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OVERLAPPING SCHWARZ METHODS IN H(curl) ON
POLYHEDRAL DOMAINS

JOSEPH E. PASCIAK AND JUN ZHAO

Abstract. We consider domain decomposition preconditioners for the
linear algebraic equations which result from finite element discretization
of problems involving the bilinear form α(·, ·) + (curl ·, curl ·) defined
on a polyhedral domain Ω. Here (·, ·) denotes the inner product in
(L2(Ω))3 and α is a positive number. We use Nedelec’s curl-conforming
finite elements to discretize the problem. Both additive and multiplica-
tive overlapping Schwarz preconditioners are studied. Our results are
uniform with respect to the mesh size and α under standard assumptions
concerning the overlapping subdomains.

1. Introduction

Let Ω be a bounded simply-connected domain in �
3 with a polyhedral

boundary Γ. We denote H(curl; Ω) to be the set of vector functions in
L2(Ω) ≡ (L2(Ω))3 whose curl is also in L2(Ω). We consider the bilinear
form

A(u,v) ≡ α(u,v) + (curl u, curl v), for all u,v ∈ H(curl; Ω).

When α = 1, this bilinear form is the inner product in H(curl; Ω). Denote
by H0(curl; Ω) the functions u in H(curl; Ω) satisfying the homogeneous
boundary condition u × n = 0 on Γ.

The bilinear form A(·, ·) arises naturally in many problems of practical
importance. For example, it appears when time-dependent Maxwell’s equa-
tions are discretized using an implicit finite difference scheme (cf. [21]).
At each time step, we get the variational problem: Given f ∈ L2(Ω), find
u ∈ H0(curl; Ω) satisfying

(1.1) A(u,v) = (f ,v), for all v ∈ H0(curl; Ω).

In this case α is related to the time step, and thus robust preconditioners
are highly desirable. The problem (1.1) also arises in elasticity and Stokes’
equations with various boundary conditions (cf. [12, 19]).
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Schwarz methods provide efficient and easily parallelized preconditioners
for the discrete system corresponding to (1.1). Considerable research has
been done towards the application of Schwarz methods on these problems.
In [25, 26], Toselli analyzed the convergence of overlapping Schwarz methods
in the case of convex domains. In [18], Hiptmair and Toselli gave an unified
and simplified approach to Schwarz methods for problems in H(curl; Ω)
and H(div;Ω), again on convex domains. Because of the large kernel of
the curl operator, the Helmholtz decomposition of an arbitrary vector field
into irrotational and solenoidal components plays an important role in the
abovementioned work. However, the irrotational component is not in general
H1-regular when Ω is nonconvex and many estimates in [18, 25, 26] fail in
that case.

In this paper, we extend the scope of the above mentioned theoretical re-
sults to a general case. By using the regular Helmholtz-type decomposition
of vector fields in H0(curl; Ω) [4, 23], we provide a stable decomposition
which is critical in the estimate of condition number of the preconditioned
system. Unlike the (discrete) Helmholtz decomposition used in [18, 25, 26],
this regular decomposition is not orthogonal in either L2 or A(·, ·) inner-
products. Our results are independent of α, the coarse mesh size, and the
fine mesh size under standard conditions on the overlapping subdomains.

We also note that a similar technique was used by Hiptmair [17] to ana-
lyze closely-related multilevel preconditioners for an eddy-current problem.
Essentially he used a regular Helmholtz-type decomposition of vector fields
in H(curl; Ω), which follows from Theorem 3.12 in [1]. His results depend
on the time step size α used in the eddy-current simulation.

The outline of the remainder of this paper is as follows. In Section 2, we
analyze the regular decomposition for functions in H0(curl; Ω). Section 3
describes the finite element spaces and defines the discrete problem. The
Schwarz method and results on the conditioning of the preconditioned sys-
tem are given in Section 4. These results depend on a decomposition lemma
which is proved in Section 5. Finally, the results of numerical experiments
illustrating the theory are given in Section 6.

2. Decompositions of H0(curl; Ω)

Throughout this paper, we use boldface type for vector fields, spaces of
vector fields, and operators mapping vector fields to vector fields. For any
domain D ⊆ �

3 , the norm and seminorm in the Sobolev spaces Hs(D) and
Hs(D) are both denoted by ‖ · ‖s,D and | · |s,D, respectively, with the index
s suppressed when s = 0. We also drop the subscript D if D = Ω.

