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Abstract. In this paper, we consider approximation of a second order elliptic
problem defined on a domain in two dimensional Euclidean space. Partitioning the
domain into two subdomains, we consider a technique proposed by Wieners and
Wohlmuth [23] for coupling mixed finite element approximation on one subdomain
with a finite element approximation on other. We consider iterative solution of
the resulting linear system of equations. This system is symmetric and indefinite
(of saddle-point type). The stability estimates for the discretization imply that
the algebraic system can be preconditioned by a block diagonal operator involving
a preconditioner for Hdiv (on the mixed side) and one for the discrete Laplacian
(on the finite element side). Alternatively, we provide iterative techniques based
on domain decomposition. Utilizing subdomain solves, the composite problem is
reduced to a problem defined only on the interface between the two subdomains.
We prove that the interface problem is symmetric, positive definite and well con-
ditioned and hence can be effectively solved by a conjugate gradient iteration.

1. Introduction

One of the main problems in large scale scientific computation is the time required
to set up a problem. In applications which involve partial differential equations on
complicated domains, a great deal of effort is required to construct the mesh. Often,
complex domains are built up from simpler ones. The mesh construction problem
is greatly simplified if the simpler domains (i.e., the subdomains) can be meshed
independently. This, however, results in meshes which do not align on the internal
interfaces between subdomains. To get accurate approximation with such meshes,
various techniques have been developed.

Since meshes do not align, the resulting spaces are necessarily nonconforming.
Approximate continuity conditions are imposed by the use of a Lagrange multiplier
[1], [2], [4], [5], [6], [7], [12], [14], [15], [16], [21]. There are two approaches for
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the analysis. The first treats the method as a nonconforming finite element ap-
proximation where the Lagrange multiplier constraints serve to define the noncon-
forming approximation subspace. The second approach is based on an appropriate
Ladyzhenskaya-Babuška-Brezzi (LBB) condition. With the second approach, the
discrete Lagrange multiplier is shown to approximate the continuous Lagrange mul-
tiplier, often a quantity of physical interest. In both cases, the Lagrange multiplier
space needs to be strongly connected to the approximation in the subdomains. For
the mortar finite element approximation, this connection comes from defining the
Lagrange multiplier space from the mesh on one of the subdomains [6]. For the LBB
condition, one often is required to use a multiplier space with a mesh size which is
somewhat coarser than the mesh sizes on the subdomains [1], [3], [9], [14].

We consider an approximation technique proposed in [23] which utilizes a finite el-
ement discretization on one subdomain and a mixed finite element discretization on
the other. This pair of approximations gives rise to a natural variational reformula-
tion of the original problem into a saddle point problem involving the two variables
(velocity/pressure) on the mixed side and the original variable (pressure) on the
conforming finite element side. No additional multipliers need to be introduced.

The purpose of this paper is to develop iterative methods for the solution of the
resulting system of algebraic equations. Because of the stability estimate, it is pos-
sible to precondition the full system if preconditioners for Hdiv (on the mixed finite
element subdomain) and H1 (on the conforming finite subdomain) are available.
Here, we consider domain decomposition approaches. The domain decomposition
algorithms require solution of mixed and conforming finite element subproblems on
the subdomain and reduce the problem to one on the interface between subdomains.
We consider two algorithms of this type. The first iterates for the trace of the dis-
crete solution on the interface while the second iterates for the trace of a discrete
normal derivative on the interface. Both algorithms can be thought of as Neumann-
Dirichlet in that the discrete subproblems correspond to problems with Neumann
and Dirichlet boundary conditions on the respective subdomains.

The outline of the remainder of the paper is as follows. Section 2 gives the com-
posite mixed/conforming variational formulation of the original problem. Section 3
describes the corresponding finite element discretization and its stability properties.
The solution of the resulting system of algebraic equations is considered in Section
4. Finally, Section 5 gives the numerical results which illustrate the theory given in
the earlier sections.

2. Variational formulation

Consider the model second order elliptic problem on a domain Ω contained in R2,

Lp ≡ −∇ · a∇p = f(x), x ∈ Ω,(2.1)

with, for example, homogeneous Dirichlet boundary conditions p = 0 on ∂Ω. Here
a(x) is symmetric and uniformly in Ω positive definite 2× 2 matrix with piece-wise
smooth elements. With some abuse of the terminology we shall call the solutions of
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Figure 1. Domain partitioning of Ω = Ω1 ∪ Γ ∪ Ω2.

the equation Lp = 0 harmonic functions. Of course, if a is the identity matrix, then
p is harmonic in Ω.

