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ABSTRACT

Analysis of Finite Element Approximation and

Iterative Methods for Time-Dependent Maxwell Problems. (August 2002)

Jun Zhao, B.S., Nanjing University, China;

M.S., Chinese Academy of Science

Chair of Advisory Committee: Dr. Joseph E. Pasciak

In this dissertation we are concerned with the analysis of the finite element

method for the time-dependent Maxwell interface problem when Nedelec and Raviart-

Thomas finite elements are employed and preconditioning of the resulting linear sys-

tem when implicit time schemes are used.

We first investigate the finite element method proposed by Makridakis and Monk

in 1995. After studying the regularity of the solution to time dependent Maxwell’s

problem and providing approximation estimates for the Fortin operator, we are able to

give the optimal error estimate for the semi-discrete scheme for Maxwell’s equations.

We then study preconditioners for linear systems arising in the finite element

method for time-dependent Maxwell’s equations using implicit time-stepping. Such

linear systems are usually very large but sparse and can only be solved iteratively.

We consider overlapping Schwarz methods and multigrid methods and extend some

existing theoretical convergence results. For overlapping Schwarz methods, we provide

numerical experiments to confirm the theoretical analysis.
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CHAPTER I

INTRODUCTION

We consider the following time dependent Maxwell problem in a dielectric medium:

εEt − curlH = J , in Ω × (0, T ),

µ−1H t + curlE = 0, in Ω × (0, T ),
(1.1)

where E and H are the electric field and magnetic field respectively, the current

density J = J(x, t) is the source term, and the permittivity ε and permeability µ

describe properties of the material occupying Ω ⊂ �
3 .

Computational electromagnetics is the numerical approximation of the solution

of Maxwell’s equations. These solutions describe dynamic effects in electromagnetics,

i.e. changing magnetic flux density produces a change in electric fields and vice

versa. A fundamental understanding of these phenomena is critical in the design of

many devices such as radars, computer chips, optical fiber systems, and mobile phone

systems.

The Finite-Difference Time-Domain Method (FDTD) for approximating (1.1),

as first proposed by Yee in 1966 [68], is a fully explicit numerical scheme based on the

regular cartesian mesh. Yee evaluated the electric field E and the magnetic field H

about a unit cell at centers of edges and faces respectively. For time derivatives, the

leap-frog scheme was used to obtain E and H at alternate half time steps. Taflove

was among the first to rigorously analyze Yee’s FDTD algorithm [62, 63]. For later

development of FDTD methods, we refer to [59].

Yee’s FDTD method has two main disadvantages [46] even though it is concep-

tually simple and easy to program. One is the lack of flexibility and accuracy in

The journal model is SIAM Journal of Numerical Analysis.
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handling problems involving complex geometries and inhomogeneous media. When

∂Ω is a smooth curved surface, we can only use a stair-step approximation, which

leads to significant errors in certain problems. In [38], a computational example was

given to show that a stair-step FDTD model may require a mesh size eight times

as small as that for a piecewise linear, boundary-conforming mesh to yield the same

accuracy. Such errors have also been analyzed rigorously by Cangellaris and Wright

for the stair-step approximation of a planar surface tilted 45 degrees to the grid [22],

while Holland analyzed errors associated with a slightly tilted planar scatterer [37].

Another disadvantage is the use of an explicit scheme, which requires that the time

step be consistent with the spatial mesh size because of the so-called CFL condition.

This is especially the case for interface problems where a very small spatial mesh size

has to be used due to the low regularity of the solution to (1.1). In Section A, Chap-

ter III, we point out that the singularity of the solution to (1.1) is determined by the

singularity of the solution to certain interface Laplacian problems with coefficients ε

and µ. Such singularities come from corners and edges on the interface where ε and

µ are discontinuous and thus tetrahedra of small size have to be used in the region

close to the interface. These two problems can be avoided by using finite element

methods and implicit time stepping schemes.

The finite element method (FEM) has proven to be a powerful tool in numerical

modeling of numerous physical problems. There has been a great deal of work in

computational electromagnetics using (mixed) finite element methods based on vari-

ational forms and appropriate finite element approximation spaces. Possible choices

of finite elements can be vectorial Lagrange nodal elements, Nedelec edge elements

and Raviart-Thomas elements, whose definitions are given in Chapter II. In 1980,

Nedelec et al. [50] studied an implicit scheme on the time domain. For the spatial

domain, a pair of Lagrange and Raviart-Thomas finite elements was used to approx-
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imate the solution of (1.1). In 1994, P. A. Raviart et al. [5] reformulated Equation

(1.1) as a constrained wave equation system with a Lagrange multiplier associated

with the condition div B = 0, where B is the magnetic induction. Then they ap-

proximated both the field B and the Lagrange multiplier with a mixed finite element

method using Taylor-Hood finite element spaces which consisted of piecewise linear

continuous (vector-valued) functions.

However, when vector-valued Lagrange elements are used, the convergence in

‖ · ‖�(curl;Ω) can not be guaranteed. For a detailed description of this phenomenon,

we refer to [10, 11]. Also it is difficult to impose boundary conditions E × n = 0 or

B ·n = 0, which can be seen from various ways in handling these boundary conditions

[5, 39, 50]. The introduction of Nedelec and Raviart-Thomas finite elements [49, 52]

avoids the drawbacks caused by the use of nodal vector-valued elements. It is worth

mentioning that the finite element method using the lowest order elements on cubes

is equivalent to Yee’s finite difference scheme in [68] on the structured mesh.

In 1995, Makridakis and Monk [45] analyzed finite element methods using Ned-

elec edge elements and Raviart-Thomas face elements. With estimates obtained in

[47], they were able to provide error estimates for finite element methods for problem

(1.1) with smooth coefficients µ and ε. However, their analysis does not cover inter-

face problems, i.e. µ and ε being piecewise constants. In 2000, J. Zou et al. [23] gave

a different approach for the interface problem. They first obtained an equation for

the electric field by eliminating the magnetic field H in (2.13) and then introduced a

Lagrange multiplier corresponding the normal continuity of εE across the interface.

Finally they posed a mixed variational formulation for the electric field only. The

error estimates followed from the continuous and discrete inf-sup conditions [57].

It turns out that the approach in [45] works well for interface problems. One of

the goals of this dissertation is to provide a theoretical analysis of the effectiveness of
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the semi-discrete scheme in [45]. By studying a Fortin operator, we provide an error

estimate for the semi-discrete finite element method in Chapter III.

We now turn to the second disadvantage of Yee’s FDTD method. The stability

of the FDTD method critically depends on the finite difference scheme chosen for the

time derivative [50]. When an explicit scheme is used, the CFL condition requires that

the time step be comparable with the spatial mesh size [44], and thus the computation

is slow. On the contrary, an implicit scheme, for example, the backward-Euler scheme,

allows the time step to be relatively large. For a detailed description of implicit and

explicit schemes for time discretization of equation (1.1) we refer to [44, 45, 50, 68].

However, for the implicit scheme one has to solve a linear system at each time step

and thus a fast solver is highly desirable. Note that it is often possible to eliminate

H in the coupled linear system without any matrix inversion (see Section D), which

leads to a symmetric positive definite system for E corresponding to the bilinear form

on H0(curl; Ω):

A(u,v) ≡ (αu,v) + (βcurlu, curlv), (1.2)

where α and β are known functions determined by ε, µ, and the time step used in

the implicit scheme. We propose solving the discretized linear system corresponding

to (1.2) using the popular preconditioned conjugate gradient (PCG) method. The

convergence rate of PCG method depends on the condition numbers of the matrix of

the underlying linear system [33]. The remainder of the dissertation studies techniques

for developing preconditioners for (1.2).

It is well known [19, 27, 29, 60, 67] that domain decomposition methods and

multigrid methods provide excellent preconditioners for discrete systems resulting

from second order elliptic problems. It turns out [4, 35, 34, 64] that the same ideas

can be used to construct efficient preconditioners for the discrete system resulting
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from the bilinear form (1.2).

Schwarz methods provide efficient and easily parallelized preconditioners for the

discrete system corresponding to (1.2). But the theoretical analysis is still less than

complete. In [64, 65], Toselli analyzed the convergence of overlapping Schwarz meth-

ods in the case of convex domains. In [34], Hiptmair and Toselli gave a unified and

simplified approach to Schwarz methods for problems in H(curl; Ω) and H(div; Ω).

Multigrid methods are natural extensions to domain decomposition methods.

They are well known for their optimal work estimates and rapid convergence. Hipt-

mair originally adapted multigrid ideas to the discretization problem (1.2) and ob-

tained convergence results for V-cycle multigrid in [35]. Various numerical results were

also given in [35] to show the robustness of the V-cycle method. For the same problem

but a different construction of smoothers, Arnold et al. [4] presented another proof of

the convergence of the V-cycle multigrid in a multigrid framework which combines the

regularity and the smoothing conditions together. In 2000, Hiptmair [36] analyzed

multilevel methods of an eddy-current problem on a non-convex polyhedral domain

using approximate Helmholtz-decompositions of the function space H(curl; Ω) into

an H1-regular subspace and gradients.

Because of the large kernel of the curl operator, the Helmholtz decomposition

of an arbitrary vector field into solenoidal and irrotational components plays an im-

portant role in the abovementioned work. However, the solenoidal component is not

in general H1-regular when Ω is a non-convex polyhedron and many estimates in

[4, 35, 34, 64] fail in that case. In this dissertation, we overcome this difficulty by

splitting the solenoidal component further into a sum of a H1-regular vector field and

a gradient. The construction and estimates are given in Section A, Chapter IV.

In Chapter IV, we extend theoretical results in [34, 64, 65] on overlapping Schwarz

methods to a more general case. By using the regular Helmholtz-type decomposition
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of vector fields in H0(curl; Ω) [8, 26], we provide a stable decomposition which is

critical in the estimate of the condition number of the preconditioned system.

In Chapter V, we give a convergence proof based on the framework in [14, 15].

To do this, we introduce a new (base) innerproduct in H0(curl; Ω), and check all

conditions used in the abstract theory. The idea is borrowed from [13] in which the

negative one innerproduct was used as the base innerproduct to analyze multigrid

methods for pseudo-differential operators of order minus one. For our problem, we

impose the negative one norm on the gradient field of the orthogonal Helmholtz

decomposition and get a base norm weaker than the usual norm in L2(Ω). The

detailed description is given in Chapter V. This approach is different from the one

used in [36].

This dissertation is organized as follows. Chapter II contains an introduction

to Sobolev spaces, finite element spaces and Maxwell’s equations. In Chapter III

we provide error estimates of the semi-discrete scheme for time dependent Maxwell’s

equations. In Chapters IV and V, we analyze overlapping Schwarz preconditioners

and multigrid methods for the linear system when fully discrete schemes are applied

to time dependent Maxwell’s equations.

Concerning notations, we use boldface type for vector fields, spaces of vector

fields, and operators between vector fields. Following a popular convention, we denote

by C, with or without a subscript, a generic constant whose value may differ at

different occurrences but does not depend on h, the discretization parameter.
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CHAPTER II

PRELIMINARIES

In this chapter, we give a brief introduction of time dependent Maxwell’s equations

and finite element spaces. We start with some basic definitions and properties of

Sobolev spaces and finite element spaces. Then we discuss the existence and unique-

ness of the solution of time dependent Maxwell’s equations by using semigroup theory.

Some basic definitions and properties of semigroup theory and its application to evo-

lution equations are given in the appendix. We end this chapter by introducing the

semi-discrete scheme and a fully discrete scheme for time dependent Maxwell’s equa-

tions. The error analysis of the semi-discrete scheme will be given in Chapter III.

The discrete systems resulting from the fully discrete scheme motivates our work in

Chapters IV and V.

A. Sobolev spaces

Let � be a bounded domain in �
3 with a Lipschitz continuous boundary ∂� in the

sense of [1]. In particular, domains with polyhedral boundaries belong to this class.

Let L2(�) denote the space of square integrable functions. We denote (L2(�))3

by L2(�). For conciseness of notation, we denote by ‖ · ‖, the norms on both L2(�)

and L2(�).

The Sobolev spaces Hr(�), r ∈ �, is well defined on the Lipschitz domain �.

When r = m is an non-negative integer, Hm(�) is the space of all distributions u

defined in � such that Dαu ∈ L2(�) for all |α| ≤ m, where α = (α1, α2, α3) is a

multi-integer with non-negative components and

Dαu =
∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

and |α| = α1 + α2 + α3.
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The norm ‖ · ‖m,� and the seminorm | · |m,� in Hm(�) are given by

‖u‖2
m,� ≡

∑
|α|≤m

‖Dαu‖2 and |u|2m,� ≡
∑
|α|=m

‖Dαu‖2.

When r = m+ σ for some nonnegative integer m and σ ∈ (0, 1), Hr(�) is the space

of u ∈ Hm(�) such that, for all |α| = m,∫
�

∫
�

|Dαu(x) −Dαu(y)|2
|x − y|3+2σ

dx dy <∞.

The seminorm | · |r,� and the norm ‖ · ‖r,� in this case are given by

|u|2r,� ≡
∑
|α|=m

∫
�

∫
�

|Dαu(x) −Dαu(y)|2
|x − y|3+2σ

dx dy

and

‖u‖2
r,� ≡ ‖u‖2

m,� + |u|2r,�.

When � is clear in the context, we will drop the subscript �. For r > 0, we denote

by Hr
0(�) the closure of C∞

0 (�) in Hr(�). For r < 0, we denote by Hr(�) the dual

space of H−r
0 (�).

Using the derivative in the distribution sense, we can define operators curl

and div on L2(�). Indeed, let 〈·, ·〉 denote the duality pairing between C∞
0 (�) (or

(C∞
0 (�))3) and its dual space. For any function v = (v1, v2, v3) in L2(�), we have,

for all w = (w1, w2, w3) in C∞
0 (�)3,

〈curlv,w〉 =

∫
�

v · curlw dx

=

∫
�

[
v1(

∂w3

∂x2

− ∂w2

∂x3

) + v2(
∂w1

∂x3

− ∂w3

∂x1

) + v3(
∂w2

∂x1

− ∂w1

∂x2

)
]
dx

and, for all φ in C∞
0 (�),

〈div v, φ〉 = −
∫
�

v · ∇φ dx = −
∫
�

(
v1
∂φ

∂x1

+ v2
∂φ

∂x2

+ v3
∂φ

∂x3

)
dx.
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This leads to the following definition.

Definition II.1. The space H(curl,�) is the space of u in L2(�) whose curl is

also in L2(�) and is equipped with the norm

‖u‖2
�(curl,�) ≡ ‖u‖2 + ‖curlu‖2.

The space H(div,�) is the space of v in L2(�) whose div is also in L2(�) and

is equipped with the norm

‖u‖2
�(div,�) ≡ ‖u‖2 + ‖div u‖2.

It is shown [32] that any function u in H(curl,�) has a tangential trace u×n in

H−1/2(∂�), and any function v in H(div,�) has a normal trace v ·n in H−1/2(∂�).

