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Introduction

This report is meant to serve as a “working man’s” introduction to resultants. It is aimed at
engineers, computer scientists, and applied mathematicians who encounter systems of polynomial
equations in their practice. As such, it is more of a “how to” manual than a theoretical study.

Most of the techniques and results presented here can be found in the classical literature.
Unfortunately, those results are scattered in numerous, sometimes out of print, sources. We have
brought them all together for the practitioner’s use. Simple examples illustrate each technique,
and the reader should have little difficulty in applying the various methods to his or her particular
problem.

Applicability
Resultants are used to solve systems of polynomial equations, to determine whether or not
solutions exist, or to reduce a given system to one with fewer variables and/or fewer equations.

Input
The typical input will be a system of m equations in n-variables:

fl(fL‘l,... ,ZEn) =0

fm.(fﬁl,--- ,Zp) = 0.

Each equation has an associated degree d; > 1. Recall that f;(x1,...,2,) has degree d; if all
monomials z{'z5? ... zé appearing in f; have >I" | e; < d; and at least one monomial has > 1", e; =
d;. Example: f(z1,29,23) = 3(1)%(1)3 + 4x1x9 — w2 + Tx3 — 1 has degree d = 3. The integers

m,n,dy,...,d,, are important indicators of the specific resulant that will need to be employed.

Output
There are two essentially different cases:

CASE 1: m > n (overdetermined) This is the case where we have more equations than unknowns,
and where we generally expect to have no solutions. The resultant will be a system of equations
(one equation when m = n+1) in the symbolic coefficients of the f; that has the following property:
when we substitute the specific numerical coefficients of the f;, we will get zero in every equation
in the resultant system if and only if the original overdetermined system has a solution.

CASE 2: m < n (exact and underdetermined) In this case the number of equations is less than
or equal to the number of variables, and we expect to have solutions. In fact, if we allow complex
solutions and solutions at infinity, we are guaranteed to have solutions.
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Of course, only when m = n do we expect a finite number s of solutions. Bezout’s Theorem
then provides a count of s = dyds . .. d,, solutions (counting complex solutions, solutions at infinity,
and counting with appropriate multiplicities). Unfortunately, the possibility also exists (even when
m = n) that there will be an infinite number of solutions.

In general, for m < n, the resultant will be the one equation in n — m + 1 of the variables. In
effect, the resultant makes it possible for us to eliminate m — 1 of the variables. For example, if we
choose to eliminate Z,_pm49,... , Ty, then the resultant R will be a polynomial R(z1,... ,ZTp—m+t1)
in the remaining variables. If (a1,... , @y —m+1) is a solution to R = 0, then there will exist values
Op—mt2, - - - »ap such that (a1,... ,Qp—m+1, ¥n—m+2,--. ,Qp) is a solution to the original system.
(One must be a little careful here. The system should be modified to make it homogeneous with re-
spect t0 Tp—m+2,- .. , Ty by adding appropriate powers of a variable w. The values ay—pm42,... ,0n
should be regarded as the coordinates of a point (ay—m42 : -+ : @y @ 1) in projective m — 1 space
P™=1. We must allow for the possibility that this point will be at infinity, where w = 0. In that
case, a solution to R = 0 would not necessarily give rise to a solution of the original system.)

For example, consider the system of m = 2 equations in n = 3 variables: 4zyz — 1 = 0 and
y+ 2z —1 = 0. The resultant eliminating z is R(z,y) = z(4y? — 4y +1). When z = 0 we will have
R = 0, but clearly our system has no solution when z = 0. However, homogenizing with respect to
z gives the system

dryz —w =0 and (y—1)xz+zz=0.

Now when we look at the condition z = 0, we find that (z,w) = (1 : 0) is a solution. This is a
point at infinity.
Notice that we also have solutions to R = 0, when z # 0 by taking y = % This yields z = %
i

Geometrically the solution set is a hyperbola in the plane y = 5 in space. The resultant “projects”

that hyperbola to the line y = % in the zy-plane, except that (z,y) = (0, %) is not hit.

A
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In this context (the underdetermined case) the resultant can be viewed as a projection of the
nominally n —m dimensional locus of solutions in R" to an n —m dimensional locus (hypersurface)
in R*~™+1. Note that in our example n = 3, m = 2, and we are projecting the one-dimensional
locus of solutions in R?® to a one-dimensional locus in R?, where the locus is described by one
equation y — % = 0.



Approach in This Paper

We begin with the first major distinction in methods, namely the one based on the number
of variables n. The case n = 1 of a single variable is discussed in §1. We then move on in §2
to the multivariate case n > 2. The final two sections, §3 and §4, cover various geometric and
combinatorial issues.

Table of Resultants

n m TYPE OF RESULTANT TO USE NOTES

1 2 Determinant of the Sylvester Thisis what is most commonly
matrix thought of as the resultant.