We partition Ω into two subdomains by a interface boundary Γ, i.e., let Ω =
Ω1 ∪ Γ ∪ Ω2 (see Figure 1). In Ω1 we will use a mixed setting of the problem (2.1).
That is, we introduce the new (vector) variable u = −a∇p. To distinguish between
the problem settings we will write p1 = p|Ω1

and p2 = p|Ω2
. The composite model

will impose different smoothness requirements on the components p1 and p2. Indeed,

u ∈ H(div, Ω1) ≡ V,

p1 ∈ L2(Ω1) ≡ Q1,

p2 ∈ H1
0 (Ω2, ∂Ω2 \ Γ) = {φ ∈ H1(Ω2) ; φ = 0 on ∂Ω2 \ Γ} ≡ Q2.

Note that p2 is required to vanish on ∂Ω2 \ Γ. We will denote ‖ · ‖V to be the Hdiv

norm on V.
We will use the following additional notation:

〈p, q〉Γ =

∫
Γ

pq ds,

a(p, q) =

∫
Ω2

a∇p · ∇q dx.

(2.2)

Whenever there is no ambiguity will use (., .) to denote the L2 inner product with
respect to a domain (mostly Ω1 or Ω2). We will also use Hs(Ω) to denote the Sobolev
space on Ω of order s (see, for example, [18], [17]). The corresponding norm will be
denoted ‖ · ‖s,Ω.

Testing the equation a−1u + ∇p = 0 by a function χ ∈ V, integrating by parts,
using the zero boundary conditions for p1 on ∂Ω1 \Γ and the fact the trace of p1 on
Γ is the same as for p2 on Γ gives

(a−1u, χ) − (p1,∇ · χ) + 〈p2, χ · n1〉Γ = 0, for all χ ∈ V.(2.3)
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The second equation is obtained by testing ∇ · u = f on Ω1 by functions from Q1.
One gets

−(w1,∇ · u) = −(f, w1), for all w1 ∈ Q1.(2.4)

Finally, testing the original equation (2.1) by a function w2 ∈ Q2 integrating by
parts, using the zero boundary condition for w2 on ∂Ω2 \Γ and the fact that u ·n1 =
−a∇p1 · n1 = a∇p2 · n2 on Γ gives

〈w2,u · n1〉Γ − a(p2, w2) = −(f, w2), for all w2 ∈ Q2.(2.5)

That is, the three unknowns (u, p1, p2) ∈ V×Q1 ×Q2 satisfy the composite system

(a−1u, χ) −(p1,∇ · χ) +〈p2, χ · n1〉Γ = 0, for χ ∈ V,

−(w1,∇ · u) = −(f, w1), for w1 ∈ Q1,

〈w2,u · n1〉Γ −a(p2, w2) = −(f, w2), for w2 ∈ Q2.

(2.6)

2.1. Well–posedness of the composite problem. Following [23], we reorder the
unknowns and consider the generalized system

(a−1u, χ) +〈p2, χ · n1〉Γ −(p1,∇ · χ) = 〈F1, χ〉, for χ ∈ V,

−〈w2,u · n1〉Γ +a(p2, w2) = 〈F2, w2〉, for w2 ∈ Q2,

−(w1,∇ · u) = 〈F3, w1〉, for w1 ∈ Q1.

(2.7)

Here F1, F2, and F3 are elements of the spaces V′, Q′
2, and Q′

1 of bounded linear
functionals in V, Q1, and Q2, respectively. Finally, 〈·, ·〉 denotes the pairing between
a space and its dual.

The analysis of the above problem [23] is based on considering it as a block
saddle-point problem of the form

Au + BT p = F̃1,

Bu = F̃2.
(2.8)

Here

A : V × Q2 → (V × Q2)
′, B : V × Q2 → Q′

1, BT : Q1 → (V × Q2)
′,

are defined by

(A(u, q2), (v, r2)) = (a−1u,v) + 〈q2,v · n1〉Γ
− 〈r2,u · n1〉Γ + a(q2, r2),

(B(u, q2), r1) = (BT r1, (u, q2)) = −(∇ · u, r1).

(2.9)

Clearly, Ker B = {(u, q2) : ∇ · u = 0}. It immediately follows that A is coercive
on Ker B. Moreover, the “inf-sup” condition corresponding to (2.9) is

‖p1‖0,Ω1 ≤ C sup
φ∈V

(p1,∇φ)

‖φ‖V

for all p1 ∈ L2(Ω1),

which is the standard condition for the mixed method on Ω1 alone. The following
theorem is an immediate consequence [11].
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Theorem 2.1. There exists exactly one solution (u, p1, p2) of (2.7) in V×Q1×Q2.
Moreover, there is a constant C not depending on F1 ∈ V′, F2 ∈ Q′

1 and F3 ∈ Q′
2

such that

‖u‖V + ‖p1‖0,Ω1 + ‖p2‖1,Ω2 ≤ C
[
‖F1‖V′ + ‖F2‖Q′

1
+ ‖F3‖Q′

2

]
.

