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ABSTRACT

On Iteration and Approximation
Methods for Anisotropic Problems. (December 2001)
Chisup Kim, B.S., Seoul National University, Korea

Chair of Advisory Committee: Dr. Joseph E. Pasciak

We study numerical methods and iterative solution techniques for a model
second-order anisotropic elliptic partial differential equation on a unit square. In
particular, we consider a mixed finite element approximation for this problem on uni-
form rectangular and triangular meshes and derive error estimates explicitly giving
the behavior of the anisotropy parameter. To efficiently solve the resulting linear sys-
tem from the mixed finite element problem, a two-level preconditioner is construeted
and analyzed. Here, the fine and coarse level problems correspond to the mixed finite
element and the standard finite element problems, respectively, on the same mesh.
Utilizing the multigrid /multilevel preconditioners for the finite element problem, a
multilevel preconditioner for the mixed system is obtained. To relate the mixed finite
element problem with the standard finite element problem, we take the Schur comple-
ment of the mixed system in the rectangular case and an equivalent nonconforming
problem in the triangular case. As smoothers in the multilevel preconditioners, the
line Jacobi and line Gauss-Seidel smoothers are used. {t is shown that this approach
gives a preconditioner for the mixed systern which is uniform both in the anisotropy
parameter and the mesh size. Uniform multigrid preconditioners for the standard
finite element method for the anisotropic problem are also discussed and numerical

results for the two-level preconditioning are presented.
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CHAPTER I

INTRODUCTION

A number of physical phenomena and quantities can be described or modeled by par-
tial differential equations and their solutions. For instance, elliptic boundary value
problems arise in a large class of physical phenomena such as diffusive or steady state
phenomena. Rigorous mathematical analysis gives the existence and uniqueness of
the solution to a variety of such partial differential equations (see, e.g., [41], [42], and
[56]). In many circumstances, however, such results assume a high degree of smooth-
ness or based on arguments that are not constructive. Some solution methods such
as the series methods often require the coefficients of the equation or the domain to
satisfy smoothness conditions that are not satisfied in a large number of applications.
Therefore, it is very difficult, if not impossible, to obtain solution functions in closed
form to the partial differential equations in those applications. Fortunately, however,
the numerical or approximate values of such solutions are sufficient for practical pur-
poses. Thus, systematic and mathematically sound ways to obtain the numerical
solutions are desired. Two issues naturally arise, approximation and efficiency. One
would like to obtain a numerical solution of desired accuracy while consuming only
the minimal amount of available computational resources.

In this thesis, we study the numerical solution of a boundary value problem. In
particular, we consider a model second-order elliptic anisotropic partial differential
equation on the unit square with zero Dirichlet boundary condition.

Anisotropic problems form a subclass of singularly perturbed problems. An

operator L = L(g) depending on a parameter ¢ is called singularly perturbed if the

This dissertation follows the style and format of Mathematics of Computation.
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limiting operator L{0) = igl;l) L{¢) is of a different type than L(e) for € > 0 (see, e.g.
(48] or [57]). Our model anisotropic operator will be given by L{g) = & + €02, where
¢ is a small positive constant. Nurnerical methods for convection diffusion problems
with the second order term (82 + &) can be found in, e.g., [57].

Applications of anisotropic problems are found, for example, in the modeling
of porous media flows. These applications include oil reservoir or groundwater flow
(see, e.g., [12], [33], or [38]), and electrical wave propagation in the human heart
{see, e.g., [67] and the references therein). The porous media and porous formations
encountered in nature are highly heterogeneous. That is, their properties such as
hydraulic conductivity and porosity differ greatly in space. A simplified situation of
heterogeneous media could be found in a stratified or layered medium. Our model
anigsotropic problem, which depicts the case where the flow is essentially forced to
a fixed direction of the medium, could be used in the modeling of flow in a layer
(when constant ¢ is used) or several such layers (with piecewise constant & depending
on one of the z- or y-directions). As simplified as the model is, it could serve as a
building block for more complicated models and a benchmark problem for numerical
simulations. The current work is an effort to provide a refined error estimate for
the flow properties, for example the pressure and velocity, and efficient and robust
numerical methods to obtain them.

For the anisotropic problem, the accuracy of the numerical solution and the ef-
ficiency of the solution methods will be addressed. In the study of finite element
methods for elliptic equations, the ratio between the ellipticity constant and the con-
tinuity constant is an important quantity (see, e.g., [29] or [36]). This ratio for the
anisotropic operator L{e), when € approaches 0, can become so large that the stan-
dard methods lose robustness. Therefore, different techniques specifically tailored for

the anisotropy are called for. We will study the mixed finite element approxima-



tion (see, e.g., 6], [7], [8], [30], [31], [40}, [43], or [55]) for the anisotropic problem
and derive some error estimates (Chapter IIT). To efficiently solve the linear system
arising from the mixed fnite element problem, we will apply multigrid/multilevel
preconditioning techniques (see, e.g., [22], [32], [48], or [68]) and obtain uniform pre-
conditioners (Chapter IV). In the analysis, special attention will be paid to how the
constants in various estimates in the finite element and multigrid analysis depend on
the anisotropy parameter . The methods will be robust if the constants are uniform
with respect to, or independent of, . For a survey of robust multigrid methods for
some parameter-dependent problems, see [26].

The mixed finite element methods for second-order elliptic partial differential
equations in the uniformly elliptic case have been extensively studied (see, e.g., {39],
[40], and [55]). An advantage of the mixed methods is that an approximation to
the derivatives of the solution can be obtained directly rather than by differentiation
of the approximated solution. In some applications, the derivatives of the solution
have important physical meaning. For example, in porous media flow modeling and
groundwater applications, the gradient of the solution of the differential equation
represents the velocity field of the flow (see, e.g., [33] and {35]). When the Raviart-
Thomas elements [55] are used in these applications, the normal component of the
velocity or the flux is computed. This property can be used to construct locally
conservative schemes for parabolic or time-dependent problems.

In our mixed finite element approximation, we will use the lowest order Raviart-
Thomas elements. Some error estimates explicitly giving the behavior of the param-
eter ¢ will be given in Chapter IIl by applying the results of Falk and Osborn [40].
There is another, probably more widely applied, abstract framework for the study
of the mixed finite element methods developed independently by Babuska [6], [7], [8]

and Brezzi [30]. The purpose of the Falk and Osborn approach is to obtain error



estimates without the Babugka-Brezzi condition also known as the discrete inf-sup
condition. In contrast to the Babuika-Brezzi analysis, the Falk and Osborn approach
[40] gives separate error estimates for the two variables in the mixed method, the
original unknown for the partial differential equation and the Lagrange multiplier.
It can be shown for some applications such as certain biharmonic problems that the
discrete inf-sup condition is satisfied with mesh dependent norms and the results from
Babugka-Brezzi and Falk-Osborn approaches are the same [9].

Multigrid methods provide arguably the most efficient preconditioners for elliptic
problems. In these methods, attempts are made to make the iterative error smooth
on the finer grid by using an operator called a smoother and to reduce the error
on the coarser grid by solving a suitable problem on the coarser grid. The coarser
grid problem contains fewer unknowns and hence is easier to solve than the finer
problem. To design and analyze multigrid algorithms, several things need to be
considered. They are the regularity of the solution of the partial differential equation,
the approximation property of the finite element space, and the effectiveness of the
smoother. It is also possible to achieve this goal without the regularity assumptions
[18]. In the so called geometric multigrid, the grids and the corresponding finite
element spaces are given a priori. There is another approach called algebraic multigrid
which only assumes that the finest space is given and constructs coarser spaces by
some coarsening algorithms (see, e.g., [32], {49], [58], [65], and [68]). Multigrid method
can also be viewed as a subspace correction method (see, [17], [18], or [74]).

Multigrid methods for mixed finite element problems have been studied for sec-
ond order selfadjoint uniformly elliptic equations (see, e.g., {2}, [19], [28], [34], 35],
(60], 69], [70], and [72]). In [19], the Schur complement of the mixed finite element
equations is solved in connection with the standard finite element problem, whereas

in [28], [34], and [35], the multigrid technique is applied to an equivalent nonconform-



ing finite element problem. In [60], the multigrid technique is directly applied to the
Schur complement problem in the framework of non-inherited forms {19]. Multigrid
for saddle point problems in the context of mortar finite element method (see, e.g.,
[10] and {11}) is developed in [72].

We will use uniform rectangular and triangular meshes in the mixed finite element
method that align with the anisotropy. It is known that for the grids that do not
align with the anisotropy, the multigrid preconditioning technique applied to the finite
element approximation of anisotropic problems loses robustness [62]. Li and Wheeler
[51] use anisotropically refined conforming rectangular mesh and obtain different error
estimate in the context of anisotropic reaction-diffusion equations. In [51], refined but
still conforming meshes are used in the regions with boundary layers, which are typical
in the solutions to anisotropic problems.

Qur multilevel preconditioner will be based on the abstract two-level result by
Bramble, Pasciak, and Zhang {21]. An advantage of this approach is that it does
not require the approximation or regularity properties of the mixed anisotropic prob-
lem, which is the main cause of the difficulty in applying the multigrid technique to
anisotropic problems. Other two-level results can be found, e.g., in [27] and (731

In our two-level preconditioning, the “coarse” level problem will be the finite
element problem, on the same mesh as the mixed problem, in both the rectangular
and triangular cases. The “fine” level problem will be a symmetric positive definite
problem obtained from the saddle point problem. In the rectangular case, the two-
level approach taken here is identical to that in {19] in that the fine level problem
is obtained from the Schur complement of the mixed problem. The analysis and
implementation involve the use of a mesh dependent form. A similar form in the
uniformly elliptic case was used in [59]. A similar mesh dependent form, however,

cannot be defined in the triangular case due to the diagonal edges in the mesh. Thus,



an algebraically equivalent nonconforming problem (see, e.g. [5], [28], and [34]) is
taken as the fine level problem. We follow the approach of [34] since it does not involve
any bubble functions and is simpler than the results such as [2], [5], and [28]. Multigrid
methods for the mixed finite element problem in terms of such algebraically equivalent
nonconforming problem are found in [28] and [34]. Nonconforming multigrid methods
have been studied in [15] in the full elliptic regularity case and in [25] without full
elliptic regularity.

For the above two-level formulations associated with the uniform rectangular
and triangular meshes, the conditions in [21] will be verified with constants inde-
pendent of . We then obtain a uniform multi-level or two-level preconditioner for
the anisotropic mixed finite element problem by combining the work here with the
existing multigrid preconditioners or solvers for anisotropic finite element equations
(e.g., [23], [48], [54], [64], [62], and [63]). Uniform V-cycle convergence results for the
standard finite element problem are given in [23], [54], [62], and [64] by establishing
suitable approximation properties of the finite element spaces.

Smoothing and coarsening techniques are important in multigrid algorithms. To
reduce the high frequency components of the iterative error, an effective smoother
must be chosen. Then, to deal with the low frequency or the smooth components of
the error, the coarse space must be identified in the right way. In isotropic or uniformly
elliptic problems, full coarsening and point-wise smoothing give good results. For the
anisotropic problems, either full coarsening combined with line smoothing or semi-
coarsening with point-wise coarsening is used (see, e.g., [68]}). In this work, we take
the former approach. We will use line versions of smoothers such as Jacobi and
Gauss-Seidel smoothers.