1 >3 Requires a system of equations See the discussion in van der

Waerden [?].

>2 m=n+1 Macaulay resultant This is computed as the quo-
tient of two determinants. It
is a polynomial in the sym-
bolic coefficients and is zero if
and only if the system has a
solution.

>2 m>n-+2 Requires asystem of equations See van der Waerden [?].

>2 m=n U-resultant or generalized This resultant is designed to
characteristic polynomial find the finite set of all
solutions to the system of
equations.
> 2 m<n Macaulay resultant using The result is a single polyno-

m — 1 variables, while treat- mialin the remainingn—m+1
ing the other n — m + 1 variables.

variables as included in the

coefficients.

Note: One can also employ the standard Sylvester resultant in the multivariate case, using it
iteratively to successively eliminate variables. For example, with three equations in three unknowns
flx,y,2) =0, g(z,y,2) =0, and h(z,y,z) = 0, we can take the resultant of f and ¢ treating z as
the only variable to get R;(x,y). Likewise, we can take the resultant of g and h again treating z as
the only variable to get Rs(z,y). Finally, the resultant of R; and R with y as the variable yields
R(z), whose roots can then be found using standard root finding methods.



1 Resultants of Polynomials in One Variable

1.1 The Basic Case — Two Polynomials and the Sylvester Matrix
Given two positive integers r, s > 1 and two polynomials in one variable
flz)=az" +---+a1x+ap and g(x)="0bsz’+ - +bix+by

of degree less than or equal to r and s respectively, we define their resultant R, ;(f, g) by Sylvester’s
formula:

- a0 e 0
0 ap a ar 0 0

B 0O 0 0 ag  ai QA
Rr,s(fag) = det bg by - b1 by 0 --- 0
0 bO bl bs 0

which is the determinant of an r + s by r + s matrix with s rows involving the a’s and r rows
involving the b’s.

Example 1:
Roa(asx? 4+ arz + ag, baa”® + byx + by)
= a%b% + aoagb% - agalblbg + a%bobg - a1a2b0b1 + a%b% - 2a0a2b0b2.
Note that in this example each monomial in the resultant has total degree r + s = 4 and is
bihomogeneous of bidegree (s,r) = (2,2) in the a’s and b’s respectively. This is true in general.
Notice also that the general bihomogeneous polynomial of bidegree (2,2) has 36 terms—any one

of a%, a%, a%, apa1,agasz, a1ao times any one of b%, b%, b%, bob1, bobo, b1bs. However, only seven of these
monomials occur in Ry ». O

Basic Properties of the Resultant R, (f,g)

1. RELATIONSHIP TO COMMON R0OTS: R, 5(f,9) = ajbI]; ;(7i —y;) where z1,... ,z, are the
roots of f and y1,...,ys are the roots of g. (Here we are assuming a, # 0 and bs # 0.) Thus
R, s(f,g) will be zero if and only if f and g have a root in common.

2. IRREDUCIBILITY: R, (f,9) € Z[ao,... ,ar,by,...,bs| is irreducible, i.e., the resultant is an
irreducible polynomial with integer (Z) coefficients in (r +1)(s+1) = rs+s+r+ 1 variables.

3. SYMMETRY: R, (f,9) = (—1)" R, (g, f)
4. FACTORIZATION: R, 4, s(f1f2,9) = Ry, s(f1,9)Rrs.s(f2,9).

Example 2: R; (a1 + ao, bow? + byw + by) = adby — aga1by + a2by. Now consider

Rz,g((alx + ag)(clx + C()), bQZB2 + bzx + bo)

= R272(a101$2 + (a001 + (1100)27 + apncy, b2$2 + blfL‘ + bg).
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This can be computed using Example 1 or by using property 4 above:
ngg((all‘ + ag)(CII + C()), b2I2 + blllj + bg)
= Rl,g(alw + ap, bgfL‘2 + bz + bo)RLQ(ClJ? -+ ¢o, bgfL‘2 + b1z + bo).

Thus if the polynomials you are taking the resultant of can be factored, then the resultant can be
factored! O

Other Formulas for the Resultant — Method of Bezout:
Suppose f =a,x" + -+ + ag and g = bsx® 4+ - + by and that ag = 1, then letting

g(z) 2
=19 +tnrxT+rex"+---
f(z)
we have
Ts o Ter—1
Rr,s(fa g) = det Ts—1 et Ts4r—2
Ts—r+1 = Ts

which is an r X r determinant. Note that ap = 1 is not a serious restriction, because as long as
aog # 0, we can scale f to make ay = 1. Also note that the r;’s are polynomial expressions in the
a;’s and by’s.

