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NUMERICAL WELL MODEL FOR NON�DARCY FLOW

R� EWING� R� LAZAROV� S�L� LYONS� D�V� PAPAVASSILIOU� J� PASCIAK� AND G�X� QIN

Abstract� Numerical simulation of �uid �ow in a hydrocarbon reservoir has to ac�
count for the presence of wells� The pressure of a grid cell containing a well is di�erent
from the average pressure in that cell and di�erent from the bottomhole pressure for
the well �Peaceman� ���	
� This paper presents a study of grid pressures obtained from
the simulation of single phase �ow through an isotropic porous medium using di�erent
numerical methods� Well equations are proposed for Darcy �ow with Galerkin �nite
elements and mixed �nite elements� Furthermore� high velocity �non�Darcy
 �ow well
equations are developed for cell�centered �nite di�erence� Galerkin �nite element and
mixed �nite element techniques�

�� Introduction

The di�culty in modeling wells in a �eld scale numerical simulation of a reservoir is
that the region where pressure gradients are largest �O��� ��ft�� is closest to the well
and is typically much smaller than the spatial scale of the associated computational
grid cell �O��� � ����ft��� Using local grid re�nement around the well can alleviate
this problem but can severely restrict the timestep size of the simulation� Futhermore�
the pressure calculated by numerical methods in the well block �or blocks sharing the
well as a corner point� is substantially di�erent from the 	owing bottom
hole pressure
of the modeled well� Therefore� a fundamental task in modeling reservoir wells is to
accurately model 	ow into the wellbore using larger grid sizes for full �eld simulations�
where larger timestep sizes are preferable and can be used� and to develop an accurate
well equation� which allows the calculation of bottomhole well pressure� Pw� when the
rate� Q� of production or injection is known� or the calculation of Q when Pw is known�
The �rst comprehensive study of this problem for cell
centered �nite di�erence ap


proximation on square grids was done by Peaceman in ��� for single phase Darcy 	ow
in two dimensions� Peaceman�s study presented a proper interpretation of the well

block pressure� and showed how it relates to the 	owing bottom
hole pressure� The
importance of this study is that the computed cell pressure has been associated with
the steady
state pressure for the actual well at an equivalent radius� reff � Contrary to
previous studies� which had related the computed cell pressure to the average pressure
of the radial 	ow over the grid cell� Peaceman derived that reff � ���h �here h is the
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cell
size� using three di�erent methods� �a� numerically� by solving the pressure equa

tion on a sequence of grids and producing reff � ���h� �b� analytically� by assuming
that the pressure at the adjacent block is computed exactly by the radial 	ow model
and getting reff � �����h� �c� by solving exactly the system of di�erence equations and
using the equation for the pressure drop between the injection and production wells in
a repeated �ve
spot pattern given by Muskat ��� and getting reff � ������h�
Peaceman�s study was extended in various directions �including o� center and mul


tiple wells within a well
block� non
square grids� anisotropic permeability� horizon

tal wells� etc� by a number of numerical analysts and petroleum engineers �see� e�g�
��� �� ��� ��� ���� Peaceman himself has extended his study to more general situations
including non
square grids and anisotropic permeability ��� and more general geome

tries ���� For arbitrary location of the well we refer to �� and for comparative study of
numerical simulation of horizontal wells we refer to ���� To our knowledge� all existing
studies are done for cell
centered �nite di�erence approximations of the pressure equa

tion� On the other hand� �nite element approximations have been already successfully
used for groundwater 	ow simulation �see� e�g� ��� �� ��� It is apparent that� in order
to use �nite elements in the presence of wells� it is necessary to derive accurate well
models for this important and widely used class of numerical methods�
In this paper we derive well equations for isotropic reservoirs in two di�erent di


rections� ��� single phase Darcy 	ow with mixed �nite element approximations on
triangular grids and Galerkin approximations for bilinear �nite elements on squares�
��� single phase high velocity �non
Darcy� 	ow with cell
centered �nite di�erences on
square grids� mixed �nite element approximations on triangular grids and Galerkin ap

proximations for bilinear �nite elements on squares� The governing equation used to
describe the non
Darcy 	ow is Forchheimer�s correlation between the pressure gradient
and the 	ow velocity�
High velocity 	uid 	ow through a porous media deviates from Darcy�s law� which

