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In this paper we study finite volume element approximations for two-dimensional
parabolic integro-differential equations, arising in modeling of nonlocal reactive
flows in porous media. These types of flows are also called NonFickian flows and
exhibit mixing length growth. For simplicity we only consider linear finite vol-
ume element methods, although higher-order volume elements can be considered
as well under this framework. It is proved that the finite element volume ap-
proximations derived are convergent with optimal order in H!- and L2?-norm and
superconvergent in a discrete H!'-norm. By examining the relationships between
finite volume element and finite element approximations, we prove convergence
in L>°- and W1>-norms. These results are also new for finite volume element
methods for elliptic and parabolic equations.

1 Introduction

Here we consider finite volume element discretizations of the following initial
value problem: Find v = u(x,t) such that

t
ut—V-(AVu)—/ V- (BVu(s))ds=f, z€Q, 0<t<T,
0

u(z,t) =0, =xz€0Q, 0<t<T, (1)
’U/(ZU,O) :U()(CU), ZUEQ,
where 2 is a bounded convex polygon in R? with a boundary 0, A =
{a;j(z)} is a 2 x 2 symmetric matrix that is uniformly positive definite in
Q; B = {b;;(x,t,s)} is a 2 x 2 matrix and f = f(z,t) and uo(z) are known
functions, which are assumed to be smooth and satisfy certain compatibility
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conditions for z € Q and ¢ = 0 so that Eq. (1) has a unique solution in a
certain Sobolev space.

This model appears in transport of contaminants in aquifers, an area of
active interdisciplinary research of mathematicians, engineers and life scien-
tists (see, e.g. ©%). From a mathematical point of view, the evolution of either
a passive or reactive chemical within a velocity field exhibiting many scales de-
fies representation using classical Fickian theory. The evolution of a chemical
in such a velocity field when modeled by Fickian type theories leads to a dis-
persion tensor whose magnitude depends upon the time-scales of observation.
In order to avoid such difficulties, a new class of nonlocal models of transport
has been derived. In this case, the constitutive relations involve either inte-
grals or higher-order derivatives, which take multi-scales into consideration.
We refer the reader to ° for derivations of the mathematical models and for
the precise hypotheses and analyses.

Mathematical formulations of this kind arise naturally also in various en-
gineering applications, such as heat conduction, radioactive nuclear decay in
fluid flows, '” non-Newtonian fluid flows, viscoelastic deformations of mate-
rials with memory, !> biotechnology etc. One very important characteristic
of all these models is that they all express conservation of a certain quantity
(mass, momentum, heat, etc.) for any subdomain. This in many applications
is the most desirable feature of the approximation method when it comes to
numerical solution of the corresponding initial boundary value problem.

Problems like Eq. (1) have been extensively treated by finite element,
finite difference, and collocation methods (see, e.g. !1:16) while very few
results are known for finite volume methods. The finite element method is
approximately locally conservative and therefore in the asymptotic limit (i.e.
when the grid step-size tends to zero) it will produce adequate results. How-
ever, this could be a disadvantage when relatively coarse grids are used. The
finite volume method exactly conserves the flux (heat, mass, etc) over each
computational cell. This important property, combined with its adequate
accuracy and ease of the implementation, has contributed to the recently re-
newed interest in the method.

The finite volume element method discretization technique can be charac-
terized as an approximation in the framework of the standard Petrov-Galerkin
weak formulation. It involves two spaces: the solution space S, of piece-wise
linear continuous functions over the finite element partition, and the test space
S} of piece-wise constant functions over the finite (control) volume partition.
The test space S; essentially ensures the local conservation property of the
method similar to that of the mixed finite elements. However, in contrast to
the mixed method it leads to definite but, in general, nonsymmetric problems.
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To the best of the authors’ knowledge, the finite volume element approx-
imations of the Eq. (1) have not been studied before. We first introduce the
concept of finite volume element approximations, the domain partitioning into
finite elements and finite (control) volumes, various discrete norms and no-
tations, and then we state some auxiliary results. First, we characterize the
finite dimensional spaces S; and S} and show the weak coercivity and the
boundness of the corresponding bilinear form on Sj, x S;. Once these funda-
mentals have been established, we derive our semi-discrete and fully-discrete
(in time) locally conservative discretization schemes. Our main goal is to
analyze the convergence rates of these schemes in H'- and L2-norms under
minimal regularity of the solution. Namely, we obtain optimal order first-
order error estimates in the H'-norm for solutions in H?(2) and second-order
estimates in the L2-norm under the additional assumption that the solution
u is in W3P(Q) for 1 < p < 2. This indicates that in terms of regularity, the
L2-estimate is sub-optimal. Further results concerning L*-error estimates
and superconvergence can be found in our paper.