Example 3:
flz) =222 -3z +1
glzx) =522+ -6

g9(z)

@ = (—6+z+52%)(1+3z+ 722 + 152> + ) = —6 — 172 — 342> — 682> + - --

~

and

o ’)"2 ’r‘3 o —34 _68 _
R2’2(f,g) = det (7’1 T‘2> = det (_17 _34> =0

which is correct because £ = 1 is a common root. O

Suppose now that f and g have the same degree, so r = s, and let [ij] stand for the expression
a;bj — bja;. The Bezout-Cayley formula for the resultant is the r X r determinant

[01] [02] [03] [0r]
[02] [03] 4 [12] [04] 4 [13] [17]

Rop(f,g) = det | [03] [04] +[13] [05] + [14] + [23]

or]  [ir] 2] i — 1r]

Example 4:
. a0b1 - a1b0 a0b2 - agbg
R2’2(f’ g) = det (agbg — a2b0 a1b2 — a2b1>
which can be checked against Example 1. 0

Various intermediate forms exist that lie between the r x r Bezout-Cayley form and the 2r x 2r
Sylvester form.



1.2 Discriminants and Resultants

The discriminant A(f) of a polynomial f = a,z" + -+ + ag, a, # 0, is essentially the resultant of
f and its derivative f’. The exact relationship is

A(f) = airRr,M(f, /)

which is a homogeneous polynomial of degree 2r — 2 in the r + 1 variables ag, ... , Gr.

Example 5:
Aayp + a1z + asz® + a3$3) = 27aga§ + 4a0a% + 4a%a3 — a%a% — 18agaiasas.

Notice that only 5 out of a possible 35 terms (the number of monomials of degree 4 in 4 variables)
actually occur. O
3r—2\ _ @r-2)
2% — 2 - (2r=2)!ir!
reality it consists of far fewer. For example when » = 5 (i.e., when f is a quintic, the number
of monomials of degree 8(= 2r — 2) in 6(= r + 1) variables is 1287, but only 59 occur in the
discriminant.

Just as the discriminant can be defined in terms of the resultant, the resultant can be defined
in terms of the discriminant:

In general A(ag + -+ + a,2") could consist of as many as

terms, but in

(Rrs(f,9))" = e NN

when a, # 0 and bs # 0.

1.3 Finding the Common Roots — Subresultants

Again, suppose we are given two polynomials in a single variable z, say
flx)=az" +---4+a1+ay and g(z) =bsz® + -+ byz + by,

of degrees 7 > 1 and s > 1 respectively. (We assume that a, # 0 and by # 0.) As we saw above, the
resultant R, ;(f,g) of f and g will zero if and only if f and g have a common root. Two questions
immediately occur:

QUESTION 1: Suppose R, s(f,g) = 0, so that f and g have at least one common root, can
we determine how many roots they have in common? This is the same as asking for the degree
1 < d < min(r, s) of the greatest common divisor h(z) of f(z) and g(x).

QUESTION 2: Can we find the common roots?

Question 1 can be answered using the notion of a subresultant. To understand this idea, we
first recall the source of the Sylvester matrix whose determinant gives us the resultant R, s(f,g).
To say that f(z) and g(x) have one or more common roots is to say that they have a common
factor h(z) of degree d > 1. This means that we can write

f(z) = h(z)f(z) and g(z) = h(z)j(=).
It follows that

g@)f(z) + (=f(x)g(z) =0



because
§(2)f () = g(x)h(z) f(2) = g(z) f (2).
Thus when f(x) and g(z) have one or more common roots, there will exist non-zero polynomials
s(z) =ss 1z L+ sz 459 and t(z) =tz L4+ F iz + 1o
of degrees at most s —1 > 0 and r — 1 > 0 respectively, with the property that
s(z)f(z) + t(x)g(x) = 0. (1)

Conversely, if two such non-zero polynomials s(z) and #(z) can be found that satisfy (??), then
f(x) and g(z) will have one or more common roots. This is because all r roots of f(z) must then
be roots of t(x)g(x), but the degree of ¢(z) is at most r — 1, meaning that at least one root of f(z)
is also a root of g(z).

If we multiply the left-hand side of (??) out and collect terms we get

(szlar + trflbs)$r+571 + (szlarfl + 55 0ar +1. 1bs 1+ tr72bs)$r+572 + -

2 )
+ Z Ss—jOryj—i + Z tr—kbsik—i LI
J=1 k=1
+ (81a0 + spa; + tlbo + tobl)J? + (Soag + tgbg)

where all terms in the summation with negative indices are ignored. In order for this to be the
zero polynomial, all of its coefficients must be zero. This leads to a system of linear equations for

the r + s variables ss_1,... ,80,tr—1,-.. ,t0- In matrix form this system is

ar Gr_1 -+ G Qg o 0 --- 0
0 a ag a 0 - 0
0 0

(0, ,0) :(8571,... ,So,trfl,... ,t[)) 0 0 Ar Qp_1 *** ap ag
bs b5,1 bl b() 0 0 0
0 by bs_1 br bo 0 0
0o --- T . by by

and we immediately recognize the r + s by r + s matrix on the right as the Sylvester matrix. In
order for this system to have a non-zero solution (in fact a solution with not all s; = 0 and not all
t; = 0), it is necessary and sufficient that the determinant of the Sylvester matrix be zero. This of
course is just the resultant R, ¢(f,g).

