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1. INTRODUCTION

When modeling reservoir behavior by numerical simulations, inevitably the dimen-
sions of the grid block containing the well are two order of magnitudes larger that the
well-bore radius. The calculated by any numerical method pressure in the well block
(or blocks sharing the well as a corner point) will be substantially different from the
flowing bottom-hole pressure of the modeled well. Therefore, a fundamental task in the
reservoir modeling of wells is to find an accurate correction,

The first comprehensive study of this problem for cell-centered finite difference ap-
proximation on square grids was done by Peaceman in 9] for single phase phase Darcy
How in two dimensions. Peaceman’s study presented a proper interpretation of the
well-block pressure, and showed how it relates to the flowing bottom-hole pressure.
'The importance of this study is that the computed cell pressure has been associated
with the steady-state pressure for the actual well at an equivalent radius r.;;. Contrary
to the previous studies, which had related the computed cell pressure to the average
pressure of the radial flow over the grid cell, Peaceman derived that r.;; = 0.2h (here h
is the cell-size) in three different ways: (a) numerically, by solving the pressure equation
on a sequence of grids and producing r.;; = 0.2h; (b) analytically by assuming that the
pressure at the adjacent block is computed exactly by the radial flow model and get-
ting r.5; = 0.208h; (c) by solving exactly the system of difference equations and using
the equation for the pressure drop between injection and producing well in a repeated
five-spot pattern given by Muskat [6] and getting r.;; = 0.1987h.

Peaceman study was extended in various directions (including off center and multiple
wells within a wellblock, nonsquare grids, anisortopic permeability, horizontal wells, etc)
by a number of numerical analysts and petroleum engineers (see, e.g. {1, 3, 7, 8, 10}).
Peaceman himself has extended his study to more general situations including non-
square grids and anisotropic permeability [10] and more general geometries [11]. For
arbitrary location of the well we refer to [1] and for comparative study of numerical
simulation of horizontal wells we refer to [7). To our knowledge, all existing studies
are done for cell-centered finite difference approximations of the pressure equation. On
the other hand, the finite element approximations have been already successfully used
for groundwater flow simulations (see, e.g. [5]). To make use of the finite elements in
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presence of wells it is necessary to find accurate well models for this important and
widely used class of numerical methods.

In this note we extend Peaceman’s (b)-approach for well modeling in two different
directions: (1) deriving an accurate well models for mixed finite element approximations
on triangular grids and Galerkin approximations for bilinear finite elements on squares;
(2) deriving well models for cell-centered finite differences on square grids, mixed finite
element approximations on triangular grids and Galerkin approximations for bilinear
finite elements on squares for flows goverened by by Forchheimer relation between the
pressure gradient and the flow velocity.

Our analysis is based on the fumdamental assumption that the flow is radial in a
neighborhood of the well. This assumption can be verified for isotropic porous media
even in presence of nonlinearities due to the dependence of the viscosity on the pressure
and Forchheimer relation between the pressure gradiaent and the flow velocity (see, e.g.
[2] and for more general flows [4]). Further, using the technique develpoed in [10] we
extend this well models to anisitropic porous media and rectangular gerids. Thus, our
analysis can be used for quite general flow models and various numerical methods and
techniques.

2. ANALYTIC SOLUTION IN THE NEIGHBORHOOD OF THE WELL

"The problem of modeling flow from a well with a radius which is substantially smaller
than the discretization parameter or mesh size requires the use of analytic formulas.
These formulas are only known in the case of simplified flow situations and thus con-
stitute practical limitations in their application. We present analytic formulas for the
Forchheimer flow in this section.

The basic assumption is that the flow is radial and that coefficients are constant (at
least near the well). Specifically, we assume that

1. The flow is two dimensional in = and y (no gravity term).

2. K is a constant K times the identity matrix.

3. (3 is a constant (which we will also denote by ) times the identity matrix.
4. p and p are constant in the neighborhood of the well.

5. The flow is radial in the neighborhood of the well.

We will discuss possible generalizations at the end of this manuscript.

Of the above assumptions, perhaps the most interesting is the last. This implies that
the well should be circular or its size so small that the variations in its geometry can
be neglected. The decay properties of the Greens function then imply that the flow
becomes radial in the limit as one approaches the well (or singularity).