2 Finite Volume Element Approximation

In this section, we introduce all notations that are necessary for the further
consideration and derive the finite volume element discretization of the model
problem. Next, we state some auxiliary results, introduce a Ritz-Volterra
projection, and study its properties. The complete proofs of the corresponding
lemmas and theorems can be found in. ®

We use the standard notations for Sobolev spaces W*P(Q2) for 1 < p < oo
for functions having generalized derivatives of order s, integrable with power
pin Q. The norm W*?(Q) is defined by

1/p

allape = [l p = / S Doulds | for 1 <p< oo,
Q
\

a|<s

with the standard modification for p = co. In order to simplify the notations,
we denote W*2(Q2) by H®(Q), and we skip the index p = 2 and Q when
possible, i.e. ||ulls2,0 = |Julls,0 = ||u|ls- We denote by H} () the subspace
of H'(Q) of functions vanishing on the boundary 99.

For functions defined on the cylinder Q x J, where J = [0,T], we shall
also use the notation of spaces of functions with finite norms. Namely, L?(X)
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will denote the Banach space of functions equipped with the norm:

T 1/p
(/ ||u||§(dt> C l<p<oo
0

The domain € is split into triangular finite elements K. The elements K are
considered to be closed sets and the triangulation is denoted by T}. Then
) = Uger, K and N}, denotes all nodes (vertices):

Nn={p: p isa vertex of element K € T and p € Q}.

In order to accommodate the Dirichlet boundary conditions we shall also need
the set of vertices internal to €, denoted by N}, i.e. Nf = N, N Q. For a
given vertex z;, we define by II(i) the index set of all neighbors of z; in N}.

For a given triangulation T}, we construct a dual mesh 7} based upon T,
whose elements are called control volumes. In the finite volume methods there
are various ways to introduce the control volumes. Almost all approaches can
be described in the following general scheme: in each triangle K € T} a
point ¢ is selected; similarly on each of the three edges Z;z; of K a point
x;; is selected; then ¢ is connected with the points x;; by straight lines -;;.
Thus, around each vertex z; € Ny, we associate the control volume V; € T},
which consists of the union of the sub-elements K € 7T}, which has z; as a
vertex. Also let v;; denote the interface of two control volumes V; and V;:
vij = V; NV, j € I1(@) (see Figure 1 and 2).

We call the partition T} regular or quasiuniform if there exists a positive
constant C' > 0, independent of h, such that

C'h? <meas(V;) < Ch?, forall V;eTy.

Here h is the maximal diameter of all elements K € T},. In this paper we shall
deal with a regular triangulation T}'.

The partition T} is said to be symmetric if z;; = v;; NZ;Z; is the middle
point of the line segment z;z;, and x;; is the middle point of v;; or 7;; has
two perpendicular axes of symmetry and z;; is their intersection point.

There are various ways of introducing regular control volume grids 77 .
The following two partitions are widely used in the finite volume element
method; we shall use in our paper (see Figures 2 and 2.

In the first control volume partition, the point ¢ is chosen to be the
medicenter (the center of gravity) of the finite element K and the points z;;
are chosen to be the midpoints of the edges of K (see Figure 2). This type
of control volume can be introduced for any finite element partition 7} and
leads to relatively simple calculations for both 2- and 3-D problems. Besides,
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X;

Figure 1. Volumes with medicenters as internal points and interface v;; of V; and Vj.

if the finite element partition 7}, is locally regular, i.e. there is a constant C'
such that Ch3. < meas(K) < h3., diam(K) = hk for all elements K € Tj,
then the finite volume partition T} is also locally regular.