Similarly, if f(z) and g(z) have two (or more) roots in common, then we can find non-zero
polynomials

s(r) = s5_0x° 24+ 510 +59 and t(x) =tr_ox” 24 +tiz + 1
such that

s(x)f(z) +t(z)g(z) =0



and conversely. This leads to a system of » + s — 1 linear equation

ar a’f‘*l PECEEY ao 0 PECEEY 0

0 Qy ap 0

(0,...,0) = (s S0, to) Ot a0
1ty §—25+++ 5905 br—25--- 5,00 bs by bo 0 0
0 bs b1 b 0

0 bs bo

in r + s — 2 variables. It turns out that a necessary and sufficient condition for this system to have
a solution with not all s; = 0 and not all Z; = 0, is that the first r + s — 2 by 7 + s — 2 minor
(obtained by deleting the last column) has zero determinant. This matrix is a submatrix of the
Sylvester matrix. In general, if we write the Sylvester matrix as

ar a’T‘fl .. a’O 0 .. 0
0 a -+ -+ a -+ 0
0 e e ar e .. aO
(Y YU
by o+ eer by cee eee 0

the kth subresultant R,(«]fs) (f,g) is the determinant of the r+ s — 2k by r+ s — 2k submatrix obtained
by deleting the first k rows, the last k& rows, the first £ columns, and the last &£ columns.
The answer to Question 1 is given by:

Theorem 1 If R,(n?s)(f,g) = Rgs)(f,g) == R,(n{csfl)(f,g) =0 but Rﬁ?(r,s) # 0 for some k > 0
then f and g have exactly k roots in common. Here R, s(f,g) is denoted Rr?s)(f, g). O

The answer to Question 2 is more subtle. In general, we cannot expect to be able to express
the common roots of f and g (assuming they have a root or roots in common) as rational expres-
sions in the coefficients a,,... ,ag,bs,... ,bg. For example, if f and g have rational coefficients,
i.e., Gp,...,00,bs,... ,bp € Q, the field of rational numbers, then any polynomial expression in
the coefficients would be a rational number. But polynomials with rational coefficients can have
common roots that are not rational.

Example 6: f(z) = 3zt + 23+ 422 +24+1 = (22 +1)(322 +x+1) and g(z) = 22 —1 = (x® +1)(2® —1)
both have rational coefficients, but the common roots +: are not rational numbers. O

We can however answer Question 2 in a special case. If R, ;(f,g) = 0 and at least one partial
derivative of the resultant computed symbolically

OR  OR OR  OR 2
Oag’ """ Oa,’ Oby’ " Ob,

is non-zero when the coefficients of f and g are substituted, then f and g have exactly one common
root « and it can be found via the proportions:

w_(OR,  OR _  OR
(Liasa?ieia) = (G0 oo (f)s o 5o (9)

s (OB, . OR . . OR
(rasatieia) = (o) o) ives 5o (Fg)).
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In particular the common root o can be computed as:

This result also has a geometric interpretation. The space of all pairs of polynomials (f, g) with
the degree of f less than or equal to r and the degree of g less than or equal to s can be identified
with R"+5+2 having coordinates (a,,... ,ag,bs,... ,by). The symbolic resultant R is a polynomial
in these variables, and the locus R = 0 in R""2+2 is an irreducible hypersurface (of dimension
7 4+ s+ 1) consisting of pairs (f,g) with a root in common. A point on this hypersurface where at
least one of the partial derivatives (2) is non-zero is a smooth point. At such points we have exactly
one common root. Moreover, that root can be expressed as a quotient of polynomial expressions
in ay,...,ag,bs, ... ,bp. We remind the reader that “most” points on the locus R = 0 are smooth
points. Those that are not are called singular points, and they occur in dimension r + s or less.



2 Resultant Methods for Systems of Polynomial Equations in Sev-
eral Variables

2.1 Theory

The linear algebra techniques discussed in this section can be used to solve systems of polyno-
mial equations in several variables. If there are only two equations, then the Sylvester technique
(discussed above) can be employed, by treating all but one variable as part of the coefficients.
However, when the number of equations exceeds two, the Sylvester approach can be misleading.
For example, taking the equations two at a time using the Sylvester determinant can lead the user
to the conclusion that there is a common solution, when in fact, there are no common solutions for
the system of equations taken as a whole.