We derive the analytic model as follows. Assume that the well is at the origin. If the
flow is radial then the velocity # must be of the form

i = w(r){cos b, sin F).
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The function w is a scalar function depending only on the radius r. There are no sources
or sinks except at the origin so

Veit=10
near the well. It follows that
w +r 7w =0,
i.e., w = cr~. The constant c is proportional to the production rate.
The pressure p satisfies the Forchheimer relation (see, e.g. [2]),
(2.1) | ~Vp = (K™ i+ pBld))a.

The pressure will tend to infinity as we approach an idealized (point source well).
This results in a positive ¢ above. Dotting (2.1) with the vector n = (cos#,sinf) and
integrating from (ro, 0) to (r,0) gives
(2.2) p(r) = plro) = F(r) ~ F(ro)
where

F(r) = =K' uclog(r) + ——————pﬁ:ICI.

Here we have use the radial flow assumption which implies that p(z, y) = p(r).
Let @ be the injection rate at the well. Then, @ is the mass flux through any small
circle B, centered at the origin, i.e.

Q= i-n ds=2wc.
B,
Here n is the outward normal on the circle. Thus,
K~ u@ pBQ|Q)|
Flr)=—-——"1 .
() 27 og(r) + 4m2r

The equation (2.2) represents our analytical flow model for flow near the well. As a
verification of our codes and the above model we ran several tests. These tests were
with physical units. Thus, we considered the equations

o1V - 4= caq
~Vp = (s K™ + c5pf)iH]) .

We ran both the trilinear finite element code and the triangular mixed method code.
We took advantage of symmetry and ran the codes on a square with lower left hand
corner at the origin, no flow boundary conditions at z = 0 and ¥y = 0 and p = 0 at
x = 5000 and y = 5000. We set p = p(5000) = .178, pr = u(5000) = .0256, K = 100,
g = 10°, and varied 8 = 0,7.6 x 107, 7.6 x 10%.

The absolute magnitude of the pressure cannot be determined from the analytic model
since it depends on the placement of the outer boundary and the boundary conditions
imposed there. However, we were able to fit the model to the output by aligning them
at one point. We did this by choosing some value of ry (typically, 7o = 1000) and set
P(ry) to be the value computed by the code. The analytical model then predicted the

(2.3)
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remain values of the pressure near the well with good accuracy. For example, the results
from the triangular mixed finite element code for 4 = 0 and § = 7.6 x 107 are given
below.

Beta = 0
r model computed
147.313 2351.023 2342.649
368.284 1740.491 1745.965
589.255 1437.574 1439.900
810.226 1231.709 1232.524
1031.197 1075.481 1075.481 <- Fit point
1252.168 949,587 949.047
1473.139% 844 .205 843.2156
1694.109 753.653 752.203
1915.080 674.355 672.365
2136.051 603.918 601.255
2357.022 540.672 537.151
2b77.993 483.411 478.796
2798.964 431.241 425.243

Note that there is good agreement between the model and computed values for the
pressure. The case of nonzero § is below. At this grid level there is only a modest
change in the pressure values compared to 3 = 0. However, it turns out that there is
a significant difference of one evaluates the models at, e.g., a well of radius 2 ft. The
Darcy pressure at 2ft is 5142 while the Forchheimer pressure at 2ft for the run below
is 36900. Obviously, the end results of any computation will depend critically on a
correctly implemented well model.

Beta = 7.6 x 1077
r model computed

147.313  2781.126 2762.0562
368.284  1900.631 1906.569
589.256  1533.39%4 1635.806
810.226  1298.192 1289.021
1031.197  1125.172 1125.172 <- Fit point
1252.168 988.408 987.8656
1473.139 875.418 874,422
1684.109 775.245 777.783
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1915.080 695.624 693.617
2136.051 621.764 619.075
2357.022 b5b5.743 552,182
2577.993 496.189 491.517
2798.964 442,095 436.018

3. A WELL MODEL FOR CELL CENTERED FINITE DIFFERENCES.

In this section, we derive a well model for cell centered finite differences. This model
has built into it the correct behavior resulting from the Forchheimer term.

The basic problem with a numerical approximation on a grid of size much larger than
the well-bore is that such a model (without the introduction of singular functions) can-
not detect or predict the correct singular behavior of the solution. Such approximations
have a tendency of smearing out the singular behavior. In fact, the computed cell block
pressure is significantly different than the average of the solution over the cell.

o’
o ol ol L
l

o’

A

Fig. 1 Block 0 containing a well and its
four neighboring blocks.