linearly correlates pressure drop and velocity ����� ��� Forchheimer�s quadratic relation
can be applied in such cases� However� in most simulations of 	ow through porous
media� the non
Darcy e�ect is incorporated through a skin coe�cient �see ���� de�ned
only in the computational cell con�ning the wellbore� This coe�cient is calculated from
well test data ���� The skin coe�cient approach is not accurate� especially in cases of
gas 	ow� where the 	uid velocity can be su�ciently high for the non
linear behavior to
appear at an extended region around the well ����
Our analysis is based on the fundamental assumption that the 	ow is radial in the

neighborhood of the well� Pressure dependence of the 	uid physical properties and use
of the quadratic Forchheimer equation introduce nonlinearities� However� the radial
	ow assumption can be veri�ed for isotropic porous media �see� e�g� �� and for more
general 	ows ���� Thus� our analysis can be used for quite general 	ow models and
various numerical methods and techniques�
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�� Analytic solution in the neighborhood of the well

The problem of modeling 	ow from a well with a radius which is substantially smaller
than the discretization parameter or mesh size requires the use of analytic formulas�
These formulas are only known in the case of simpli�ed 	ow situations and thus con

stitute practical limitations in their application� We present analytic formulas for the
Forchheimer 	ow in this section�
We consider the steady
state 	ow in porous media� The equation expressing the mass

conservation is�

r � �u � Q�������

Here �u is the mass 	ux� � is point �
function representing a well placed at the origin�
and Q is the mass production�injection rate of this well� The pressure p satis�es the
Forchheimer relation �see� e�g� ��� ����

�rp � ����K���� �j�uj��u������

where K is the permeability tensor� which has units of �length�� � is the viscosity� � is
the density� and � is a parameter with units of �length��� which is called Forchheimer�s
coe�cient and is a medium property that can be measured experimentally�
The basic assumption is that the 	ow is radial and that coe�cients are constant �at

least near the well�� Speci�cally� we assume that

�� The 	ow is two dimensional in x and y �no gravity term��
�� K is a constant K times the identity matrix� i�e� K � KI�
�� � is a constant�
�� � and � are constant in the neighborhood of the well�
�� The 	ow is radial in the neighborhood of the well�

We use the mass 	ux �or velocity� in order to have the production�injection rate� Q� in
terms of mass instead of volume� For 	uids with constant density this is equivalent to a
renormalization of the equation and leads to a formulation which will produce directly
the mass� We will discuss possible generalizations at the end of this manuscript�
Of the above assumptions� perhaps the most interesting is the last� It implies that

the well should be circular or its size so small that the variations in its geometry can
be neglected� The decay properties of the Green�s function then imply that the 	ow
becomes radial in the limit as one approaches the well �or singularity��
We derive the analytic model as follows� Assume that the well is at the origin and

introduce a polar coordinate system �r� ��� If the 	ow is radial then the velocity �u must
be of the form

�u � w�r��cos �� sin ���

Using ������

w� � r��w � �� for r � ��

i�e�� w � cr��� The constant c is proportional to Q� Since Q represents the mass
injection�production rate of the well� Q is in fact the mass 	ux through any small circle
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Table �� Darcy 	ow simulation conditions for veri�cation of the methodology

Injection rate ����mmscf	day
Production rate �� ����mmscf	day

Reservoir dimensions ��� ft� ��� ft� � ft
Initial pressure ���� psia

Initial temperature ���oF
Fluid density � � ����� ���� gr	cm�

Fluid viscosity � � ����� ���� cP
Reservoir permeability K � ��mD

B� centered at the origin� i�e�

Q � �
Z
B�

�u � �n ds � �
c� or c � � Q

�

�

Here �n is the outward normal on the circle�
The pressure� p� satis�es Forchheimer�s relation ����� and will tend to in�nity as

r � � in the case of an idealized point source well� Substituting

�u � � Q

�
r
�cos �� sin ��

in ������ dotting with the vector �n � ��� �� and integrating from �r�� �� to �r� �� gives

p�r�� p�r�� � F �r�� F �r�������

where

F �r� �
K���Q

�
�
log�r�� �QjQj

�
��r
�

Equation ����� is the analytical 	ow model for 	ow near the well�
We ran several tests to verify our codes and the above model� Results are presented

here from the triangular mixed �nite element code runs� The conditions for the simu

lations are given in Table �� The reservoir is square with four injection wells� each one
located at a corner cell� One producing well is located at the center of the reservoir�
which produces with a rate four times larger than each injecting well� We took advan

tage of symmetry and ran the code on a ���ft����ft region with one production and
one injection well with equal rates�
The absolute magnitude of the pressure cannot be determined from the analytic