This allows us to introduce “homogeneous” spaces:

H0(curl,�) = {u ∈ H(curl,�) | u × n = 0 on ∂�},

H0(div,�) = {u ∈ H(div,�) | u · n = 0 on ∂�}.

When � is simply connected, each function u in H0(curl,�) admits a unique

orthogonal Helmholtz decomposition [32]

u = z + ∇φ, (2.1)

where z ∈ H0(curl ,�) and φ ∈ H1
0 (�) satisfies div z = 0. The vectors z and ∇φ

are called solenoidal and irrotational vector fields of the Helmholtz decomposition,

respectively.
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B. Finite element spaces

We suppose that Ω is a bounded and simply-connected polyhedron in �
3 . Further,

neither slits nor cuts are allowed, i.e., ∂Ω̄ = ∂Ω.

Let �h be a decomposition of Ω consisting of closed tetrahedra. For each τ in

�h, let hτ be the diameter of τ and ρτ the maximum diameter of all balls contained

in τ . Throughout this dissertation we assume that the mesh �h is shape regular and

quasi-uniform, i.e., there exists a constant C such that

max
τ∈�h

hτ

ρτ
≤ C and max

τ∈�h

hτ ≤ C min
τ∈�h

hτ .

On each element τ of �h and for each integer l ≥ 0, we define the space �l(τ)

of all polynomials of total degree ≤ l and its subspace
◦
�l(τ) of all homogeneous

polynomials of degree l.

Fix a positive integer k. The Lagrange finite element space Sh consists of all

functions p(x) ∈ H1(Ω) such that p|τ ∈ �k(τ) for all τ in �h. Degrees of freedom are

given by values of p(x) at the following points:

Σk =
{
x =

4∑
j=1

λjaj

∣∣ 4∑
j=1

λj = 1, λj ∈ {0, 1/k, . . . (k − 1)/k, 1}, 1 ≤ j ≤ 4
}
,

where aj , j = 1, . . . , 4, are the four vertices of τ . In the lowest order case, k = 1,

those points are just the four vertices of τ . The interpolation operator Ih onto Sh is

defined by (Ih p)(x) = p(x) for all x in Σk.

The Nedelec finite element space Uh [49, 52] is defined by

Uh = {u ∈ H(curl; Ω)
∣∣ u = a + b on τ, a ∈ �k−1(τ)

3, b ∈
◦
�k(τ)

3, for all τ ∈ �h},

where b satisfies b · x = 0 on τ .

Definition II.2. Let τ be a tetrahedron in �
3 with edges denoted by {e} and faces
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by {f} and u a function in H(curl; Ω). The degrees of freedom are the following

moments:

1.
∫

e
(u · t) q ds, for all q ∈ �k−1,

2.
∫

f
(u × n) · q dS, for all q ∈ �

2
k−2,

3.
∫

τ
u · q dx, for all q ∈ �

3
k−2.

Here t is a unit vector directed along the edge e.

The total number of degrees of freedom is k(k+ 2)(k+ 3)/2. In the lowest order

case, k = 1, there are six degrees of freedom, each of which corresponds to one edge

of τ . Based on degrees of freedom given above, we define the interpolant Πτu such

that Πτu and u have the same degrees of freedom on τ , and define the interpolation

operator Πh onto U by Πhu|τ = Πτu on all τ in �h. Due to the dependence on edge

moments
∫

e
(u · t) q ds, we require certain regularity of u for Πhu to be well defined.

The following lemma [3] makes the condition specific.

Lemma II.1. For any p > 2 and for any tetrahedron τ , the operator Πτ is well

defined and continuous on the space

{u ∈ Lp(τ)
∣∣ curlu ∈ Lp(τ) and u × n ∈ Lp(∂τ)2}.

The Raviart-Thomas finite element space V [49, 57] is given by

Vh = {v ∈ H(div; Ω)
∣∣v = a+ bx on τ, a ∈ �k−1(τ)

3, b ∈
◦
�k−1(τ), for all τ ∈ �h}.

Definition II.3. Let τ be a tetrahedron in �
3 with faces denoted by {f} and let v be

a function in H(div; Ω). The degrees of freedom are the following moments:

1.
∫

f
(v · n) q dS, for all q ∈ �k−1,

2.
∫

τ
u · q dx, for all q ∈ �

3
k−2.
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The total number of degrees of freedom is k(k+ 1)(k+ 3)/2. In the lowest order

case, k = 1, there are four degrees of freedom, each of which corresponds to one face

of τ . Based on degrees of freedom given above, we define the interpolant rτv such

that rτv and v have the same degrees of freedom on τ and define the interpolation

operator rh onto Vh by rhv|τ = rτv on all τ in �h. The operator rh is well defined

for vector fields in H(div; Ω) ∩ Lp(Ω) for any p > 2 [57]. It can be shown [2, 41, 55]

that for all v in H(div; Ω) ∩ Hα(∪Ωi), the interpolation operator rh satisfies

‖v − rhv‖ ≤ C
{ hα|v|α,∪Ωi

+ h‖div v‖, 0 < α ≤ 1/2,

hα|v|α,∪Ωi
, α > 1/2.

(2.2)

The finite element space W h is the subspace of L2(Ω) consisting of arbitrary

piecewise polynomials of degree at most k − 1. The degrees of freedom for W h are

simply ∫
τ

w p dx, for all p ∈ �k−1(τ).

The interpolation operator is denoted by ωh.

A space symbol without overline stands for the corresponding finite element

subspace of functions with natural homogeneous boundary conditions. For example,

Uh = H0(curl; Ω)
⋂

Uh. However, Wh is the subspace of W h consisting functions

with zero mean value.

All the interpolation operators are indispensable tools in the analysis because of

the following commuting diagram property, which follows from definitions of interpo-

lations operators and theorems of Green and Stokes.

Theorem II.1. The diagram
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H1
0 (Ω)

∇−→ H0(curl; Ω)
curl−→ H0(div; Ω)

div−→ L2/�⏐⏐�Ih ⏐⏐�Πh

⏐⏐�rh

⏐⏐�ωh

Sh
∇−→ Uh

curl−→ Vh
div−→ Wh

commutes when all interpolation operators are applied on sufficiently smooth func-

tions.

In analogy to the case of H0(curl; Ω), each function uh in Uh admits a unique

orthogonal decomposition [32]

uh = zh + ∇φh, (2.3)

where zh ∈ Uh is L2-orthogonal to ∇Sh and φh belongs to Sh. We will call this

decomposition the discrete Helmholtz decomposition of uh.

C. Time-dependent Maxwell’s equations

We consider the following Maxwell’s equations:

∂D

∂t
− curlH = −J , (2.4)

∂B

∂t
+ curlE = 0, (2.5)

div D = q, (2.6)

div B = 0, (2.7)

which hold for all (t,x) in (0, T ) × Ω. Here E and D are the electric field and

induction respectively, H and B are the magnetic field and induction respectively, J

is a known function specifying the applied current, and q is the electric charge.

The law of proportionality of fields and inductions is expressed by two constituent

relations;

D = εE, B = µH, (2.8)
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where ε is the dielectric permittivity and µ is the magnetic permeability.

Equation (2.4) corresponds to the law of conservation of electric charge. For any

fixed domain � in Ω, the change per unit time of the total electric charge contained

in the interior of � is produced by the flux of charges through ∂�. This is expressed

by

∂

∂t

∫
�

q dx = −
∫

∂�

J · n dS, (2.9)

where q is the density of the electric charge, J is the electric current, and n is the

outward unit normal at the boundary of �. Since the electric induction D satisfies

q = div D, (2.9) shows that the vector ∂D/∂t + J has divergence zero on �. Since

� is an arbitrary domain in Ω, the magnetic field H satisfies [30]

∂D

∂t
+ J = curlH ,

which is (2.4).

Equation (2.5) corresponds to the Faraday’s law. This law says that the deriva-

tive with respect to the time of the flux of magnetic induction B across the surface

Σ is the opposite to the circulation of electric field along the contour ∂Σ. This can

be expressed by

d

dt

∫
Σ

B · n dS +

∫
∂Σ

E · ds = 0.

Since Σ can be the closed boundary of any open set � in Ω, the above implies

Equation (2.5).

Equations (2.4)—(2.7) are not sufficient in themselves; they must be supple-

mented with boundary conditions, e.g.,

E × n = 0 and B · n = 0 on ∂Ω, (2.10)
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and initial conditions

E(x, 0) = E0(x) and B(x, 0) = B0(x), in Ω, (2.11)

where B0 ∈ H0(div; Ω) satisfies

div B0 = 0, in Ω. (2.12)

Equation (2.7) is a consequence of (2.5) and the divergence-free condition (2.12).

Therefore, instead of studying Equations (2.4)—(2.7), we need only study the follow-

ing equations

εEt − curl (µ−1B) = −J , in Ω × (0, T ),

Bt + curlE = 0, in Ω × (0, T ),
(2.13)

together with initial conditions (2.11) and boundary conditions (2.10).

The existence and uniqueness of the solution to (2.13) and (2.11) are conse-

quences of the semigroup theory. We set � = L2(Ω)×L2(Ω), and set the innerprod-

uct to be⎛⎜⎝
⎛⎜⎝ u

v

⎞⎟⎠ ,

⎛⎜⎝ u

v

⎞⎟⎠
⎞⎟⎠
�

= (u,u)ε + (v,v)µ−1 ≡ (εu,u) + (µ−1v,v).

Since ε and µ are piecewise positive constants, weighted innerproducts (·, ·)ε and

(·, ·)µ−1 are equivalent to the usual innerproduct (·, ·).
We will define an operator � and write (2.13) in the operator form. The domain

D(�) is given by

D(�) =
{
(u,v)T ∈ � ∣∣ u ∈ H0(curl; Ω), and curlµ−1v ∈ L2(Ω)

}
,
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and we define � by

�

⎛⎜⎝ u

v

⎞⎟⎠ =

⎛⎜⎝ −ε−1curlµ−1v

curlu

⎞⎟⎠ ,

⎛⎜⎝ u

v

⎞⎟⎠ ∈ D(�). (2.14)

Using �, we can rewrite equations (2.13) as

d

dt

⎛⎜⎝ E

B

⎞⎟⎠+�

⎛⎜⎝ E

B

⎞⎟⎠ =

⎛⎜⎝ −ε−1J

0

⎞⎟⎠ . (2.15)

For properties of the operator �, we have the following lemma which is shown

in [30] under the assumption that Ω is regular. Our proof extends this result to the

more general case when Ω is a Lipschitz domain.

Lemma II.2. The domain D(�) is dense in � and � is closed. We have

�
∗ = −� and D(�∗) = D(�).

Proof. Evidently D(�) is dense in �. To show � is closed, let Φj ∈ D(�) such

that Φj = (uj,vj) and �Φj converge to Φ = (u,v) and Ψ respectively. We have

that uj → u, vj → v in L2(Ω), and curluj and curlµ−1vj converge in L2(Ω).

But curluj → curlu, curlµ−1vj → curlµ−1v in the dual of (C∞
0 (Ω))3. There-

fore, curlu and curlµ−1v belong to L2(Ω) and satisfy that curluj → curlu,

curlµ−1vj → curlµ−1v in L2(Ω). Moreover, uj → u in H(curl; Ω) implies that

uj × n|∂Ω(= 0) converges to u × n|∂Ω in H−1/2(∂Ω). It follows that u × n = 0 on

∂Ω and thus Φ ∈ D(�).

Let Φ ∈ D(�∗). Then there is Φ∗ ∈ � such that

(�Ψ,Φ)� = (Ψ,Φ∗)�, for all Ψ ∈ D(�), (2.16)

and we have �∗Φ = Φ∗. Let Φ = (u,v), Ψ = (x,y), and Φ∗ = (u∗,v∗). Then (2.16)



17

implies that

(curlµ−1y,u) − (curlx,v)µ−1 = (x,u∗)ε + (y,v∗)µ−1 . (2.17)

Taking x and µ−1y ∈ (C∞
0 (Ω))3 in (2.17) gives that

(µ−1y, curlu) − (x, curlµ−1v) = (x,u∗)ε + (y,v∗)µ−1 . (2.18)

By choosing x = 0 and y = 0 respectively in the above, we have that curlu = v∗

and curlµ−1v = εu∗ belong to L2(Ω). To get u ∈ H0(curl; Ω), we set x = 0 and

µ−1y ∈ (C∞(Ω))3 in (2.17) and have that

(µ−1y, curlu) − (curlµ−1y,u) = (µ−1y, curlu) − (µ−1y,v∗)µ−1 = 0.

By Lemma 2.4, Chapter I of [32], we have that u belongs to H0(curl; Ω) and thus

Φ ∈ D(�) and Φ∗ = −�Φ by (2.18).

Conversely, if Φ ∈ D(�), we have

(�Φ,Ψ)� = (Φ,�∗Ψ)� = −(Φ,�Ψ)�, for all Ψ ∈ D(�∗),

from which it follows that Φ ∈ D(�∗) and �Φ = −�∗Φ.

By the above lemma and Stone’s theorem, � is a generator of a (C0) unitary

group on �, and thus we have the following theorem [56], a proof of which is also

given in the appendix for completeness. We will denote by Cm([0, T ]; L2(Ω)) (or

Cm([0, T ];�)) the space of m times continuously differentiable functions from [0, T ]

into the space L2 (or �).

Theorem II.2. Assume that J ∈ C1([0, T ]; L2(Ω)) and (E0,B0)
T ∈ D(�). Then

(2.13) and (2.11) have a unique solution (E,B)T ∈ C1([0, T ];�). Moreover, for each
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t ∈ [0, T ], (E(t),B(t))T belongs to D(�) and satisfies

‖E(t)‖ + ‖Et(t)‖ + ‖B(t)‖ + ‖Bt(t)‖ ≤ C. (2.19)

Remark II.1. Since E(t) belongs to H0(curl; Ω), a consequence of (2.12) and (2.5)

is that B(t) ∈ H0(div; Ω) satisfies div B(t) = 0 for all t ∈ [0, T ].

D. Finite difference time-domain method

Let (E,B) in H0(curl; Ω) × H0(div; Ω) be the solution to (2.13) and (2.11). Then,

(E,B) satisfies

(εEt,u) − (µ−1B, curlu) = −(J ,u), for all u ∈ H0(curl; Ω),

(µ−1Bt,v) + (curlE, µ−1v) = 0, for all v ∈ H0(div; Ω).
(2.20)

On the other hand, the system (2.20) together with initial conditions (2.11) has a

unique solution. Indeed, let (E,B) be a solution to the system (2.20) with J = E0 =

B0 = 0. Taking u = E and v = B in (2.20), we get (εEt,E) + (µ−1Bt,B) = 0.

This shows

d

dt

[
(εE,E) + (µ−1B,B)

]
= 0,

and thus E = B = 0 follows from E0 = B0 = 0.