The goal of a well model is to develop a relationship between the pressure computed
in the cell block containing the well and the flow (). Peaceman developed an empirical
model for the case of Darcy flow by examining the ratio

Qjj = exp ((Pﬂ - ig(QWK)).

Here F;; and F, are the computed value of the pressures at, respectively, the node ¢j
and the cell containing the well. He found that for cell centered approximations, a;;

was proportional to /4% 4+ j%. In fact, o;; &= 54/ + j2. This leads to the Peaceman
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well model

3.) pu = 7o = F(ru) ~ F(2h) = ~2 D 1og(r, /21,

=

Here p,, is the bottom-hole pressure for a well bore with radius r,,.
We will derive models similar to {9}, which include the Forchheimer effects. We
consider the unscaled problem

V-i=Q

~Vp = (K u+ ppld))a.

We consider the case when the well is located in the center of the center square of a
square pgrid (see, Fig 1). We index the cells giving the well cell index 0 and the cell to

its right index 1. By summation by parts, the discrete equations which result from cell
centered finite difference approximations can be written as

(3.3) A(p, ¢) = Qo

Here p and ¢ are vectors equal to the number of cells. The quadratic form A(-,-) is
given by

(3.2)

Alv,w) =Y (K + pBla(w)i]) ™ (o — vg) (s — wy).
Eii
Here £;; is the edge between cells ¢ and j. The quantity @(v);; is the normal component
of the velocity associated with the pressure vector v at the edge £;; and satisfies the
Forchheimer relation
vy — Uy

(K7 4 pBlafv);l) @(v) = ———.

Taking
1ifi=0,
©™ ) 0 otherwise,
in (3.3) and using the symmetry of the solution implies that

(3.4) (K™ p+ pBla)) (P — P) = Q/4.

Here we have denoted Z = @(P)p;. It is immediate from (3.4) and the definition of @
that

i=-2
ah’
Substituting this back into (3.4) and simplifying gives
_QK'p  QIQ|ps
(35) Py— P = 1 -+ 6

The analytic well model should be a relatively good approximation in cell 1. This
means that if we are given a bottom-hole pressure P, and a well radius r,,

(36) P1 :Pw"‘F(Tl)"—F(Tw).
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Adding (3.5) and (3.6) gives

K—l
(3.7) Fy= P, + F(ry) — Flry) + QR p + QIQ"Dﬁ.
4 16h
The above relation suggests that the pressure behavior near the well is significantly more
complicated in the Forchheimer case. In particular, the well model depends nonlinearly
on (), p, # and the mesh size h.

The above model essentially reproduces the Peaceman result in the case of Darcy
flow. Indeed if 3 = 0 then (3.7) becomes

QK~'p
2

Fy=P, -

(log(h/ru) = 2)
QK log{ah/ry)

=P, —
27

where = e”™/? = .20788.... This is exactly the value obtained by Peaceman in [9]
under the assumption that P, is already a very good approximation to the analytic
solution. Using different approach (mentioned above as approach (c¢)) Peaceman [9]
computed slightly smaller constant, namely, a = .1987.

4. A WELL MODEL FOR GALERKIN APPROXIMATIONS USING BILINEAR FINITE
ELEMENTS

In a finite element setting using bilinear finite elements on a square grid, we consider
an ensemble of four finite elements sharing a common vertex with index 0 (see fig. 2).
We assume that the well is placed at the vertex 0 and the flow is radual in its vicinity.

Fig. 2 Four finite elements sharing
a common vertex as a welk,
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We assume that bilinear finite elements have been used and the flow is radial around the
well which is located at the point with index 0. For computing the finite element stiffness
matrices we employ one-point Gauss quadrature (the quadrature uses the center of the
finite element; in the case of element with nodal vertices 0, 1, 2, and 3 this is the point
A).

The row in the stifiness matrix corresponding to the unknown F, is compiled from
the integral

(4.1) ) f (K~ pBlE) ™ 9 P ¥ dodz = Qéo,

where the summation is over the four finite elements sharing the vertex 0. Since P and
¢y are piece-wise linear functions, it is reasonable to evaluate the integral over the finite
element by one-point Gauss quadrature and get:

(42) D (E e+ pBlE) T T P 7 doeh® = Qoo

where 4, = @(A), VP. = VP(A), and Yd,. = Yd(A). As in the previous section
¢ = 1 at 0 and vanishes at all other grid points 1-8. Taking into account the radial
symmetry of the solution P, which result in taking P =Pa=FPs=P,and P, = P, =
Py = Py, we get the following finite element equation corresponding to the unknown F.