3. Finite element discretization

In this section, we present the finite element discretization of problem (2.7). Let
T1 and T2 be triangulations of Ω1 and Ω2. We assume that the triangles satisfy a
minimal angle condition but need not align on the interface Γ. Let (Vh, W1) be a
stable pair of mixed finite element spaces associated with the triangulation T1, for
example, BDM [10], BDFM [11], or RT [20]. Also, let W2 be a conforming finite
element space associated with T2. The functions in W2 vanish on ∂Ω2 \Γ. Then the
discrete problem is as follows:

Find uh ∈ Vh, p1,h ∈ W1 and p2,h ∈ W2 such that,

(a−1uh, χ) +〈p2,h, χ · n1〉Γ −(p1,h,∇ · χ) = 〈F1, χ〉, for χ ∈ Vh,

−〈w2,uh · n1〉Γ +a(p2,h, w2) = 〈F3, w2〉, for w2 ∈ W2,

−(w1,∇ · uh) = 〈F2, w1〉, for w1 ∈ W1.

(3.1)

As in the continuous case [23], one groups together the spaces Vh and W2. Then,
one can rewrite the (3.1) in a matrix form similar to the (2.8) in which the cor-
responding block operators are denoted Ah, Bh and BT

h . It is immediate that Ah

is coercive on Ker Bh and the corresponding “inf-sup” condition is exactly that
required for the mixed approximation pair (Vh, W1), i.e. for all p1 ∈ W1,

‖p1‖0,Ω1 ≤ C sup
χ∈Vh

(p1,∇ · χ)

‖χ‖V
.(3.2)

The following result is an immediate consequence [11].

Theorem 3.1. The discrete problem (3.1) is uniquely solvable and if the finite el-
ement spaces (Vh, W1) satisfy the inf-sup (3.2) then the following a priori estimate
holds for its solution:

‖uh‖V + ‖p1,h‖0,Ω1 + ‖p2,h‖1,Ω2 ≤ C
[
‖F1‖V′ + ‖F2‖Q′

1
+ ‖F3‖Q′

2

]
.(3.3)

The constant C is independent of the mesh sizes h1 of T1 and h2 of T2.

For the subsequent analysis, we shall need to use the L2-projection operators
Qi,h : Qi → Wi, i = 1, 2 and the approximation operator Πh : V ∩ Hγ(Ω1) → Vh

associated with the mixed pair of subspaces. We assume that the operators Q1,h,
Q2,h and Πh satisfies the following properties:

(A.1) Πh is a stable operator from V ∩H1(Ω1) and:
(a) satisfies the commutativity property

∇ · Πhχ = Q1,h∇ · χ for all χ ∈ V;
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(b) if w ∈ V satisfies w·n1 = wh ·n1 on Γ for some wh ∈ Vh, then (Πhw)·n1 =
wh · n1 on Γ.

(A.2) There is an integer k > 0 such that for all γ ∈ (0, k]:
(a) ‖(I − Πh)u‖0,Ω1 ≤ Chγ

1‖u‖γ,Ω1 for all u ∈ V ∩ Hγ(Ω1);

(b) ‖(I − Q1,h)p1‖0,Ω1 ≤ Chγ
1‖p1‖γ,Ω1 for all p1 ∈ Hγ(Ω1);

(c) ‖(I − Q2,h)p2‖0,Ω2 ≤ Ch1+γ
2 ‖p2‖1+γ,Ω2 for all p2 ∈ H1+γ(Ω2).

The above properties are standard for the well-known mixed finite element spaces
(BDM [10], BDFM [11], and RT [20]) and their associated approximation operators.
Similarly, the standard conforming Lagrangian finite element spaces will satisfy the
last estimate. Moreover, since the L2-projection is stable in H1(Ω2) as a consequence
of (A.2.c) we have also the following estimate

‖(I − Q2,h)p1‖1,Ω2 ≤ Chγ
2‖p2‖1+γ,Ω2 , for all p2 ∈ H1+γ(Ω2).

The error analysis is quite straightforward, namely, we prove the following error
estimate:

Theorem 3.2. Let (u, p1, p2) and (uh, p1,h, p2,h) denote the solutions of (2.7) and
(3.1), respectively. Let 0 < γ ≤ 1 and assume that u ∈ Hγ(Ω1), ∇ ·u, p1 ∈ Hγ(Ω1),
and p2 ∈ H1+γ(Ω2). Then

‖u− uh‖V+‖p1 − p1,h‖0,Ω1 + ‖p2 − p2,h‖1,Ω1

≤ C
(
hγ

1‖u‖γ,Ω1 + hγ
1‖∇ · u‖γ,Ω1 + hγ

1‖p1‖γ,Ω1 + hγ
2‖p2‖1+γ,Ω2

)(3.4)

with constant C independent of h1 and h2.

Proof. The approximation errors eh = Πhu − uh, e1,h = Q1,hp1 − p1,h, and e2,h =
Q2,hp2 − p2,h satisfy the discrete problem:

(a−1eh, χ) −(e1,h,∇ · χ) +〈e2,h, χ · n1〉Γ = 〈Φ1, χ〉, for χ ∈ Vh,

−(w1,∇ · eh) = 0, for w1 ∈ W1,

〈w2, eh · n1〉Γ −a(e2,h, w2) = 〈Φ3, w2〉, for w2 ∈ W2,

where,

〈Φ1, χ〉 = (a−1(Πhu− u), χ) + 〈Q2,hp2 − p2, χ · n1〉Γ
and

〈Φ3, w2〉 = −a(Q2,hp2 − p2, w2) + 〈w2, (Πhu− u) · n1〉Γ.