So far we have shown that the weak form (2.20) is equivalent to (2.13) with initial

conditions (2.11). Using Nedelec elements and Raviart-Thomas elements introduced

in Section B, we can naturally transfer (2.20) to the semi-discrete scheme of seeking

(Eh(t),Bh(t)) in Uh × Vh satisfying, for any 0 < t ≤ T ,

(εEh,t,uh) − (µ−1Bh, curluh) = −(J ,uh), for all uh ∈ Uh,

(µ−1Bh,t,vh) + (curlEh, µ
−1vh) = 0, for all vh ∈ Vh,

(2.21)
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with given initial approximations

Eh(0) ≈ E0 and Eh(0) ≈ E0. (2.22)

We will discuss possible choices of initial approximations in the following chapter.

When we try to discretize time derivatives in (2.21), the stability of the resulting

fully discrete scheme critically depends on the finite difference scheme chosen for time

derivatives [50]. When the simple forward-Euler scheme is used, the so-called CFL

condition requires that the time step be comparable with the spatial mesh size, and

thus the computation is slow. An implicit scheme, e.g., the backward-Euler scheme,

allows the time step to be relatively large. For a detailed description of implicit and

explicit schemes for time discretization of equation (2.13) we refer [45, 50, 68].

Here we describe the simple backward-Euler scheme for (2.21), which is also a

motivation for our work in Chapters IV and V. But this does not imply that other

implicit schemes, e.g., the Crank-Nicolson and Padé schemes, are less important. The

backward-Euler scheme reads as follows: Find (En,Bn) in Uh × Vh satisfying, for

any n = 1, . . . , T/� t,

1
�t

(En − En−1,uh)ε − (Bn, curluh)µ−1 = (J ,uh), for all uh ∈ Uh,

1
�t

(Bn − Bn−1,vh)µ−1 + (curlEn,vh)µ−1 = 0, for all vh ∈ Vh,

(2.23)

and

E0 = Eh(0) and B0 = Bh(0).

To solve (2.23) at time step n, we transfer En−1 and Bn−1 to the right hand

side, eliminate Bn, and obtain a linear system for En

A(En,u) ≡ (αEn,u) + (µ−1curlEn, curlu) = (f ,u), for all u ∈ Uh, (2.24)
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where α depends on ε and � t, and f depends on J , En−1 and Bn−1. To recover

Bn, we need only solve a linear system corresponding to the well-conditioned mass

matrix. This needs to be done at each time step.

We propose solving the linear system (2.24) using the popular preconditioned

conjugate gradient (PCG) method. The convergence rate of PCG method can be es-

timated in terms of the condition number of the preconditioned system [33]. Precon-

ditioners for (2.24) constructed using domain decomposition and multigrid methods

will be analyzed in Chapters IV and V.

We point out that the problem (2.24) also arises in eddy-current simulation [11]

and elasticity and Stokes’ equations with various boundary conditions [31, 49].
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CHAPTER III

ANALYSIS OF THE FINITE ELEMENT METHOD

In this chapter, we analyze the semi-discrete scheme for the time-dependent Maxwell’s

equations proposed in [45]. We start with investigations of the regularity of the solu-

tion of time-dependent Maxwell’s equations in Section A. Having the error estimates

developed in Section B, we provide the error analysis for the semi-discrete scheme.

For various fully discrete schemes for time-dependent Maxwell’s equations, we

refer readers to [45]. Our analysis can be extended to fully discrete schemes without

essential difficulties.

In this chapter, we assume that ∂Ω is connected.

A. Regularity

To study the regularity of the solution E and B of (2.13), as in [24], we introduce

two more spaces XN(Ω; ε) for electric field and XT (Ω;µ) for magnetic filed, which

are given by

XN(Ω; ε) = {u ∈ H(curl; Ω) ∩ H(div; ε; Ω) | u × n = 0 on ∂Ω}

and

XT (Ω;µ) = {u ∈ H(curl; Ω) ∩ H(div;µ; Ω) | µu · n = 0 on ∂Ω},

where

H(div; ξ; Ω) = {v ∈ L2(Ω) | div (ξv) ∈ L2(Ω)}.

Note that our definition of XT (Ω;µ) is slightly different from the one in [24] and

allows us not to assume that µ is constant in a neighborhood of ∂Ω.

When ε (or µ) is constant, we will drop ε (or µ) in the above notations. The



22

norms in both XN(Ω; ξ) and XT (Ω; ξ) are defined by

‖u‖2
�

= ‖u‖2 + ‖curlu‖2 + ‖div ξu‖2.

If u ∈ XN(Ω; ε) and µ−1v ∈ XT (Ω;µ), then (u,v)T belongs to D(�) and v · n = 0

on ∂Ω.

By the following theorem, we need only study the regularity of vector fields in

XN(Ω; ε) and XT (Ω;µ) in order to study the regularity of the solution E and B.

Theorem III.1. Let � be as in (2.14) and g = (E0,B0)
T . Suppose that J and div J

belong to C3([0, T ]; L2) and C2([0, T ]; L2) respectively. If g, −�g + (J(0), 0)T and

�2g−�(J(0), 0)T +(J ′(0), 0)T belong to XN(Ω; ε)×µXT (Ω;µ), the solution (E,B)T

to (2.13) and (2.11) is such that E and Et belong to XN(Ω; ε), and µ−1curlE,

µ−1curlEt and µ−1B belong to XT (Ω;µ).

Proof. By (2.19), we have that

‖E(t)‖ + ‖B(t)‖ + ‖curlE(t)‖ + ‖curlµ−1B(t)‖

= ‖E(t)‖ + ‖B(t)‖ + ‖Bt(t)‖ + ‖εE(t) + J(t)‖ ≤ C.

Note that div (εEt) = div J(t) by (2.13). Thus, we have

‖div (εE(t))‖2 ≤ ‖div (εE(0))‖2 + C

∫ t

0

‖div J(t)‖2dt, t ∈ [0, T ].

So far we have shown that E ∈ XN(Ω; ε) and µ−1B ∈ XT (Ω;µ) satisfy

‖E(t)‖� + ‖µ−1B(t)‖� ≤ C, t ∈ [0, T ]. (3.1)

By Corollary 1, we know that (E,B)T ∈ C3([0, T ];�). If we differentiate

both sides of (2.15) with respect to t and repeat the above argument, we get that

Et ∈ XN(Ω; ε) and µ−1Bt (= µ−1curlE) ∈ XT (Ω;µ) satisfy (3.1). Similarly, dif-
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ferentiating both sides of (2.15) twice yields that µ−1Btt(= µ−1curlEt) belongs to

XT (Ω;µ).

The regularity of vector fields in XN(Ω; ξ) and XT (Ω; ξ) has been studied by

M. Costable et al. [24]. They began the analysis with the decomposition of vector

fields in XN (Ω; ε) and XT (Ω;µ) as a sum of a “regular” part in H1(Ω) and a “sin-

gular” part in the form of a gradient, which contains, in particular, all the jumps

through the interfaces.

Lemma III.1. Any vector field u ∈ XN (Ω; ε) admits a decomposition

u = w + ∇φ (3.2)

where w ∈ H1(Ω) ∩ XN(Ω) and φ ∈ H1
0 (Ω) satisfy

‖w‖1 + ‖φ‖1 ≤ C‖u‖� . (3.3)

Similarly, any vector field v ∈ XT (Ω;µ) admits a decomposition (3.2) where w ∈
H1(Ω) ∩ XT (Ω) and φ ∈ H1(Ω)/� satisfy (3.3).

Proof. The proof is an exact rewriting of the proof of Theorem 3.4 in [24]. However,

since our XT (Ω;µ) is different from the one in [24], we sketch the proof here.

Let u be as in the lemma. Since its curl is a divergence-free field in L2 and Ω

is simply connected with one boundary component, we can apply Lemma 3.1 in [24]

and find w in H1(Ω) such that curlw = curlu and w ·n = 0 on ∂Ω. Then, u−w

is a curl-free field. Since Ω is simply connected, there exists φ in H1(Ω) such that

v − w = ∇φ.

Based on the above lemma, M. Costable et al. related the regularity of vector

fields in XN(Ω; ξ) and XT (Ω; ξ) to the regularity of solutions of certain Laplacian
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interface problems. For example, for u ∈ XT (Ω;µ), we have u = w + ∇φ where

w ∈ H1(Ω) and φ ∈ H1(Ω) satisfies, for all ψ ∈ H1(Ω)/�,∫
Ω

µ∇φ · ∇ψ dx =

∫
Ω

µ(u − w) · ∇ψ dx ≡ (f, ψ), (3.4)

where f belongs to the dual space of H1(Ω)/�. Often the solution φ to (3.4) is more

regular than H1(Ω) since the right hand side f is smoother than functions in the dual

space of H1(Ω)/�. Indeed, for any α ∈ (0, 1/2), we have

|(f, ψ)| = |
∫

Ω

µu · ∇ψ dx−
∫

Ω

µw · ∇ψ dx|

= |
∫

Ω

div (µu)ψ dx−
∑

i

µi

∫
Ωi

w · ∇ψ dx|

≤ C‖ψ‖ + C
∑

i

‖w‖α,Ωi
‖∇ψ‖−α,Ωi

≤ C‖ψ‖1−α,

and thus f belongs to H−1+α(Ω).

M. Costable et al. [24] studied the regularity of the solution to (3.4). They

pointed out pointed out that the regularity of vector fields in XN(Ω; ε) and XT (Ω;µ)

can be very low (near L2(Ω)). For a detailed description, we refer to [24] and refer-

ences therein. Throughout this chapter we will make the following assumption.

Assumption III.1. XN(Ω; ε) and XT (Ω;µ) are continuously imbedded in Hs(∪Ωi)

for some s ∈ (0, 1].

When ε (or µ) is constant, we have the following imbedding result [3].

Lemma III.2. There exists a real number r > 1/2 such that XN (Ω) and XT (Ω) are

continuously imbedded in Hr(Ω).

The main result of this section is the following theorem, which follows from

Theorem III.1 and Assumption III.1.
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Theorem III.2. Under Assumption III.1 and assumptions in Theorem III.1, we have

that E(t), curlE(t), Et(t), curlEt(t) and B(t) belong to Hs(∪Ωi) for all t in [0, T ].

B. Fortin operator πh

The Fortin operator πh which we shall now define plays an important role in the error

analysis of the semidiscrete scheme to Maxwell’s equations.

For any u ∈ H0(curl; Ω), πhu ∈ Uh satisfies

(curlπhu, curlwh)µ−1 = (curlu, curlwh)µ−1 , for all wh ∈ Uh, (3.5)

(πhu,∇ψh) = (u,∇ψh), for all ψh ∈ Sh. (3.6)

If µ is constant, this operator has been widely studied (see e.g. [9, 31, 47, 48, 55]).

It is shown in [32, 51] that πh is well defined. This is also an application of

the general results on mixed finite element methods in [57]. In the proof, one key

property [32] is that if u ∈ H0(curl; Ω) satisfies curlu = 0, then

u = ∇p for some p ∈ H1
0 (Ω). (3.7)

Another key inequality [3] is that if uh ∈ Uh satisfies that (uh,∇ph) = 0 for all

ph ∈ Sh, then

‖uh‖ ≤ C‖curluh‖. (3.8)

Note that both (3.8) and the existence of p in (3.7) are only valid when ∂Ω is con-

nected.

Remark III.1. πh is also computable. In fact, πhu = uh where (uh, ph) is the
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solution of the following problem: Find uh ∈ Uh and ph ∈ Sh such that

(curlπhu, curlwh)µ−1 + (∇ph,wh) = (curlu, curlwh)µ−1 , for all wh ∈ Uh,

(πhu,∇ψh) = (u,∇ψh), for all ψh ∈ Sh.

(3.9)

This was also pointed out in the remark of Proposition 1.1 in [57].

The following lemma extends previous results to the case that µ is piecewise

constant and u is of lower regularity.

Lemma III.3. Let s be as in Assumption III.1. Under Assumption III.1 and III.2

below, if u ∈ H0(curl; Ω) satisfies both u and curlu belong to Hs(∪Ωi), we have

that

‖u − πhu‖ + ‖curl (u − πhu)‖ ≤ Chs(‖u‖s,∪Ωi
+ ‖curlu‖s,∪Ωi

). (3.10)

To show the above lemma, we need some approximation results in Sh and Uh,

which are stated below in Lemma III.4 and Lemma III.5 respectively. For the first

lemma, we need the following assumption.

Assumption III.2. There are no points on Γ that belong to more than two Ωi’s.

Lemma III.4. Under Assumption III.2, for all φ ∈ H1
0 (Ω) ∩ H1+α(∪Ωi), 0 ≤ α ≤

1/2, there exists φh ∈ Sh such that

|φ− φh|1,Ω ≤ Chα‖φ‖1+α,∪Ωi
. (3.11)

Remark III.2. Lemma III.4 appeared in [12], and the proof follows the technique in

[18], which requires certain geometry regularity of the interface Γ.

However, without Assumption III.2, we can show (3.11) for all α ∈ [0, 1/2).

Indeed we can take φh = Phφ, where Ph is the energy projection onto Sh under the in-

nerproduct (∇·,∇·). Since the interpolation space between H1
0(Ω) and H1

0 (Ω)
⋂
H2(Ω)
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is H1
0 (Ω)

⋂
H1+α(Ω) [6], we have

|φ− φh|1,Ω ≤ Chα‖φ‖1+α,

and thus (3.11) follows from the equivalence of ‖ · ‖1+α,∪Ωi
and ‖ · ‖1+α,Ω. This is the

only place we use Assumption III.2.

Lemma III.5. Suppose that u ∈ H(curl; Ω) and that Πh is the interpolation oper-

ator onto Uh. Then, we have the following estimates.

1. If u ∈ Hα(∪Ωi) for some 1/2 < α ≤ 1 and curlu ∈ Vh, then

‖u −Πhu‖ ≤ Chα(|u|α,∪Ωi
+ ‖curlu‖).

2. If u ∈ H1(∪Ωi) and curlu ∈ Hα(∪Ωi) for some α > 0, then

‖u − Πhu‖ + h‖curl (u −Πhu)‖ ≤ Ch(|u|1,∪Ωi
+ |curlu|α,∪Ωi

).

3. If both u and curlu belong to Hα(∪Ωi) for some α ∈ (1/2, 1], then

‖u −Πhu‖�(curl;Ω) ≤ Chα(‖u‖α + ‖curlu‖α).

4. If u ∈ H0(curl; Ω) satisfies curlu ∈ Hα(∪Ωi) for some α > 0, then

inf
�h∈�h

‖curlu − curluh‖ ≤ Chα‖curlu‖α,∪Ωi
.

Proof. Inequality (3) is given in Proposition 5.6 of [2] (see also [55]), and the inequality

(4) is given in Theorem 4.8 of [3].