The rest of this thesis is organized as follows. In the next chapter, we intro-

duce the anisotropic problem and formulate the corresponding mixed problem. Some
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regularity results that will be used later in the error estimates are established. In
Chapter III, the mixed finite element method for the anisotropic problem is consid-
ered in the framework of Falk and Osborn [40] and some error estimates are derived.
Two-level preconditioning is considered in Chapter IV. The conditions in Bram-
ble, Pasciak, and Zhang [21] will be verified in both the rectangular and triangular
""""" cases. In Chapter V, multigrid techniques for the finite element approximation of the
anisotropic problem will be reviewed. Numerical results will be given in Chapter VI.
Finally, a summary of the current work and possible future research areas will be

presented in Chapter VIL




CHAPTER II

MIXED FORMULATION OF THE ANISOTROPIC PROBLEM
In this chapter, we introduce the anisotropic problem and study its mixed formulation.
We establish some regularity results which will be used in the next chapter in the

error analysis of the mixed finite element approximation.

A.  Anisotropic problem

We begin with a review of the definition of some Sobolev spaces. Let E be a domain,
that is a bounded and connected set, in R or R2.

As usual, the space L*(E) denotes the set of square integrable functions on F
with the inner product defined by

(o d)e= | pode.
E

When F is a l-dimensional domain, we will use the notation (-,-)g to denote the
L*(E) inner product. In both cases, the corresponding norm will be denoted by
[Illo, -

For a positive integer m, the space H™(E) consists of functions in L?(E) whose
weak derivatives up to the m-th order are again contained in L*(E). Its norm |||

is defined by

/ ™ \
1ellme = llGe+> 10hs .

i1
where ||,z is the seminorm given by
1/2

/
|@|m, ez = \ M HD‘S@L'H%,E,

|{=m



Here, d = (81, 8,) is an ordered pair of nonnegative integers with {d] = &, + d2 and e

is the differential operator defined by
a\"

(2N (2
Oz Ay

In this work, we will use subscripts to denote the derivatives as in the following

examples:

_ 09 9
thy = e and ¢y = el

In addition, the space H}(E) will denote the subspace of H'(F) consisting of functions

in H'(E) that vanish on the boundary 8E. For vector valued functions v = (v, v2),

the Sobolev norms are defined by

2 )1/2

Vllm,z = (ol e + el form=10,1,2,- -

Let © = (0,1)* be the unit square and 9§ be its boundary. When £ = (1, we
will not specify the domain in the norms: for example, ||-llo = ||-llo,0-
We consider the following model anisotropic elliptic problem of second order:

Given f € L*(Q), find p satisfying

£ = — gt + £ 1 = ] ]‘.rl Q,
L (p Pyl = 2.1)
p=0 on 00,

where 0 < £ < 11is a constant. We are interested in the case where £ is small. Notice
that we may as well take £ > 1 to be large. Extensions to more general boundary

conditions are also possible.
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B. Mixed formulation
We consider the weighted inner product defined by
(v, w)e = (v1,w1) + (€7 g, wn).

The corresponding norm is denoted by |i-]llo.

The subspace H{div; ) of (L*(Q2))? is defined by
H(div; Q) = {v e (L* () | V-v e L}{Q)}
with the norm
ivilla = (Il + 119 - vi§) 2.

The mixed formulation of the anisotropic problem (2.1) is then given as follows:

Given [ € L*Q), find (u,p) € H(div; Q) x L*(8) satisfying

(u,v): +{V-v,p)=0 for all v € H(div;Q),

—
[
fats)

P

(V-u,q) =—(f,q) forallqge L*Q).

For f € L*(), the anisotropic problem (2.1) has a unique solution p € H*(Q) N
H3(Q) (see, e.g., [47]). Now, take

u = (P, £py). (2.3)

Clearly, V- u = f and hence u € H(div; ). Moreover, it is well known that the pair

(u,p) solves the mixed problem (2.2) uniquely (see, e.g., {55]).
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C. Regularity results

To prove a regularity result for the mixed problem (2.2), we need the following lemma.

Recall that our domain § = (0, 1)* is the unit square and let
Fm:{(x,y)EBQiymOOIyml}
and
Iy={(z,y) €62z =00rz=1}.
Lemma IL1 Let w € HY(Q) and vanish on T'y. Then,

lwllo < 2wz llo.

Proof. By the chain rule,
(,wz(:l:} y))»’f == 2“‘;("27 U)w.c(m7 y)

Let ¢ be an arbitrary number in [0, 1]. Then, since w vanishes on 92, the fundamental

theorem of calculus gives, for any fixed y € {0, 1],

H 1
Wty = | 2w yheey)de < | 2w,y lwlz,y) ds.
] 0

Now, integration over y and the Cauchy-Schwarz inequality yield
[t o
w(t,y) dy < 2fjwllofJwzlo.
0

Finally, integrating both sides over ¢ gives

lwlis < 2llwlollwsllo



and the result follows. 0

Remark IL.1 Let w € HY(Q) and vanish on Ty, Then, the same argument as above

gives that

liwllo < 2{lwyllo.
We now have a regularity result for the mixed problem.

Proposition IL1 Let (u,p) € H(div; Q) x L*(Q) be the unique solution of the mized

problem (2.2). There exists a constant C, independent of €, such that

Ipllo + lulllav < ClL o

Proof. By the definition (2.3) of u, we have

il = Hpslid + elleyl5 -+ 1£115- (2.4)

Since p € H}(£), the previous lemma implies that ||pfip is bounded by fjlulfigy- "Thus,
it suffices to bound the first two terms on the right hand side of (2.4).

Now, integration by parts and the zero Dirichlet boundary condition give

(f,p) = ~(pas + Py ) = |Ipell§ + ellpy -
Then, by the Cauchy-Schwarz inequality and Lemma IL1,

lip=ll5 + ellpylia < £l llpllo < 201/ flo llp=llo

1 2
< 2715+ 5 el

and hence

S el + <l 3 < 20713 (25)
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and the proof is complete. |

The continuous inf-sup condition follows from this regularity result.
Proposition I1.2 There exists a positive constant C, independent of €, such that

lo <C sup V9

for all g € L*(). {2.6)
ver(div) [V [laiv

Proof. Let q € L*(Q) and consider the problem: Find w € Hj(Q) satisfying

Wy -+ EWyy =g in £
w=10 on 9.

Take v = (w,, w,). Then, cleatly g = V - v. Therefore, by Proposition IL1,

(V‘VN?) SG(VV’Q) SC sup (V'V¢QJ
llallo 1V |lldiv vedvia) Vil

llgllo =

and the proof is complete. o
We now establish an estimate for the second derivatives of the solution p €
HQ) N HY{S) of (2.1). We begin with an integration by parts formula. We follow

Grisvard [47, Section 4.3.1], where arbitrary polygonal domains and more general

boundary conditions are considered. Define, for s = 1 and 2,
GHQ) = {(v,w) € (H*(Q))’|v=00nT, and w = 0 on I}
Lemma I1.2 For all (v,w) € G'(§}),
vy Wy dz dy = £ vy Wy dx dy.

Proof. Tt is easy to see that the identity holds for (v, w) € G*{{2) by integration by

parts and the boundary conditions. Moreover, it can be shown that G*(Q} is dense
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in G1(€2) {47, Lemma 4.3.1.3] and the lemma follows. 0

Applying the above lemma to (p,, p,) € G'(Q), we have the following integration

by parts formula.

Lemma I1.3 Let p &€ H*(Q) n HE(Q). Then,

[ -

Ppydrdy = f Paa Pyy d dy.
0 11

Remark IL.2 In [{7], it is shown that the above integration by parts formula holds for

any polygonal domains with vanishing Dirichlet and Neumann boundary conditions.

Remark I1.3 An alternative proof of the above lemma can be given using eigenfunc-

tion expansion [66, Lemma 3.1].

By Lemma I1.3, we have an estimate for the second derivatives of p:

Lemma I1.4 Let p € H*(Q) N HE(Q) be the solution of (2.1). Then,

{I (e7'p2, + 2p2, +eph,) dody = &7 [\ p o dy.
0

Remark I1.4 A similar result for a certain case of variable € is given in (23] (see

Remark V.1 for details).

We now have an estimate for {lul};.

Lemma IL5 Let p € H2(Q) 1 HY(SY) be the solution of (2.1) and u = (ps,epy)-

Then, there exists a constant C' not depending on € such that

fuliy < Ce™ 2 fllo.



Proof. By definition,

allf = llp=lf + llepy Iy
= [|p2ll§ + lIpeclls + oy llg + €2 ( Pyl + lPy= 113 + Iyl )-

Now, by (2.5) and Lemma [L.4, the result follows.

15
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CHAPTER 1II

MIXED FINITE ELEMENT APPROXIMATION
A mixed finite element approximation to the anisotropic problem (2.1) is studied in
this chapter. Solvability of the discrete system as well as some error estimates will
be obtained in the framework of Falk and Osborn [40].
Our mixed finite element spaces will be constructed on uniform rectangular and
triangular meshes that align with the anisotropy. It is known that for non-aligning
grids, multigrid preconditioning technique applied to the finite element approximation

of anisotropic problems lose robustness [62).

A. Abstract framework

Let V, W, and H be three real Banach spaces with their respective norms {|-{jv, ||-{lw,
and |-l . We assume that V' is continuously embedded in H, that is, there exists a

constant C satistying
wilg < Clvlly forallve V.

Let a(-,-) and b(-,-) be bounded bilinear forms on H x H and V x W, respectively.

In other words, there exist constants ||al| and ||bl} satisfying
la(v,w)| < llallvllullwliy  for all v,w e H, (3.1)
and
b(v, @) < fblllivliviigllw forallv eV and g W. (3.2)

In addition, we assume that a(-,-) is symmetric. Although this is not assumed in [40],

it is sufficient for our purpose and slightly simplifies the presentation.
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Let W’ be the dual space of W. We consider the following problem: Given
feW, find(u,p) € V x W such that

a{u,v) -+ blv,p) =0 forallveV,
(3.3)
b(u, q) =-—(fq) forallgeW.

Here, (-, -} denotes the duality pairing between W' and W.
Let finite dimensional subspaces Vj, of V and W}, of W be given. We also consider
the following approximate problem to (3.3): Given f € W', find (up,pp) € Vi x W)

such that

alup, v) + blv, pp) =0 for all v € Vj,,
(3.4)

b(un, q) =~ {(f,q) forallg& W,

We now state a set of conditions from [40].
(H1) For each f & W', (3.3) has a unique solution.

(H2) Let Zy = {v € V}, | b(v,q) = Oforall g € Wy}, There is a constant o > 0,

independent of A, such that

a(v,v) > elfully  forallv € Z,.

(H3) Let (y4, Ag) be the solution of problem (3.3) with f in the right hand side
replaced by d. Define Y = span{y,;|d € W'}. There is an operator m, : ¥ — V},

such that

by —mhy,q) =0 forally €Y and g € W)

(H4) Let Z = {v € V | b(v,q) = 0 for all ¢ € W}. Then, Z, C Z.