By the approximation properties (A.2) of Πh, Q1,h, Q2,h,

|〈Φ1, χ〉| ≤ C
(
hγ

1‖u‖γ,Ω1 + hγ
2‖p2‖1+γ,Ω2

)
‖χ‖V
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and

|〈Φ3, w2〉| ≤ C
(
hγ

2‖p2‖1+γ,Ω2 + ‖Πhu − u‖V

)
‖w2‖1,Ω2

≤ C
(
hγ

2‖p2‖1+γ,Ω2 + hγ
1‖u‖γ,Ω1 + hγ

1‖∇ · u‖γ,Ω1

)
‖w2‖1,Ω2.

The above two estimates and Theorem 3.1 show that ‖eh‖V+‖e1,h‖0,Ω1 +‖e2,h‖1,Ω2 is
bounded by the right hand side of (3.4). The theorem immediately follows from this,
the approximation properties of Πh, Q1,h and Q2,h and the triangle inequality.

4. Iterative Solution

We consider the problem of computing the solution of (3.1) in this section. We
first consider preconditioning the composite system. This system is symmetric and
indefinite. Preconditioners result from the a priori estimates for the discrete solution
established in Theorem 3.1. The second approach is by domain decomposition. It
uses the solution of subdomain problems to reduce to an iteration involving only
unknowns on Γ.

4.1. Preconditioning the composite saddle–point problem. We first consider
preconditioning the discrete algebraic system resulting from the composite problem.
Let X denote the product space Vh×W2×W1 and consider the operator A : X → X
given by

A =

⎡⎣ A1 TT NT

−T A2 0
N 0 0

⎤⎦ ·(4.1)

Here

(A1χ, θ) = (a−1χ, θ) for all χ, θ ∈ Vh,

(Nχ, w1) = (NT w1, χ) = −(∇ · χ, w1) for all χ ∈ Vh, w1 ∈ W1,

(Tχ, w2) = (TT w2, χ) = 〈w2, χ · n1〉Γ for all χ ∈ Vh, w2 ∈ W2,

(A2v2, w2) = a(v2, w2) for all v2, w2 ∈ W2.

We also consider the block diagonal operator

D =

⎡⎣ Λ 0 0
0 A2 0
0 0 I

⎤⎦
where (Λχ, θ) = (a−1χ, θ) + (∇ · χ, ∇ · θ) for all χ, θ ∈ Vh. By Theorem 3.1, for
any U ∈ X ,

|||U|||2D ≤ C|||AU|||2D−1 = C sup
θ∈X

(AU, θ)2

(Dθ, θ)
≤ C|||U|||2D.(4.2)

Here ||| · |||D denotes the operator norm given by ||| · |||D = (D·, ·)1/2 and the pairing
(·, ·) denotes the inner-product in the product space X .
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In practice, one represents the above operators in terms of bases. Combining the
bases for the three spaces which define X gives rise to a basis {Ψi}n

i=1. Let Ā be
the matrix corresponding to the operator A, i.e.,

Āij = (AΨj, Ψi).

The matrix D̄ corresponding to D is defined analogously. The above inequality (4.2)
can be rewritten in terms of matrices as

c0(D̄x) · x ≤ (ĀT D̄−1Āx) · x ≤ c1(D̄x) · x,(4.3)

for all x ∈ Rn. Here ĀT denotes the transpose of the matrix Ā. The algebraic
problem corresponding to (3.1) is to find the vector x ∈ Rn satisfying

Āx = b

for an appropriately defined b.
The inequality (4.3) implies that reformulated system

ĀT D̄−1Āx = ĀT D̄−1b

can be preconditioned by D̄−1. This can be solved by a rapidly convergent pre-
conditioned iteration. In addition, the operators Λ and A2 can be replaced by
preconditioners. Instead of preconditioning the normal system one can alternatively
precondition the original saddle–point system suing the same block–diagonal pre-

conditioner D−1
in the minimum residual method.

4.2. Preconditioning reduced problems by interface domain decomposi-
tion. We next consider strategies based on domain decomposition. Specifically, we
consider the case when existing software is available for solving the mixed and finite
element problems independently. The idea is to reduce the original problem (3.1) to
a problem on Γ. We give two examples of such reductions. The reduced problems
are symmetric, positive definite and well-conditioned with respect to appropriate
inner-products. These are Dirichlet-Neumann domain decomposition algorithms.