What it means to “solve” a given set of polynomial equations depends upon the number of
variables and the number of equations. Assuming the equations are inhomogeneous, let “n” be
the number of variables and “m” be the number of equations. The expected dimensionality of
the set of solutions is n — m when viewed over the complex numbers. For example, if there are
three equations (m = 3) and five variables (n = 5), then the space of solutions is expected to have
dimension n —m = 5 — 3 = 2. Geometrically, the set of solutions forms a surface. Sometimes,
however, components of excess dimension occur in the set of solutions. These are geometric loci
of higher dimension than the expected dimension. They occur because, in a very loose sense, the
equations have certain dependencies.

Finally a word about homogeneous equations. Recall that a set of polynomial equations is
considered homogeneous if in each equation, all the terms have the same degree. If this is not
the case, even for only one of the equations, the set is regarded as inhomogeneous. For systems
of homogeneous equations, the number n of variables should be taken as one less than the actual
number of variables, when computing expected dimensions. This is because we want to regard the
solutions as lying in an (n — 1)-dimensional projective space.

2.2 The Macaulay Resultant, the U-Resultant, and the GCP

The Macaulay resultant is the ratio of two determinants formed from the coefficients of the given
polynomials in a manner to be described later in this section. If the number of equations exceeds
the number of variables by one (n —m = —1), then the Macaulay resultant tests whether or not
a common solution exists. (For systems of homogeneous equations where the number of equations
equals the number of variables, the expected dimension is still —1, and the Macaulay resultant tests
for a non-trivial common solution, i.e. a solution other than (0,... ,0).)

If there are as many inhomogeneous equations as unknowns (n —m = 0), then the equations
can often be solved by adding the U-equation (explained later in this section) to the homogenized
set and forming the Macaulay resultant. The Macaulay resultant is then called the U-resultant.

In some cases, however, there will be a component of excess dimension (> 1) which masks some
or all of the desired solutions. In this case Canny’s Generalized Characteristic Polynomial (GCP)
approach is useful (see [?]).

In order to illustrate the various methods, the following system of three polynomial equations
will be used:

fi=y—3x+5=0
f2:x2+y2—5:0
fa=y—2®+32> -3z +1=0.
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Here we have three inhomogeneous equations in two variables (n —m = 2 —3 = —1). The
multiresultant techniques described below can be used to test for the existence of a solution.

Step 1: Homogenization

The equations must first be homogenized. This is done by adding a third variable, z. Specifically
x is replaced by z/z and y is replaced by y/z, and the factors of z are cleared from the denominators.
In the above example this leads to three equations:

fi=y—3x+52=0

fo=2"+y*—522=0

fa=yz®> —a® +32%2 — 322 + 23 = 0.
This is the homogenized version of the original system.

Step 2: Degree Determination
Each of the multiresultants being considered involves the coefficients of various monomials

that appear in the equations. The variables involved in the monomials are the variables that
appear in the homogeneous form of the polynomial equations. For example, the homogeneous
polynomial equations above have the variables z, y, and z. All the monomials in a given equation
are constrained to have the same degree because we have homogenized. The “overall degree” of the
system is determined from the degrees of the individual homogeneous equations by the following
rule:

m

d=1+Y (di—1)

i=1

where

m =the number of equations

d; =the degree of the “/’th” equation.
For the homogeneous polynomials above (f1, f2, and f3) the degrees are:

EQUATION DEGREE

fi di =1
fo do =2
f3 d3 = 3.

Therefore,

d=1+(1-1)+2-1)+@B-1)=4

Step 3: Matrix Size Determination

Each of the multiresultants to be discussed involves the ratio of two determinants. The numer-
ator is the determinant of a matrix, the formation of which will be discussed in subsequent sections.
The denominator determinant is formed from a submatrix of the numerator matrix.

The number of variables in the inhomogeneous equations is n. Since one additional variable has
to be added to homogenize the equations, the number of variables in the homogeneous equations
is n + 1. The size of the numerator matrix equals the number of monomials in the n + 1 variables
that have overall degree d (discussed in the previous section).

Numerator Matrix Size = (n ji_ d) .
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For the three polynomial equations (f1, f2, f3) we have already calculated that d = 4. Since the
original set of inhomogeneous variables consisted of z and y, we have that n equals 2. Thus for our
example,

|
Numerator Matrix Size = <2 Z 4) = (Z) = Q’)GW = 15,

l.e. it is a 15 x 15 matrix.

Step 4: Determining “Big” vs. “Small” Exponents
A few of the 15 monomials involving the variables z, y, and z with an overall degree of 4,
include:

yz3 and z2y2.
In the next section, we will discuss whether certain of these monomials are reduced. This will be
determined by whether the exponents are “big” or “small”. In this section we discuss how “bigness”
is defined.