Inequality (1) is an extension of (2.4) in [4], and the proof follows same lines

there. For completeness, we also give a proof here. First by Lemma II.1 and the

Sobolev imbedding theorem, Πh is well defined for vector fields in Hα(Ω), α > 1/2,
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whose curl in Vh. Secondly, on the reference tetrahedron τ̂ of unit size, we have

‖û − Π̂
�τ û‖ ≤ C(‖û‖α + ‖curl û‖�∞) ≤ C(‖û‖α + ‖curl û‖),

by the equivalence of all norms in V(τ̂). Since û − Π̂
�τ û vanishes for constant û, a

Bramble-Hilbert argument yields

‖û − Π̂
�τ û‖ ≤ C(|û|α + ‖curl û‖),

Finally, if we scale this estimate to a general tetrahedron using Lemmas 5.2 and 5.5

of [2] and sum over all the tetrahedra in �h, we get

‖u − Πhu‖2 ≤ C
∑

τ

hτ‖û − Π
�τ û‖2

0,�τ ≤ C
∑

τ

hτ (|û|2α,�τ + |curl û|20,�τ )

≤ C
∑

τ

h1+α
τ |u|2α,τ + h2

τ‖curlu‖2
0,τ

≤ Ch2α(|u|2α,τ + ‖curlu‖2).

The proof of (2) is very similar. Again by Lemma II.1 and the Sobolev imbedding

theorem, Π̂
�τ is well defined for H1 vector fields whose curl belong to Hα. On the

reference tetrahedron τ̂ , we have ‖û−Π̂
�τ û‖0,�τ ≤ C(‖û‖1,�τ +‖curl û‖α,�τ ). A Bramble-

Hilbert argument gives that

‖û − Π
�τ û‖0,�τ ≤ C(|û|1,�τ + |curl û|α,�τ).

Similarly, we have

‖curl (û −Π
�τ û)‖0,�τ ≤ ‖curl û‖0,�τ + ‖curlΠ

�τ û‖0,�τ ≤ ‖û‖1,�τ + C‖Π
�τ û‖0,�τ

≤ C(‖û‖1,�τ + ‖curl û‖α,�τ ) ≤ C(|û|1,�τ + |curl û|α,�τ ).
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A scaling argument using Lemma 5.2 and 5.5 of [2] gives that

‖u −Πhu‖2 + h2‖curl (u −Πhu)‖2

≤ C
∑

τ

hτ (‖û −Π
�τ û‖2

0,�τ + ‖curl (û − Π
�τ û)‖2

0,�τ )

≤ C
∑

τ

hτ (|û|21,�τ + |curl û|2α,�τ )

≤ C
∑

τ

hτ (hτ |u|21,�τ + h1+2α
τ |curl û|2α,�τ)

≤ Ch2(|u|21,∪Ωi
+ |curlu|2α,∪Ωi

).

Now we can give the proof of Lemma III.3 concerning error estimates of πh.

Proof of Lemma III.3. Let u be as in Lemma III.3. From the first equation of (3.5)

and the third estimate of Lemma III.5, we have that

‖curl (u − πhu)‖µ−1 = inf
�h∈�h

‖curl (u − uh)‖µ−1 ≤ Chs‖curlu‖s,∪Ωi
. (3.12)

In the following, we will bound ‖u − πhu‖. Let u = v + ∇ψ be the Helmholtz

decomposition of u where v ∈ H0(curl; Ω) and ψ ∈ H1
0 (Ω) satisfy div v = 0 and

‖v‖�(curl;Ω) + ‖ψ‖1 ≤ C‖u‖�(curl;Ω). Since div v = 0, the second equation of (3.5)

implies that (πhv,∇ψh) = 0 for all ψh ∈ Sh. Using (3.8) on πhv, we have ‖πhv‖ ≤
C‖curlπhv‖ and thus

‖u − πhu‖ ≤ ‖v − πhv‖ + ‖∇ψ − πh∇ψ‖

≤ ‖v‖ + C‖curlπhv‖ + ‖∇ψ‖

≤ ‖v‖ + C‖curlv‖ + ‖u‖ ≤ C‖u‖�(curl;Ω), (3.13)

where we have used the first inequality of (3.12) on v.



30

When s > 1/2, ‖u−πhu‖ can be bounded as follows. Using the stability (3.13)

of πh on u −Πhu and the third inequality in Lemma III.5, we have that

‖u − πhu‖ ≤ ‖u − Πhu‖ + ‖(Πh − πh)u‖

= ‖u −Πhu‖ + ‖πh(Πhu − u)‖

≤ C‖u − Πhu‖�(curl;Ω) ≤ Chs(‖u‖s,∪Ωi
+ ‖curlu‖s,∪Ωi

).

The main difficulty comes from the case s ≤ 1/2. Since v ∈ H0(curl; Ω) has

zero divergence, by Lemma III.1, we can decompose v = z +∇φ where z ∈ H1(Ω)∩
H0(curl; Ω) and φ ∈ H1

0 (Ω) satisfy ‖z‖1 + ‖φ‖1 ≤ C‖v‖�(curl;Ω). Therefore, letting

p = φ+ ψ ∈ H1
0 (Ω), we get a decomposition u = z + ∇p which satisfies

‖z‖1 + ‖p‖1 ≤ C‖u‖�(curl;Ω). (3.14)

Since u ∈ Hs(∪Ωi) and z ∈ H1(Ω), ∇p belongs to Hs(∪Ωi). By the second equation

of (3.5) and Lemma III.4, we have

‖∇p− πh∇p‖ ≤ inf
ph∈Sh

‖∇p−∇ph‖ ≤ Chs‖p‖1+s,∪Ωi

≤ Chs(‖u‖�(curl;Ω) + ‖u‖s,∪Ωi
). (3.15)

Once we have shown that

‖z − πhz‖ ≤ Chs(‖u‖ + ‖curlu‖s,∪Ωi
), (3.16)

the desired estimate for ‖u − πhu‖ will follow from (3.15), (3.16) and the triangle

inequality.

To show (3.16), by Lemma III.5, we first note that Πhz is well defined and

satisfies

‖z − Πhz‖ ≤ Ch(‖z‖1 + ‖curl z‖s,∪Ωi
) ≤ Ch(‖u‖ + ‖curlu‖s,∪Ωi

). (3.17)
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Then we decompose Πhz − πhz = w + ∇q where q ∈ H1
0 (Ω) and w ∈ H0(curl; Ω)

satisfies div w = 0. By Lemma III.2, w belongs to Hr(Ω) and satisfies

‖w‖r ≤ C‖w‖�(curl;Ω) ≤ C‖Πhz − πhz‖�(curl;Ω)

= C‖πh(Πhz − z)‖�(curl;Ω) ≤ C‖z − Πhz‖�(curl;Ω)

≤ C(‖u‖ + ‖curlu‖s,∪Ωi
), (3.18)

where we have used (3.12) and (3.13) on z and the second estimate of Lemma III.5.

Since curlw belongs to Vh, by Lemma III.5, Πhw is well defined and satisfies

‖w − Πhw‖ ≤ Chr(‖w‖r + ‖curlw‖) ≤ Chr(‖u‖ + ‖curlu‖s,∪Ωi
). (3.19)

Note that

Πhz − πhz = Πhw + Πh∇q = Πhw + ∇qh

for some qh ∈ Sh. Therefore, we have, by the second equation of (3.5),

‖z − πhz‖2 = (z − πhz, z −Πhz) + (z − πhz,Πhz − πhz)

= (z − πhz, z −Πhz) + (z − πhz,Πhw + ∇qh)

= (z − πhz, z −Πhz) − (z − πhz,w −Πhw) + (z − πhz,w)

≤ ‖z − πhz‖(‖z − Πhz‖ + ‖w − Πhw‖) + (z − πhz,w). (3.20)

To estimate the term (z − πhz,w), we define t ∈ H0(curl; Ω) satisfying

curl (µ−1curl t) = w and div t = 0 in Ω. (3.21)

Thanks to div w = 0, t is well defined. Since curl t ·n = 0 on ∂Ω, µ−1curl t actually

belongs to XT (Ω;µ). Thus, by Assumption III.1, we have

‖curl t‖s,∪Ωi
≤ C‖w‖. (3.22)
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Using (3.21) and the first equation of (3.5), we have

(z − πhz,w) = (curl (z − πhz), curl t)µ−1

= (curl (z − πhz), curl (t − πht))µ−1 .

Since curlz = curlu belongs to Hs(∪Ωi), by (3.12) and (3.22), we conclude that

(z − πhz,w) ≤ Ch2s(‖curlz‖s,∪Ωi
+ ‖curl t‖s,∪Ωi

)2

≤ Ch2s(‖u‖ + ‖curlu‖s,∪Ωi
)2. (3.23)

Finally, the combination of (3.17), (3.19), (3.20), (3.22) and (3.23) gives that

‖z − πhz‖2 ≤ Chs‖z − πhz‖(‖u‖ + ‖curlu‖s,∪Ωi
)

+ Ch2s(‖u‖ + ‖curlu‖s,∪Ωi
)2,

from which (3.16) follows.

C. Error analysis for the semidiscrete scheme (2.21)

We recall some equations in Section D of Chapter II. From the discussion given there,

the system (2.13) is equivalent to

(εEt,u) − (µ−1B, curlu) = −(J ,u), for all u ∈ H0(curl; Ω),

(µ−1Bt,v) + (curlE, µ−1v) = 0, for all v ∈ H0(div; Ω).
(3.24)

The semidiscrete approximation (Eh(t),Bh(t)) in Uh×Vh was defined, for 0 < t ≤ T ,

by

(εEh,t,uh) − (µ−1Bh, curluh) = −(J ,uh), for all uh ∈ Uh, (3.25)

(µ−1Bh,t,vh) + (curlEh, µ
−1vh) = 0, for all vh ∈ Vh, (3.26)
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with Eh(0) ≈ E(0) and Bh(0) ≈ B(0). This scheme is uniquely solvable [45].

Some possible choices of Eh(0) and Bh(0) are as follows. We can define Bh(0) =

rhB(0) since rhB(0) is well defined according to (2.2). We note that Bh(t) is di-

vergence free for all t in this case by the second equation of (3.25). We can define

Eh(0) = πhE(0) by solving (3.9). However, if E(0) is smooth enough, we can ap-

proximate E(0) by ΠhE(0) and avoid the solution of (3.9).

In the following theorem, we give the L2-error estimate for the semidiscrete

scheme (3.25).

Theorem III.3. Let (E,B) be the solution to (2.13) and (2.11) and (Eh,Bh) be

the solution to (2.21) and (2.22). Let s be as in Assumption III.1. Under Assump-

tions III.1 and III.2 and the same assumptions as for Theorem III.2, we have that

‖E(t) − Eh(t)‖ + ‖B(t) − Bh(t)‖

≤ C(hs + ‖E0 − Eh(0)‖ + ‖B0 − Bh(0)‖), for all t ∈ [0, T ].

Proof. Let Q�

h be the L2
µ−1-projection from H0(div; Ω) to curlUh. Since div B = 0,

by the commuting diagram II.1, we know that div rhB = 0 and thus rhB ∈ curlUh.

Therefore, by (2.2) and the regularity of the solution given in Theorem III.2, we have

that

‖Q�

hB − B‖ ≤ ‖rhB − B‖ ≤ Chs. (3.27)

We follow the strategy in [45] and split Bh(t) = B+
h (t) + B⊥

h (t) where B+
h (t)

belongs to curlUh and B⊥
h (t) is in the L2

µ−1-orthogonal complement of curlUh in

Vh.

Due to (2.21), (Eh,B
+
h ) ∈ Uh × curlUh satisfy

(εEh,t,uh) − (µ−1B+
h , curluh) = −(J ,uh), for all uh ∈ Uh,

(µ−1B+
h,t, zh) + (curlEh, µ

−1zh) = 0, for all zh ∈ curlUh.
(3.28)
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In the same way, we can see that B⊥
h,t(t) = 0 for any t.

From (2.20) and definitions of Q�

h and πh it follows that, for any uh ∈ Uh,

(µ−1Q�

hBt, curluh) = (µ−1Bt, curluh)

= −(curlE, µ−1curluh) = −(curlπhE, µ
−1curluh).

Note that both Q�

hBt and curlπhE belong to curlUh. This implies that

Q�

hBt + curlπhE = 0.

By the second equation of (3.28),

(Q�

hBt − B+
h,t,Q

�

hB − B+
h )µ−1 = −(curl (πhE − Eh),Q

�

hB − B+
h )µ−1 . (3.29)

Moreover, by the definition of Q�

h and the first equations of (3.24) and (3.28), we

have

(πhEt − Eh,t,uh)ε + (B+
h −Q�

hB, curluh)µ−1

= (πhEt − Eh,t,uh)ε + (B+
h − B, curluh)µ−1

= (πhEt − Eh,t,uh)ε − (Et − Eh,t,uh)ε

= (πhEt − Et,uh)ε,

for any uh ∈ Uh. In particular, choosing uh = πhE − Eh, we get that

(πhEt − Eh,t,πhE − Eh)ε + (B+
h − Q�

hB, curl (πhE − Eh))µ−1

= (πhEt − Et,πhE − Eh)ε. (3.30)
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Adding (3.29) and (3.30) together yields

d

dt

[
(πhE − Eh,πhE − Eh)ε + (Q�

hB − B+
h ,Q

�

hB − B+
h )µ−1

]
= 2(πhEt − Et,πhE − Eh)ε.

Using B⊥
h,t = 0 and the orthogonal property between B⊥

h and Q�

hB − B+
h , we have

that

d

dt
(Q�

hB − B+
h ,Q

�

hB − B+
h )µ−1 =

d

dt
(Q�

hB − Bh,Q
�

hB − Bh)µ−1 ,

and thus

d

dt

[
(πhE − Eh,πhE − Eh)ε + (Q�

hB − Bh,Q
�

hB − Bh)µ−1

]
= 2(πhEt − Et,πhE − Eh)ε. (3.31)

Integrating both sides of (3.31) over [0, t] yields

(πhE − Eh,πhE − Eh)ε + (Q�

hB − Bh,Q
�

hB − Bh)µ−1

= (πhE0 − Eh(0),πhE0 − Eh(0))ε

+ (Q�

hB0 − Bh(0),Q�

hB0 − Bh(0))µ−1

+ 2

∫ t

0

(πhEt − Et,πhE − Eh)ε dτ

≤ C(h2s + ‖E0 − Eh(0)‖2 + ‖B0 − Bh(0)‖2)

+ Chs

∫ t

0

‖πhE − Eh‖ dτ.