To develop the reduced system, we first introduce (ũh, p̃1,h, p̃2,h) in Vh ×W1 ×W2

satisfying

(a−1ũh, χ) − (p̃1,h,∇ · χ) = 〈F1, χ〉, for χ ∈ Vh,

−(w1,∇ · ũh) = 〈F2, w1〉, for w1 ∈ W1,

− a(p̃2,h, w2) = −〈F3, w2〉, for w2 ∈ W2.

(4.4)

The first two equations above correspond to a mixed finite element problem on Ω1

while the third is a finite element problem on Ω2. The remainder (vh, q1,h, q2,h) =
(uh − ũh, p1,h − p̃1,h, p2,h − p̃2,h) satisfies

(a−1vh, χ) − (q1,h,∇ · χ) = −〈p̃2,h + q2,h, χ · n1〉Γ, for χ ∈ Vh,

−(w1,∇ · vh) = 0, for w1 ∈ W1,

− a(q2,h, w2) = −〈w2, (ũh + vh) · n1〉Γ, for w2 ∈ W2.

(4.5)
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In our analysis we shall need the following trace inequalities:

‖w2‖H
1/2
0,0 (Γ)

≤ C‖w2‖1,Ω2 for all w2 ∈ Q2,(4.6)

and

‖η · n‖H−1/2(Γ) ≤ ‖η · n‖H−1/2(∂Ω1) ≤ C‖η‖V for all η ∈ V.(4.7)

Here H
1/2
0,0 (Γ) is the interpolation space which is halfway between H1

0 (Γ) and L2(Γ)

and H−1/2(Γ) denotes its dual.
We will reformulate (4.5) in terms of operators on the spaces

W−1/2(Γ) = {χ · n1 on Γ : χ ∈ Vh}
and

W 1/2(Γ) = {q|Γ : q ∈ W2}.
We use the H

1/2
0,0 (Γ) norm (respectively, the H−1/2(Γ) norm) on W 1/2(Γ) (respec-

tively, W−1/2(Γ)). Define E : W 1/2(Γ) �→ W−1/2(Γ) by Eσ = wh(σ) ·n1 on Γ where
(wh(σ), r) ∈ Vh × W1 is the solution of

(a−1wh(σ), χ) −(r,∇ · χ) = 〈σ, χ · n1〉Γ, for χ ∈ Vh,

−(w1,∇ · wh(σ)) = 0, for w1 ∈ W1.
(4.8)

The operator E has a meaning of discrete Dirichlet-Neumann mapping on Γ. Indeed,
by (4.8) a given data σ is first projected by the operator Πh on the trace on Γ of the
normal component of Vh and then extended as discrete harmonic function wh(σ) by
the mixed finite element method (with homogeneous Neumann data on the rest of
∂Ω); finally, the normal component wh(σ)·n1 on Γ is the desired Dirichlet-Neumann
map.

In addition, define S : W−1/2(Γ) → W 1/2(Γ) by Sγ = wh(γ) on Γ where wh(γ) ∈
W2 is the solution of

a(wh(γ), q) = 〈γ, q〉Γ for all q ∈ W2.(4.9)

Clearly, wh(γ) is discrete harmonic. This is the Neumann-Dirichlet mapping gener-
ated by the discrete solution of the elliptic problem in Ω2.

It follows from (4.6) and (4.7) that both S and E are bounded operators on these
spaces with bounds which do not depend on h1 or h2.

In terms of these operators, (4.5) becomes

vh · n1 = −E(p̃2,h + qΓ
2,h)

qΓ
2,h = S((ũh + vh) · n1).

(4.10)

Here qΓ
2,h is the trace of q2,h on Γ. Eliminating vh · n1 gives

(I + SE)qΓ
2,h = S(ũh · n1 − Ep̃2,h).(4.11)

Note one can immediately recover the remainder (vh, q1,h, q2,h) from qΓ
2,h (or vh ·n1)

by one additional solve on each subdomain. Thus, (4.11) reduces the problem of
computing the remainder to a problem on the boundary Γ.
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We consider the inner product on W 1/2(Γ) × W 1/2(Γ) defined by

〈〈v, w〉〉 = a(v̄, w̄)

where v̄ and w̄ respectively denote the discrete harmonic extensions of v and w in the
space W2. It is well-known that the corresponding norm on W 1/2(Γ) is equivalent

to the H
1/2
0,0 (Γ) norm. This equivalence holds uniformly independently of h2. The

following theorem shows that (4.11) can be effectively solved by conjugate gradient
iteration.

Theorem 4.1. The operator SE is symmetric and positive semi-definite with re-
spect to the inner product 〈〈·, ·〉〉. Moreover, SE is bounded in the corresponding
norm with bound K independent of h1 and h2. Thus, (I + SE) is symmetric and
positive definite on W 1/2(Γ) and has a condition number bounded by K + 1. The
resulting conjugate gradient iteration converges with a rate bounded independently
of h1 and h2.

Proof. Let σ be in W 1/2(Γ). Note that wh(Eσ) equals SEσ on Γ and is discrete
harmonic. Thus, for any γ ∈ W 1/2(Γ),

〈〈SEσ, γ〉〉 = a(wh(Eσ), γ̄) = 〈Eσ, γ〉Γ.