model since the model is only valid in the neighborhood of the well� However� we were
able to �t the model to the output by aligning both curves at one point� We did this by
choosing some value of r� �typically� r� � ��ft� and normalized both the computed and
analytic value to be zero there� The pressure �eld close to the well was then predicted
with good accuracy� using the analytical model� Results from the triangular mixed �nite
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Figure �� The computed and analytic normalized pressure for � �
����� ����ft���

element code near an injection well for � � ����� ����ft�� are given in Figure � and
Figure �� The value of the Forchheimer coe�cient used in this case is at the high end of
the range of the experimental data �� in order to highlight the nonlinear e�ects� Since
the di�erence between the analytical and numerical solution is di�cult to see in the �rst
�gure� we include an expanded view in the second� We used a mesh size of h � ���	��
ft� The model and computed values agree to within �� throughout the reported range
of r �excluding r � ����� The results for the production well were identical except for a
change in sign�
For comparison� Figure � presents the case of � � �� Even though the di�erences in

pressure on the computation mesh is moderate� the Forchheimer e�ect is much more
prominent if one uses the analytic model to predict the pressure at an injection well�
For example� a well with radius of ����ft would have a wellbore pressure of ����psi for
� � � and ����psi when � � ����� ����ft��� The strong � dependence near the well is
even more evident if a larger � is used�

�� A well model for cell�centered finite differences and Forchheimer

flow�

In this section� we derive a well model for cell
centered �nite di�erences� The model
accounts for the behavior that results from Forchheimer�s term� The pressure in the cell
adjacent to the well
block is assumed to be accurately approximated� This is analogous
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Figure �� Block � containing a well and its four neighboring blocks

to the �rst approach of Peaceman� described in the introduction and it reduces to
Peaceman�s results when � � ��
The model of ��� is extended to include the Forchheimer e�ects� We consider the

problem described by ������ ����� in the case when the well is located in the center
of the center square of a square grid �see� Fig� ��� The cells are numbered by giving
the well cell index � and the cell to its right index �� Using summation by parts� the
discrete equations� which result from cell
centered �nite di�erence approximations� can
be written as

A�P� �� � �Q��������

Here P and � are vectors with dimension equal to the number of cells� The quadratic
form A��� �� is given by

A�v� w� �
X
Eij

��K���� �j�u�v�ijj����vi � vj��wi � wj��

where Eij is the edge between cells i and j� The quantity �u�v�ij is the normal component
of the mass 	ux associated with the pressure vector v at the edge Eij and satis�es
Forchheimer�s relation

����K���� �j�u�v�ijj� �u�v� � �vi � vj
h

������

Taking

�i �

�
� if i � ��

� otherwise�

in ����� and using the symmetry of the solution P �i�e� P� � P� � P� � P�� gives

��K���� �j�u��j����P� � P�� � �Q	�������
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Here j�u��j is the mass 	ux throught edge E� into the well cell and therefore

j�u��j � Q

�h
�

Substituting this back into ����� and simplifying gives

P� � P� � �QK���

��
� QjQj�

��h�
������

The analytic well model should be a relatively good approximation in cell �� This
means that if we are given a bottom
hole pressure Pw and a well radius rw�

P� � Pw � F �r��� F �rw�������

Adding ����� and ����� gives

P� � Pw � F �r��� F �rw�� QK���

��
� QjQj�

��h�
������

The above relation suggests that the pressure behavior near the well is signi�cantly
more complicated in the case of Forchheimer 	ow� In particular� the well model depends
nonlinearly on Q� �� � and the mesh size h�
The above model reproduces Peaceman�s result in the case of Darcy 	ow� Indeed if

� � � then ����� becomes

P� � Pw � QK���

�
�
�log

rw
h

�



�
�

� Pw � QK���

�
�
log

rw
��h

�

where �� � e���� � ������� � � � � This is the exact value obtained by Peaceman in ���
under the assumption that P� is already a very good approximation to the analytic
solution�
Introducing a new parameter� ��� such that

�

�
�

�
�

rw
� �

��h

�
�

�

�
�

�
�

rw
� �

r�

�
�

�

��h
�

gives �� � �	�� � 
��� Thus� the well model ����� can be rewritten

P� � Pw � QK���

�
�
log

rw
��h

� QjQj�
�
��

�
�

��h
� �

rw

�
������

To get a better understanding of the numerical solution at the cell
block containing
the well we have introduced a well model ����� using two parameters �� and ��� In
order to show the in	uence of the Forchheimer term and to compare the results with
the case of Darcy 	ows and Peaceman�s formula where reff � ���h� we shall derive a
formula with one parameter � � reff	h� The physical meaning of � is that it shows
the distance from the center of the well at which the numerically calculated pressure
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for the wellblock is equal to the analytic pressure� We �rst introduce the Forchheimer
number