Due to the different behavior of A(·, ·) on solenoidal and irrotational vector
fields, the Helmholtz decomposition is an important tool in the analysis. For
any u ∈ H0(curl; Ω), we have the continuous Helmholtz decomposition

(2.1) u = z + ∇ϕ,
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where z ∈ H0(curl; Ω),div z = 0, and ϕ ∈ H1
0(Ω). Unfortunately, the vector

field z in (2.1) does not in general belong to H1(Ω) when the domain Ω is
not convex. Our analysis is based on a regular decomposition of z. The
following two lemmas provide the construction and estimates.
Lemma 2.1. For any u ∈ H0(curl; Ω), there exists w ∈ H1(Ω) such that

curlw = curlu, and div w = 0 in Ω,

and the following estimates hold:

‖w‖ ≤ ‖u‖, and |w|1 ≤
√

2‖curlu‖.

Proof. The proof follows the argument of Theorem 3.4, chapter I in [13].
The point here is to estimate ‖w‖ and |w|1 separately.

Denote by ũ the extension by zero of u. Then ũ is in H (curl ,�3 ). Let
v = curl ũ. Note that v has compact support.

Let û and v̂ be the Fourier transforms of ũ and v respectively. Since
div v = 0 and v = curl ũ, we have

ξ · v̂ = 0, and v̂ = iξ × û,

where i =
√
−1, and ξ = (ξ1, ξ2, ξ3)T stands for the dual variable of x =

(x1, x2, x3)T .
Define ŵ ≡ (I − 1

|ξ|2 ξξ
T )û where I is the identity matrix. It is not hard

to see that the matrix I − 1
|ξ|2 ξξ

T has the eigenvalue 0 corresponding to
the eigenvector ξ, and the eigenvalue 1 of multiplicity two corresponding
to two linearly independent eigenvectors orthogonal to ξ. This shows that
‖ŵ‖ ≤ ‖û‖ and thus the inverse Fourier transform w of ŵ satisfies

‖w‖0,�3 = ‖ŵ‖0,�3 ≤ ‖û‖0,�3 = ‖ũ‖0,�3 = ‖u‖.
By the construction of ŵ, we also have

ξ · ŵ = ξ · û − 1
|ξ|2 ξ · ξ(ξ

T û) = 0,

and

iξ × ŵ = iξ × û − i

|ξ|2 (ξT û)ξ × ξ = iξ × û.

Thus,
div w = 0 and curlw = curl ũ.

Since v̂ = iξ × û,

ξ × v̂ = iξ × (ξ × û) = i[(ξT û)ξ − |ξ|2û]

= −i|ξ|2(û − 1
|ξ|2 ξξ

T û) = −i|ξ|2ŵ.

It immediately follows that |w|1,�3 ≤
√

2‖v‖0,�3 ≤
√

2‖curlu‖.
The restriction w to Ω is the desired potential. This completes the proof

of the lemma. �
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The following lemma is an improvement of Proposition 5.1 in [10] or
Theorem 3.1 in [4] in the sense that it provides precise estimates (2.2).
The proof mainly follows the argument given in [10]. Note that necessary
modifications have to be done for the case that ∂Ω has multiple components.
Lemma 2.2. For any z ∈ H0(curl; Ω) with div z = 0 in Ω, there exist w ∈
H1

0(Ω) and ψ ∈ H1(Ω) with ψ being constant on each connected component
of ∂Ω such that,

z = w + ∇ψ,
and the following estimates hold:

(2.2) ‖w‖ + ‖ψ‖1 ≤ C‖z‖ and ‖w‖1 ≤ C‖curl z‖.

Proof. Let Γi, 1 ≤ i ≤ I, be the internal connected components of ∂Ω, and
Γ0 the boundary of the only unbounded connected component of �3\Ω.

Define qi to be the unique solution in H1(Ω) of the problem [1]{ −� qi = 0 in Ω,
qi

∣∣
Γ0

= 0, qi
∣∣
Γk

= Cik, 1 ≤ k ≤ I,

where Cik are constants on Γk. These constants are uniquely determined by
the following conditions

〈∂qi
∂n

, 1〉Γ0 = −1, 〈∂qi
∂n

, 1〉Γk
= δik, 1 ≤ k ≤ I.