Each variable will be associated with a particular equation. For example the first variable, x,
will be associated with the first equation, f;. The second variable, y, will be associated with the
second equation, fs5, etc. The degrees of the associated equations define “bigness” for the exponents
of that variable. Specifically, since d; (the degree of f1) is 1, if the exponent of z is greater than or
equal to 1, it is considered big. Since do = 2, whenever the exponent of y is greater than or equal
to 2, it is considered big. The degree of f3 is 3, therefore, whenever the exponent of z is greater
than or equal to 3, it is considered big.

For example, consider the monomial yz®. The exponent of y is 1. This is less than dy, and is
considered small. The exponent of z is 3. This is equal to d3, and is therefore big. On the other
hand, consider the monomial z?y?. The exponent of z is 2. This is greater than d;, and is big. The
exponent of y is 2. This is equal to do, and is big.

Step 5: Determining the Reduced Monomials

If for a particular monomial of degree d the exponent of only one variable is big, the monomial
is said to be reduced. In the previous step only the monomial 32 is reduced. For that monomial
only the exponent of z is big; whereas for 22y2, both the exponent of 2 and the exponent of y are
big. Thus the monomial z%y? is not reduced.

The Macaulay Resultant

The Macaulay Resultant is the ratio of two determinants. The numerator is the determinant of
a matrix which we will call the A matrix. The denominator is the determinant of a matrix which
we will call the M matrix

_ det|A]
 det|M]|

Step 6: Creating the A Matrix:

We have discussed above how the size of the A matrix is determined. In this section we will
show how the matrix entries are obtained.

Each row and column of the matrix should be thought of as being labeled by one of the mono-
mials of degree d. Recall that for fi, fo, and f3 in our example there were 15 possible monomials
of degree 4 in x,y, z, and therefore the A matrix would be 15 x 15.

12



There are three rules for determining the elements of the A matrix. After presenting the rules,
the example involving f1, f2, and f3, will be used to illustrate the process. The reader may find it
helpful to read the example simultaneously with the rules.

Rules for the elements of each column:

(1) Search the monomial labeling that column from left to right for the first variable with a big
exponent. Such a variable must exist. Call it the marker variable.

(2) Form a new polynomial from the polynomial associated with this marker variable by multi-
plying the associated polynomial by the monomial and dividing by the marker variable raised
to the degree of the associated polynomial.

(3) The coefficients of the new polynomial are the elements of the columns. Each coefficients
goes in the row labeled by the monomial it multiples. All the other rows get zeroes.

Example 7: Recall that for the system of equations fi, fo, f3 there are 15 monomials of degree 4
that can be formed from z, y, and z. Two of these were considered above, namely yz> and z%y2.

e For the column labeled by yz3:

(1) The first variable with a big exponent is z, so z is the marker variable.

(2) The polynomial associated with z is f3. Multiply f3 by the monomial y23, and divide
this product by 3.

3 2 3 2 2 3 3
+3 3rz“ +
fa(zy3z) (yz* —= fﬂzzg zz” + 2°)(y2°) y22? — 3y + 3a2yz — 3zys? + y2S.

(3) The coefficient of y?z2 is +1. Therefore the element of the row labeled 3?22 is +1.
The coefficient of 2%y is —1. Therefore the element of the row labeled z3y is —1. The
coefficient of z%yz is +3. Therefore the element of the row labeled z?yz is +3. The
coefficient of zyz? is —3. Therefore the element of the row labeled zyz? is —3. The
coefficient of yz3 is +1. Therefore the element of the row labeled yz3 is +1. All other
entries in the column are zero.

e For the column labeled by z%y?:

(1) The first variable with a big exponent is z, so x is the marker variable.

(2) The polynomial associated with z is f;. Multiply f; by the monomial z2y2, and divide
this product by x.
fi(=*y?) _ (y — 3a + 52)(2%y?)

= = zy® — 32%y* + bry’z.
x x

(3) The coefficient of zy? is +1. Therefore the element of the row labeled zy? is +1. The
coefficient of z2y? is —3. Therefore the element of the row labeled z2y? is —3. The
coefficient of zy?z is +5. Therefore the element of the row labeled zy?z is +5. O

When all the columns are determined, the A matrix in our example takes the form:
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A Matrix