Fo�x� �
�Kj�u�x�j

�
�

The Forchheimer number de�ned above varies pointwise and becomes very large at the
wellbore� For our purposes� we consider this quantity only at the boundary of the well
cell� i�e�

Fo �
�Kj�u��j

�
�

Note that the total 	ow Q into the well cell satis�es jQj � �hj�u��j so

Fo �
�KjQj
�h�

������

To develop a single parameter presentation of ����� we look for an � such that

P� � Pw � F �r��� F �rw�� QK���

��
� QjQj�

��h�

� Pw � F ��h�� F �rw��

�����

Simple manipulations give

P� � Pw � �Q

�
k�

��
log�rw	h� �




�

�
� Fo

�
�



��� h

rw
� �




�

��

� Pw � �Q

�
k�

�
log�rw	�h� �

�Fo



�
�

�
� h

rw
�

�
�

This leads to the following nonlinear equation for the parameter ��




�
�� � Fo� � ln

�
�

�

�
�

�



Fo

�
�

�
� �

�
�������

In the case of Darcy 	ow� when � � �� the Forchheimer number is identically zero and
this equation reduces to Peaceman�s result 
	� � ln��	�� or � � ��� In addition� as
Fo tends to in�nity� � tends to �� � �	�� � 
��� Clearly� the one and two parameter
models are mathematically identical and only di�er in the presentation of the constant
of integration�
In order to check the validity of the well model we have performed additional nu


merical simulations of the �ve
spot reservoir discussed earlier� A stationary state is
achieved after very few time steps� Figure � was produced using our �nite di�erence
code applied to the � � � case� It reproduces the results of Peaceman� Note that the
Peaceman constant � � reff	h � ��h is given by the y � � intercept�
In Figure � we report the corresponding results for the case of Forchheimer 	ow� The

physical problem is the same as the one solved for Darcy 	ow and described in Table ��
In order to see clearly the e�ects of the nonlinearities� the Forchheimer coe�cient �
was chosen to be � � ���� � ���� ft��� The di�erence between the results shown on
Figures � and � leads to the obvious conclusion that use of the Darcy 	ow equivalent
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Figure �� Numerical solution for pressure in a �
spot well reservoir in
the case of Darcy 	ow�

radius in the case of non
Darcy 	ow may lead to signi�cant errors� Instead� one should
use one of the equivalent equations ������ ������ ������
Figure � gives a plot of the solution of ������� At high Fo� when the non
Darcy

e�ects are important� reff essentially does not change at reff � ��h � �����h� For
�  Fo  �� there is almost a linear increase in reff � It appears that use of Peaceman�s
approximation of reff � ���h in simulations where Forchheimer 	ow is important leads
to signi�cant overestimation of Pw �for producing wells��
Empirically� the well equation model proposed here can be tested with the results of

the simulation� The radial 	ow equation for Forchheimer 	ow �eqn� ���� can be written
for the pressure drop between the well
cell and its neighboring cells as

�Pr � Po�
�
k
Q
��

�

�
ln
� r
h

�
� �kQ

�
��

�
�

r

��
�
�
ln ���� �kQ

�
��h

�
�

�

��
������

which means that �Pr � Po� should vary linearly with ln
�
r
h

�� �kQ
����

�
�

r

�
� Figure � shows

pressure di�erences between the wellblock and the neighboring cells obtained by nu

merical simulation for Forchheimer 	ow� The simulation data are plotted with the
appropriate abscissa� as de�ned above� for di�erent cases� The linear relationship is
con�rmed in this �gure� The slope of each line does not depend on � or the dis

cretization� as predicted by equation ������� The intercept with the x
axis for each run
presented in Figure � can be used to obtain an empirical value for the ratio � � reff	h�
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Figure �� Numerical solution for pressure in a �
spot well reservoir in
the case of Forchheimer 	ow�

This empirical value for each simulation is compared in �gure � with the theoretically
obtained value of � �which can be calculated from the known Forchheimer number and
equation �������� The agreement is very reasonable �two signi�cant digits� considering
the crudeness of a graphical method�

�� A well model for Galerkin approximations using bilinear finite

elements

In a �nite element setting using bilinear �nite elements on a square grid� we consider
an ensemble of four �nite elements sharing a common vertex with index � �see Figure
��� We assume that the well is placed at the vertex � and the 	ow is radial in its vicinity�
We assume that bilinear �nite elements have been used and the 	ow is radial around
the well which is located at the point with index �� For computing the �nite element
sti�ness matrices we employ one
point quadrature �the quadrature uses the center of
the �nite element� in the case of element with nodal vertices �� �� �� and � shown on
Fig� � this is the point A��
The row in the sti�ness matrix corresponding to the unknown P� is compiled from

the integral X
e

Z
e

�
�
K���� �j�uj���rP � r�� dx � �Q������
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Figure �� Numerical solution for pressure in a �
spot well reservoir for
Forchheimer 	ow� Case � is for � � ���� � ����ft�� and case � is for
� � ����� ����ft��

where the summation is over the four �nite elements sharing the vertex �� Since P and
�� are piecewise bilinear functions and �� is the nodal basis function which is one on
the vertex �� We take �u to be the constant �ue on the cells containing the well�
Taking into account the radial symmetry of the solution P� which result in taking

P� � P� � P� � P� and P� � P� � P� � P�� we get the following �nite element equation
corresponding to the unknown P��

�

�
�
�
K���� �j�uej

���
��P� � P� � P�� � �Q������

The element �cell� velocity �ue satis�es the Forchheimer�s law �instead of Darcy�s law��
which relates the velocity to the pressure gradient� In the case of radial symmetry� one
can proceed as follows� �rst note that approximately we have

���
�
K���� �j�uej

� j�uej � P� � P�p
�h

������

In order to utilize equation ����� we need an approximate relation of the form

���
�
K���� �j�uej

� j�uej � P� � P�

�h
������
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Table �� � as a function of h and ��

h � � � � � ����� ���� � � ����� ����

� ���� ���� ����
��� ���� ���� ����
���� ���� ���� ����

Obviously� this approximation is not valid for � � � since this will give the x
derivative
of the pressure at the point on a distance ���h from the well instead of distance

p
�h	�

where the cell
velocity j�uej is computed� To �nd � we performed a series of numerical
experiments and �t the parameter� We use the same problem as described in Section ��
If the relationships ����� and ����� were true then the ratio �P� � P��	�P� � P�� should
have a constant value approximately equal to �	

p
��

From the given table we conclude that � � ���� is a reasonable approximation for
this parameter� Therefore� a reasonable approximation for the Forchheimer�s relation
����� for bilinear elements is given by

���
�
K���� �j�uej

� j�uej�� �p
��h � j�P� � P� � P�j������

We rewrite ����� and ����� in the form

��

�
Q � �

�
K���� �j�uej

���

��P� � P� � P���

juej�� �
p
��h � �

�
K���� ��j�uej

��� j�P� � P� � P�j�
Thus� we obtain

j�uej � �

�

jQj
�� �

p
��h

�
�����jQj

h
������

It follows that

�P� � P� � P� � ��Q

��
�K���� �jQj �

��� �
p
��h

��

Assuming that the well model accurately predicts the values at P� and P� gives

P� � Pw �
�

�
�F �r�� � F �r���� F �rw�� �Q

��
�K���� �jQj �

��� �
p
��h

��

A straightforward manipulation gives that ����� holds for the bilinear �nite element
approximation if we take

�� � ���� exp���
	��

�� �
��� �

p
��

��� �
p
���� � �	

p
�� � �
�

�
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�� Mixed finite element approximation on triangular grids

In this section� we develop a well model for a mixed �nite element approximation
based on lowest order Raviart
Thomas on triangles� This model is motivated by con

sidering �rst the case of Darcy�s law� It is then extended to the case of nonzero � by
making some additional assumptions� This model is similar to that developed in the
case of cell centered approximations ������ We �rst consider the case of quarter
plane
symmetry where the well is placed at the corner of the cell� Subsequently� we consider
the case of a well which is placed at the barycenter of an interior triangle�
The mixed �nite element approximation involves two approximation subspaces� Vh

for velocity and �h for pressure� In the case of lowest order Raviart
Thomas spaces�
Vh consists of piecewise linear vector functions which have continuous constant normal
components� The pressure space consists of discontinuous constants� The mixed �nite
element approximation to ����� ���� is the pair �U� P � � Vh � �h satisfying