For z given above, we define
◦
z by

◦
z = z −

I∑
i=1

〈z · n, 1〉Γi∇qi.

Then
◦
z ∈ H0(curl; Ω) satisfies that

curl
◦
z = curl z, div

◦
z = 0,

〈◦z · n, 1〉Γk
= 〈z · n, 1〉Γk

−
I∑

i=1

〈z · n, 1〉Γi 〈
∂qi
∂n

, 1〉Γk

= 0, 1 ≤ k ≤ I,

and

‖◦
z‖ ≤ ‖z‖ +

I∑
i=1

|〈z · n, 1〉Γi | · ‖∇qi‖

≤ ‖z‖ + C‖z‖�(div;Ω) ≤ C‖z‖.
It follows from Corollary 3.19 of [1] that

(2.3) ‖◦
z‖ ≤ C‖curl

◦
z‖.

Denote by z̃ the extension by zero of
◦
z to an open ball B(0; r) which

contains Ω. Let Ωc ≡ B(0; r)\Ω.
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By Lemma 2.1, there is a w̃ ∈ H1(B(0; r)) such that

curl w̃ = curl z̃ and div w̃ = 0.

Moreover, ‖w̃‖0,B(0;r) ≤ ‖◦
z‖ and ‖w̃‖1,B(0;r) ≤

√
2‖◦

z‖�(curl;Ω) ≤ C‖curl
◦
z‖.

In the last inequality, we used 2.3.
Since curl (w̃−z̃) = 0, there is a ϕ̃ ∈ H1(B(0; r))/� such that w̃−z̃ = ∇ϕ̃

and ‖ϕ̃‖1,B(0;r) ≤ C‖w̃−z̃‖0,B(0;r) (cf. Theorem 2.9, Chapter I in [13]). Note
that in Ωc, ∇ϕ̃ = w̃ ∈ H1(Ωc) since z̃ = 0, and thus ϕ̃ ∈ H2(Ωc). Using
Theorem 5 in [15, 24], we can extend this ϕ̃ in H2(Ωc) to ϕ defined on
B(0; r) satisfying

(2.4) ‖ϕ‖1,B(0;r) ≤ C‖ϕ̃‖1,Ωc ≤ C‖w̃ − z̃‖0,B(0;r),

and

(2.5) ‖ϕ‖2,B(0;r) ≤ C‖ϕ̃‖2,Ωc = C(‖w̃‖1,Ωc + ‖z̃‖).
Now, we have

z̃ = w̃ −∇ϕ̃
= (w̃ −∇ϕ) + ∇(ϕ− ϕ̃).

Note that w̃ −∇ϕ is in H1(B(0; r)) and its trace to ∂Ω from Ωc vanishes.
Thus, w̃ −∇ϕ is in H1

0(Ω) and satisfies

‖w̃ −∇ϕ‖0,B(0;r) ≤ C‖w̃‖0,B(0;r) + C‖w̃ − z̃‖0,B(0;r) ≤ C‖◦
z‖ ≤ C‖z‖

and

‖w̃ −∇ϕ‖1,B(0;r) ≤ C(‖w̃‖1,B(0;r) + ‖z̃‖) ≤ C‖curl
◦
z‖ = C‖curlz‖.

We complete the proof by setting w to be the restriction to Ω of w̃ −∇ϕ,
and ψ the sum of

∑I
i=1〈z · n, 1〉Γiqi and the restriction to Ω of ϕ̃− ϕ. �

3. The discrete problem

Let Th be a simplicial mesh of Ω that is shape regular and quasi-uniform
(cf. [9]) and let h denote the maximal diameter of the tetrahedra in Th.
As usual, we assume that the tetrahedra are essentially disjoint, i.e., the
intersection of two being either an entire face, edge, or vertex.

Fix an integer k ≥ 0 and let Pk(τ) be the space of polynomials of degree
at most k restricted to a tetrahedron τ . Sh stands for the subspace of
H1(Ω) consisting of piecewise polynomials with respect to the above mesh
of degree at most k+1. We denote by Uh the Nedelec finite element subspace
of H(curl; Ω) of index k associated with Th. When x ∈ �

3 is restricted to a
tetrahedron τ , the elements of Uh are functions of the form p(x)+r(x) with
p ∈ Pk(τ)3 and r ∈ Pk+1(τ)3 such that r · x = 0. Let Vh be the Raviart-
Thomas finite element subspace of degree k of H(div;Ω). Restrictions of
functions in Vh to x in a tetrahedra τ are of the form p(x) + q(x)x where
p ∈ P3

k and q ∈ Pk. For the detailed constructions and the connection
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between these spaces, we refer to [5, 16, 19, 20]. Our results also hold for
the analogous finite element spaces based on cubes.