These conditions lead to the following theorems.
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Theorem II1.1 ({40, Theorem 1)) Assume that hypotheses (H1)-{H3) hold. Then,

the discrete problem (3.4} has a unigue solution {ux,py) € Vi X Wi,

Theorem II1.2 ({40, Theorems 2 and 3}) Suppose that hypotheses (H1)~(H4)
hold and let (yg, Ag) be given as in (H3). Then, with m, satisfying (H3), the follounng

error estimates hold:

“’U, - uthH S /1 + Ug’l_[\ ”U, - Wfau‘”Ha (35)

and

1
Ilp — PhHW = Bup m{b(:‘!d — Whld, P) + a(uh -~ U, THYd — Yd)

dei’ (36)

4 b(u — MU, }‘d)}
B. Mixed method for the anisotropic problem

We apply the abstract result in the previous section to our problem. Clearly, the

mixed problem (2.2) is an example of (3.3) with spaces

V= H(div;Q), W =LXQ), H= (L))
with their respective norms

v = W-laies ol = {llos 1l = {l}-Hilo,
and bilinear forms

a(u,v) = (u,v). forallu,veH,

b(v,q) = (V-v,q) forallveVandge W

One can immediately see that (3.1) and (3.2) are valid with [la]| = 1 and [|b]] = 1.

Moreover, condition (H1) holds as discussed in Section 11.B and (H2) holds with o = 1
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FIGURE 1. Rectangular and triangular meshes with n = 4.

for all v € H, in particular, for all v € Z,,.

We now describe our uniform rectangular or triangular mesh 7 ag illustrated
in Figure 1. The finite element spaces will be defined in terms of the mesh 7. To
construct a uniform rectangular mesh, we divide the domain {2 into squares of the
same size with vertices (ih,jh), 1,5 = 0,1,--+ ,n, where h = 1/n for some positive
integer n. For a triangular mesh T, we divide each square in the rectangular mesh
into two right-angled triangles of the same size. Hypotenuses of a fixed orientation
are used in this subdivision process. The mesh 7 will be regarded as the collection
of thus constructed elements and 7 € 7 will denote a rectangle or a triangle in the
mesh,

We first consider the finite dimensional subspace W), of L*({?). In both the
triangular and rectangular cases, W), will be the space of piecewise constant functions

with respect to the mesh 7 and can be written
Myt ={ge L*) | ql; is constant for all 7 € T }. (3.7)

For V;,, we take the lowest order Raviart-Thomas space [55] with respect to the



triangulation 7. To be specific, R} is given in the triangular case by

[N 1, \

RTQ«"?—IVEHT(diV;Q) vtrxa,_l J+l T} foralTeT
l ot J

and in the rectangular case by

(3.8)

J /a-,-.’L' + br\ l
Ry =?¢ve H{div;Q) | vir = J forallreT b.

L cry + dr J

Here, ar, br, ¢;, and d, denote constants that depend on the element 7. The condition
RTy C H{div; Q) implies that each v € RTp has continuous normal component across
the edges of the elements. To be specific, for each pair of elements 71 and 7> that

share an edge e, we have
Vl|y ny V], one =0 forall ve R,

where n; is the outward normal vector on the edge e with respect to the element 7y,
i=1,2.

Let n be a normal vector on an edge e. We observe that, for any v € RTy, the
normal component v-n is constant on e. It is easy, then, to see from this fact and the
continuity property of the normal component that v € RTp is completely determined
by the values of its normal components on the edges.

Our mixed finite element problem corresponding to (3.4) is given by the following:

Given f € L), find (uy, py) € RTp x Mg satisfying

(up,v)e +(V-v,pp)=0 for all v € RTy,
(3.9)

(V-up,q) =-—(f,q) foralge M5

We now verify condition (H3). As was discussed in the previous chapter, Ay €

2

HY ()N HMQ) and hence Y C (HY())*. Thus, it suffices to define 7, on (H1(9))



Let 7 € T with edges {e;}™,, where m = 3 in the triangular case and m =4 in
the rectangular case. Let RTy{r) = RTy|, be the lowest Raviart-Thomas space on 7

and Ry(d7) be defined by
Ro(dr) = {¢ € L*(O7) | le, is constant for all i = 1, 7Y
Define an interpolation operator p, : (H'())* — RT(r) by
Q (p,v —v) -npds=0 forall ¢ € Ro(O7). (3.10)
Remark IIL.1 Alternatively, p. can be defined on the space
(L)) N H(div;7) = {v e (L) | V-ve L¥n)}
for some fized q > 2 (see [31]).
The global interpolation aperator m, : (H i(5’2))2 —+ RTy is now defined by
(mv)le = po(v]r).
Since (3.10) holds for all » € 7, we have

b(v —mpv,q) =0 forallve (H(Q)? and g € My

and (H3) is satisfied.

2
1

We also note that this operator satisfies, for v € (H(Q))
v — mvllo £ CRIIV (3.11)
and

IV (v—mv)llo < CRYIV - v], fors=0,1 (3.12)
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(see, e.g., [31] and [40]). Here and in the rest of this work, C will be used to denote
a constant that depends neither on the parameter ¢ nor on the mesh size h.
Now that conditions (H1)-(H3) are verified, Theorem IIL1 gives the following

existence and uniqueness result for the mixed finite element problem (3.9).

Theorem II1.3 The mized finite element problem (3.9) for the anisotropic equation

(2.1) has a unique solution (s, pr) € RTp X M[]'E.

Next, we check condition (H4). For v € Z;,, we have b{v,¢) = (V- v,i) = 0
for all ¢ € My}, Since Vv € My, this implies that V- v = 0 and hence v € Z.
Therefore, Z, C Z and (H4) holds.

We will need a couple of lemmas for the error estimates.
Lemma II1.1 Let p € HXQ) N H} () end u = (py,ep,). Then,
llu = mufflo < Ce™ Al Lpllo.
Proof. From the definition of the weighted norm |||-{]lo and (3.11), we have
llu = mullf < e7Hu - mullf < Ce7A2 il

Now, Lemma I1.5 gives the result. 1

Lemma IIL1.2 Let p € H*(2) N H}(Y). Then,

inf_{lp — ¢llo < Ce™*hiILplo.

GEM

Proof. From the approximation property of My ! (see, e.g., [29]), we have

infmlil’p - llo < Chllpli1.
peMg



Now, by (2.5)

el < Ce™ ) Lpllo

and the proof is complete. o

Applying Theorem IIL.2, we obtain the following error estimates for our mixed

approximation.

Theorem I11.4 Let (u,p) € V x W and (uy,py) € RTy x Mg* be the solutions of
the continuous problem (2.2) and the mized finite element problem (3.9), respectively.

Then,

= unllio < Ce™ Al flo- (3.13)

Ip = palio < C(h%e™ + he™ )| flo. (3.14)
Proof. From (3.5) in Theorem II1.2, we have
llu = unlffo < 2[fu — mrulllo (3.15)

since |laj] = 1 and o = 1. Equation (3.13) now follows from Lemma IIL1.
We now prove (3.14). Let (yu, M) be as defined in (H3). Applying (3.6) of

Theorem I11.2 gives

1
lp—pullo= sup =——{{(V-(ya— mhyahp— @)+ (Un — W, 70yq — Ya)=
ds L) ”d”O (316)

-+ (V . (u - Wiau), Ag — TJ)}

for all v, € M;'. Cauchy-Schwarz inequality gives

inf (V- (yq—myad,p— @) SUV - (moya = yalllo inf {lp - oo
weMy! pedy



From (3.12) and Proposition I1.1
IV - (mya — yalo < ClIV - yallo < Clidlo.

Thus, we have

(,DEII'J'CT

A similar argument gives

inf [(V-(u—mu), A=)l < Che™ldllo | fllo-

neMy!

Furthermore, Lemma [I1.1 and (3.13) give

(u — up, ya — meYa)el < lu—wpllg llye — mnyalle

< Ce20?| fllo ildilo-

Combining (3.16)-(3.19) gives
P = pullo < Clh%™ + he™ )i fllo

and the proof is complete.

inf 1I(V (¥qg—mnya)p— @) < Che ™ 2||dllo || flo-

(3.17)

(3.18)

(3.19)
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CHAPTER IV

TWO-LEVEL PRECONDITIONING
[n this chapter, we study a two-level preconditioner for the linear system arising
from the mixed finite element approximation (3.9) for the second order anisotropic
problem (2.1). In our two-level approach, the “fine” level problem will be derived
from the mixed finite element problem discussed in the previous section. The “coarse”
level problem, on the other hand, will be the corresponding standard finite element
approximation of the anisotropic problem (2.1) on the same uniform mesh,

We consider both the rectangular and triangular meshes constructed in Chap-
ter II. These two cases will be treated separately. For the rectangular mesh, we
exploit the fact that our mesh aligns with the anisotropy of the problem and con-
struct a mesh dependent norm which enables us to perform the analysis in terms of
the nodal values. For the triangular case, we use the equivalence between Raviart-
Thomas mixed methods and certain nonconforming methods (see, e.g., (5], [28], or
34]).

We begin with the two-level theory by Bramble, Pasciak, and Zhang [21, Section
2]. In this framework, the regularity or the approximation properties of the mixed
problem, which are the main causes of the difficulties in the anisotropic problem, are

not required.

A. A two-level preconditioning result

Let Qp, and Qu be two finite dimensional spaces, each with two inner products. We
denote the inner products on @y, by (-, ), and Ax(-,-), while those on Qg by (-, )u

and Ag(-,-). In addition, we assume that the two spaces @y and Qp are related by



a connection operator Iy, : Qg — Q. The adjoint Z} : @) — @u of Zp, is defined by

(Tho, @) = (o, Tpg)  forall g € @y and ¢ € Q. (4.1)

We consider the following pair of variational problems: Find u, € (), and uy €

Qp such that
Ah(uh:X) = (f) X)h for all X &€ Qh;

Aglug,x) = (fix)p  forall x € Qu.

Discrete operators Ay and Ay on @, and Qg are defined, respectively, by

(AFLU) X)h b AJ‘L(”)X) for all U, X E Qh:
(Agv,x)u = Au(v,x) forallv,x € Qu.

We are interested in the construction of preconditioners for As, the “fine” grid
operator, by using A}_}l, namely a “coarse” grid solve, or a good preconditioner for
Ap. To this end, let J, : Qn — @y be a symmetric positive definite operator and

consider the preconditioner for A, given by
By = L AR T + T (4.2)

Note that this is exactly the two-level additive preconditioner with 7 as the smoother

on the fine level.

Remark IV.1 In the definstion of the preconditioner, AG' could be replaced by a

preconditioner B! for Ay and By, U is given by
B! = T,BR'Th + Tn. (4.3)

Now, assume that the spaces @5 and @y belong to a common, possibly infinite

dimensional, normed linear space A with norm {|-||o. We introduce a set of conditions



from {21]. One involves the smoother and the remaining two the approximation

properties between the spaces (J), and Qg.

(M1) The operator 7, behaves like a smoother; i.e. there exist positive constants ¢;

and ¢a such that
o' An(a,9) < (T g e < cofllglii + An(e, @)} forall g € Qi

(M2) The space Qg approximates @ in the sense that there exists a positive constant

¢3 such that
xie%fﬂ Mg —xl3 + Aul,x)} < csdu(g @) forall g€ Q.

(M3} The operator I, provides a stable approximation to @y in the sense that there

exists a positive constant ¢y such that
Hth o qui + 44IL(LLQJIlaQ) S C-'IAH(Q: q) for all q € QH-

Then the following theorem holds.

Theorem IV.1 ([21, Theorem 2.2]) Assume that the conditions (M1}-(M3) hold
fOT Ih; !.Th; Qh; and QH. Then

CyAR(q, q) < An(BitAug,q) < Cadnlg,q)  forallg € Qu
or, equivalently,
Cl(th’Q)h S (fth‘r ‘?)h $ G.E(th»‘?)h fOT‘ all q = Qh-

Here, Cy = (cg + 200{1 4+ c3{1 + c(;)})"l and Co = ¢4 + C1.