For the last inequality, we have used (3.10), (3.27) and the triangle inequality. It

follows from Gronwall’s inequality that

‖πhE − Eh‖ + ‖Q�

hB − Bh‖ ≤ C(hs + ‖E0 − Eh(0)‖ + ‖B0 − Bh(0)‖). (3.32)

The desired estimate then follows from (3.32), (3.27) and the triangle inequality.
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Remark III.3. If the initial approximation Bh(0) is divergence free, the splitting of

Bh(t) into B+
h (t) + B⊥

h (t) in the proof is not necessary because of B⊥
h (t) ≡ 0. But

the above theorem shows that the initial approximation Bh(0) does not need to be

divergence free for the semidiscrete scheme (2.21) to result in good approximations of

E and B.
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CHAPTER IV

OVERLAPPING SCHWARZ METHODS

In this chapter, we will analyze overlapping Schwarz methods for the problem (2.24)

in Chapter II. We only consider the case when ε and µ are constants. To be more

specific, we will study overlapping Schwarz preconditioners for the problem: Find

uh ∈ Uh such that

A(uh,vh) ≡ α(uh,vh) + (curluh, curlvh) = (f ,vh), for all v ∈ Uh, (4.1)

where α is a positive number. The above equation can be written as

A�

h uh = fh ≡ Q�

h f , (4.2)

where Q�

h is the L2-projection onto Uh, and A�

h : U → Uh is defined by (A�

h u,vh) =

A(u,vh), for all vh ∈ Uh. When ε and µ are not constants, the discrete system

corresponding to (2.24) can be preconditioned by preconditioners for (4.2) provided

jumps of ε or µ cross interfaces are not too large.

We begin our analysis with introducing a regular decomposition of vector fields

in H0(curl; Ω) in Section A. After giving the construction of both additive and

multiplicative preconditioners in Section B, we provide a stable decomposition in

Section C which is critical in the estimate of condition number of the preconditioned

system. Our results hold uniformly for 0 < α <∞ under standard conditions on the

overlapping subdomains. In Section D, we give the results of numerical experiments

to illustrate the theory.
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A. Decompositions of H0(curl; Ω)

Due to the different behavior of A(·, ·) on solenoidal and irrotational vector fields,

the Helmholtz decomposition is an important tool in the analysis. For any u ∈
H0(curl; Ω), we have the continuous Helmholtz decomposition

u = z + ∇ϕ, (4.3)

where z ∈ H0(curl; Ω), div z = 0 and ϕ ∈ H1
0 (Ω). Unfortunately, the vector field

z in (4.3) does not, in general, belong to H1(Ω) when the domain Ω is not convex.

Our analysis is based on a decomposition of z. The following two lemmas provide

the construction and estimates.

Lemma IV.1. For any u ∈ H0(curl; Ω), there exists w ∈ H1(Ω) such that

curlw = curlu and div w = 0 in Ω,

and the following estimates hold:

‖w‖ ≤ ‖u‖ and |w|1 ≤
√

2‖curlu‖.

Proof. The proof follows the argument of Theorem 3.4, chapter I in [32]. Denote by

ũ the extension by zero of u. Then ũ is in H (curl ,�3). Let v = curl ũ. Note that

v has compact support.

Let û and v̂ be the Fourier transforms of ũ and v respectively. Since div v = 0

and v = curl ũ, we have

ξ · v̂ = 0 and v̂ = iξ × û,

where i =
√−1 and ξ = (ξ1, ξ2, ξ3)

T stands for the dual variable of x = (x1, x2, x3)
T .

Define ŵ ≡ (I − 1
|ξ|2ξξ

T )û where I is the identity matrix. It is not hard to see
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that the matrix I − 1
|ξ|2 ξξ

T has the eigenvalue 0 corresponding to the eigenvector ξ,

and the eigenvalue 1 of multiplicity two corresponding to two linearly independent

eigenvectors orthogonal to ξ. This shows that ‖ŵ‖ ≤ ‖û‖ and thus the inverse Fourier

transform w of ŵ satisfies

‖w‖0,�3 = ‖ŵ‖0,�3 ≤ ‖û‖0,�3 = ‖ũ‖0,�3 = ‖u‖.

By the construction of ŵ, we also have

ξ · ŵ = ξ · û − 1

|ξ|2ξ · ξ(ξ
T û) = 0

and

iξ × ŵ = iξ × û − i

|ξ|2 (ξT û)ξ × ξ = iξ × û.

Thus,

div w = 0 and curlw = curl ũ.

Since v̂ = iξ × û,

ξ × v̂ = iξ × (ξ × û) = i[(ξT û)ξ − |ξ|2û]

= −i|ξ|2(û − 1

|ξ|2ξξ
T û) = −i|ξ|2ŵ.

It immediately follows that |w|1,�3 ≤ √
2‖v‖0,�3 ≤ √

2‖curlu‖.
The restriction w to Ω is the desired potential. This completes the proof of the

lemma.

The following lemma is an improvement of Proposition 5.1 in [25]. It provides the

additional stability estimate ‖w‖ ≤ C‖z‖. The proof mainly follows the argument

given there. Note that some modification has to be done for the case that ∂Ω has

multiple components.
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Lemma IV.2. For any z ∈ H0(curl; Ω) with div z = 0 in Ω, there exist w ∈ H1
0(Ω)

and ψ ∈ H1(Ω) with ψ being constant on each connected component of ∂Ω such that,

z = w + ∇ψ,

and the following estimates hold:

‖w‖ + ‖ψ‖1 ≤ C‖z‖ and ‖w‖1 ≤ C‖curl z‖.

Proof. Let Γi, 1 ≤ i ≤ I, be the internal connected components of ∂Ω and Γ0 the

boundary of the only unbounded connected component of �3\Ω.

Define qi to be the unique solution in H1(Ω) of the problem [3]

{ −� qi = 0 in Ω,

qi
∣∣
Γ0

= 0, qi
∣∣
Γk

= Cik, 1 ≤ k ≤ I,

where Cik are constants on Γk. These constants are uniquely determined by the

following conditions

〈∂qi
∂n

, 1
〉

Γ0

= −1,
〈∂qi
∂n

, 1
〉

Γk

= δik, 1 ≤ k ≤ I.

For z given above, we define
◦
z by

◦
z = z −

I∑
i=1

〈z · n, 1〉Γi
∇qi.

Then
◦
z ∈ H0(curl; Ω) satisfies that

curl
◦
z = curl z, div

◦
z = 0,

〈 ◦z · n, 1〉Γk
= 〈z · n, 1〉Γk

−
I∑

i=1

〈z · n, 1〉Γi

〈∂qi
∂n

, 1
〉

Γk

= 0, 1 ≤ k ≤ I,
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and

‖ ◦
z‖ ≤ ‖z‖ +

I∑
i=1

|〈z · n, 1〉Γi
| · ‖∇qi‖

≤ ‖z‖ + C‖z‖�(div;Ω) ≤ C‖z‖.

It follows from Corollary 3.19 of [3] that

‖ ◦
z‖ ≤ C‖curl

◦
z‖. (4.4)

Denote by z̃ the extension by zero of
◦
z to an open ball B(0; r) which contains

Ω. Let Ωc ≡ B(0; r)\Ω. By Lemma IV.1, there is a w̃ ∈ H1(B(0; r)) such that

curl w̃ = curl z̃ and div w̃ = 0.

Moreover, ‖w̃‖0,B(0;r) ≤ ‖ ◦
z‖ and ‖w̃‖1,B(0;r) ≤

√
2‖ ◦

z‖�(curl;Ω) ≤ C‖curl
◦
z‖. In the

last inequality, we used 4.4.

Since curl (w̃ − z̃) = 0, there is a ϕ̃ ∈ H1(B(0; r))/� such that w̃ − z̃ = ∇ϕ̃
and ‖ϕ̃‖1,B(0;r) ≤ C‖w̃ − z̃‖0,B(0;r) (cf. Theorem 2.9, Chapter I in [32]). Note that in

Ωc, ∇ϕ̃ = w̃ ∈ H1(Ωc) since z̃ = 0 and thus ϕ̃ ∈ H2(Ωc). Using Theorem 5 in [61],

we can extend this ϕ̃ in H2(Ωc) to ϕ defined on B(0; r) satisfying

‖ϕ‖1,B(0;r) ≤ C‖ϕ̃‖1,Ωc ≤ C‖w̃ − z̃‖0,B(0;r) (4.5)

and

‖ϕ‖2,B(0;r) ≤ C‖ϕ̃‖2,Ωc ≤ C(‖w̃‖1,Ωc + ‖z̃‖). (4.6)

Now, we have

z̃ = w̃ −∇ϕ̃ = (w̃ −∇ϕ) + ∇(ϕ− ϕ̃).

Note that w̃ − ∇ϕ is in H1(B(0; r)) and its trace to ∂Ω from Ωc vanishes. Thus,
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w̃ −∇ϕ is in H1
0(Ω) and satisfies

‖w̃ −∇ϕ‖0,B(0;r) ≤ C‖w̃‖0,B(0;r) + C‖w̃ − z̃‖0,B(0;r) ≤ C‖ ◦
z‖ ≤ C‖z‖

and

‖w̃ −∇ϕ‖1,B(0;r) ≤ C(‖w̃‖1,B(0;r) + ‖z̃‖) ≤ C‖curl
◦
z‖ = C‖curlz‖.

We complete the proof by setting w to be the restriction to Ω of w̃ −∇ϕ and ψ to

be the sum of
∑I

i=1〈z · n, 1〉Γi
qi and the restriction to Ω of ϕ̃− ϕ.

B. Overlapping Schwarz preconditioners

In this section, we give two overlapping Schwarz preconditioners for the discrete

system corresponding to (4.2). The overlapping Schwarz algorithms as described

in [28, 34, 64] are based on two levels of partitioning of Ω. The first is a coarse

partitioning into (non-overlapping) tetrahedra {Ωi : i = 1, . . . , N0}. This forms a

mesh �H of mesh size H . Next, each Ωi is further partitioned into finer tetrahedra

{τ j
i : j = 1, 2, . . . , Ni}. The fine partitioning gives the fine mesh �h of mesh size h.

Both �H and �h are assumed to be regular.

Along with this partitioning, we assume that we are given another sequence of

(overlapping) subdomains Ω′
j j = 1, . . . , N in such a way that ∂Ω′

j aligns with the

h-level mesh. Then each subdomain Ω′
j is also partitioned by tetrahedra in �h and

the space

Uj
h = Uh ∩ H0(curl ; Ω′

j), j = 1, . . . , N,

is also a Nedelec finite element space. In the above definition, we regard H0(curl; Ω′
j)

as a subset of H0(curl; Ω) by identifying functions in H0(curl ; Ω′
j) with their exten-

sion by zero. It is convenient to set Ω′
0 = Ω and U0

h = UH . Similarly, we define
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the Lagrange finite element space Sj
h, j = 0, 1, . . . , N by replacing H0(curl ; Ω′

j) with

H1
0 (Ω′

j).

We assume that subdomains {Ω′
j} are such that there is a partition of unity

{θj}N
j=1 where the partition functions are piecewise linear with respect to the fine

mesh and satisfy

‖∇θj‖∞ ≤ CH−1, for j = 1, . . . , N. (4.7)

We finally assume that the subdomains {Ω′
j} satisfy a limited overlap property, i.e.,

each point of Ω is contained in at most n0 subdomains where n0 is independent of H

and h.

One can, for example, define the overlapping subdomains to be regions associated

with vertices of the coarse mesh, i.e., Ω′
j is the interior of the union of the closures of

the coarse grid tetrahedra which share the j’th vertex. In this case, the partition of

unity functions can be taken to be the nodal finite element basis functions associated

with the conforming piecewise linear coarse grid approximation to H1(Ω). Alterna-

tively, one can use the classical approach of defining the overlapping subdomains by

extending the original coarse grid subdomains {Ωj} so that

dist(∂Ω′
j ∩ Ω, ∂Ωj ∩ Ω) ≥ δH for all j = 1, . . . , N. (4.8)

Here δ is some constant independent of h and H .

A key property to establish the effectiveness of the overlapping Schwarz precon-

ditioners is the following stability result. Its proof will be given in the next section.

Lemma IV.3. Suppose that the overlapping subdomains and partition of unity satisfy

the conditions above. Then there is a constant Cstab such that for all u ∈ Uh, we have
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a decomposition u =
∑N

j=0 uj with uj ∈ Uj
h satisfying

N∑
j=0

A(uj ,uj) ≤ CstabA(u,u).

The overlapping Schwarz methods uses the solvers on the overlapping subregions

{Ω′
j}. For j = 0, 1, . . . , N , we define Aj : Uj

h → Uj
h by

(Aju,w) = A(v,w), for all w ∈ Uj
h,

and set Qj : Uh → Uj
h to be the L2(Ω)-projection.

The additive Schwarz preconditioner Ba : Uh → Uh is defined by

Ba =
N∑

j=0

A−1
j Qj . (4.9)

The symmetric multiplicative Schwarz preconditioner Bm : Uh → Uh is defined as

follows. For a given g ∈ Uh, we let Bmg = uN ∈ Uh, where the uN is defined by the

iteration u−N−1 = 0, and

uj = uj−1 −A−1
|j| Q|j| (g − Ahu

j−1), j = −N,−N + 1, . . . , N. (4.10)

In practice, one can replace A−1
j by preconditioner for Aj in either algorithm

and still get robust preconditioners for the operator A�

h . The results for the termwise

preconditioned algorithm easily follow [16] from those for (4.9) and (4.10) which we

give below.

The following theorem provides the upper bound for the conditioner number

of the additive and multiplicative Schwarz preconditioners. Its proof is well known

(cf. [16, 60]) and follows from the assumptions on the overlapping subdomains and

Lemma IV.3.
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Theorem IV.1. Under the assumption of Lemma IV.3, for any u ∈ Uh, we have

C−1
stab A(u,u) ≤ A(Ba A�

h u,u) ≤ n0A(u,u),

and

(Cstab n
2
0)

−1 A(u,u) ≤ A(Bm A�

h u,u) ≤ A(u,u).

Remark IV.1. The above theorem guarantees that the condition number for the

preconditioned system remains bounded independently of h and H. This means that,

for example, a preconditioned conjugate gradient iteration using these preconditioners

is guaranteed to converge at a rate which can be bounded independently of h and H.

Remark IV.2. The theorem suggests that the additive method has a smaller condi-

tion number than the multiplicative. In practice this is not the case. In numerical

experiments, it is observed that the multiplicative method has a smaller condition

number.

C. Analysis of overlapping Schwarz methods

In our analysis, we will use the interpolation operator Πh and the L2-projection Q�

h

onto Uh. From Lemma III.5, we have

‖u −Πhu‖ ≤ Ch|u|1, for all u ∈ H1(Ω) such that curlu ∈ Vh. (4.11)

For Q�

h , we have the following stability and error estimates suggested in [34]:

‖u − Q�

h u‖ + h‖curlQ�

h u‖ ≤ Ch|u|1, for all u ∈ H1(Ω) (4.12)

although its proof was not given there. In a private communication, Hiptmair sug-

gested a proof of (4.12) using the operator�h introduced in [7]. The projector �h was

defined locally and replaced integration on the edges with integration on the faces.
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This produces an interpolation which is well defined on vector fields in H1. By ap-

plying a Bramble-Hilbert argument, Lemma 5 of [7] shows that ‖u−�hu‖ ≤ Ch|u|1,
and ‖curl�hu‖ ≤ C|u|1, for all u ∈ H1(Ω). The first estimate of (4.12) follows

from the best approximation property of Q�

h , and the second follows from

‖curlQ�

h u‖ ≤ Ch−1‖(Q�

h −�h)u‖ + C‖curl�hu‖.