I4 :L‘3 I3 :L‘2 :L‘2 I2 xr xr X xr

y vy vy oy vyt oyt oy
z z 22 z z 23 z 22 Z3 24
zt -3 0 0 0O O O O O O O O 0O O 0 0
w3y 1 -3 0 0 0o 0O O O O O O O 0 -1 0
z3 2 5 0-3 0 O O O O O O O 0 0 0 -1
z? gy? o 1. 0-3 0 O O O O O O 1 0 0 0
2y oz 0O 5 1 0-3 0 O O O 0O O 1 0 3 0
z? 2/ 0 0 5 0 0-3 0 O O 0O O O 1 0 3
z oy o o 0 1 0O 0O -3 0 O 0 O O 0O 0 ©0
r Yy z o 0 0 5 1 0O 0-3 0 0O O O O 0 O
r y 2/ 0 0 0 0 5 1 0 0 -3 0 0 0 0 =3 0
T 30 o 0 O O 5 O 0O O -3 0 O 0 0 -3
yt o o0 0 o O O 1 O O O 1 0 0O 0 O
3 oz o 0 0 o O O 5 1 o0 0O O 1 0O 0 O
y> 22, 0 0 O O O O O 5 1 0 -5 0 1 1 0
y 22/ 0 0 0 0 O O 0 O 5 1 0 -5 0 1 1
2210 0 0 O 0O O O O O 5 0 0 -5 0 1

The determinant of the above A matrix is zero. If the determinant of the M matrix is nonzero,
this would imply that the system has a solution.

Step 7: Creating the M Matrix

The denominator of the Macaulay Resultant is the determinant of the M matrix. The M matrix
is a submatrix of the A matrix. It consists of the elements which have row and column monomial
labels which are not reduced. Recall that a monomial is not reduced if it has more than one variable
with a big exponent.

The size of the M matrix equals the size of the A matrix minus D, where

m
D=> T]d-
i=1i#j
In our example,
D = dyd3 + dids + didz = (2)(3) + (1)(3) + (1)(2) =11,
so that the size of the M matrix is 15 — 11 = 4. The actual M matrix for fi, fs, and f3 is:

M Matrix

w

2?y? zyd xylz az

22y’ =3 0 0 0
T3 1 -3 0 0
zy’z 5 0 =3 0
zz3 0 0 0 -3

The determinant of this M matrix yields a value of 81. Since the determinant of the A matrix
was zero, the Macaulay Resultant is zero, which implies that there is a solution to our system. The
following plot of the three polynomials (f1, f2, and f3) confirms that there is a common point at
r=2and y=1.
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Sometimes both the A matrix and the M matrix have zero determinant. This indeterminacy
can often be circumvented if the polynomials are first written with symbolic coefficients. The
determinants of the A and M matrices are obtained, polynomial division is performed, and then
at the end, the symbolic coefficients are replaced by their numerical values to check if the resultant
is zero. Since one does not know ahead of time whether or not this “division by zero” condition
will arise, the symbolic coefficient approach is the best strategy. It is also often sufficient to treat
just a subset of the coefficients symbolically—sometimes as few as a single symbolic coefficient will
remove the indeterminacy.

The U-Resultant

For problems with as many inhomogeneous equations as variables, the U-resultant can often be
used to solve for the point solutions. The three polynomial equations f1, f2, f3 do not satisfy these
conditions, since there are three equations in two inhomogeneous variables, x and y. However, if
we take just the first two equations, namely f; and fo, we would have a system with as many
equations as variables.

The given equations must first be homogenized. This adds one additional variable. We then
add one additional equation to the system. This equation is called the U-equation. If x and y are
the given variables and z is the homogenizing variable, then the U equation takes the form:

U1 + uoy + uzz = 0.

The Macaulay Resultant, R, is then computed for these m 4+ 1 equations, treating the u; as
symbolic coefficients. The result is called the U-resultant. Notice that R will be a polynomial in
the u;’s and the coefficients of the original equations.

After R is determined, it is factored into linear factors. For each linear factor there is a point
solution of the original system of equations. The coordinates of each solution are given as ratios of
the coefficients of the u;’s. The denominator is always the coefficient of the u; associated with the
homogenizing variable. In our example, this is the coefficient of u3. Thus

coeff. of uy coefl. of us

coeff. of us Y= coeff. of us

For example, if a linear factor turned out to be

U] — U2 — Uz,
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then the coordinates of the associated solution would be

1 -1

Example 8: As mentioned above, the polynomial equation system f1, fo, f3 is overdetermined
(n —m = —1). However, we can use the U-resultant to solve f; and fy for 2 and y(n —m = 0). In
this example, we will also demonstrate the symbolic approach alluded to in the previous section.
Recall that the homogenized form of f; and fs is:

fi=y—3x+52=0
fo=a"+y* =52 =0.

Rewriting these two equations with symbolic coefficients and including the U-equation yields:

fi=ax+biy+ciz=0
fo = asx? + boy® + c22° = 0
U=uiz+uzy+uzz=0

where, a1 = =3, b1 =1,¢c; =5,a2 =1, by =1, and ¢co = —5.
The U-resultant is calculated in the same way as the Macaulay resultant, i.e., with the A matrix
and the M matrix, except now we are using symbolic coefficients.