B. Rectangular mesh

We apply the two-level result in the previous section to the anisotropic mixed problem
(3.9). We will describe our choice of the spaces and their inner products. Next, we
will study the smoothing properties of line Jacobi and line Gauss-Seidel smoothers
and verify condition (M1} for these smoothers. Finally, the approximation condi-
tions (M2} and (M3) will be established. Therefore, by Theorem IV.1, the two-level

preconditioners (4.2) and (4.3) will provide uniform preconditioners.

1. Spaces and inner products

We take the space Q) = My ' defined in (3.7). The other space Qy is taken to be
the space of continuous piecewise bilinear functions with respect to the mesh 7 that

vanish on the boundary 8Q. To be specific,
Qu = {ge H) Q) | gl = (ar + brz)(cr + dry) for all 7 € T (4.4}

This is the standard finite element space for the anisotropic problem on rectangular

mesh. The inner product Ag(,-) is defined accordingly by

Aplp, d) = [ {pstbp + Egquﬁy) dedy forall p,¢ € Qu. {4.5)
It

In addition, we take (-, )y = (-, )y = (-,*) and A = L*(£2) equipped with the weighted

norm defined by
lallz = eh*|lallo.
Note that, for the piecewise constant functions ¢ € @, this norm can be written

lali =Y (4.6)

raT



where g, = g|,. Clearly, the finite element spaces @ and @y are contained in A.
To define the inner product A,(-, ) on @y, we define discrete operators A : RTp —

RTy, B: RIy — Qy, and Bt : @, — RTp by

(Av,w) = (v, W) for all v,w € RTy,

(Bv,q) = (V-v,q) forallv& Ry, q€& @,

and
(Btq,v) = (V-v,q) forall g€ Qv e R

Then, {3.9) can be rewritten in matrix form by
/A Bt\ /uh\ /

5 ol 1}]

Here, Oy denotes the L*(€2) orthogonal projection onto (4 defined by

O \
J . (4.7)
~of
(Qow, ) = (p,6)  for all p € L*(§2) and ¢ € Q.
By block Gaussian elimination, we see that the solution py of (3.9) satisfies
BA T B'py, = Qof. (4.8)
The form Ax{-,-} is then defined by

An(p, @) = (BA™ Bty ¢)  forall o, ¢ € Qs (4.9)

It is easy to check that Au(-,-) is an inner product, i.e. a symmetric positive definite

bilinear form.

Remark IV.2 In order to solve equation (4.8) by an iterative method, the action

of the discrete operator BAT'B! need to be evaluated. Following the definition, the
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FIGURE 2. Edges associated with the tridiagonal systems of order n+1 in the z and

y directions.

action of the operators B and B can easily be computed. Moreover, the operator
B does not involve the parameter € and is exactly the same as the corresponding
term in the mized finite element method for uniformly bounded second order problems
(see, e.g., [81] or [55]). Thus, ezisting subroutines can be used to evaluate B. The
action of Bt is given by the transpose of the matriz thai computes the action of B.
The evaluation of the action of A™* clearly involves an inversion of a linear system.
Yet, from the definition of the lowest order Ruviart-Thomas space RTy and the inner
product (-,-)., it is easy to see that this linear system is block tridiagonal. In fact,
on an n X n rectangular mesh, the evaluation of A™1 only involves the solution of 2n
symmetric positive definite, n systems resulting from each of the x and y directions,
tridiagonal systems of order n+ 1 (see Figure 2). These tridiagonal systems can be
solved efficiently by direct solvers such as the routines in LAPACK [1]. We also note

that the solution of the 2n tridiagonal systems can be done in parallel.
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2. Iine Jacobi smoother

To define the line Jacobi smoother, we introduce the following horizontal strip de-

composition of €}, For j = 1,...,n, define
Q={(x,1) € Q| (G- Dh<y<ihl

Then,

and the finite element space (), is partitioned accordingly as

Q=Y Quj

i=1

where
Qnj={ge@n|qg=0in 0\ Q1.
Now a line Jacobi smoother :7;% : (Fn, — Q3 can be defined by
T = SH“A;;,} O ;- (4.10)
=1
Here, @y, ; is the L? projection of @, onto Q; and Ay ; is defined by

(Ap 8, x) = Ap{f,x) forall 8, x € Qu;.

Note that the computation of A,’;} involves the inversion of the stiffness matrix
corresponding to the form Ap(-,-). This matrix is full and it is not practical to
compute A;;j. To overcome this computational difficulty, we use a mesh dependent
form defined below. We will also show that this mesh dependent form gives an inner

product which is equivalent to the bilinear form A(:,-) in the sense that will be made



FIGURE 3. Labels for the neighboring elements of an edge e.

clear later.

We begin the definition of the mesh dependent form by setting up some notation.
Let £ be the collection of all edges in the mesh 7. The collection of edges that are
parallel to the z- and y-axes are denoted respectively by &, and &,. In addition, let
&, be the set of internal edges and & of boundary edges. Note that e € & if and
only if e ¢ 982, For an edge e, we define the jump [q]c of a function ¢ as follows.
Given an internal edge e, let 7, and 75 be the two rectangular elements that share e
as a common edge. The element 7y is chosen so that the outward unit normal vector
n on e with respect to 71 is given by n = (1,0} ife € £, and by n = (0,1) ife € &;
(see Figure 3). If e € &, we may assume that one of ny and 7 is the reflection with
respect to e of the other which is in 7 and that ¢ vanishes outside 2. The jump []e

of ¢ € Qy, across an edge e is then defined by

[a], = aln = qln-

We define the mesh dependent form A, ) by

Ay =2 [v],l6], + D lel.[e]. (411)

esfs €Ly
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FIGURE 4. Degrees of freedom in Q) ; in a rectangular mesh.

Our line Jacobi smoother J, : @Qn — @ is now given by
T -
Th=>_ A0, (4.12)
j=1
where ﬁh,j : Qn,; — (n,; is an operator defined by
(Anit,X) = An(8,x) for all §,x € Qu;. (4.13)

From the definition of Eh(-, 1), it is easy to see that the computation of g}’:é involves
the inversion of a tridiagonal matrix (see Figure 4).

Next, we show that the two forms Ap(-,-) and E},(-, -} are equivalent. A similar
result in the case of £ ~ 1 was given in [59]. Here and in the following, the notations
A~ B, A< B, and A 2 B will be used to mean cA < B < C4, A < UB, and
A > ¢B, respectively, with constants c and C. These constants will be independent of
the anisotropy parameter ¢ and the mesh size h. We use the following lemma, whose

obvious proof is omitted.

Lemma IV.1 Lei 7 € T be a rectangle with edges ey, ex € E; and ey, eq € E,. Then,
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for all v = (vy,v) € RIu(7), the following relations hold:

E|U1”g,‘r = h(“””l”%,eg + ”,UIH%,&J:

vallg,r = Alvalg e, + Hvalloe,)-
Here, h is the length of each edge.
We now have the following equivalence result.

Proposition IV.1 There ezist positive constants ¢ and C, independent of h and ¢,

such that
CA.‘L(Q:Q) < fTh.(Q, (I) < CAh(QaQ) fO’n‘" all q e Qh- (4-14)
Proof. For g € (4, it is easy to see that

V-v,q)?
An(g,q) = sup Vova)
verty (V) V):

(4.15)
We begin with the left inequality of (4.14). Let ¢ € @y be given. Then, for each
v € RTp, since V - v € L2(£2), we have

(V- v,q) = S—\(V "V, G)r
reT

= { - (V, VQ)T + (V -1, Q>3'r}'
el

The last equality was obtained by integration by parts on each 7. Here, n denotes
the outward normal vector on d7. As q is constant on each 7, we are left only with
the boundary integrals on 7. Then, since the normal component v-n of v € ATp is
continuous across each edge e, we have

(V-v,g) = (ug fale + > (v, [gh)e. (4.16)

el e&ly
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Applying the Cauchy-Schwarz inequality to the first sum on the right hand side of

the above identity gives

Sy, [a)e €3 lolloe el lloe

E'EE;;: e€lz

1/2 1/2
< fs"lhs—\ll'uz”g,ﬁ\ /Ehwlsﬁ” lq] ”gc\ .

e€ls ecf:

(4.17)

From Lemma IV.1, for each edge e € &; and any element 7 containing e as an edge,

we have
hffuallse < C lealls,
Thus,
e h S ullR, < O Y lwally, = O ualff. (4.18)
eefs el

The second sum in the right hand side of (4.16) can be treated similarly. Then,

combining (4.16)-(4.18) gives

N / A 172
(V-v,g)<C JE"UQUWHU /ET[G];\ + [lurlle \ S gl | 1

L eely ecly J

Applying Cauchy-Schwarz inequality, we obtain
(V-v,q) £ Cv, V)2 Au(g, )"

Since v € RT, was arbitrary, the left inequality of the lemma follows from (4.15).
To prove the upper inequality, it suffices to show that, for each g € (3, there

exists a v € RTp such that

V-v.aq)

/3"

Ag,V* < C oY)
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For this, it is sufficient to find a v € RTp satisfying
An(g,9) = (V- v,q) (4.19)
and
(v, V)2 < CAla, )" (4.20)

Recall that v € RT} is completely determined by the values of its normal components
v-n on each edge e € £. Here, we fix n= (1,0} onee & andn = (0,1) one € &,

We now take v € R1}p such that

Jvz =ch q] ifec&,

l'ul =h-q] ifee€é,

Von== (4.21)

Then, since g is constant on cach 7 € T,

(v : V:Q) = V(v . VrQ)'r = T<V -, Q>E)r

el TeT

=3 (ehMal, lal)e + > (R dl, lal).
ey ey

i gh(Q! Q)

We conclude the proof by showing (4.20). By Lemma IV.1 and the construction (4.21)

of v, we have

(viv)e =" (llnllg, + 7 lleali3)

reT

/
<C RS Ivenlf e S venl,

ecLy, eGly

= C‘Ih (Qa Q)

and we have the desired result. 0
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Remark IV.3 A suitable mesh-dependent form can be defined in the case of piecewnse
constant £. Let an edge e € €. We denote by &, the harmonic average of € on an

edge e. In other words,

Ee =

2 )
J CREETEREEL A

Here, 71, T2, and T denote the neighboring elements of e. Define the mesh dependent
inner product Auh(-, ) by
A, ) =S elel ol + 3 [l Jel,.
egfs egEy

It can be shown that the corresponding norm |||-|l|z, satisfies Proposition IV.1.

To establish the smoothing property of our line Jacobi smoother, we will need
the following standard lemma for additive multigrid analysis, which can be found, for

example, in [22, Lemma 4.1].

Lemma IV.2 Let M be a Hilbert space with inner product (-,-). Let My, k=1,...,J,
be subspaces of M and M = zgml M,.. Denaote by Q. the orthogonal projectors onto
My, Let Ry . iiJk — M, be symmetric and positive definite and B, = Zizl RO
Then, B! evists and is characterized by
J
(B tu,v) = rriin :(R;lvk, Uk),

where the minimum is taken over all vy, € My such that v =) v

We now show condition (M1). Let ¢ € @4 and consider the decomposition

g = Z;‘ﬂ g, with ¢; € Qp,j. From the construction, it is clear that g; = glg, and
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this decomposition is unique. Thus, applying the above lemma to our line Jacobi

smoother J;, defined in (4.12) gives

Ty =S (Anigna) = > Anlgy 3)-

J=1 j=1

Note that, for each e & £,

4q, ifeCT for some v C
lg;] =
l 0 otherwise.