We now give a proof of Lemma IV.3.

Proof of Lemma IV.3. Pick an arbitrary u ∈ Uh and let u = z+∇ϕ be its continuous

Helmholtz decomposition. Splitting z = w + ∇ψ as in Lemma IV.2 gives

u = w + ∇p, (4.13)

where w ∈ H1
0(Ω) and p = ϕ+ ψ ∈ H1(Ω) with p being constant on each connected

component of ∂Ω satisfy

‖w‖ + ‖p‖1 ≤ C‖u‖ and |w|1 ≤ C‖curlu‖. (4.14)

Since w ∈ H1(Ω) and curlw ∈ Vh, we can apply Πh to both sides of (4.13) to

get

u = Πhw + ∇ph, (4.15)

where ph ∈ Sh is constant on each connected component of ∂Ω (see the proof of

Lemma 5.10, Chapter III of [32]). We will decompose Πhw and ph separately.

For the decomposition of ph, we define the piecewise linear function p0 in Sh by

p0 =
{ QH p

h, at nodes of �H in Ω,

ph, at nodes on ∂Ω,
(4.16)

where QH is the L2-projection onto SH . Using partition of unity {θj}N
j=1 introduced
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in the previous section, we define the decomposition of ph by

ph = p0 +
N∑

j=1

Ih(θj(p
h − p0)) ≡ p0 +

N∑
j=1

pj , (4.17)

where Ih is the interpolation operator on Sh. Note that ∇pj, j = 0, . . . , N , belongs

to Uj because p0 is constant on each component of ∂Ω and ph − p0 vanishes on ∂Ω.

To show the stability of the decomposition (4.17), we first note that

‖p0 − ph‖ ≤ CH‖∇ph‖ and ‖∇(p0 − ph)‖ ≤ C‖∇ph‖.

For details, we refer to Section 4 in [17]. Therefore, using (4.7) and the finite over-

lapping assumption, we have that

‖∇p0‖2 +
N∑

j=1

‖∇pj‖2 ≤ C‖∇ph‖2 + C
N∑

j=1

‖∇θj(p
h − p0)‖2

≤ C‖∇ph‖2 + C
N∑

j=1

{
H−2‖ph − p0‖2

�
2(Ω′

j)
+ ‖∇(ph − p0)‖2

�
2(Ω′

j)

}
≤ C‖∇ph‖2,

and thus

N∑
j=0

A(∇pj,∇pj) = α

N∑
j=0

‖∇pj‖2 ≤ CA(∇ph,∇ph) ≤ CA(u,u). (4.18)

To deal with Πhw in (4.15), we first eliminate the low frequency components by

subtracting Q�

Hw from w, and get

Πhw = (Πhw − Q�

Hw) + Q�

Hw ≡ wh + w0, (4.19)

By (4.11), (4.12) and (4.14), w0 and wh satisfy,

A(w0,w0) ≤ α‖w‖2 + C|w|21 ≤ CA(u,u), (4.20)
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‖wh‖ ≤ ‖Πhw − w‖ + ‖w − Q�

Hw‖ ≤ CH|w|1 ≤ CH‖curlu‖. (4.21)

Alternatively, we have the bound

‖wh‖ ≤ ‖Πhw − w‖ + ‖w − Q�

Hw‖

≤ C(h‖curlu‖ + ‖w‖) ≤ C‖u‖. (4.22)

Finally, by (4.15) and (4.12),

‖curlwh‖ ≤ ‖curlΠhw‖ + ‖curlQ�

Hw‖

≤ ‖curlu‖ + C|w|1 ≤ C‖curlu‖. (4.23)

The remainder wh is decomposed in a classical way. We use the partition of

unity {θj}N
j=1 introduced earlier and define wj = Πh(θjw

h), for j = 1, . . . , N . Using

the fact that the partition functions {θj} are piecewise linear with respect to the fine

grid mesh, it can be shown (cf. Lemma 4.5 in [64]) that

‖Πh(θjw
h)‖ ≤ C‖θjw

h‖ and

‖curlΠh(θjw
h) ≤ C‖curl θjw

h‖.

The argument given there uses the property that θjw
h is a piecewise polynomial of

fixed order. Thus, we have

‖wj‖ ≤ C‖θjw
h‖ ≤ C‖wh‖�2(Ω′

j)

and

‖curlwj‖ ≤ C‖curl θjw
h‖

≤ C(‖∇θj‖L∞‖wh‖�2(Ω)(Ω′
j ) + ‖curlwh‖�2(Ω)(Ω′

j ))

≤ C(H−1‖wh‖�2(Ω)(Ω′
j ) + ‖curlwh‖�2(Ω)(Ω′

j )).
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The above inequalities and the limited overlap property of the subdomains imply that

N∑
j=1

A(wj,wj) ≤ C((α+H−2)‖wh‖2 + ‖curlwh‖2)

≤ C(α‖u‖2 + ‖curlu‖2) = CA(u,u).

(4.24)

The last inequality above followed from applying (4.21) and (4.22).

Finally, setting uj = wj + ∇pj gives the desired decomposition of u. Indeed,

combining (4.18), (4.20), and (4.24) shows that

N∑
j=0

A(uj ,uj) ≤ 2A(w0,w0) + 2

N∑
j=1

A(wj ,wj) + 2

N∑
j=0

A(∇pj,∇pj)

≤ CA(u,u).

This completes the proof of Lemma IV.3.

D. Numerical results

In this section we report the results of numerical experiments confirming and illus-

trating the theory of previous sections. All of the computations to be described use

lowest order Nedelec elements on cubes.

The domain Ω is defined to be the three-dimensional domain (0, 1)3/[0, 1/2]3. On

this domain, the solenoidal component of the Helmholtz decomposition is generally

not in H1(Ω).

We take the coarse grid to be the 7 cubes of size [0, 1/2]3, whose union is the

closure of Ω. Ω is meshed uniformly by cubic elements of size h. Overlapping subdo-

mains are constructed by adjoining just enough fine elements to the coarse elements

so that (4.8) holds.

Equation (4.1) with various α was solved using the preconditioned Conjugate
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Table I. Condition numbers of BaA
�

h with δ = 0.1

α 10−4 10−3 10−2 10−1 1 10 102 103 104

h = 1/4 7.18 7.18 7.18 7.18 7.18 7.20 7.24 7.74 7.95

h = 1/8 7.78 7.78 7.77 7.77 7.71 7.20 7.01 7.05 7.07

h = 1/16 13.17 13.17 13.17 13.16 13.11 12.38 7.00 7.00 7.00

h = 1/32 13.24 13.24 13.24 13.23 13.18 12.43 7.01 7.00 7.00

h = 1/64 13.26 13.26 13.26 13.24 13.19 12.44 7.01 7.00 7.00

Table II. Condition numbers of BaA
�

h with δ = 0.2

α 10−4 10−3 10−2 10−1 1 10 102 103 104

h = 1/4 7.18 7.18 7.18 7.18 7.18 7.20 7.24 7.74 7.95

h = 1/8 7.78 7.78 7.77 7.77 7.71 7.20 7.01 7.05 7.07

h = 1/16 7.95 7.95 7.95 7.95 7.90 7.27 6.97 7.00 7.00

h = 1/32 7.91 7.91 7.91 7.91 7.86 7.26 6.98 7.00 7.00

h = 1/64 8.80 8.80 8.80 8.80 8.76 7.94 6.98 7.00 7.00

Gradient method. For the additive and multiplicative preconditioners, the Conjugate

Gradient method without preconditioning was used to solve the discrete problems on

the coarse mesh and on the subdomains. The condition numbers of the preconditioned

system as a function of h were obtained by using a Lanczos technique [33].

In Table I and Table II, we report the condition numbers of the preconditioned

system as a function of h for various values of α using the additive Schwarz precon-

ditioner (4.9) with δ = 0.1 and δ = 0.2, respectively. The results are uniform with

respect to α and h. Note that larger values of δ yield better preconditioners.

The condition numbers of the preconditioned system using multiplicative precon-

ditioner (4.10) with δ = 0.1 are given in Table III. The multiplicative preconditioner
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Table III. Condition numbers of BmA�

h with δ = 0.1

α 10−4 10−3 10−2 10−1 1 10 102 103 104

h = 1/4 1.02 1.02 1.02 1.02 1.02 1.004 1.00025 1.005 1.008

h = 1/8 1.08 1.08 1.08 1.08 1.07 1.05 1.001 1.0007 1.005

h = 1/16 1.34 1.34 1.34 1.34 1.33 1.25 1.06 1.0002 1.002

h = 1/32 1.35 1.35 1.35 1.35 1.34 1.26 1.06 1.0002 1.

h = 1/64 1.35 1.35 1.35 1.35 1.34 1.26 1.09 1.00032 1.

performs better than the additive preconditioner in terms of the condition numbers.

Indeed the condition numbers for large α end up being very close to one.



52

CHAPTER V

MULTIGRID METHODS

In this chapter, we will analyze multigrid methods for the problem (4.1): Find uh ∈
Uh such that

α(uh,vh) + (curluh, curlvh) = (f ,vh), for all v ∈ Uh. (5.1)

Multigrid methods are natural extensions of domain decomposition methods given in

Chapter IV.

We take the abstract theory in [14, 15] as the basis of our analysis. In Section A,

we introduce two new innerproducts in the finite element space Uh ⊆ H0(curl; Ω)

by means of continuous and discrete Helmholtz decompositions. These innerprod-

ucts will serve as the base innerproduct in the abstract theory of multigrid analy-

sis. In Section B, we describe BPX-type and V-cycle multigrid methods based on

smoothers proposed by Hiptmair [35]. We present the analysis of both methods in

Section C. Essentially we construct the multilevel stable decomposition and show

that the strengthen Cauchy-Schwarz inequality holds.

We will only consider the case when α = 1 and ∂Ω has one connected component.

A. New innerproducts in H0(curl; Ω)

Let u be in the Nedelec finite element space Uh and u = zh + ∇φh, the discrete

Helmholtz decomposition (2.3). Recall that zh ∈ Uh is L2(Ω)-orthogonal to ∇Sh,

and φh belongs to Sh. We define the norm ‖ · ‖∗,h on Uh by

‖u‖2
∗,h = ‖zh‖2 + ‖φh‖2. (5.2)
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This norm naturally induces an innerproduct (·, ·)∗,h in Uh by the parallelogram iden-

tity:

(u,v)∗,h =
1

4

[‖u + v‖2
∗,h − ‖u − v‖2

∗,h
]
, for all u,v ∈ Uh. (5.3)

On the other hand, u ∈ Uh is a function in H0(curl; Ω), and thus has the

continuous Helmholtz decomposition u = z + ∇φ, where z ∈ H0(curl; Ω) has zero

divergence and φ belongs to H1
0 (Ω). We define the norm ‖ · ‖∗ on H0(curl; Ω) by

‖u‖2
∗ = ‖z‖2 + ‖ϕ‖2. (5.4)

Similar to (5.3), this norm induces an innerproduct (·, ·)∗ on the space H0(curl; Ω).

The following lemma shows that both norms have a certain minimum property.

Lemma V.1. Let u = wh +∇ψh be any decomposition of u ∈ Uh with wh ∈ Uh and

ψh ∈ Sh. Then,

‖u‖∗,h ≤ C(‖wh‖ + ‖ψh‖). (5.5)

similarly, let u = w + ∇ψ be any decomposition of u ∈ H0(curl; Ω) with w ∈
H0(curl; Ω) and ψ ∈ H1

0 (Ω). Then,

‖u‖∗ ≤ C(‖w‖ + ‖ψ‖). (5.6)

Proof. For (5.5), let u = wh + ∇ψh be as above, and u = zh + ∇ϕh be the discrete

Helmholtz decomposition of u. We first have

‖zh‖2 = (zh,wh + ∇ψh −∇ϕh) = (zh,wh) ≤ ‖zh‖‖wh‖,

and thus

‖zh‖ ≤ ‖wh‖. (5.7)
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Secondly, let µh ∈ Sh solve

(∇µh,∇χ) = (ϕh, χ), for all χ ∈ Sh. (5.8)

Then we have ‖∇µh‖ ≤ C‖ϕh‖ and

‖ϕh‖2 = (∇µh,∇ϕh) = (∇µh,∇ψh + wh − zh)

= (∇µh,∇ψh + wh) = (ϕh, ψh) + (∇µh,wh)

≤ ‖ϕh‖‖ψh‖ + ‖∇µh‖‖wh‖ ≤ C‖ϕh‖(‖ψh‖ + ‖wh‖),

which implies ‖ϕh‖ ≤ C(‖ψh‖ + ‖wh‖). Combining the above gives the desired

estimate.

The proof of (5.6) is similar except we replace µh satisfying (5.8) by µ ∈ H1
0 (Ω)

satisfying

(∇µ,∇χ) = (ϕ, χ), for all χ ∈ H1
0 (Ω), (5.9)

where ϕ is the solenoidal part of Helmholtz decomposition of u.

Although ‖ · ‖∗,h is convenient in dealing with elements in Uh, we need the level-

independent norm ‖ · ‖∗ for the multilevel analysis. It turns out that these two

norms are equivalent on Uh. To show this equivalence, we need the following inverse

inequalities for both components in Helmholtz decomposition of a discrete function

in Uh.

Lemma V.2. Let u = z +∇ϕ be the Helmholtz decomposition of u ∈ Uh. Then, we

have the following inverse inequalities.

‖curl z‖ ≤ Ch−1‖z‖, (5.10)

and

‖∇ϕ‖ ≤ Ch−1‖u‖∗. (5.11)
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Proof. The proof of (5.10) uses a scaling argument. Let τ̂ be the reference tetrahedron

of unit size. Each tetrahedron τ ∈ �h can then be obtained from τ̂ by the affine map

Fτ (x̂) = Bτ x̂ + bτ . (5.12)

Under the map

û = BT
τ u ◦ Fτ , (5.13)

we have

curlu(x) = B−T
τ curl û(x̂)B−1

τ ,

and thus curl û(x̂) is a polynomial if curlu(x) is a polynomial on τ . A standard

scaling argument [49] shows that

C‖û‖2
0,�τ ≤ h−1

τ ‖u‖2
0,τ ≤ C−1‖û‖2

0,�τ , (5.14)

and

C‖curlu‖2
0,τ ≤ h−1

τ ‖curl û‖2
0,�τ ≤ C−1‖curlu‖2

0,τ . (5.15)

Then, we have

‖curlz‖2 =
∑

τ

‖curlz‖2
0,τ ≤ C

∑
τ

h−1
τ ‖curl ẑ‖2

0,�τ

≤ C
∑

τ

h−1
τ ‖curl ẑ‖2

−1,�τ ,

since curl z = curlu ∈ Vh and all norms are equivalent on a finite dimensional space.