In what follows, a subspace without overline stands for the corresponding
finite element subspace of functions with homogeneous boundary conditions.
For example, Uh = H0(curl; Ω)

⋂
Uh.

All of the above spaces have associated degrees of freedom and there are
natural interpolation operators corresponding to these degrees of freedom
[19, 20]. The interpolation operator Πh for the subspace Uh is well defined
for H1(Ω) vector fields whose curl is in Lp(Ω), for any fixed p > 2. This
follows from Lemma 4.7 in [1] and the Sobolev embedding theorem. In
particular, Πh is defined for H1(Ω) vector fields whose curl belongs to Vh.
Moreover, the following estimate holds (see, [2])

(3.1) ‖u − Πhu‖ ≤ Ch|u|1
for all u ∈ H1(Ω) such that curlu is in Vh. In (3.1) and the remainder of the
paper, C, with or without subscript, denotes a generic constant independent
of h,H, and α. The value of C may differ at different occurrences.

In our analysis, we will use the L2-projection Q�h : L2(Ω) → Uh, onto the
finite element space. Hiptmair and Toselli suggested in [18, 26] the following
stability and error estimates

(3.2) ‖u − Q�h u‖ + h‖curlQ�h u‖ ≤ Ch|u|1, for all u ∈ H1(Ω)

and claimed that they can be proven using the same techniques as in the
case of continuous finite element spaces [8]. However, since many interpola-
tion estimates in [8] can not be transferred from H1

0(Ω) and standard nodal
elements to H0(curl; Ω) and Nedelec’s elements, the proof turns out to be
more technical. In a private communication Hiptmair suggested a proof of
(3.2) using the operator �h introduced in [3]. The projector �h was de-
fined locally and replaced integration on the edges with integration on the
faces. This produces an interpolation which is well defined on vector fields
in H1. By applying a Bramble-Hilbert argument, Lemma 5 of [3] shows that
‖u − �hu‖ ≤ Ch|u|1, and ‖curl�hu‖ ≤ C|u|1, for all u ∈ H1(Ω). The
first estimate of (3.2) then follows from the best approximation property of
Q�h , and the second follows from

‖curlQ�h u‖ ≤ Ch−1‖(Q�h −�h)u‖ + C‖curl�hu‖ ≤ C|u|1.
The finite element approximation to (1.1) is the function uh ∈ Uh satis-

fying

(3.3) A(uh,w) = (f ,w), for all w ∈ Uh.

The above equation can be written as

(3.4) A�h uh = fh ≡ Q�h f ,

where A�h : Uh → Uh is defined by

(A�h u,w) = A(u,w), for all w ∈ Uh.
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4. Overlapping Schwarz preconditioners

In this section, we give two overlapping Schwarz preconditioners for the
discrete system corresponding to (3.4). The overlapping Schwarz algorithms
as described in [11, 18, 25] are based on two levels of partitioning of Ω.
The first is a coarse partitioning into (non-overlapping) tetrahedra {Ωi :
i = 1, . . . , N0}. This forms a mesh TH of mesh size H. Next, each Ωi is
further partitioned into finer tetrahedra {τ j

i : j = 1, 2, . . . , Ni}. The fine
partitioning gives the fine mesh Th of mesh size h. Both TH and Th are
assumed to be regular.

Along with this partitioning, we assume that we are given another se-
quence of (overlapping) subdomains Ω′

j j = 1, . . . , N in such a way that ∂Ω′
j

aligns with the h-level mesh. Then each subdomain Ω′
j is also partitioned

by tetrahedra in Th and the space

Uj
h = Uh ∩ H0(curl ; Ω′

j), j = 1, . . . , N,

is again a Nedelec finite element space. In the above definition, we con-
sider H0(curl ; Ω′

j) as a subset of H0(curl; Ω) by identifying functions in
H0(curl ; Ω′

j) with their extension by zero. It is convenient to set Ω′
0 = Ω

and U0
h = UH . Similarly, we define the Lagrange finite element space

Sj
h, j = 0, 1, . . . , N by replacing H0(curl ; Ω′

j) with H1
0 (Ω′

j).
We assume throughout this paper that subdomains {Ω′

j} are such that
there is a partition of unity {θj}N

j=1 where the partition functions are piece-
wise linear with respect to the fine mesh and satisfy

(4.1) ‖∇θj‖∞ ≤ CH−1, for j = 1, . . . , N.