�����K���� �jU j�U� ��� �P�r � �� � � for all � � Vh�

�r � U� �� � �Q� �� for all � � �h�
�����

In the above equations� the pairing ��� �� denotes

�v� w� �

Z
	

v�x�w�x� dx

when v and w are scalar functions and

�v� w� �

Z
	

v�x� � w�x� dx

when v and w are vector functions�
We start with the quarter plane symmetry case and put the well at the corner opposite

the hypotenuse in a square which is subdivided into two triangles by connecting the
vertices adjacent to the well vertex� The well triangle will be denoted �� and its neighbor
is ��� The pressure and velocity nodes are labeled as in Figure ���
We �rst consider the case of Darcy 	ow� As usual� the coe�cients are assumed

constant in the neighborhood of the well� Let �i� i � �� � � � � �� be the velocity basis
functions associated with the nodes fxig� By symmetry� the correct boundary condition
is no 	ow on the x and y boundary edges� This means that the solution U has zero
velocity nodal components on the nodes x� and x��
It is straightforward to check that

���� ��� � ���� ��� � ��

Note that the nodal velocity function �� is given by

���x� y� �

p
�

h
�x� y� for �x� y� � ���

p
�

h
�h� x� h� y� for �x� y� � ���
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Figure ��� Two triangular elements forming a cell with well

This means that in the case of Darcy Flow� the solution pair �U� P � satis�es

���K����U� ���� �P�r � ��� �
c��

��K������� ���� �P� � P��
p
�h �

c�
�K���

��
h� � �P� � P��

p
�h � ��

�����

Here c� is the coe�cient of �� in the expansion of U and P� and P� are the values of P
on the �� and �� respectively� The basis function �� de�ned above has a constant unit
normal on the edge between �� and ��� Consequently� the total 	ux Q is given by

Q � ��
p
�hc�������

Combining the two equations gives

P� � P� � � �Q

��K�
�

To extend this to the case of non
Darcy 	ow� we need to make some additional
assumptions� As in the bilinear �nite element case� we assume that the absolute value
of the velocity is constant in the cell� It is natural to take this value to be jUcj �
jU�h	�� h	��j � jU � n�h	�� h	��j � jc�j� Then� ����� is replaced by

����K���� �jUcj��U� ���� �P�r � ��� �

c�
��K���� �jUcj�

��
h� � �P� � P��

p
�h � ��

�����

Using the above relations gives

P� � P� � � Q

���

�
K���� �

jQj
�
p
�h

�
�
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Table �� The 	ow through the diagonal over the total 	ow for a well in
the barycenter of a right isoceles triangle�

h � � � � � ����� ����

� ��� ���
��� ��� ���
���� ��� ���
���� ��� ���

Assuming that the well model is valid for P� gives

P� � Pw � F �r��� F �rw�� Q

���

�
K���� �

jQj
�
p
�h

�
�

Here r� � �
p
�h	� is the distance from the well to the barycenter of the triangle ���

A straightforward manipulation shows that ����� holds for the mixed �nite element
approximation if we take

�� �
�
p
�

�
exp��
	��

�� �
��
p
�

�� � 
�
�

We next consider the case when the well is at the barycenter of a right isoceles
triangle� Let the vertices of this triangle be denoted by v�� v�� v� with v� being the
vertex at the right angle� By symmetry� the ratio of the 	ow through �v�� v�� divided by
the total 	ow should be �v�v�v� 	���

� � ������ � �� Here v� denotes the well location
�barycenter�� To test the above assumption� we report the results of computational
experiments� We consider the computational example as described in Table � with
the following changes� We used no 	ow boundary conditions on a reservoir of size
���ft � ���ft and a production and injection well on a diagonal each of which were at
the barycenter of a triangle approximately ��ft from the corner� As can be seen from
Table �� the ratio of the 	ow through the diagonal to the total 	ow is approximately
� � ������ on �ne meshes� The di�erence in the case of coarser grids is attributed to
the fact that the boundary conditions cause the solution to deviate from the asymptotic
radial behavior�
The 	ow across �v�� v�� can be related to the mixed �nite element equations in exactly

the same way as was done for 	ow across the edge with node x� above� Thus� �����
holds for the velocity basis function c� associated with the node x� on the diagonal
opposite the right triangle� However� since only part of the 	ow comes through �v�� v���
����� is replaced with

Q � �
p
�hc�	�
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and hence

P� � Pw � F �r��� F �rw�� �Q

��

�
K���� �

�jQjp
�h

�
�

Here r� �
p
�h	� is the distance from the well to the barycenter of the triangle which

shares the diagonal edge� This is equivalent to ����� if we take

�� �

p
�

�
exp����
	��

�� �
�
p
�

� � ���
�
�
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