4[ (A3, + A + A3,) (A3)

2 —
+§ [(A11 — A22)® + (A1 — As3)® + (A2 — As3)?] ]NI(UJ) >0, w>0,

Next we consider the case of a hydrostatic compression, i.e., A;; = 0,4 # j and
A11 = A22 = A33. From (A 3) we get

Z'Pi(w)Z >0, w>0, (A 4)
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where Z¢ = (ea,&™, &%) and the symmetric matrix 1/3; is defined by 73;11 = I/(u\f,
Pryy = My, Prsg = May, Pr1g = —Buy, Prig = —Bay, Prag = May.

Next for a pure shear oscillation, i.e, A;; # 0,4 # j, A11 = Az = A33 =0 and
& =& =0, from (A 3) we have

Ni(w) >0, w>0. (A5)

Inequalities (A4) and (A5) are the thermodynamic restrictions imposed on the
imaginary parts of the complex frequency dependent coefficients in the stress-strain
relations (5.1).

Remark: The equality in (A 4) and (A 5) holds if and only if w = 0, i.e., the system
behaves as elastic at zero frequency. This results from (5.3) and the definitions of
the half-range Fourier sine and cosine transforms.
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Figure Captions

Figure 1. (a) Comparison between effective pressure, wetting differential pres-
sure and Gangi-Carlson’s type law for S, = 0.4. (b) Behaviour of ny and mpo
coefficients versus P, for different saturation states.

Figure 2. (a) - (b) Phase velocities of Type I - P and Shear waves vs. Pebf for
different saturations.

Figure 3. (a) - (b) Phase velocities of Type II and III - P waves vs. Pff for
different saturations.

Figure 4. (a) - (b) Quality Factors of Type I - P and Shear waves vs. Pé’f for
different saturations.
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