Thus, we have

/ \
(T ava) = \EYVJH S x (4.22)

el eady

Again, by Proposition IV.1, for each q € (s,

Ah(‘]a Q) = levh(qa Q) S; £ Sﬁ %2- + T IQ]E (423)

el egEy

Combining (4.22) and {4.23) gives
Anla,9) S (T, 9).
A similar argument, combined with {4.6), gives

(T g 9) S liglia + Arla, 9)-

3. Line Gauss-Seidel smoother

We consider a line Gauss-Seidel smoother. We will need the projection ﬁhij s Qp —

(n; with respect to the ;{h(', -} inner product defined by

Ap(Pyig,x) = Anlq,x)  forall g € Qy and X € Quy.
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Clearly, the relation
ﬁ}w’ = E;:,;Qh,jﬁh {4.24)
holds. Here, ;’LL : @y, — @y, 1s defined by

(Angx) = Anlg,x)  forall g € Q4 and x € Qh.
Qur line Gauss-Seidel smoother is defined by
G = {1 — (I = P = Prer) - (1 = B VAL (4.25)
and can be computed by the following algorithm.

Algorithm IV.1 (Line Gauss-Seidel Smoother) Given g € Qn, compute Grg €
Qh by

1. Set gy = 0.

2. Forj=1,2,---,n, define
q; = gj-1 T ‘4;:‘_1-,?@}1,3‘ (g — Angj-1).
8. Set Grg = g,.

Remark IV.4 Notice that ;fh, not Ay, s used in step 2 of the above algorithm. This
is both for the computetion and the analysis.

Computationally, the current algorithm invelves the action of the stiffness matriz
corresponding to the operator Apn, which has at most 5 nonzero entries in each row.
On the other hand, the operator A, leads to a stiffness matriz which is full.

Using Ay, poses a difficulty in the analysis also. As will be seen later, we will use

in the proof of Lemma IV.3, the fact that fﬂf‘h,j is a projector. If Ap were used in the
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above algorithm, ﬁhh.,» would be defined by
An(Paja,x) = Anlg,x)  for allq € Qn and X € Qu .
Clearly, Ishu.,- is no longer a projector.

Recall that a symmetric smoother is required in the two level preconditioner By
Since G is not symmetric, we will consider the symmetric line Gauss-Seidel smoother

given by
?h i gh + g}t; - g;;—’z{hgh- (426)

This corresponds to sweeping in one direction as in the above algorithm followed by
a sweep in the opposite direction. Here, G}, is the adjoint of G, with respect to the
inner product (-,-). We will show that G, satisfies the smoothing condition (M1).
We begin with a lemma which gives an estimate for G, in terms of the line Jacobi

smoother J;,. The proof follows well-known argument found, for example, in [16].

Lemma IV.3 Let 7, be the line Jacobi smoother defined in (4.12) and G, the sym-

metric line Gauss-Seidel smoother. Then, there exists a constant C' such that
;ih.(jh;{hq: Q) S Ogh(_g—h.;th, Q) fO'f" all q & Qh-
Proof. From the definition of J), and (4.24), we have
T = TA}:;‘Q’!,J'A!!. = vﬂt,j'

je=1 j=1

This implies that

Eh(\jh;;hq: Q) - T Eh(ﬁ;h,jq, ﬁh,jQ)' (4:2?)

J=1
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Define Fg = I and, fori=1,2,---,n,
B = (1= Py)Bia = (I = Pi) - (I = P,
Then, from the definition (4.25) of Gy,
I —Gpdy = E,
and hence
An(@rdra, @) = Anla, q) — An(Eng, Eng).

Moreover, using the fact that .‘ﬁh!j is a projector with respect to the inner product
;{h(-, -}, we have
A By1q, Bjo1q) ~ EI;(qu! Ejq)
= Ap(Bjo1q, Biaq) = A(( ~ Poj)Ejo1g, Bi1g)
= Ap(PaiEj10, Bj-1a)
= Zh(jsh,jﬁjwl% ﬁh,jEj-—IQ)-

Thus, summing over j gives

}Th(ghgh% Q) = T EIL(}B’J‘L,jEj-—IQ: lah,jEjWIQ)' (4'28)

J=1

Now, from the definition of E;, we clearly have
By =~ Ey= PyEi
and

J
I- Ej - T Ph,iEi—1~

i=j—1



Since ﬁul,j is a projection, we have
Pu;B; = Puj(I ~ Puj)Ej1 = 0.
It is clear that
PyjPui=0 fori<j—L (4.29)
Thus,

i
Pujq = Ph,j(I - Ej)(] = T B;,jph,iEi-zq- (4.30)

imj -1

Combining (4.27)-(4.30) and applying the Cauchy-Schwarz inequality, we obtain

i 7
A ThArg, ) =Y Ax( ST Py PuiFiag, Pujg)

j=1 =yl

S_, Ef;(uj}zﬁhm Q)I/QEfL(EthLQ: Q)l/e

and the lemma follows. 7

Using this lemma, we can establish the smoothing property of the symmetric line

Gauss-Seidel smoother G.

Lemma IV.4 The symmetric line Gauss-Seidel smoother Gy, satisfies condition (M1).

That 1s,

Anle, ) S @7 g q) S gl + Anlg, @)} for all g € Qp.

Proof. From the definition of G, we have
0 < Au(( ~ GuAn)a, (I = GrAn)a) = Aulq, q) — An(GrAng, ).

This and Proposition 1V.1 give the lower estimate.
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FIGURE 5. A portion of the rectangular mesh 7 for the verification of (M2).
Now, from Lemma IV.3, we have
Gr'0.9) S (Jhg.q) forall g € Q.

Since the line Jacobi smoother 7, satisfies condition (M1), this implies the upper

estimate. !

4.  Approximation conditions

We begin with the verification of (M2). Given g € (J, we choose x to be the function

in Qp whose value at a node or vertex z in the mesh 7 is defined by

I}* ; ¢ if zeQ,
4
x(z) = ¢~

Lo if z € 9,

where g; is the value of the piecewise constant function g on 7 and the sum is faken
over all i such that 7; has z as a vertex (see, e.g. Figure 5). It is easy to see that, for

a bilinear function ¢ on a rectangle 7 with vertices {z}i,

4
lolla -~ 171y ().

i=1
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Applying this fact to ¢ — x, we have

=S S (g(z) - x(2)7 (4.31)

TeT zeZ(7)

lle —x

where Z(7) denotes the set of all vertices of 7. Let z be an interior vertex. For
example, take z and 7 = 73 be as in Figure 5. Then, on 7,

(1)~ x@ = (- S+ @t et
~ Ll —a) @) e

< Tgl2 + [ql2, + [l

If z € 7 is a boundary node, then x(z) = 0 and

2

(q(=) = x(2))" = [ql,

where e is any boundary edge of 7. Thus,

le—xlz <C /svffﬂi\ < CAulg, q)- (4.32)
eef

Now, we check the second term on the left hand side of (M2}, namely

An(xx) = Ixalla + el

We clearly have, for all x € Qu,

Ap(on) = 3 (x(ze) = x(we)) +2 3 (x(ze) = x(we)) (4.33)

eely ﬂESy



45

Here, z, and w. denote the end points of an edge e. Let e € £,. Suppose that e has

both end points in . Take, for example, e = ¢g in Figure 5. Then,

4(x(2) = x(@)) = (g1 + g2 + g3 + q1) — (g5 + @ + G5 + G6)
= {q1 ~ q3) + (g2 — qa) + (g3 — g5) + (41 — G5)
= [q],, +ldl,, +lal,, +Tdl,,.

ey

The remaining cases are similar. Thus,
3 (x(ze) = x(we))” < CS ol (4.34)
ecy eEEy

The same argument gives

S (xlze) = x(we))’ < €3 gl (4.35)

eely eGly

Combining (4.33), (4.34) and (4.35), we obtain
An(xx) € CAnla, q). (4.36)

Now, this, together with (4.32) and Proposition IV.1, gives

llg = xl3 + Ax(o x) < CAnlg, q)

and (M2) follows.
Finally, we verify (M3). We begin with the definition of the connection operator
7, which takes Qy into Q. Let 7 be a rectangle with vertices {z},and g € Qn

be given. Then, Zpq € @y on 7 is defined by

@l = o L alwyde =53 o)
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FIGURE 6. A portion of the rectangular mesh 7 for the verification of (M3).

Let ¢ € Qg be given. Then, we have, as in (4.31),

1Zag —alla ==Y (Tha(2) — a(2)), (4.37)
TeT
with the inner sum taken over the vertices of 7. Moreover, Proposition (IV.1) gives

ATng Tng) = € S [ Tadl2 + S [Tl (4.38)

eS8y eEEy

and (4.33) gives
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Anla ) = S (a(ze) = gwe)) +¢ 3 (g(z) — qlwe))”. (4.39)

eels EEgy
We study the typical terms in the sums (4.37) and (4.38). For instance, let 7 = 7,

z = z; and e be as in Figure 6. Then, at z in 7,

4(Zng(2) - a(2)) = (a(21) + q(z2) + q(zs) + q(z4)) — 4a(=z1)

= (q(z2) ~ q(z1)) + 2{q(z3) — g(z1)) + (q(z4) — a(z3))

and on e,
4 [ 2
[Tnalz = /i" > a(z) - ;Ii Y fl(zi)\
4 2
== i% / (q(z:) — Q(Zm-z))\ .

i=1

[

Now, the equivalence relations (4.37)-(4.39) give (M3).
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C. Triangular mesh

In the rectangular case, the mesh dependent form An(-, ) defined in {4.11) played
an important role in the construction and the analysis of the smoothers. Recall that
this form was defined in terms of properly weighted jumps of functions across the
edges. We have established in Proposition IV.1 that this form is equivalent to the
form Ap(-,-) induced by the Schur complement with constants independent of the
mesh size b and the anisotropy parameter e.

To construct such a mesh dependent form in the triangular case, appropriate
weights need to be determined for the edges. The normal component of v = (v1,v2) €
RT, across diagonal edges involve both vy and vy. This poses a difficulty in choos-
ing a suitable weight corresponding to the jumps across such edges. Moreover, the
computation of A~! in the bilinear form Ay (-, -) induced by the Schur complement of
the mixed finite element system is somewhat more complicated than in the rectan-
gular case. In the current case, A leads to a banded system. Such a system still is
relatively easy to invert, but does not possess the nice computational features of the
block tridiagonal system generated in the rectangular case (cf. Remark IV.2).

For the above reasons, we take a different approach here. We will use a certain
nonconforming finite element approximation to the anisotropic problem from which
the solution to the mixed finite element problem can easily be obtained (see, e.g., {5]

or {34]).
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1. Equivalent nonconforming problem

Let & be the set of all internal edges in the uniform triangular mesh 7. Define the

space Ly by

(

,
Ly= pnel” | 1e tile 1s constant for all e € &

€&y

Recall the lowest order Raviart-Thomas space RTy defined in (3.8). Each v € BT}
has continuous normal compenent across the edges of the elements. In the triangular
case, we will use the space RT; ' defined by

I [N 1N 1
RI;Y = ¢ v e (L) v[,.:arl J+l , forallTeT V.
Y Cr

\ J

Note that, unlike RTp, there is no continuity condition associated with the space
RT;'. We will also use the space of piecewise constant functions My ! defined in
(3.7).