We finally assume that the subdomains {Ω′
j} satisfy a limited overlap prop-

erty, i.e., each point of Ω is contained in at most n0 subdomains where n0

is independent of H and h.
One can, for example, define the overlapping subdomains to be regions

associated with vertices of the coarse mesh, i.e., Ω′
j is the interior of the

union of the closures of the coarse grid tetrahedra which share the j’th
vertex. In this case, the partition of unity functions can be taken to be the
nodal finite element basis functions associated with the conforming piecewise
linear coarse grid approximation to H1(Ω). Alternatively, one can use the
classical approach of defining the overlapping subdomains by extending the
original coarse grid subdomains {Ωj} so that

(4.2) dist(∂Ω′
j ∩ Ω, ∂Ωj ∩ Ω) ≥ δH for all j = 1, . . . , N.

Here δ is some constant independent of h and H.
A key property to establish the effectiveness of the overlapping Schwarz

preconditioners is the following stability result. Its proof will be given in
the next section.
Lemma 4.1. Suppose that the overlapping subdomains and partition of
unity satisfy the conditions above. Then there is a constant Cstab such that
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for all u ∈ Uh, we have a decomposition u =
∑N

j=0 uj with uj ∈ Uj
h satis-

fying
N∑

j=0

A(uj ,uj) ≤ CstabA(u,u).

The overlapping Schwarz methods uses the solvers on the overlapping
subregions {Ω′

j}. For j = 0, 1, . . . , N , we define Aj : Uj
h → Uj

h by

(Aju,w) = A(v,w), for all w ∈ Uj
h,

and set Qj : Uh → Uj
h to be the L2-projection.

The additive Schwarz preconditioner Ba : Uh → Uh is defined by

(4.3) Ba =
N∑

j=0

A−1
j Qj.

The symmetric multiplicative Schwarz preconditioner Bm : Uh → Uh is
defined as follows. For a given g ∈ Uh, we let Bmg = uN ∈ Uh, where the
uN is defined by the iteration u−N−1 = 0, and

(4.4) uj = uj−1 − A−1
|j| Q|j| (g − Ahuj−1), j = −N,−N + 1, . . . , N.

In practice, one can replace A−1
j by preconditioner for Aj in either algo-

rithm and still get robust preconditioners for the operator A�h . The results
for the termwise preconditioned algorithm easily follow [6] from those for
(4.3) and (4.4) which we give below.

The following theorem provides the upper bound for the conditioner num-
ber of the additive and multiplicative Schwarz preconditioners. Its proof is
well known (cf. [6, 22]) and follows from the assumptions on the overlapping
subdomains and Lemma 4.1.

Theorem 4.1. Under the assumption of Lemma 4.1, for any u ∈ Uh, we
have

C−1
stab A(u,u) ≤ A(Ba A�h u,u) ≤ n0A(u,u),

and
(Cstab n

2
0)

−1 A(u,u) ≤ A(Bm A�h u,u) ≤ A(u,u).

Remark 4.1. The above theorem guarantees that the condition number for
the preconditioned system remains bounded independently of h and H. This
means that, for example, a preconditioned conjugate gradient iteration us-
ing these preconditioners is guaranteed to converge at a rate which can be
bounded independently of h and H.
Remark 4.2. The theorem suggests that the additive method has a smaller
condition number than the multiplicative. In practice this is not the case.
In numerical experiments, it is observed that the multiplicative method has
a smaller condition number.
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5. Proof of Lemma 4.1

In this section, we will give a proof of Lemma 4.1. To do this, we pick
an arbitrary u ∈ Uh and let u = z + ∇ϕ be its continuous Helmholtz
decomposition. Splitting z = w + ∇ψ as in Lemma 2.2 gives

(5.1) u = w + ∇p,

where w ∈ H1
0(Ω) and p = ϕ + ψ ∈ H1(Ω) with p being constant on each

connected component of ∂Ω satisfy

(5.2) ‖w‖ + ‖p‖1 ≤ C‖u‖, and |w|1 ≤ C‖curlu‖.