In the second type of control volume, the point ¢ is the circumcenter of
the element K, i.e. the center of the circumscribed circle of K and z;; are
the midpoints of the edges of K. This type of control volume forms the so-
called Voronoi meshes. Then obviously v;; are the perpendicular bisectors of
the three edges of K (see Figure 2) This construction requires that all finite
elements are triangles of acute type, which we shall assume whenever such a
triangulation is used.

Vi

Figure 2. Volumes with circumcenters as internal points and interface v;; of V; and Vj.

We are now ready to define the finite element space Sy, of linear elements:
Sp={veC(Q): v|g islinear for all K € T, and v|pq = 0},
and its dual volume element space Sj:

Si={veL*): v|ly isconstant for all V € T; and v|sq = 0}.
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Obviously, S, = span{¢;(z) : z; € NP} and S} =span{x;(z) : z; € N}},
where ¢; are the standard nodal linear basis functions associated with the node
x; and x; are the characteristic functions of the volume V;. Let Ij, : C(Q) — S},
be the interpolation operator and I : C(2) — S; constant interpolation
operators, respectively. That is
Thu = Z u(z;)¢i(z), and Iju= Z u(zi)xi(z).
z;ENp z;ENp

The semi-discrete finite volume element approximation uy, of (1) is a so-

lution to the problem: find wuy(t) € Sy, for ¢ > 0 such that

t
(up,t,vn) + A(un,vp) +/ B(t, s;up(s),vp)ds = (f,vn), vn €S; (2)
0

U,h(O) = Uog,n € Sh,
or

(U}m,[;;vh) + A(uh,l,’zvh) (3)
t
+ / B(t, s;un(s), Ijvp)ds = (f, Lyvn),  vn € Sh.
0
Here the bilinear form A(u,v) is defined by

- Z v; AVu-ndS;, (u,v) € HA NH?x S},
A(u,v) = zieN, 7OV (4)
AVu - Vodz, (u,v) € H} x H3,
Q

where n denotes the outer-normal direction to the domain under considera-
tion. The form B(-,-) is defined in a similar way.
Remark 1 We use the same notation for the bilinear forms A and B de-
fined in two different ways on the pair of spaces Hy x H} and Hy N H? x Sj,
correspondingly. We hope that this will not lead to serious confusion while it
simplifies tremendously the notations and the overall exposition of the mate-
rial.

Next, we define the fully-discrete time stepping scheme. Let At > 0 be a
time-step size and ¢, = nAt, n =0,1,-- -, and g" = g(t,)-

The backward Euler scheme is defined to be the solution of u}} € S, such
that

un B un71 * * ks * *
<OhTth:IhUh> + A(up, Iyvy) + an,kB(tn,tk;uﬁ,Ihvh) = (f", Iyvp),
k=0

’U,?L(O) = up,p € Sh, (5)
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where w,, ; are the weights and the quadrature formula for evaluating the
integral in time. We assume that the error of the quadrature formula satisfies
the estimate:

tn

n—1 tn
M (tn, 8)g(s)ds = Y wn, ;M (tn,t;)g(t;)] < CAt/ (Ig + lg')dt-
0 j=1 0

We next define some discrete norms on S; and Sy, which are used in our
analysis:

unlg n = (un,un)on, with (un,vn)on = Y meas(Vi)uii = (Tjun, Irvn),
z;ENp

unlin = Y, Y meas(Vi) ((us —uj)/dy)?,
z; ENp x; €I1(4)
lunllf = lunlon +lunlin,  Mlunllls = (un, Iun),
where d;; = d(x;,x;), the distance between z; and z;.
In the lemmas below, we assume that the matrix A(z) may have jumps,
which are aligned with the finite element partition 7}, and over each element

the entries of the matrix A(z) are C'-functions. We also assume that T}, is a
regular partition of 2.