Consider the problem: Find (T, Py, M) € RTp™" x Mg x Ly such that

(Fﬁhyv)E + Y\J’(‘? . vvﬁL)T - <V ‘I, /\h>8’r\ﬂﬂl =0 for all v & RTO“.I,
reT

(4.40a)
S‘\(V-ﬁh,q)? = ~(f,q) for all g € M;?,
el

(4.40D)
- T<ﬁh ) nT’M>8T\6§2 ={ for all H & L[).

Tel
(4.40¢)

In this problem, the variable A, can be regarded as a Lagrange multiplier correspond-
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ing to the continuity condition imposed on the space H1p.

Remark IV.5 It can be shown that U, = u, and pr, = pp, where (Uy, pp) s the

unique solution pair of the mized finite element problem (3.9) (see, e.g., [3], [28], or

[34])-

Let A = {\;} be the vector corresponding to the coefficients of the piecewise
constant function A, € Lp. This means that \; = Mg, for all e; € &. Suppose that
A is known. Then, @), and pj, can be computed from the system (4.40a)-(4.40c) by
substituting A\. Moreover, we notice that none of the spaces RIyY, Myt and Lo
has any continuity conditions and are defined completely element wise. Therefore,
computation of T, and py, from A involves simple element-by-element computation
(see, e.g., [5]). Then, as stated in Remark IV.5, we have the solution (u,p) € K1y x
Mgt of the mixed finite element problem (3.9).

As a means to obtain A, we now describe a certain finite element problem which
has A as the solution. Let Q; be the space of non-conforming piecewise linear finite
elements with respect to the triangulation T called the Crouzeix-Raviart elements

137]. That is,

J ) ql- is linear on each 7 € T, 1
L and g is “continuous” at the midpoint of each e € & J
(4.41)

For each g € Q; and 7 € T, the linear function g|, is determined by the values of ¢
at the midpoints of the edges (see Figure 7). Let e € & be an interior edge whose
midpoint is denoted by m,. Let 7, and 7 be the triangles in T that share € as a

common edge. By the “continuity” of ¢ € (), at the midpoint m, in the definition
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FIGURE 7. A typical triangle 7 in the mesh 7 with labels for midpoints of the edges.

(4.41), we mean that

lr (me} = qlr, (me).

The standard nodal basis of the nonconforming space @ is defined as follows. Given

e € &, the corresponding nodal basis function ¢, € Q5 has the nodal values

if o =e,

J1
qbe(ma) =

lO otherwise,
for all o € &.

As a special case of [34], we have the next theorem.

Theorem IV.2 Consider the nonconforming finite element problem: Find A € @y

satisfying
Ap(A q) =(Qof.q)  forallqely, (4.42)
where
| i p,q.) dz d 1 4.2
Arlp, q) (peqe + epygy)dzdy  for allp,qg € Qu (4.43)
T 7

and Qg is the L? projection of L*(Q} onto the piecewise constant space Myt Let the

linear system arising from this nonconforming problem using the standard nodal basis



for Qr be given by
MX=F. (4.44)
Then, X =

In addition to the above choice of @, and A(+,-), we take Ay(-,-) by (4.5) and

Qu to be the standard finite element space for (2.1) on triangular mesh, that is

Qu = {q € H:(Q) | q|- is linear for all 7 € T}. (4.45)

Also, as in the previous section, we take (-, -)p = (-, )g = ().
The larger space A and its norm ||-||a are also taken as in the rectangular case.

Consider the following quadrature rule on a triangle 7
7] 5~
(d,h)r m = g(ma)e(ms),
i1

where the m;’s are the midpoints of the edges. This quadrature rule is exact for linear

functions ¢ and 1. Thus, for each g € 3, we have

lalz = b llgllor = = 5 alme)”. (4.46)
reT

ec&y
Here, we used the fact that every midpoint of an interior edge is associated with

exactly two triangles in 7. Moreover, for any g € (s, we have

Al ) =257 (q(ra) — a(m))’ +(q(ra) = Q(Tm))g\ , (4.47)
raTl

where 74, 7., and 7, are the midpoints of edges labeled in Figure 7. Note also that

the equivalence relation (4.33) for Ay (-,-) also holds in the triangular case.



2. Line Jacobi and Gauss-Seidel smoothers

To define the line smoothers, we consider a decomposition of the space @y into
subspaces. Let V be the collection of the midpoints of all edges in &. For j =

1,2,--+,2n — 1, we define V; and Qx; by

V; = {(z,y) € V|y = jh/2},

and
Ong={a€Qn l g(z) =0 for all z € V\ V; }.
Clearly,
n-1
Qu=Y Qus
j=1

The line Jacobi smoother J}, is given as in (4.10) by

2n-1

T = S_‘ A;;; Q}i!j.
J=1

i

Then, by Lemma IV.2, 7} is invertible and its inverse is given by

2n-1

(T g, q) = S Anlgs 05)-
je=1

Here, q == Z?;l g; is the unique decomposition of ¢ € Q. as the sum of g; € Qn ;.
Now, (4.46) and (4.47) immediately imply (M1).
Next, we consider the line Gauss-Seidel smoother Gy. Define the projection

Py ;i Qi — Quj with respect to the Ar(+, -} inner product given by

f/lh(})h‘jq:X) = Ah(q:X) for all q€ Qh and X e Qh,j~
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Then, the line Gauss-Seidel smoother Gy, is given as in (4.25) by
Gy = {1 — (I = Pragn-1)( = Przn) - (I = Poa) VAL
The line Gauss-Seidel smoother G, can be implemented by the following algorithm.

Algorithm IV.2 (Line Gauss-Seidel Smoother) Given g € Qy, compute Gng €

Qn by the following:
1. Set gg = 0.
2, Forj=12-,2n—1, define
g = gj-1+ Ay sQn;i(g — Angj-1)-
3. Set Gug = qon-1-

Notice that, unlike in the rectangular case, we use A4, and Fj; in the Gauss-Seidel

smoother. Since
PyiPhi=0 fori<j—1,
it can be shown, as in Lemma IV.3, that
Ap(Tndna, q) < CARGrAng,q)  forall g € Qu,

where Gy, is the line Gauss-Seidel smoother given in (4.26). Condition (M1) for G,
now follows from the fact that the line Jacobi smoother J;, satisfies (M1).

We remark that it is easy to invert A, ; in the application of the smoothers Jy
and G,,. In fact, the operator A;j involves the solution of a diagonal system when j

is even and a tridiagonal system when j is odd (see Figure 8).
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FIGURE 8. Degrees of freedom in (5 in a triangular mesh.
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FIGURE 9. A portion of the triangular mesh 7.
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FIGURE 10. A portion of the triangular mesh 7 for the verification of (M2).

3. Approximation conditions

We begin with condition (M2). Given g € Qy, we take x € Qy with the value at a

node z defined by

4

J"- Tq(zi} if ze 0,
x(z) = ¢ "=

e

{0 if z € A9,

where the z;'s are the 4 nodes around z as shown in Figure 9.
Let 7 be a triangle in 7. We only demonstrate the case where all three vertices
of 7 are contained in . For other cases, a slight modification of the arguments in

the rectangular case is sufficient. For 7 € T, define N(r) by
N(r)={oeT|an7 0}

For example, if we take 7 as in Figure 10, then N(7) consists precisely of all the

triangles in that figure. Define, for the nodes in N(7),

I,(7) = {{(i,7) | wi,d; € 7 for some o € N(m)}



o7

and I(7) in a similar way. Then, as in the rectangular case,
2
(x(@) = x(B))<C Y (qlw) — aldy))
(i.7)eZy(r)
and
(@) =xMP<C Y (qlm) —aldy))”.
(i.g)ET={r)
Summing over all 7 € 7 and applying the equivalence relations (4.33) and (4.47), we

abtain

AH (Xv X) S CAh((L Q) (448)

Let z be the midpoint of an edge e € £. Then, by adding and subtracting values of

q at several midpoints of the edges, we have

. . A
(g(z)} = x(2)} £ C ‘ S (aly) —qld)) + 37 (gla) - qldg)) |-

(1,0l (T (8,4}&lz(7)
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Summing this over all edges e € £, we obtain

g~ xli < CAnlq.q)

from (4.46) and (4.47). This and (4.48) give (M2).
Finally, since Qn C Qu, we may take Zp, to be the natural injection of (Jy into

(Jr. Then,
Tng=4q and Ag(g,q) = Anlg,q)
for all ¢ € Q. This implies (M3) with c4 = 1.

Remark 1V.6 Conditions (M1)-(M3) can also be verified when Qg is taken as in
the rectangular case by (4.4). The current choice of Qy as in (4.45) simplifies the

verification of the conditions, that of (M3) in particular.
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FIGURE 11. An example of the anisotropically refined rectangular mesh.

D. Anisotropically refined rectangular mesh

Here, we consider an anisotropically refined rectangular mesh used by Li and Wheeler
51] shown in Figure 11, On this mesh, Li and Wheeler [51] obtain an uniform error

estimate for the reaction-diffusion equation: Given f € L*(Q2), find p saltisfying

= (ps + Epyy) + bz, y)p = f I L, (4.49)
p=0 on 0L,
where b(z,y) > 3% > 0.

The mesh is defined as follows. Let o, = §7'e|lng| and split Q into three
subdomains 4 = (0,1) % (0, 0,), Qo = (0,1) x (05,1 —0,), and Qg = (0,1) x (1 —0, 1).
Now, in the z-direction, the domain Q is quasiuniformly divided into N subintervals.
In the y-direction, on the other hand, each subdomain (}; is quasiuniformly divided
into N, subintervals, where each N; @ N.

For the reaction-diffusion problem (4.49), the continuous and discrete mixed
problems are formulated as in (2.2) and (3.9) respectively, with an extra term which

corresponds to the reaction term. The following error estimate halds [51, Theorem
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e~ wnfilo + lp ~ prllo < ONT

Qur analysis for the two-level preconditioner in the uniform rectangular mesh
carries over to this anisotropically refined mesh with slight modification. For example,
the norm ||:||s in the space A = L*(?) is defined in this case by

ol = <> ol
re?
where |7| is the area of the rectangle 7. The rest of the components of the two-level
preconditioner are taken similarly as in the uniform rectangular mesh case. Then,
since the verification of conditions (M1)-(M3} is based on local element by element
or stripwise arguments, the two-level preconditioner with line Jacobi smoother gives
a uniform preconditioner for our mixed finite element system for the anisotropic

problem on the anisotropically refined rectangular mesh.
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CHAPTER V

MULTIGRID METHODS FOR THE FINITE ELEMENT APPROXIMATION OF

THE ANISOTROPIC PROBLEM
In this chapter, we review multigrid techniques for the standard finite element ap-
proximation of the anisotropic problem. In particular, we will present the uniform
result by Bramble and Zhang [23] in detail since this algorithm is used in our nu-
merical experiments in the next chapter. Other uniform results have been developed
by Neuss [54] and Stevenson [62], [63]. Combined with such a method, our two-level
preconditioner studied in the last chapter gives a uniform preconditioner for the lin-
ear systemn resulting from the mixed finite element approximation for the anisotropic
problem.