Since w ∈ H1(Ω) and curlw ∈ Vh, we can apply Πh to both sides of
(5.1) to get

(5.3) u = Πhw + ∇ph,

where ph ∈ Sh is constant on each connected component of ∂Ω (see the
proof of Lemma 5.10, Chapter III of [13]). We will decompose Πhw and ph

separately.
For the decomposition of ph, we define the piecewise linear function p0 in

Sh by

(5.4) p0 =
{ QH ph, at nodes of TH in Ω,
ph, at nodes on ∂Ω,

where QH is the L2-projection onto SH . Using partition of unity {θj}N
j=1

introduced in the previous section, we define the decomposition of ph by

(5.5) ph = p0 +
N∑

j=1

Ih(θj(ph − p0)) ≡ p0 +
N∑

j=1

pj,

where Ih is the interpolation operator on Sh. Note that ∇pj, j = 0, . . . , N ,
belongs to Uj because p0 is constant on each component of ∂Ω and ph − p0

vanishes on ∂Ω.
To show the stability of the decomposition (5.5), we first note that

‖p0 − ph‖ ≤ CH‖∇ph‖, and ‖∇(p0 − ph)‖ ≤ C‖∇ph‖.

For details, we refer to Section 4 in [7]. Therefore, using (4.1) and the finite
overlapping assumption, we have that

‖∇p0‖2 +
N∑

j=1

‖∇pj‖2 ≤ C‖∇ph‖2 + C

N∑
j=1

‖∇θj(ph − p0)‖2

≤ C‖∇ph‖2 + C

N∑
j=1

{
H−2‖ph − p0‖2

�
2(Ω′

j)
+ ‖∇(ph − p0)‖2

�
2(Ω′

j)

}

≤ C‖∇ph‖2,
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and thus

(5.6)
N∑

j=0

A(∇pj,∇pj) = α
N∑

j=0

‖∇pj‖2 ≤ CA(∇ph,∇ph) ≤ CA(u,u).

To deal with Πhw in (5.3), we first eliminate the low frequency compo-
nents by subtracting Q�Hw from w, and get

(5.7) Πhw = (Πhw −Q�Hw) + Q�Hw ≡ wh + w0,

By (3.1), (3.2) and (5.2), w0 and wh satisfy,

(5.8) A(w0,w0) ≤ α‖w‖2 + C|w|21 ≤ CA(u,u),

(5.9) ‖wh‖ ≤ ‖Πhw − w‖ + ‖w − Q�Hw‖ ≤ CH|w|1 ≤ CH‖curlu‖.

Alternatively, we have the bound

‖wh‖ ≤ ‖Πhw − w‖ + ‖w − Q�Hw‖
≤ C(h‖curl u‖ + ‖w‖) ≤ C‖u‖.(5.10)

Finally, by (5.3) and (3.2),

‖curlwh‖ ≤ ‖curlΠhw‖ + ‖curlQ�Hw‖
≤ ‖curlu‖ + C|w|1 ≤ C‖curlu‖.(5.11)

The remainder wh is decomposed in a classical way. We use the partition
of unity {θj}N

j=1 introduced earlier and define wj = Πh(θjw
h), for j =

1, . . . , N .
Using the fact that the partition functions {θj} are piecewise linear with

respect to the fine grid mesh, it can be shown (cf. Lemma 4.5 in [25]) that

‖Πh(θjw
h)‖ ≤ C‖θjw

h‖ and

‖curlΠh(θjw
h) ≤ C‖curl θjw

h‖.

The argument given there uses the property that θjw
h is a piecewise poly-

nomial of fixed order.
Thus, we have

‖wj‖ ≤ C‖θjw
h‖ ≤ C‖wh‖

�
2(Ω′

j)
,

and

‖curl wj‖ ≤ C‖curl θjw
h‖

≤ C(‖∇θj‖L∞‖wh‖
�

2(Ω′
j)

+ ‖curlwh‖
�

2(Ω′
j)

)

≤ C(H−1‖wh‖
�

2(Ω′
j)

+ ‖curl wh‖
�

2(Ω′
j)

).
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The above inequalities and the limited overlap property of the subdomains
imply that

(5.12)

N∑
j=1

A(wj,wj) ≤ C((α+H−2)‖wh‖2 + ‖curlwh‖2)

≤ C(α‖u‖2 + ‖curl u‖2) = CA(u,u).