But Eσ = wh(σ) · n1. Using the fact that (∇ ·wh(σ), w1) = 0 for all w1 ∈ W1 gives

〈〈SEσ, γ〉〉 = (a−1wh(σ),wh(γ)).

This shows that SE is symmetric and positive semi-definite.
Finally, it easily follows from the stability properties of the mixed finite element

problem on Ω1 and (4.7) that

〈SEσ, σ〉Γ = (a−1wh(σ),wh(σ)) ≤ C‖σ‖2

H
1/2
0,0 (Γ)

.

The theorem follows from the equivalence of the norm 〈〈·, ·〉〉1/2 with the H
1/2
0,0 (Γ)

norm on W 1/2(Γ).

Remark 4.1. The operator E is the discrete analogue of solving a problem on Ω1

with Dirichlet boundary conditions on Γ. The operator S corresponds to solving a
problem on Ω2 with Neumann boundary conditions on Γ.

Remark 4.2. The inner product which makes I+SE into a symmetric and positive
definite operator involves discrete harmonic extension with respect to the subspace
W2. This poses no additional computational problems. In fact, a carefully imple-
mented conjugate gradient algorithm for (4.11) need only have one mixed solve on
Ω1 and one finite element solve on Ω2 per iterative step (after startup).

Alternatively, it is possible reduce to an equation for vh · n1 on Γ by eliminating
qΓ
2,h in (4.10). One then gets

(I + ES)(vh · n1) = −E(p̃2,h + S(ũh · n1)).(4.12)
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Given uh · n1 ∈ W−1/2(Γ), we define (ūh, P ) ∈ Vh × W1 by

ūh · n1 = uh · n1 on Γ,
(a−1ūh, χ) − (∇ · χ, P ) = 0, for all χ in Vh with χ · n1 = 0 on Γ,

(∇ · ūh, q) = 0, for all q in W1.
(4.13)

Let 〈〈·, ·〉〉 denote the inner-product

〈〈uh · n1,uh · n1〉〉 = (a−1ūh, ūh) for all uh · n1 ∈ W−1/2(Γ).(4.14)

Lemma 4.1. Assume that the Ω1 mesh restricted to Γ consists of edge segments
{Ei} which satisfy

length(Ei) ≥ Ch1, for all i.(4.15)

Then the inner-product defined by (4.14) gives rise to a norm which is equivalent
(independently of h1) to ‖ · ‖H−1/2(Γ) on W−1/2(Γ).

Proof. The bound
‖uh · n1‖2

H−1/2(Γ) ≤ C(a−1ūh, ūh)

follows immediately from (4.7) and the fact that ∇ · ūh = 0.
For the other direction, we reduce the problem to one of discrete (divergence–free)

extension. Let uh · n1 be in W−1/2(Γ). Suppose that we have defined ũh ∈ Vh with
ũh · n1 = uh · n1 on Γ, ∇ · ũh = 0 in Ω1 and

‖ũh‖V ≤ C‖uh · n1‖H−1/2(Γ).

Let ūh = ũh + wh. Then wh · n1 = 0 on Γ and

(a−1wh, χ) − (∇ · χ, P ) = −(a−1ũh, χ), for all χ in Vh with χ · n1 = 0 on Γ,

(∇ · wh, q) = 0, for all q in W1.

Here P is as in (4.13). Since the mixed finite element pair is stable,

‖wh‖V ≤ C‖ũh‖V ≤ C‖uh · n1‖H−1/2(Γ),

it is immediate from the triangle inequality that

(a−1ūh, ūh)
1/2 ≤ C‖uh · n1‖H−1/2(Γ).

This is the second inequality of the lemma. Thus, to complete the proof of the
lemma, we need only construct ũh. A regularity–free proof for two–dimensional
domains is found in [19]. We below provide a simpler proof which relies on certain
minimal regularity assumption.

We consider the function φ satisfying

∆φ = 0, in Ω1,

∂φ

∂n1
= uh · n1, on Γ,

φ = 0, on ∂Ω1 \ Γ.

Then

D(φ, θ) = F (θ),(4.16)
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for all θ ∈ H1(Ω1) with θ = 0 on Ω1 \ Γ. Here D(·, ·) denotes the Dirichlet inner-
product on Ω1 and F denotes the functional F (θ) = 〈u · n1, θ〉Γ. We define ũh =
Πh(∇φ).

We clearly have that (∇φ)·n1 = uh ·n1 on Γ and so, by (A.3), (Πh∇φ)·n1 = uh ·n1

on Γ. Furthermore,

‖∇φ‖V ≤ C‖uh · n1‖H−1/2(Γ).

In addition, for any γ in (0, 1/2),

‖(I − Πh)(∇φ)‖V ≤ Chγ
1‖φ‖1+γ,Ω1.