Lemma 1 (See, e.g. 2'2?) There exist two positive constants Co,C; > 0,
independent of h, such that
Colvrlon < llvrllo < Cilvnlon,  vn € Shy
Colllvelllo < llvnllo < Cillloalllo,  vh € Sk,
Collvnlli,n < llvnlly < Cillvnllin, — vi € Sh.
Lemma 2 (See, e.g. 2'2?) There exist two positive constants Co,C; > 0,
independent of h, and hg > 0 such that for all 0 < h < hg
|A(un, Iyvn)| < Cilunlinlvnlin, — wn, va € S, (6)
A(uh,I,’Zuh) > Co|uh|ih, Uh, Vp € Sh. (7)

Lemma 3 (See, e.g. 2%'2) If T}, is reqular, then there exists a positive con-
stant C > 0, independent of h, such that

|A(w — Ipu, Iyvp)| < Chllull2|velin,  vh € Sh. (8)

In the case of symmetric partitions and smooth solutions and due to the
cancellation in the local truncation error, one can get higher-order approxi-
mations by the same finite elements. Namely, we can prove:
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Lemma 4 (see, e.g. 8) If T}, is reqular and symmetric, then there exists a
positive constant C' > 0, independent of h, such that

|A(u — Ihu,I;;vh)| < C’h2||u||3|vh|17h, vp € Sh. 9)

In fact, if the triangulation T} is regular and any two adjacent elements
form an approximate parallelogram, then it can be proved that 12:

| A(u — Inu, Tyon)| < CB* (|[ulls + [ull2.00) [vnl1n, — vn € Sh-

This means that almost symmetric grids have the same convergence rates (for
smooth solutions) as the symmetric ones.

For any fixed 0 < ¢t < J, one can define the Ritz projection Rpu of
function u(z,t) where the operator Ry, : Hi N H? — S}, so that

A(u — Rpu, Ivp) =0, forall wp € Sp. (10)

Remark 2 The results of the above lemmas will lead to the following results:
(a) if the partition Ty, is reqular (quasiuniform) and u is H?-reqular, then

|lu — Rpully < Chllull2;
(b) if the partition is regular and symmetric and u is H?-reqular, then
|lw = Rpull1n < Ch?||ul]s.

The estimates stated above for the Ritz-projection are very useful in the
analysis of finite element and finite volume methods for parabolic equations.
However, these estimates will produce a suboptimal error estimate for the
discrete schemes for integro-differential equation. In order to obtain optimal
order estimates, we need a projection which also takes into account the integral
term. This type of projection has been called by Cannon and Lin® the Ritz-
Volterra projection and has been used in the context of the finite element
method.

Now we define the Ritz-Volterra projection Vyu of a function u defined
on the cylinder €2 x J and state its approximation properties. The full proofs
of the theorems stated below can be found, for example, in Ewing et. al..

The Ritz-Volterra projection Vj, : L>(Hi N H?) — L*°(S},) is defined for
0<t<Thy

¢
A(u — Vyu, Ijvy) + / B(t, s;u(s) — Vau(s), Ifvp)ds =0, vy € Sp. (11)
0

Theorem 1 Assume that the mesh T} is reqular and (1) Diu € L>(H?) for
all 0 <1 < k for some integer k > 0. Then, the Ritz-Volterra projection
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Viu is well-defined and for any t > 0 and 0 < I < k, there is a constant
C =C(t) > 0, independent of h, such that the following estimate holds true:

l t L
1Dy (u = Vyu)|p < Ch ZIIDZUII2+/ D lIDfu(s)|l2ds | . (12)
0 o

=0

In addition, if T} is also symmetric and Diu € L>(H?), then we have

l t
| Di(Inu = Vyu)hy < Ch® ZIIDZUII3+/ D lIDfu(s)llzds | . (13)
0 o

=0

Now we consider an estimate in the L?-norm for the Ritz-Volterra pro-
jection that is optimal with respect to the order of convergence but requires
W3P-regularity of the solution. Therefore, this estimate is suboptimal with
respect to the regularity of the solution and makes sense for p close to 1.
Namely, we prove the following result:

Theorem 2 Assume that the partition T}, is reqular and for some p > 1 and
an integer k > 0, Diu € L®(W?3?(Q)) for 0 <1 < k. Then for each t > 0
there exists a positive constant C = C(t) > 0, independent of h, such that for
0<I<k

l . t .
1D~ Vil < €2 3 (IDfullaet [ Dfullags) . (1)

=0
3  Error Estimates in L?- and H'-norms

In this section, we prove error estimates for the finite volume element approx-
imation in L?- and H!'-norms.