By the definition of the norm ‖ · ‖−1 and integration by parts, we further have

‖curl z‖2 ≤ C
∑

τ

h−1
τ

(
sup

�∈�1
0(�τ )

(curl ẑ,v)

‖v‖1

)2

≤ C
∑

τ

h−1
τ ‖ẑ‖2

0,�τ

≤ C
∑

τ

h−2
τ ‖z‖2

0,τ ≤ Ch−2‖z‖2.

For (5.11), let u = zh +∇ϕh be the discrete decomposition of u and µ ∈ H1
0 (Ω)
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solve

(∇µ,∇χ) = (ϕh, χ), for all χ ∈ H1
0 (Ω).

Then, we have

‖ϕh‖2 = (∇µ,∇ϕh) = (∇µ,∇ϕ− zh)

= (ϕh, ϕ) − (∇µ, zh) ≤ C‖ϕh‖(‖ϕ‖ + ‖zh‖), (5.16)

which implies that ‖ϕh‖ ≤ C(‖ϕ‖ + ‖zh‖). Therefore, by the inverse inequality, we

have

‖∇ϕh‖ ≤ Ch−1‖ϕh‖ ≤ Ch−1(‖ϕ‖ + ‖zh‖). (5.17)

Split z = w + ∇ψ as in Lemma IV.2. Note that w belongs to H1(Ω), and

curlw = curlz = curlu belongs to Vh. Thus, Πhw makes senses by Lemma III.5.

Since u ∈ Uh, we have, by Lemma 5.10, Chapter III in [32],

u = Πhw + Πh∇(ϕ+ ψ) = Πhw + ∇µh

for some µh ∈ Sh. By (5.7), we get

‖zh‖ ≤ ‖Πhw‖ ≤ ‖w − Πhw‖ + ‖w‖ ≤ Ch‖w‖1 + ‖w‖,

where we used Lemma III.5 for the last inequality. Thus, using the stability in

Lemma IV.2 and the inverse inequality (5.10), we have

‖zh‖ ≤ Ch‖z‖�(curl;Ω) + C‖z‖ ≤ C‖z‖. (5.18)
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Finally combining (5.17) and (5.18) yields

‖∇ϕ‖ ≤ ‖∇ϕ−∇ϕh‖ + ‖∇ϕh‖

≤ ‖z − zh‖ + Ch−1(‖ϕ‖ + ‖zh‖)

≤ Ch−1(‖z‖ + ‖ϕ‖) = Ch−1‖u‖∗.

Theorem V.1. There is a constant C independent of h such that

C−1‖u‖∗ ≤ ‖u‖∗,h ≤ C‖u‖∗, for all u ∈ Uh.

Proof. Lemma V.1 gives lower bound for ‖u‖∗,h. For the upper bound, let u = z+∇ϕ
and u = zh + ∇ϕh be the Helmholtz decomposition and the discrete Helmholtz

decomposition of u respectively. By the second inequality of (5.17) and (5.18), we

have

‖u‖∗,h = ‖zh‖ + ‖ϕh‖ ≤ C(‖ϕ‖ + ‖zh‖) ≤ C‖u‖∗.

B. Multigrid methods and smoothers

We consider a nested sequence of triangulations of Ω,
{
�j, 1 ≤ j ≤ J

}
. Assume that

hj ≈ γ−j for some positive constant γ. A typical γ is around 2. In the following, we

will use h instead of hJ when convenient.

These nested triangulations give rise to the nested spaces Sj ≡ Shj
,Uj ≡ Uhj

and Vj ≡ Vhj
. For example, we have

U1 ⊆ U2 ⊆ · · · ⊆ UJ .
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For each j, the (·, ·)∗-projection Qj : H0(curl; Ω) → Uj is defined by

(Qju,v)∗ = (u,v)∗, for all v ∈ Uj , (5.19)

and the operator Aj : H0(curl; Ω) → Uj is defined by

(Aju,vj)∗ = A(u,vj), for all vj ∈ Uj . (5.20)

Let λj be maximum eigenvalue of Aj. The following lemma gives a relation between

λj and hj.

Lemma V.3. There exits a constant C such that

C−1λj ≤ h−2
j ≤ Cλj, for all 1 ≤ j ≤ J.

Proof. Let u = z + ∇ϕ be the discrete Helmholtz decomposition of u ∈ Uj . Then,

by Lemma V.1 and V.2 we have

A(u,u) = A(z, z) + ‖∇ϕ‖2

≤ ‖z‖2 + Ch−2
j ‖z‖2 + Ch−2

j ‖u‖2
∗ ≤ Ch−2

j ‖u‖2
∗,

and thus λj ≤ Ch−2
j .

On the other hand, taking ϕ ∈ Sj such that ‖∇ϕ‖ ≥ Ch−1
j ‖ϕ‖ (see e.g. [19]),

we have

A(∇ϕ,∇ϕ) = ‖∇ϕ‖2 ≥ Ch−2
j ‖ϕ‖2 = Ch−2

j ‖∇ϕ‖2
∗,hj

≥ Ch−2
j ‖∇ϕ‖2

∗,

and thus λj ≥ Ch−2
j .

The discretization of problem (4.1) can be rewritten: Find u ∈ UJ such that

A(u,v) = (f∗,v)∗, for all v ∈ UJ ,
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where f∗ ∈ UJ satisfies

(f∗,v)∗ = (f ,v), for all v ∈ UJ .

Using AJ , the above problem can be written as

AJu = f ∗.

Given (·, ·)∗-symmetric and positive definite smoothers Rj : Uj → Uj, we can

define the BPX-type preconditioner Ga by

Ga =

J∑
j=1

RjQj .

Remark V.1. If the action of Rjf∗ can be computed using only (f∗, φj,i)∗ data where

{φj,i}i is the finite element basis of Uj, then the action Gaf∗ can be implemented

without the solution of the Gram matrix problem for Qj or the explicit computation

of f∗. This observation remains valid also for the multiplicative version Gm which

we define below. For details, we refer to [19]. We will give an example of such a

smoother at the end of this section.

The V-cycle multigrid preconditioner Gm is defined recursively. Let G1
m = A−1

1

and, for j > 1, we define Gj
mb = y1 where

y0 = 0,

y 1
3

= y0 + RjQj(f∗ − Ay0),

y 2
3

= y 1
3

+ Gj−1
m Qj−1(f∗ − Ay 1

3
),

y1 = y 2
3

+ RjQj(f∗ − Ay 2
3
).

We write Gm = GJ
m.

The following conditions are used for estimating the multilevel preconditioners.



60

Condition V.1. There is a constant ω1 not depending on 1 ≤ j ≤ J such that the

(·, ·)∗-symmetric and positive definite smoothers, Rj, satisfy

ω1(R
−1
j v,v)∗ ≤ λ−1

j (v,v)∗, for all v ∈ Uj, j ≥ 1.

Condition V.2. There is a constant ω2 ∈ (0, 2) not depending on 1 ≤ j ≤ J such

that the (·, ·)∗-symmetric and positive definite smoothers, Rj, satisfy

A(v,v) ≤ ω2 (R−1
j v,v)∗, for all v ∈ Uj, j ≥ 1.

Condition V.3. For any u ∈ UJ , there is a multilevel decomposition u =
∑J

j=1 uj

with uj ∈ Uj and a constant Csmd not depending on J such that

J∑
j=1

λj‖uj‖2
∗ ≤ Csmd A(u,u).

Condition V.4. There is a constant Cscs and a number ε ∈ (0, 1) not depending on

J such that for all 1 ≤ i ≤ j ≤ J

A(ui,uj) ≤ Cscs ε
j−iλ

1/2
j ‖ui‖A‖uj‖∗, for all ui ∈ Ui,uj ∈ Uj ,

where ‖ · ‖2
A ≡ A(·, ·).

The following theorem (cf. [19, 21]) shows that provided that the appropriate

conditions are satisfied, the condition number K(GaAJ) is bounded by some constant

not depending on J .

Theorem V.2. Assume that the smoothers Rj, 1 ≤ j ≤ J, satisfy Condition V.1.

Assume, in addition, that Conditions V.3 and V.4 hold. Then, Ga satisfies

ω1

Csmd
(G−1

a u,u)∗ ≤ A(u,u) ≤ 2Cscs

1 − ε
(G−1

a u,u)∗, for all v ∈ UJ .

For the V-cycle algorithm, we have (cf. [19, 21])
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Theorem V.3. Assume that the smoothers Rj, 1 ≤ j ≤ J, satisfy Conditions V.1

and V.2. Assume, in addition, that Conditions V.3 and V.4 hold. Then, Gm satisfies

0 ≤ A([I − GmAJ ]v,v) ≤ (1 − δ)A(v,v), for all v ∈ UJ ,

where

δ =
(2 − ω2)ω1

Csmd(1 + 2Cscs/(1 − ε))2
.

The proof of the above two theorems can also be derived from Lemma 4.6, The-

orem 4.1 and 4.4 in [67] with simple manipulations.

The construction of smoothers satisfying the above conditions is based on the

decomposition of Uh and Sh as sums of spaces supported in small patches. Let Ωv
h be

the union of the tetrahedra having the vertex v. We denote by Sv
h the set of functions

in Sh whose support is contained in Ω
v

h. Similarly, we define Ue
h ⊂ Uh corresponding

to an edge e. Functions in Sv
h and Ue

h will be called patch functions. Let �h and �h

be the sets of all vertices and edges respectively in the triangulation �h. It is possible

[4] to decompose p ∈ Sh as p =
∑

v∈�h
ϕv and u ∈ Uh as u =

∑
e∈�h

Φe where ϕv

and Φe belong to Sv
h and Ue

h respectively.

Both decompositions follow the same lines. For example, to obtain the edge-

based decomposition of Uh, we note that the degrees of freedom of the space Uh give

rise to a decomposition of u ∈ Uh as u =
∑

uκ where the sum runs over all degrees

of freedom of Uh and uκ is the element of Uh with all degrees of freedom other than

κ set equal to zero. It is clear that ‖uκ‖ ≤ C‖u‖L2(supp �κ). Now to each degree of

freedom κ, we assign an edge e such that uκ ∈ Ue
h. When Uh is a higher order Nedelec

element space, such a choice is not unique. Φe in the desired edge-base decomposition

is then the sum of all uκ corresponding to e. By the limited overlapping property of
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basis functions, we have that

∑
v∈�h

‖ϕv‖2 ≤ C‖p‖2 and
∑
e∈�h

‖Φe‖2 ≤ C‖u‖2. (5.21)

To end this section, we give the construction of the additive smoother by Hipt-

mair [35]. The multiplicative version can be constructed based on the same space

decomposition. For details of such construction, we refer to [19, 67].

In analogue to (5.19) and (5.20), we can define Qe
j and Ae

j onto Ue
h. Similarly,

we can define Qv
j and Av

j into ∇Sv
h. Then, the additive smoother Ra

j is given by

Ra
j =

∑
e∈�h

(Ae
j)

−1Qe
j +

∑
v∈�h

(Av
j )

−1Qv
j , for all 1 ≤ j ≤ J. (5.22)

The evaluation of Ra
j is local and only depends on the (·, ·)∗-innerproduct data.

Theorem V.4. Let Ra
j be as in (5.22). Then Ra

j , j = 1, . . . , J, satisfy Condition V.1.

A properly scaled smoother γRa
j will satisfy Conditions V.1 and V.2.

Proof. Clearly Ra
j are symmetric with respect to (·, ·)∗. It is well known that (see e.g.

[21]) for any u ∈ Uj,(
(Ra

j )
−1u,u

)
∗

= inf
{�e,ϕv}

∑
e∈�h

A(ze, ze) +
∑
v∈�h

A(∇ϕv,∇ϕv), (5.23)

where the inf is taken over all ze ∈ Ue
j and ϕv ∈ Sv

j such that u =
∑

e ze +
∑

v ∇ϕv.

Let u = zj + ∇ϕj be the discrete Helmholtz decomposition of u. Decompose

zj =
∑

e

ze
j and ϕj =

∑
v

ϕv
j ,
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as we specified in (5.21). Then, we have

(
(Ra

j )
−1u,u

)
∗
≤
∑

e

A(ze
j, z

e
j) +

∑
v

‖∇ϕv
j‖2

≤
∑

e

(1 + Ch−2
j )‖ze

j‖2 + Ch−2
j

∑
v

‖ϕv
j‖2

≤ Ch−2
j

(‖zj‖2 + ‖ϕj‖2
)

= Ch−2
j ‖u‖2

∗.

In the last inequality we used (5.21). This shows that Ra
j satisfies Condition V.1.

We now show the second part. For any decomposition of u to patch functions

u =
∑

e ze +
∑

v ∇ϕv where ze ∈ Ue
j and ϕv ∈ Sv

j , by the limited overlapping of the

support of patch functions, we have

A(u,u) ≤ C0

∑
e

A(ze, ze) + C
∑

v

A(∇ϕv,∇ϕv),

and thus, using (5.23),

A(u,u) ≤ C0

(
(Ra

j )
−1u,u

)
∗
.

Taking γ such that ω2 ≡ C0/γ ∈ (0, 2), we complete the proof.

C. Analysis of multigrid methods

In this section, we will give the proof of Conditions V.3 and V.4, which are key parts

of the multilevel analysis. The equivalence of the norms ‖ · ‖∗ and ‖ · ‖∗,h on Uh plays

an important role in this section.

It is required in [35] that the solenoidal component of Helmholtz decomposition

of any function u in H0(curl; Ω) be H1-regular, which fails when the domain Ω

is not convex. For an eddy-current problem on the non-convex domain, Hiptmair

[36] analyzed multilevel methods using approximate Helmholtz-decompositions of the
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function space H(curl; Ω) into an H1-regular subspace and gradients. The approach

used here is to decompose the solenoidal component further as in Lemma IV.2.

The following lemma was essentially shown in [35] with w being the solenoidal

component of the Helmholtz decomposition. However, not like the solenoidal compo-

nent only satisfying w × n = 0 on ∂Ω, the regular component of the decomposition

in Lemma IV.2 is in H1
0(Ω). This allows us to use the L2-projection QS

h onto (S1
h)3

instead of (S
1

h)
3, and thus simplifies the construction for high order Nedelec elements.

For the lowest order case, we still use Hiptmair’s construction in [35].

Lemma V.4. Let w ∈ H1
0(Ω) be such that curlw ∈ Vh. Then, there are wj ∈ Uj

such that Πhw =
∑J

j=1 wj and

J∑
j=1

h−2
j ‖wj‖2 ≤ C|w|21. (5.24)

Proof. If k, the order of the Nedelec element, is greater than 1, we construct the

multilevel decomposition as follows. Let QS
h be the L2-projection onto (S1

h)
3, the

space of vector-valued piecewise-linear Lagrange finite elements. It is well known (see

e.g. [54, 67, 70]) that we have wj ∈ (S1
h)

3 ⊂ Uh such that QS
hw =

∑J
j=1 wj and

J∑
j=1

h−2
j ‖wj‖2 ≤ C|QS

hw|21 ≤ C|w|21.