(43) S (Kt pBll) " P~ B~ B) = Q.

The element (cell) velocity @, satisfies the Forchheimer law (instead of Darcy’s law),
which relates the velocity to the pressure gradient. In the case of radial symmetry, one
can proceed as follows: first note that approximately we have

(44) (1 I ] T,

In order to utilize the equation (4.3) we need an approximate relation of the form

i _ ni.. PP
(4.5) (K~ + pBlT.)) || ~ th -

Obviously, this approximation is not valid for v = 1 since this will give the z-derivative
of the pressure at the point on a distance 0.5 from the well instead of distance \/(2)}1
where the cell-velocity }i.| is computed. To find v we performed a series of numerical
experiments and fitted the parameter. If the ralationships (4.4) and (4.5) were true
then the ratio (P, — P1)/{Py — P%) should have a constant value approximately equal to
v/+v/2. The results of our computations are given in the following table for a reservoir
slightly larger than the one described in section 2. Let us remind that the quarter of the
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reservoir is 6400 x 6400 ft with the lowest left corner at the origin and the step-size is
given in feet. The last row in the table is computed on a rectangular grid with variable
step-sizes in each direction destributed as follows starting from the well: 2 steps of 30
ft, O steps of 60 ft and 29 steps of 200 ft.

Beta = 0 Beta = 7.6 x 1077 Beta = 7.6 x 1078

h computed gamma computed gamma computed gamma
800 1.507 1.507 1.505
400 1.507 1.507 1.503
200 1.507 1.507 1.498
100 1.507 1.506 1.488
variable 1.507 1.504 1.461

From the given table we conclude that v = 1.5 is a good approximation for this param-
eter. Our hypothesis is that v = v/2. Therefore, a reasonable approximation for the
Forchheimer relation (2.1) for bilinear elements will be

(4.6) (K™ e+ pBliel) [l (v + V2)h = 2Py — P — Py,
We rewrite (4.3) and (4.6) in the form

3 _ o
Q= (K='u+ pBlE.)) ™" (2P — P - Py),

e (v + V2)h = (K~ + pBla.]) ™" (2P — P, — Py).
The following relationship

Q  0257Q
(y+v2)h kT

now represents the well model for the Galerkin finite element method using bilinear
elements on a square grid.

- 3
(47) uel - Z

Here we report some computationally obtained production rates. The table has been
completed for a mode!l with a given bottom-hole pressure equal to 1000 [psi], for initial
pressure equal to 5000 [psi], and Dercy’s law, i.e. § = 0. We have used three different
mesh sizes h = 500, 200, 100 ft. The time is in days and the rest of the parameters are
the same as described above. Namely, the domain is square with lower left hand corner
at the origin, no flow boundary conditions at £ = 0 and y = 0 and p = 0 at z = 5000
and y = 5000. We set p = p(5000) = .178, p = u(5000) = .0256, K = 100.
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time h = 100 h = 200 h = 500
0.0 1.7891e+07 1.4917e+07 1.2229e+07
0.1 1.3967e+07 1.3784e+07 1.2081e+07
0.3 1.1339e+07 1.2285e+07 1.1807e+07
0.5 1.0344e+07 1.1280e+07 1.1553e+07
1.0 9.6154e+06 1.0098e+07 1.1021e+07
1.5 9.2739e+06 §.4977e+06 1.05674e+07
2.0 9.0581e+06 9.1615e+06 1.0198e+07
2.5 8.9010e+06 8.9510e+06 9.8809e+06
3.0 8.7781e+06 8.8044e+06 9.6124e+06
3.5 8.6777e+06 8.6933e+06 9.3844e+06
4.5 8.5281e+06 8.5364e+06 9.0444e+06
5.5 8.4103e+06 8.4158e+06 8.7875e+06
6.5 8.3141e+06 8.3182e+06 8.5904e+06
7.5 8.2332e+06 8.2365e+06 8.4369e+06
8.5 8.1637e+06 8.1664e+06 8.3150e+06
9.5 8.1030e+06 8.1052e+06 8.2166e+06
10.5 8.0491e+06 8.0610e+06 8.13556e+06

As we can see form this table, the results for the production rates are pretty ccurate
already for mesh step-size A = 200. After the fourth day the differences in the daily
production rates between the computations with mesh-size A = 100 and h = 200 are
less than 0.1%.
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