Theorem 3 Assume that Ty, is reqular and u, Dyu € L*°(H} N W?3P), for
some p > 1 and for all t > 0. Assume also that the approzimation uy(0)
of the initial data satisfies ||up(0) — uol|| < Ch?||ugl|la. Then there exists a
constant, independent of h and u such that for all t > 0

t
|w—wngmﬂ@wmm+Anwmw§- (15)
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Proof: Note that the interesting case is when p is close to 1. Let v — u;, =
(w — Vpu) + (Vhbu — up) = p + 0, where V}, is the Ritz-Volterra projection
defined above, so that by Theorem 2 we have

t
|MWscMQMM+AHwM@) (16)
t
WNWSCW<WMm+WMM+AHWM@>- (17)

Besides, by Eq. (3) and Eq. (11), 6 satisfies the equation
(01, Invn) + A0, 1;vn) (18)

t
+ / B(t7 S; 6(8)7 I;;Uh)ds = _(pt7 [;;Uh): vp € Sh-
0

Set v, = 0 € S}, to obtain

1d ¢
SO + Collllz < 0 [ leliads 1911 + Il el
2dt
0
t
C
< SO+ C [ iR+l el

so that after integration in time from 0 to t, we get

t t t t T
WW+AWW%sc@Mw%%wamwﬁAAA|WﬂWMQ.

Thus, Gronwall’s inequality leads to

t 1 t 2
|MF+/|M@msmW@W+—sw|W@W+c(/nmwQ,
0 2 o<s<t 0

and therefore

t t
HWsc(Wmm+cAnmw§scm(wmm+Amemﬁ-

Hence, Theorem 3 follows from (16), (17), and the above inequality together
with triangle inequality.

Now we derive the error estimate for the discrete H'-norm, which can
be interpreted as superconvergence of the gradient of the solution at some
particular points.

Theorem 4 Assume that Ty is reqular and symmetric and u,u; € L= (H} N
H3), for all t > 0. Assume also that the approzimation up(0) of the initial
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data satisfies ||up(0) — uol| < Ch%||uoll2. Then for any t > 0 there exists a
constant C = C(t) > 0, independent of h and u, such that

t
| — upli,p = [Inu —uply < Ch? <||u0||3 +/ ||ut||3ds> . (19)
0
Proof: We first note that |[u—up|1,n < |[Inu—Vhulr p+|Vau—up|i,n. Obviously

[Inu — Viul|in = |[Inw — Vauly and this term has already been estimated in
Theorem 1 for I = 0:

t
|Thu — Viuly < Ch? <||u||3 +/0 ||u(s)||3ds> . (20)

Therefore, we need to show that

t
[Vhu —uply = |Vau —uplip < Ch? <||u0||3 +/ ||ut||3ds> .
0

Set v, = 6; in (18), to get
1 1 d * * ¢ *
B3 + 555406 8 = ~(pes Ti80) = [ Ble,sio(o). ligo)ds  (2)
0
< Liipale + Lyenz - 1/tB(t 5:6(s), I;6())ds
=9 Pt 2 0 dt 0 y 9y s Lh
t
+ Bt :6(8), T;0(1) + / By(t, 5:6(s), I;6(t) )ds,
0

where By(t,s;-,) is the time derivative of B(t,s;-,-). This will lead to the
following inequality

d . d [t .
1116¢111o + %A(O,Iht%) < lpell” - 5/0 B(t,s;0(s), [,0(t))ds  (22)

t
+Cl6)y +c/ 10(s)2ds.
0

By integration and use of the coercivity of A(f, I}:6;), we get
t t
[ s + colorz < ¢ (IO + [ lndPas)
t t
+/ B(t,s;e(s),f,ja(t))ds+c/ 0]2ds
0 0

t C t
< (10O + [ llplPas) + Lo + ¢ [ lotas,
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and by Gronwall’s inequality, we see that

t t
[ s + o1 < ¢ (16013 + [ lidPas )
Noticing that
16olly < |[Viuo — uollr + |[to — un(0)]]1 < Ch?|Jugl|s,

Theorem 2 will imply

t
IWﬁSmf@%m+AHm%%>

and the required estimate (19) follows from (20).
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