Note that Πhw − QS
hw belongs to Uh and satisfies

‖Πhw − QS
hw‖ ≤ C‖Πhw − w‖ + ‖QS

hw − w‖ ≤ Ch|w|1.

Setting wj to be wj + Πhw − QS
hw, we get the desired decomposition satisfying

(5.24).

If k is equal to 1, the construction is done in Section 5 of [35]. In this case,

Lemma 5.2 of [35] is critical.
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Theorem V.5. For any u ∈ UJ , there is a stable multilevel decomposition u =∑J
j=1 uj and a constant C not depending on J , such that

J∑
j=1

λj‖uj‖2
∗ ≤ C‖u‖2

A.

Proof. Let u = z+∇ϕ be the Helmholtz decomposition of u ∈ Uh. Split z = w+∇ψ
as in Lemma IV.2. Thus, we have

u = w + ∇φ,

where w ∈ H1
0(Ω) and φ = ϕ+ ψ ∈ H1

0 (Ω) satisfy

‖w‖1 + ‖φ‖1 ≤ C‖u‖�(curl;Ω).

Furthermore, similar to the proof of Theorem V.1, we have a discrete decomposition

u = Πhu = Πhw + ∇φh

for some φh ∈ Sh. Note that

‖∇φh‖ ≤ ‖∇φ‖ + ‖w − Πhw‖ ≤ ‖u‖ + Ch|w|1
≤ ‖u‖ + Ch‖curlu‖ ≤ C‖u‖.

We will split Πhw and ∇φh separately. For Πhw, by Lemma V.4, we have

wj ∈ Uj , j = 1, 2, . . . , J such that Πhw =
∑J

j=1 wj and

J∑
j=1

h−2
j ‖wj‖2 ≤ C|w|21. (5.25)

For ∇φh, by well known results (see e.g. [54, 67, 70]), we have φj ∈ Sj, j = 1, 2, . . . , J
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such that φh =
∑J

j=1 φj and

J∑
j=1

h−2
j ‖φj‖2 ≤ C‖φ‖2

1 ≤ C‖u‖2. (5.26)

Finally, letting uj = wj + ∇φj in Uj , we have u =
∑J

j=1 uj and, by (5.25),

(5.26), and Lemma V.1,

J∑
j=1

h−2
j ‖uj‖2

∗ ≤ C

J∑
j=1

h−2
j (‖wj‖2 + ‖φj‖2) ≤ C‖u‖2

A.

The following lemma [20] says that the discontinuous piecewise polynomials have

certain regularity. The proof uses the real method of interpolation of Lions and Peetre

[43].

Lemma V.5. Assume that we are given a quasi-uniform triangulation �h of size h

on Ω and consider any function v of discontinuous piecewise polynomials up to degree

k on this triangulation. Then, v is in Hs(Ω) for any s ∈ [0, 1/2), and satisfies that

‖v‖s ≤ Ch−s‖v‖.

To prove Condition V.4, with λj ≈ h−2
j and hj ≈ γ−j, we only need to show the

following theorem. Our proof is valid for Nedelec spaces of any order.

Theorem V.6. Let 1 ≤ i ≤ j ≤ J . Then, for any s ∈ [0, 1
2
),

A(ui,uj) ≤ C
(hj

hi

)s

h−1
j ‖ui‖A‖uj‖∗, for all ui ∈ Ui,uj ∈ Uj.

Proof. Let ui = z + ∇ϕ and uj = w + ∇ψ be the corresponding Helmholtz decom-
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positions. Then,

A(ui,uj) = A(ui,w) + (ui,∇ψ)

= (ui,w) + (curlui, curlw) + (ui,∇ψ).

We estimate the above three terms separately. For the first term, we have

(ui,w) ≤ ‖ui‖‖w‖. For the second term, we have

(curlui, curlw) ≤ C‖curlui‖s‖curlw‖−s

≤ Ch−s
i ‖curlui‖ · hs−1

j ‖w‖,

where the last inequality follows from ‖curlw‖−1 ≤ C‖w‖, Lemma V.2, and the

convexity. For the third term, we use the same technique to get

(ui,∇ψ) ≤ C‖ui‖s‖∇ψ‖−s ≤ Ch−s
i ‖ui‖ · hs−1

j ‖uj‖∗.

Combining the above yields the desired inequality.
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CHAPTER VI

CONCLUSIONS

Our studies provide a rigorous theoretical analysis of some existing numerical tech-

niques applied to the time dependent Maxwell’s problem. We build up a solid basis

for the study of regularity of solutions to time dependent Maxwell’s interface prob-

lem, give optimal error estimates of the finite element method for the time dependent

Maxwell’s problem, and analyzed some preconditioning techniques for linear system

arising in solving the discretized time dependent Maxwell’s problem.

In Chapter II and III, we reduce the regularity of solutions to Maxwell’s equations

to the regularity of solutions of certain Laplacian interface problems via a lemma in

[24] and thus one can use results that are available on this subject (see e.g. [42, 53]).

This gives us a clear idea where singularities of solutions come from and how much

regularity we can use in the error analysis of numerical approximations to Maxwell’s

equations.

In Chapter III, based on regularity results, we give optimal error estimates for

the semidiscrete finite element scheme for the time dependent Maxwell’s interface

problem using Nedelec and Raviart-Thomas elements. This generalizes the result in

[45]. The error estimates of the Fortin operator πh obtained in Section B may also

be used to study finite element methods to time-harmonic Maxwell’s equations and

eigenvalue problems [9].

In Chapter IV, we extend the convergence analysis in [34, 64] for overlapping

Schwarz methods to the case of a simply-connected computational domain. The

results are uniform with respect to mesh sizes and the time step. An important tool in

our analysis is Lemma IV.2, by which we are able to decompose the weakly solenoidal

component of Helmholtz decomposition into a regular H1-field and a gradient. This
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technique is also crucial in our analysis of multigrid methods.

In Chapter V we present a new convergence analysis of multigrid methods using

the frame work in [19, 21]. This is made possible by introducing new (base) inner-

products in H0(curl; Ω). Then the estimate of condition numbers of both additive

and multiplicative multilevel preconditioners follows from the abstract theory. Our

analysis is valid for rather general computational domains.

There are still a few topics not discussed in this dissertation. The first is that

the model Maxwell’s equations studied here do not cover many interesting physical

problems [11]. For example, the material occupying Ω is assumed to be a dielectric

medium, and homogeneous boundary conditions are set on the whole boundary. Sec-

ondly, although implicit schemes are theoretically better than explicit schemes, we

have not done any numerical experiments to support our theory. The third is the

construction of robust preconditioners with respect to coefficients ε and µ. It is be-

lieved that substructuring methods provide robust preconditioners for second order

elliptic problems with strongly discontinuous coefficients [40, 58] and there is already

pioneering work on Maxwell’s equations [2, 66] for specific situations. Being short of

time, I have to leave these interesting problems to future study.
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[53] S. Nicaise and A. M. Sändig, General inteface problems I/II, Math. Meth. in the

Appl. Sci., 17 (1994), pp. 395–450.

[54] P. Osward, On discrete norm estimates related to multilevel preconditioners in

the finite element method, Proc. Int. Conf. Theory of Functions, Varna, Bulgaria,

1991.

[55] Jr P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-

dependent Maxwell’s equations, Numer. Math., 82 (1999), pp. 193–219.

[56] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential

Equations, Applied Mathematical Sciences Series, no. 44, Springer-Verlag, New

York, 1983.

[57] P. A. Raviart and J. M. Thomas, A mixed finite element method for second order

elliptic problems, Lecture Notes in Mathematics, no. 606, Springer-Verlag, New

York, 1977.

[58] Y.-H. De Roeck and P. Le Tallec, Analysis and test of a local domain decomposi-

tion preconditioner, Fourth International Symposium on Domain Decomposition

Methods for Partial Differential Equations, SIAM, Philadelphia, 1991, Sympo-

sium held at Houston, Texas, 1989.

[59] K. L. Shlager and J. B. Schneider, A survey of the finite-difference time-domain

literature, Computational Electrodynamics: The Finite-Difference Time-Domain

Method, A. Taflove, ed., Artech House, Boston, MA, 1998, pp. 1–62.

[60] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain decomposition, parallel

multilevel methods for elliptic partial differential equations, Cambridge University

Press, Cambridge, 1996.



77

[61] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,

Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1970.

[62] A. Taflove, Review of the formulation and applications of the finite-difference

time-domain method for numerical modeling of electromagnetic wave interactions

with arbitrary structures, Wave Motion, 10 (1988), no. 6, pp. 547–582.

[63] A. Taflove and M. E. Brodwin, Numerical solution of steady-state electromagnetic

scattering problems using the time-dependent Maxwell’s equations, IEEE Trans.

Microwave Theory Tech., MTT-23 (1975), no. 8, pp. 623–630.

[64] A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimen-

sions, Tech. Report 736, Courant Institute of Mathematical Sciences, New York,

1997.

[65] , Overlapping Schwarz methods for Maxwell’s equations in three dimen-

sions, Numer. Math., 86 (2000), pp. 733–752.

[66] A. Toselli, O. B. Widlund, and B. I. Wohlmuth, An iterative substructuring

method for Maxwell’s equations in two dimensions, Tech. Report 768, Courant

Institute of Mathematical Sciences, New York, 1998.

[67] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM

Rev., 34 (1992), pp. 581–613.

[68] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s

equations in isotropic media, IEEE Trans. on Antennas and Propagation, AP-16

(1966), pp. 302–307.

[69] K. Yosida, Functional analysis, 4th ed., Springer-Verlag, Berlin, 1974.



78

[70] X. Zhang, Multilevel Schwarz methods, Numer. Math., 63 (1992), pp. 521–539.



79

APPENDIX

APPLICATION OF SEMIGROUP ON PARTIAL DIFFERENTIAL EQUATIONS

In this appendix, we state some definitions and properties of semigroup of class

(C0) [69] and its application [56] to the following abstract Cauchy problem:

{
d
dt
u(t) + Au(t) = f(t) 0 ≤ t ≤ T,

u(0) = u0,
(1)

where A is a linear operator from the Hilbert space (X, (·, ·)) to itself, f(t) : [0, T ] → X

is an X-valued function, and u0 is the initial condition.

Definition 1. If {Tt; t ≥ 0} ⊆ L(X,X) satisfy the conditions

TtTs = Tt+s, for all t, s ≥ 0, (2)

T0 = I, (3)

lim
t→t0

‖Ttb− Tt0b‖ = 0, for all b ∈ X, (4)

then {Tt; t ≥ 0} is called a semigroup of class (C0).

Lemma 1. Let {Tt; t ≥ 0} be a semigroup of class (C0). There exist constants M > 0

and β <∞ such that

‖Tt‖ ≤Meβt, for all t ≥ 0. (5)

The operator A is said to be the infinitesimal generator of the semigroup {Tt; t ≥
0} of class (C0) if

A b = lim
h→0+

Thb− b

h
. (6)
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Theorem 1 (M. Stone). If the densely defined operator A is skew symmetric and

satisfies D(A) = D(A∗), A is the infinitesimal generator of some semigroup Ut of

class (C0).

Theorem 2. Let X be a Hilbert space, and −A the infinitesimal generator of the

semigroup Tt of class (C0) on B. If f ∈ C1([0, T ], X) and u0 ∈ D(A), the function

u(t) given by

u(t) = Ttu0 +

∫ t

0

Tt−sf(s) ds. (7)

belongs to C1([0, T ], X) and solves the problem (1).

Moreover, for each t ∈ [0, T ], u(t) ∈ D(A) satisfies

‖u(t)‖ + ‖ut(t)‖ ≤Meβt
{
‖u0‖ + ‖Au0‖ + ‖f(0)‖ +

∫ t

0

(‖f(s)‖ + ‖f ′(s)‖) ds
}
, (8)

where M and β are in Lemma 1.

Proof. We will only show (8). Let uH(t) = Ttu0 and uI(t) =
∫ t

0
Tt−sf(s) ds. It is easy

to see that

uH(t+ h) − uH(t)

h
= Tt

Thu0 − u0

h
→ −TtAu0, as h→ 0,

and thus

‖uH(t)‖ + ‖uH
t (t)‖ = ‖Ttu0‖ + ‖TtAu0‖ ≤ Meβt(‖u0‖ + ‖Au0‖). (9)

For uI(t) we have

uI(t+ h) − uI(t)

h
=

1

h

∫ t+h

0

Tt+h−sf(s) ds− 1

h

∫ t

0

Tt−sf(s) ds

=
1

h

∫ t

−h

Tt−sf(s+ h) ds− 1

h

∫ t

0

Tt−sf(s) ds

=

∫ t

0

Tt−s
f(s+ h) − f(s)

h
ds+

1

h

∫ t+h

t

Tsf(t+ h− s) ds.
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Note that

‖(f(s+ h) − f(s))/h‖ = ‖h−1

∫ s+h

s

f ′(τ)dτ‖ ≤ max
0≤τ≤T

‖f ′(τ)‖.

By Lebesgue control theorem, we have that

‖
∫ t

0

Tt−s
f(s+ h) − f(s)

h
ds−

∫ t

0

Tt−sf
′(s) ds‖

≤
∫ t

0

‖Tt−s‖ ‖f(s+ h) − f(s)

h
− f ′(s)‖ ds

≤M

∫ t

0

eβ(t−s)‖f(s+ h) − f(s)

h
− f ′(s)‖ ds

→ 0, as h→ 0,

where we have used Lemma 1. Similarly, we can show that

1

h

∫ t+h

t

Tsf(t+ h− s) ds→ Ttf(0), as h→ 0.

Therefore, uI
t (t) =

∫ t

0
Tt−sf

′(s) ds+ Ttf(0) and thus

‖uI(t)‖ + ‖uI
t (t)‖

= ‖
∫ t

0

Tt−sf(s) ds‖ + ‖
∫ t

0

Tt−sf
′(s) ds+ Ttf(0)‖

≤M

∫ t

0

eβ(t−s)(‖f(s)‖ + ‖f ′(s)‖) ds+Meβt‖f(0)‖. (10)

The desired estimate (8) follows from (9), (10) and triangle inequality.

From the proof we can see that the derivative of the solution u is

u′(t) = Tt(−Au0 + f0) +

∫ t

0

Tt−sf
′(s) ds.
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Comparing the above with (7), we know that u′(t) satisfies that

{
d
dt
v(t) + Av(t) = f ′(t) 0 < t ≤ T,

v(0) = −Au0 + f0,
(11)

Repeating the argument m times, we can get the following corollary.

Corollary 1. Under assumptions in Theorem 2, if f ∈ Cm([0, T ], X), and (−A)k−1u0

+
∑k−2

i=0 (−A)if (k−i−2)(0) ∈ D(A) for all k = 1, 2, . . . , m, the solution u(t) given by

(7) belongs to Cm([0, T ], X).
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