For some γ in (0, 1/2), we assume that the following regularity estimate holds for
the mixed boundary value problem: Solutions of (4.16) satisfy

‖φ‖1+γ,Ω1 ≤ C(γ)‖F‖−1+γ,Ω1.

Now,

‖F‖−1+γ,Ω1 = sup
θ

〈uh · n1, θ〉Γ
‖θ‖1−γ,Ω1

≤ C sup
θ

〈uh · n1, θ〉Γ
‖θ‖1/2−γ,Γ

= C‖uh · n1‖H−1/2+γ(Γ).

Here the supremum is over θ in H1(Ω1) with θ = 0 on Ω1\Γ. By the quasi-uniformity
of the mesh on Γ,

‖uh · n1‖H−1/2+γ(Γ) ≤ Ch−γ
1 ‖uh · n1‖H−1/2(Γ).

Combining the above inequalities gives

‖ũh‖V ≤ ‖∇φ‖V + ‖(I − Πh)∇φ‖V ≤ C‖uh · n1‖H−1/2(Γ).

This completes the proof of the lemma.

Theorem 4.2. Assume that (4.15) holds. The operator ES is symmetric and pos-
itive semi-definite with respect to the inner product 〈〈·, ·〉〉 defined by (4.14). More-
over, ES is bounded in the corresponding norm with bound K independent of h1

and h2. Thus, (I + ES) is symmetric and positive definite on W−1/2(Γ) and has
a condition number bounded by K + 1. The resulting conjugate gradient iteration
converges with a rate bounded independently of h1 and h2.

Proof. A straightforward computation shows that for uh · n1,vh · n1 ∈ W−1/2(Γ),

〈〈ES(uh · n1),vh · n1〉〉 = a(wh(uh · n1), wh(vh · n1))

where wh(·) was defined by (4.9). This shows that ES is symmetric and positive
semi-definite. The theorem is a consequence of the a priori estimate

‖wh(uh · n1)‖1,Ω2 ≤ C‖uh · n1‖H−1/2(Γ)

and Lemma 4.1.



COMBINED MIXED AND STANDARD GALERKIN DISCRETIZATION METHODS 13

5. Numerical experiments

In this section we illustrate the method on the following two dimensional test
example:

• the domain is Ω = Ω1 ∪Γ∪Ω2, where Ω1 = (0, 1)× (0, 1), Γ = {(1, y), 0 < y <
b}, b < 1 is a given parameter, and Ω2 = (1, 1 + b) × (0, b);

• the elliptic problem in Ω1 is −∇ · a1∇p1 = f1, where the coefficient matrix

a1 =

[
1 + 10x2 + y2 1

2
+ x2 + y2

1
2

+ x2 + y2 1 + x2 + 10y2

]
;

the exact solution is p1(x, y) = (1 − x)2x(1 − y)y, hence u = −a1∇p1.
• the elliptic problem in Ω2 is −∇ · a2∇p2 = f2, where the coefficient matrix is

just the identity, i.e. a2 = I, and the exact solution is p2(x, y) = 105(1 + b −
x)(x − 1)2y(b− y).

Note that,

p(x, y) =

{
p1(x, y), in Ω1,
p2(x, y), in Ω2

is an H1(Ω)–function since [p]|Γ = 0 and (a1∇p1) · n1 = (a2∇p1) · n1 on Γ. Also, p
vanishes on ∂Ω.

To discretize the problem we used lowest order Raviart–Thomas spaces on uniform
triangular mesh of size h1 in Ω1 and conforming piecewise linear functions over
uniform triangles in Ω2 with mesh-size h2. We write the resulting linear system in
the form ⎡⎣ A1 NT TT

N 0 0
T 0 −A2

⎤⎦⎡⎣ uh

p1, h

p2, h

⎤⎦ =

⎡⎣ 0
f1
f2

⎤⎦ ·

The corresponding Neumann problems on Ω2 we solve exactly by LU factoriza-
tion. Similarly, to compute the actions of the Schur complement S̃, that corresponds
to discrete harmonic extension in Ω2, i.e., < S̃w2, v2 >Γ= (a2∇w̃2, ∇ṽ2), where ṽ2

and w̃2 are the discrete harmonic extensions of v2 and w2 – piecewise linear func-
tions on the interface Γ (vanishing at the end points of Γ), we compute the matrix
representation of S̃ explicitly, by appropriate exact factorization of the subdomain
(Neumann) stiffness matrix A2. Thus, the above discrete problem is reduced to
a problem for the unknown uh, p1, h, and pΓ

2, h := p2, h|Γ by solving a Neumann
problem on Ω2, i.e., by solving A2p̃2, h = f2. The latter leads to,⎡⎣ A1 NT TT

Γ

N 0 0

TΓ 0 −S̃

⎤⎦⎡⎣ uh

p1,h

pΓ
2,h

⎤⎦ =

⎡⎣ −TT
Γ p̃2, h

f1
0

⎤⎦ ·

We used the following solution methods:
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• the MINRES (minimum residual method) for the above reduced system with
the following preconditioner:⎡⎣ B1 0 0