Two main components of the multigrid method are smoothing and coarsening.
Smoothing operators reduce the high frequency components of the iterative error
whereas the coarse grid solve reduces the low frequency or the smooth components of
the error. When applied to anisotropic problems, the standard pointwise smoothing
and full coarsening strategy does not work well. The remedy is to use either line
smoothing or semicoarsening or both (see the numerical examples presented in [32]
and [68]). The coarse grid defined by semicoarsening is given by doubling the mesh
size in one direction without changing the mesh size in the other.

We begin with the semicoarsening/pointwise smoothing case for the anisotropic
problem. An analysis of the smoother in this case applying the local Fourier analysis
by Brandt [24] is found in [68]. A robust multilevel BPX-type [20] additive precon-
ditioner based on tensor product type subspace splitting with semi-coarsening was
developed by Griebel and Oswald [46].

In the case of full coarsening/line smoothing applied to the anisotropic problem,



a uniform V-cycle result is given by Bramble and Zhang [23]. Moreover, it deals with
a certain case of variable coefficients as discussed in Remark V.1. A generalization
of the results of Hackbusch [48] and Mandel, McCormick, and Bank [52] is given
by Stevenson which guarantees the robustness of the V-cycle multigrid algorithm
162], [63]. The robustness of V-cycle with one line Jacobi post-smoothing step (and
no pre-smoothing) is proved by Neuss in [54] by generalizing the results of Xu [74]
and Yserentant [75]. There is also a robust hierarchical basis type preconditioner
by Stevenson [61]. This preconditioner is shown to be robust when the direction of
anisatropy aligns with the three directions in a triangular mesh.

In the case of variable &, there are several computational strategies. One is alter-
nating line relaxation, where the z- and y- line smoothing steps are taken alternately.
Another is multiple semicoarsening. In this approach, semicoarsening both in the z-
or y- direction take place. For the multiple semicoarsening algorithm, see [53]. In
addition, there is flexible multiple semicoarsening algorithm in which only a subset
of the coarse grids are used (see, e.g., [71]). Compared with the full coarsening/line
smoothing algorithm in [23], the above computational approaches can handle a larger
class of variable ¢ {see Remark V.1 for the assumptions on ¢ in [23]). However, no
analysis as thorough as [23] is available as yet for the strategies discussed in this
paragraph.

We now present the uniform V-cycle multigrid method analyzed by Bramble and
Zhang [23]. We begin with the following construction of a sequence of nested uniform
rectangular or triangular meshes 77,---, 7y = 7. Let 71 be the uniform rectangular
or triangular mesh with n = 2 (see Chapter Il and Figure 1). The mesh 7; for
2 < j < J is constructed from 7. by subdividing each rectangular or triangular
element T € 7. into 4 elements in 7; by connecting the centers of the edges (see

Figure 12). In other words, 7; is the uniform mesh with n = 2/ and mesh size
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FIGURE 12. Element(s) of meshes 7; and 7.

h; = 1/n.
o Associated with the above sequence of nested meshes, we consider the sequence

of nested finite element spaces
M CM,C- - C My=Qnu,

where the space M, is the standard finite element space given in the rectangular case

by

M; = {qﬁ € Hy() i ¢ is bilinear on each 7 € ’1’3}

and in the triangular case by

M; = {¢ € Hy(Q) | ¢ is linear on each 7 € T}

Recall that Ag(-,-) was given in (4.5) by

Aplp, ¢) = /ﬂ (‘Pzﬁbz + E‘Py‘#’y) dz dy.

The corresponding norm and the corresponding operator norm will be denoted by

44, We define A; : M; — M; by

(A0, x) = Ap(o,x) forall x € Mj.
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As usual, Q; : L*(Q) — M; will denote the L* orthogonal projection onto M;. In

addition, we let P; : Hj(£2) — M; be the Galerkin projection defined by
Ap(Pig, x) = Aulg, x) forall x € M;.

The Galerkin projection satisfies the following approximation property in both the

rectangular and triangular cases [23, Lemma 4.3]: for all ¢ € H*(Q) N H3(Q),

I = Py)allo < Ce™ BN — Pilall,- (5.1)

In the multigrid algorithm, smoothing operators are also needed. Let £, : M; —
M; denote a smother and R its adjoint with respect to the (-,+) inner product.
Specific smoothers and their properties will be discussed later.

Given an initial guess go € M;, a multigrid algorithm produces a sequence of

approximations to g; = A f; by
qm+i :N‘[gj(qmvfj)u m=0,1,2,--- 1
where Mg, : M; x M; — M; is defined recursively as follows.

Algorithm V.1 For j = 1 and q,9 € M, set Mg(g,9) = ATlg. Forj > 1 and

q,9 € M;, Mg;(q,g) is defined as follows:
1. Pre-smoothing:
¢’ = q+ Ri{g — A;q).
2. Coarse grid correction:

g = ¢ +Mg; (0, Qg — A54))
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3. Post-smoothing:
g" = q" + Bilg — A;").
4. Set Mg;(q,9) = q".
Clearly, the above algorithin is linear, i.e.,

Mg, (a(p, ) + (g, 9)) = aMg;(p, f) + Mg;(q, 9)

for all (p, f),(q,9) € M; x M; and o € R. Moreover, the multigrid algorithm is

consistent, i.e.,
Mg, (g, A;q) = q
for all ¢ € M;. Consider the linear operator B; : M; — M; given by
Bjg = Mg,(0,g) forallge M;

Tt is easy to see, then, from the linearity and the consistency of the multigrid algo-

rithm, that
Mg;(q,9) = g+ Bjlg — 4;9).

In addition, we note that step 3 of Algorithm V.1 makes B; symmetric with respect
to the (-,-) inner product and hence B; can be used as a preconditioner for 4;. In
particular, we take B! = By in our two-level preconditioner (4.3) for the mixed
finite element problem.

In [23], the smoothing condition and the regularity and approximation condition

of the theory of Braess and Hackbusch [14] are combined as follows.

(SA1) The operator R; is symmetric and there is a constant # < 1 such that the
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spectrum o(f — R;A;) C [—1,0) for all j. Moreover, there is a constant Cy

independent of j and € such that

(R:l(f - ’iji)q, (I - ijl)Q) § CM’AH((I b pjml)q,(j') for all q & A/IJ

(SA2) For the operator R;, || — R;4;l|a, < 1. Moreover, there is a constant Cyy

independent of j and ¢ such that
(ﬁ;”l(f ~ Pi1)q, ([ = Pi-)g) < CarAp((I = Pioa)a.q)  for all g € Mj,
where

R; = Rj + R, — RS AjR;. (5.2)
The following lemma gives the convergence result of Algorithm V.1

Lemma V.1 ([23, Lemmas 2.1 and 2.2]) Assume that R; salisfies (SA1) or
(SA2). Then, there is a constant § < 1, independent of j and &, such that the

multigrid algorithm defined in Algorithm V.1 satisfies
0 < Ap({{ - BjAj)q,q) <6An(q,q) for allqg e M;.

We now define the line Jacobi smoother 7; and the line Gauss-Seidel smoother
G, that will be used in our construction of the multigrid preconditioner. Consider the

following horizontal strip decomposition of Q. Fork=1,--- ,n—1, define
U= {(z, 1) € Q] (k- Dh <y < (k+ Dh}
and

M= {qe M;|qg=0inQ\ Q.
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Then,
n—1 n-—-1
Q=19 and M; =3 M.

Note that the above is a direct sum decomposition of M;. Define the operator A;y :

f\ffj!k — ﬂ/f',k by
(Ajrg, x) = Au(q,x) forall x € My

In addition, let @, @ M; — M;y and Pjy : M; — M;,; be the orthogonal projections
onto M;, with respect to the inner products (-,-) and Ag(-,-), respectively. The
line Jacobi smoother J; and the line Gauss-Seidel smoother G; are defined as in the

previous chapter by

11
Ji=Y AiiQjn

=3

and
G; = {f - (I - Pj,rzml)(f - (Pj,ﬂ-’—‘l) (= pjsl)}Agl‘

The line Jacobi smoother J; satisfies the following property, which is similar to

condition (M1) in the previous chapter {cf. [21]):

2

1 £
Lnlon) <G00 <€ N anteo = Slalf| forallge b
7

For the line Gauss-Seidel smoother G;, a similar argument using the above as in

Lemma IV 4 gives

£ 2

Aulag,9) < ('G;flq,q) <C rAH(Gr,Q) + 1 Hallo for all ¢ € M;,
)

where G; is given from G; by the formula (5.2). These smoothing properties for

R; = nJ; with 0 <n <1 and R; = G;, combined with the approximation property
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(5.1), give (SA1) and (SA2). The uniform V-cycle preconditioning result in [23] now

follows from Lemma V.1.

Theorem V.1 ([23, Theorem 6.1]) Let R; = nJ; with 0 < n < 1 or R; = Gj.
Then there is a positive number & < 1, independent of j and €, such that the multigrid

algorithm defined in Algorithm V.1 satisfies
(1 - J)Aﬂ(qa Q) S AH(BJAJG) Q) S AH(Qw q) fOT' all q € ﬂ'r[J

Remark V.1 In [25], the above uniform result is obtained for the bilinear form

Ap{-,-) given by

Au(p, q - {a(x Y)Pete + bz, v)pyq, Y drdy  for all p,g € H()

with variable coefficients a = al-,) and b = b(, -) satisfying the following boundedness

conditions.

1. a(z,y) is uniformly bounded from below and above, i.e., there exist constants

(i aNd Qmay Such that
0 < tmin < a(l y) < Gmax-

2. b{z,y) is uniformly bounded from above, t.e., there exists a constant by such

that
0 < b(z,y) < bnax.

3. The derivatives of a(z,y) are uniformly bounded, i.e., there exists a constant C

such that

[Val £ C,
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4. The y derivative of b(z,y) is uniformly bounded in the sense that there exists a

constant Cy such that

Ibyl
—— ,
i <Gy




CHAPTER VI

NUMERICAL RESULTS
In this chapter, numerical results for the two-level preconditioner for the uniform
rectangular and triangular meshes are reported. We compute the condition numbers
of the preconditioner system, that is By 1 A;. All computations were done with the

right hand side function
Fz,y) = y(1 - y)sin(z) sin(1 — z)

which does not depend on the anisotropy parameter .

To compute the condition number, i.e. the ratio of the largest and smallest eigen-
values, in each test case, we use the Lanczos method combined with the Conjugate
Gradient method [44]. This algorithm gives a good approximation to the eigenvalues
of the symmetric positive definite system being solved by the Conjugate Gradient
method while consuming considerably less time than the conventional methods, for
example, the power method.

Let 7, be the line Jacobi smoother defined in Sections IV.B.2 and IV.C2 as
sociated with the rectangular and triangular meshes, respectively. We consider the

following cases where the two-level preconditioner is defined by
B! = I,B' T + T
and the coarse level preconditioner Bfil is given by one of the following:

1. By is given by the V-cycle preconditioner with line Jacobi smoother given by

Algorithm V.1

2. B}? =0, iLe. By ! is the line Jacobi preconditioner.
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3. Bt =1.
4. B;' = I, i.e. no preconditioning is done.

The condition numbers of the preconditioned system for the above cases will be
reported respectively in Tables I, II, III, and IV for the rectangular mesh and in
Tables V, VI, VII, and VIII for the triangular mesh.