The last inequality above followed from applying (5.9) and (5.10).
Finally, setting uj = wj + ∇pj gives the desired decomposition of u.

Indeed, combining (5.6), (5.8), and (5.12) shows that

N∑
j=0

A(uj ,uj) ≤ 2A(w0,w0) + 2
N∑

j=1

A(wj ,wj) + 2
N∑

j=0

A(∇pj ,∇pj)

≤ CA(u,u).

This completes the proof of Lemma 4.1.

6. Numerical results

In this section we report the results of numerical experiments confirming
and illustrating the theory of previous sections. All of the computations to
be described use lowest order Nedelec elements on cubes.

The domain Ω is defined to be the three-dimensional domain (0, 1)3/[0, 1/2]3 .
On this domain, the solenoidal component of the Helmholtz decomposition
is generally not in H1(Ω).

We take the coarse grid to be the 7 cubes of size [0, 1/2]3 , whose union is
the closure of Ω. Ω is meshed uniformly by cubic elements of size h. Over-
lapping subdomains are constructed by adjoining just enough fine elements
to the coarse elements so that (4.2) holds.

Equation (1.1) with various α was solved using the preconditioned Conju-
gate Gradient method. For the additive and multiplicative preconditioners,
the Conjugate Gradient method without preconditioning was used to solve
the discrete problems on the coarse mesh and on the subdomains. The con-
dition numbers of the preconditioned system as a function of h were obtained
by using a Lanczos technique [14].

In table Table 6.1 and Table 6.2, we report the condition numbers of the
preconditioned system as a function of h for various values of α using the
additive Schwarz preconditioner (4.3) with δ = 0.1 and δ = 0.2, respectively.
The results are uniform with respect to α and h. Note that larger values of
δ yield better preconditioners.

The condition numbers of the preconditioned system using multiplicative
preconditioner (4.4) with δ = 0.1 are given in Table 6.3. The multiplicative
preconditioner performs better than the additive preconditioner in terms of
the condition numbers. Indeed the condition numbers for large α end up
being very close to one.
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α 10−4 10−3 10−2 10−1 1 10 102 103 104

h = 1/4 7.18 7.18 7.18 7.18 7.18 7.20 7.24 7.74 7.95
h = 1/8 7.78 7.78 7.77 7.77 7.71 7.20 7.01 7.05 7.07
h = 1/16 13.17 13.17 13.17 13.16 13.11 12.38 7.00 7.00 7.00
h = 1/32 13.24 13.24 13.24 13.23 13.18 12.43 7.01 7.00 7.00
h = 1/64 13.26 13.26 13.26 13.24 13.19 12.44 7.01 7.00 7.00

Table 6.1. Condition numbers of BaA�h with δ = 0.1.

α 10−4 10−3 10−2 10−1 1 10 102 103 104

h = 1/4 7.18 7.18 7.18 7.18 7.18 7.20 7.24 7.74 7.95
h = 1/8 7.78 7.78 7.77 7.77 7.71 7.20 7.01 7.05 7.07
h = 1/16 7.95 7.95 7.95 7.95 7.90 7.27 6.97 7.00 7.00
h = 1/32 7.91 7.91 7.91 7.91 7.86 7.26 6.98 7.00 7.00
h = 1/64 8.80 8.80 8.80 8.80 8.76 7.94 6.98 7.00 7.00

Table 6.2. Condition numbers of BaA�h with δ = 0.2.

α 10−4 10−3 10−2 10−1 1 10 102 103 104

h = 1/4 1.02 1.02 1.02 1.02 1.02 1.004 1.00025 1.005 1.008
h = 1/8 1.08 1.08 1.08 1.08 1.07 1.05 1.001 1.0007 1.005
h = 1/16 1.34 1.34 1.34 1.34 1.33 1.25 1.06 1.0002 1.002
h = 1/32 1.35 1.35 1.35 1.35 1.34 1.26 1.06 1.0002 1.
h = 1/64 1.35 1.35 1.35 1.35 1.34 1.26 1.09 1.00032 1.

Table 6.3. Condition numbers of BmA�h with δ = 0.1.
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