0 I 0

0 0 S̃

⎤⎦ ;

Here, B1 stands for an algebraically stabilized version of the hierarchical basis
method (HB) from [13]. Details on the algebraic stabilization of the HB meth-

ods are found in [22]. The I is the (diagonal) mass matrix and S̃ is a discrete
Neumann–Dirichlet mapping, which we invert exactly. (I.e., it corresponds to
solving a discrete Neumann problem in Ω2 and restrict the result to Γ.) Note
that the thus described preconditioned MINRES method is exactly equivalent
to the preconditioned MINRES method applied to the original (unreduced)
problem with the block-diagonal preconditioner⎡⎣ B1 0 0

0 I 0
0 0 A2

⎤⎦ ,

since the successive iterates and search directions are discrete harmonic (with
respect to A2) functions in Ω2.

• the CG method applied to the reduced problem (4.11); the stopping criterion
here was until relative residual reduction of 10−6 has been reached.

Let the grid in Ω1 have mesh-nodes denoted by (xi, yj), 0 ≤ i ≤ nx, 0 ≤ j ≤ ny,
nx = ny = 1/h1, hx = hy := h1. Most of the errors are computed at the shifted
by half step-size points, namely we use also the points xi−1/2 = xi − 0.5hx and
yj−1/2 = yj − 0.5hy. Finally, Ih stands for the finite element interpolation operator.

In the Table 1 we show:

(i) δp = ‖Ihp1 − p1,h‖h ≡
[

nx∑
i=1

ny∑
j=1

hxhy(p1(xi−1/2, yj−1/2) − p1,h(xi−1/2, yj−1/2))
2

] 1
2

,

i.e., a discrete L2–norm of the error p1 − ph;

(ii) δu1 = ‖Ihu1 − uh, 1‖h ≡
[

nx∑
i=0

ny∑
j=1

hxhy(u1(xi, yj−1/2) − uh, 1(xi, yj−1/2))
2

] 1
2

,

i.e., a discrete L2–norm of the error u1 − uh,1;

(iii) δu2 = ‖Ihu2 − uh, 2‖h ≡
[

nx∑
i=1

ny∑
j=0

hxhy(u2(xi−1/2, yj) − uh, 2(xi−1/2, yj))
2

] 1
2

,

i.e., a discrete L2–norm of the error u2 − uh, 2;
(iv)

δuint
= ‖Ih(u− uh)‖h ≡[

nx∑
i=1

ny∑
j=1

hxhy

(
(u · n)(xi−1/2, yj−1/2) − (uh · n)(xi−1/2, yj−1/2)

)2

] 1
2

,



COMBINED MIXED AND STANDARD GALERKIN DISCRETIZATION METHODS 15

h1 = 1/16 h1 = 1/32 h1 = 1/64 h1 = 1/128 ≈
h2 = b/16 h2 = b/32 h2 = b/64 h2 = b/128 order

δp 3.18e-2 7.57e-3 1.83e-3 4.57e-4 2
δu1 0.5749 0.1343 3.27e-2 7.87e-3 2
δu2 0.3617 8.87e-2 2.21e-2 5.51e-3 2
δuint

0.3792 9.42e-2 2.37e-2 5.93e-3 2
δp2 0.1519 3.44e-2 7.71e-3 1.91e-3 2

# iterations 57 71 86 92
	 0.69 0.74 0.78 0.79

Table 1. Error behavior and iteration counts for the composite prob-
lem; b = 0.55.

h2

h1 b/16 b/32 b/64 b/128

1/16 11, 0.21 12, 0.26 13, 0.30 13, 0.30

1/32 12, 0.30 15, 0.39 15, 0.39 15, 0.39

1/64 10, 0.22 14, 0.36 16, 0.39 15, 0.39

1/128 9, 0.21 11, 0.27 15, 0.38 16, 0.40

Table 2. Number of CG iterations and average reduction factors for
solving the system (I + SE)q2,h = rhs2,h; b = 0.55.

i.e., a discrete L2–norm of the error u · n − uh · n, where n is the unit normal
vector to the edge with end-points (xi−1, yj−1) and (xi, yj);

(v) a discrete H
1/2
0,0 (Γ)–norm of the error (Ihp2 − ph2)|Γ;

(vi) the number of iterations of the preconditioned MINRES method;
(vii) an average reduction factors 	.

The second test demonstrates the convergence of the CG method applied to the
matrix of the reduced problem (4.11). We have chosen a random r.h.s.2, h2, and the
iterations were stopped after the norm of the residual has been relatively reduced
by 10−6. Here we varied the meshes h1 and h2 to see the sensitivity of the method
with respect to the discrepancy of the grids. As it is seen, the convergence appears
to be fairly insensitive to the mesh sizes, all in good agreement with the theory (see,
e.g., Theorem 4.1).
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