Note that tridiagonal systems need to be inverted in the computation of the
line Jacobi smoother 7, on both the rectangular and triangular meshes, as well as
the action of As, the Schur complement, on the rectangular mesh. This task is
accomplished by using an LAPACK routine {1].

The V-cycle algorithm used in Case 1 involves full coarsening and line smoothing.
The transpose Z}, of the connection operator can also be viewed as a full coarsening
strategy involved with the fine level space Q) and the coarse level space (Jy. In
the V-cycle algorithm in case 1, the scaling factor 7 of the line Jacobi smoother was
taken to be 7 = .72 (see Theorem V.1). As was seen in the analysis in Chapter IV,
no scaling is required for the line Jacobi smoother Ji, used in the h-level. Tables 1
and V illustrate that the condition number in this case is bounded uniformly in £ and
h, confirming the preconditioning results obtained in Chapter IV.

In Cases 2 and 3, the condition number of the preconditioned system grow in
proportion to k™2, for fixed ¢, when h is sufficiently small for ¢. It is well known
that the exactly same condition number growth is observed in isotropic problems.
Condition numbers in these cases are reported in Tables IT and III for the rectangular
mesh and Tables VI and VII for the triangular mesh.

Finally, we remark on Case 4. The condition numbers in the rectangular mesh
are independent of the mesh size (Table IV). For the problem on triangular mesh, as

in Cases 2 and 3, the condition number grow like A2, for fixed e, provided that A is
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Table I. Condition numbers for the rectangular mesh with V-cycle preconditioning on

the H-level,

1. |10t 10?1073 | 1074 10°°
h
1/4 40212221270 | 3.04 | 3.08 | 3.09
1/8 5.56 | 3.23 | 3.09 | 3.73 | 3.91 | 3.93
1/16 6.50 | 4.67 | 3.22 | 3.87 | 4.12 | 4.19
1/32 7.02 | 570 | 3.63 | 3.91 | 4.16 | 4.24
1/64 7.39 | 6.36 | 4.97 | 3.91 | 4.18 | 4.26
1/128 754 | 6.76 | 5.93 | 4.51 | 4.17 | 4.26
1/256 7.65 | 6.95 | 6.52 | 5.34 | 4.17 | 4.26

sufficiently small compared to ¢ (Table VIII).



Table II. Condition numbers for the rectangular mesh with line Jacobi preconditioner.

£ 1. 10-t 1072 10-3 10~ 10-%
h
1/4 1.04e+01 | 3.96e+00 | 2.90e+00 | 2.81e-+00 | 2.80e+00 | 2.80e-+00
1/8 3.95e+01 | 9.25e+00 | 4.14e-+00 | 3.70e+00 | 3.66e+00 | 3.65e+00
1/16 1.56e+02 | 2.99e+01 | 6.03e+00 | 4.09e+00 | 3.92e+00 | 3.91e+00
1/32 6.23e+02 | 1.14e+02 | 1.40e+01 | 4.78e+00 | 4.05e+00 | 3.98e-+00
1/64 2.49e+03 | 4.54e+02 | 5.05e+01 ; 7.41e+00 | 4.31e+00 | 4.02e+00
1/128 9.96e+03 | 1.81e+03 | 1.98e¢+02 | 2.11e+01 | 5.32e+00 | 4.13e-+00
1/256 3.98e+04 | 7.24de-+03 | 7.90e+02 | 8.07e+01 | 9.49e+-00 | 4.53e+00

Table 1. Condition numbers for the rectangular mesh with By = [.

£ 1. 10-1 1072 10-% 104 107°
h
1/4 3.72e+00 | 2.63e+00 | 3.06e+00 | 3.42¢+00 | 3.47e+00 | 3.47e+00
1/8 1.33e+01 | 7.00e+00 | 3.94e+00 | 4.10e+00 | 4.30e+00 | 4.32e+00
1/16 5.21e+01 | 2.42e+01 | 6.25e+00 | 4.51e+00 | 4.55e+00 | 4.63e+00
1/32 2.08e+02 | 9.47e-+01 | 1.36e-+01 | 5.50e+00 | 4.70e-+00 | 4.69e+00
1/64 8.30e+02 | 3.77e+02 | 4.94e+01 | 8.50e+00 | 5.08e+00 | 4.75e+00
1/128 3.32e+03 | 1.51e+03 | 1.94e-+02 | 2.10e+01 | 6.28e+00 | 4.89e+00
1/256 1.33e+04 | 6.04e+03 | 7.74e+02 | 8.05e+01 | 1.10e-+01 | 5.37e+00
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Table IV. Condition numbers for the rectangular mesh with no preconditioning.

()

1/4

1/8

1/16

1/32

1/64

1/128

condition no.

1.84e+01

7.68e+01

3.10e+2

1.24e+03

4.98e+03

1.99e+04

Table V. Condition numbers for the triangular mesh with V-cycle preconditioning on
the H-level.

g1 1. | 1071110721073 | 107 | 107°
h

1/4 6.02 | 2.86 | 2.29 | 2.09 | 2.03 | 2.01
1/8 7.21 ) 311 | 249 | 217 | 2.05 | 2.02
1/16 7.60 | 3.21 | 2.69 | 2.31 | 2.10 | 2.03
1/32 770 325§ 274 | 252 | 2.20 | 2.06
1/64 7731 3.26 | 2,97 | 2.66 | 2.37 | 2.13
1/128 7731326 2.78 | 2.67 | 2.B8 | 2.25
1/256 7.73 | 3.26 | 279 | 2.68 | 2.65 | 2.44




Table VI. Condition numbers for the triangular mesh with block Jacobi precondi-

tioner.
£ 1. 10~ 1072 1073 1071 1073
h
1/4 1.36e+01 | 3.86e+00 | 1.61e+00 | 1.16e+00 | 1.05e+-00 | 1.01e+00
1/8 5.25e+01 | 1.11e+01 | 2.62e+00 | 1.37e+00 | 1.10e-+00 | 1.03e+00
1/16 2.08e+02 | 3.95e+01 | 5.91e+00 | 1.88e-+00 | 1.22e4+00 | 1.06e-+00
1/32 8.31e+02 | 1.53e+02 | 1.83e+01 | 3.36e-+00 | 1.50e+00 | 1.13e+00
1/64 3.32e+03 | 6.05e+02 | 6.76e+01 | 8.51e-+00 | 2.21e-+00 | 1.29¢+00
1/128 1.33e+04 | 2.42e-+03 | 2.65e+02 | 2.85e+01 | 4.43e+00 | 1.66e+00
1/256 5.31e+04 | 0.68e+03 | 1.05e+03 | 1.08e+02 | 1.25e+01 | 2.69e-+00

Table VII. Condition numbers for the triangular mesh with By = [.

£ 1. 101 107* 1073 104 10-°
h
1/4 2.23e+01 | 7.19e+00 | 5.14e+00 | 4.63e+00 | 4.48e+00 | 4.43e+00
1/8 2.82¢+01 | 1.69e+01 | 7.51e+00 | 5.38e+00 ; 4.99e+00 | 4.58%¢+00
1/16 1.05e+02 | 5.94e+01 | 1.55e+01 | 6.91e+00 | 5.41e+00 | 5.06e-+00
1/32 4.16e+02 | 2.20e+02 | 4.47e+01 | 1.07e+01 | 6.19e-+00 | 5.31e+00
1/64 1.66e-+03 | 9.08e+02 | 1.60e+02 | 2.35e+01 | 8.00e-+-00 | 5.72e-+00
1/128 6.64e+03 | 3.62e+03 | 6.20e+02 | 7.32e+01 | 1.36e+01 | 6.66e+00
1/256 2.66e+04 | 1.45e+04 | 2.46e+03 | 2.71e-+02 | 3.38e+01 | 9.22e+00
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Table VIII. Condition numbers for the triangular mesh with no preconditioning.

1 101 1077 1073 104 1078
h
1/4 2.87e+01 | 4.28e-+01 | 2.06e+02 | 1.94e+03 | 1.93e+04 | 1.92e+05
1/8 1.16e+02 | 1.50+e02 | 2.77e+02 | 2.03e+03 | 1.98e+04 | 1.98e+05
1/14 4.66e+02 | 5.86e+02 | 6.97e+02 | 2.25e+03 | 2.02e+04 | 2.00e+05
1/32 1.87e+03 | 2.33e+03 | 2.54e+03 | 3.55e+03 | 2.09e+04 | 2.01e+05
1/64 7.47e+03 | 9.30e+03 | 9.95e+03 | 1.07e+04 | 2.45e+04 | 2.03e+05
1/128 2.99e-+04 | 3.72e+04 | 3.96e+04 | 4.05e+04 | 4.90e-+04 | 2.15e+05
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CHAPTER VII

CONCLUSION
We have studied numerical methods and iterative solution technigues for a model
second-order anisotropic partial differential equation on the unit square. New results
have been obtained for the mixed finite element method for this problem. In addi-
tion, an efficient and robust two-level preconditioner has been developed for efficient
computation of the numerical sotution for the mixed finite element problem.

For uniform rectangular and triangular meshes, error estimates for the mixed
approximation explicitly giving the behavior of the anisotropy parameter £ have been
derived in Chapter III. In Chapter IV, two-level precondifioners have been con-
structed for the linear system resulting from the anisotropic mixed finite element
problem for anisotropically refined rectangular mesh as well as regular rectangular
and triangular meshes. These preconditioners have been shown to be uniform both in
the anisotropy parameter and the mesh size. Combined with the uniform multigrid
preconditioners for the standard finite element problem, e.g. [23], for the uniform
rectangular and triangular meshes discussed in Chapter V, our uniform two-level re-
sult gives a uniform multi-level preconditioner for the mixed finite element method for
the anisotropic problem. The numerical results given in Chapter VI are in agreement
with our analysis of the multilevel preconditioner.

As was discussed in Section IV.D, a better approximation is possible by using
conforming rectangular meshes that have been anisotropically refined in the regions
of boundary layer [51]. This prompts a natural subdomain partition of the domain
into regions with and without boundary layer. The cuwrrent study using uniform
rectangular and triangular meshes provides a basis for such a case. Uniform meshes

of adequate mesh sizes on each of the subdomains can be used resulting in a globally
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non-conforming mesh as in the mortar method (see, e.g., {10], {11}, or [50]). In the
mortar method, the domain is split into subdomains and each subdomain is given a
mesh independently of other subdomains. Mixed finite element methods for uniformly
positive definite problems on such meshes have been studied in the mortar context
in [3] and in a non-mortar context in [4]. Extending these results to anisotropic
problems is an area of future research. Multilevel preconditioning for the mortar
mixed finite element problem in both the uniform elliptic and the anisotropic c‘ases is
also of interest. Multigrid methods for the standard finite element method have been
studied in [13] and [45].

The equivalence result for the mesh dependent form established in Proposi-
tion IV.1 also holds for piecewise constant € (Remark IV.3). Moreover, the uni-
form multigrid result for the standard finite element method by [23] was obtained
for certain variable £. These facts raise a question as to the construction and the
properties of the multilevel preconditioners for the mixed system when £ is no longer
a constant. As was discussed in Chapter 1, applications such as porous media flow
modeling which includes simulations of groundwater flow, oil reservoir, and electrical
wave propagation in the human heart all involve highly heterogeneous mediurm. Even
though the strategies mentioned in Chapter V based on alternating line relaxation
or multiple semicoarsening provides satisfactory computational results in some test
cases, no satisfactory analysis of these algorithms are available and poses a challenge

yet to be met.
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