A Matrix

¢ oxy T2 Y yz =z
z2la, 0 0 a 0O O
zy | by a1 0 0 wuy O
zz|lecg 0 ar 0 0 wy
y2 0 b1 0 b2 U2 0
yz| — ¢ b1 0 uz wo
z 0 0 cl1 C2 0 us

The corresponding M matrix is a single element, namely a;.

The determinant of M is divided into the determinant of A to obtain the U-resultant. Finally,
the symbolic coefficients are replaced by their numeric equivalents. (This could have been done
from the outset, unless a; had been zero.) The result is

10(U1 - 2U2 + U3)(2U1 + u2 + ’LL3).

This yields two solutions:
SOLUTION #1:

coeff. of uy +1 1 d coeff. of uqy —2 9
r=——+———=—=-—1 an = "= — =9,
coeff. of us —1 y coeff. of ug  +1
SOLUTION #2:
xzcoeff.ofu1:+2:+2 and y:coeff.ofu2:+1:+1‘

coefl. of us +1 coeff. of us +1
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We remark that the U-resultant will be identically zero and give no information, if the set of common
solutions contains a component of excess dimension one or more. Moreover, this component may
be at infinity where the homogenizing variable is zero.

The GCP Approach

The Generalized Characteristic Polynomial (GCP) approach [?] avoids the problem of compo-
nents of excess dimension in the set of solutions. It can be used together with the U-resultant which
was discussed above. If the U-resultant leads to an indeterminant (0/0) form even when symbolic
coefficients are used, an “excess” solution exists. The GCP takes the form

_ det|A — s]]|

= evaluated at s = 0 after division
det|M — sI|

where A and M are the matrices defined above, s is a perturbation parameter, and I is the identity
maftrix.
One way to carry out the above operation is the following:

(1) Set up the A matrix (as described above). Subtract s along the diagonal. Evaluate the
determinant. Retain the coefficient of the lowest surviving power of s.

(2) Repeat (1) for the M matrix.
(3) Divide the result of (1) by the result (2).

All of these multiresultant techniques have one thing in common. They require that there
be one more equation than variable, n — m = —1. If there are as many equations as variables
n —m = 0, the the U equation is added and the effective situation is again n —m = —1. If there
are more variables than equations (n —m is a positive integer), then enough of these variables must
be regarded as parameters in the coefficients, so that effectively n — m = —1. Geometrically this
amounts to projecting the locus of solutions to a hypersurface in a lower dimensional space. Finally,
if the number of equations exceeds the number of variables by more than one (n —m < —2), then
some technique other than the above multiresultant techniques (e.g., a system of multiresultants)
must be employed to determine if a solution exists.

2.3 The Jacobian Method of Salmon

Consider a system of m polynomial equations in n variables

fl(fL‘l,... ,ZEn) =0

fm.(fﬁl,--- ,Zp,) = 0.

For example, take a system of three quadratic equations in three variables z, vy, z:
0 = apz® + bpy? + 2’ + dpzy + epzz + fryz + gpe + hpy +igz + g, k=1,2,3.

Geometrically, this amounts to 3 quadratic surfaces intersecting in 3-space.

From Bezout’s Theorem we expect this system to have 8 solutions (counting complex solutions,
solutions at infinity, and counting each solution the appropriate number of times, namely its multi-
plicity). Of course, it is possible in a degenerate situation for the above system to have an infinite
number of solutions. This can occur if all the surfaces have a common (surface) component (i.e.,
the polynomials have a common factor), or if they intersect in a common curve.
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We can add to our system of equations any equation of the form

fi(@e, .o o) o

In fact, any equation of the form
m
Zgj(xl, oo x) iz, 2n),
i=1

for arbitrary polynomials g;(z1,...,2,), can be added without changing the set of common solu-
tions.

Our goal is to convert problem (?7) into a system of linear equations where the methods of linear
algebra can be applied. To accomplish this, we begin by writing each of our quadratic equations as

0 = apz” + bpy? + dizy + (enz + gu) + (frz + hi)y + (ck2® +igz + ji), k=1,2,3,

where we are thinking of them as quadratic equations in two variables z and y with coefficients
that vary with z. We have six monomials in z and y, namely

o, y?, zy, x, y, 1,

which we would like to treat as independent variables, giving us a system of linear equations.
Unfortunately, this would be a system of only 3 equations in the “six variables”, and we would
prefer six equations. If we try to increase the number of equations by multiplying the existing
three by various monomials, we invariably end up introducing new monomials in « and y—in effect
increasing the number of “variables”. Sometimes this method can be made to work (see Roth [?]
for examples).

The trick, at least for the case of three quadratic equations in three variables, goes back to a
result of Salmon.

Theorem 2 (Salmon [?, pg. 88]): If we have a system of m homogeneous equations in m variables

fl(xl,... ,(I,‘m) =0
: (4)
fm(xla"' 7$m) =0

(note: m = n), then any non-trivial common solution is also a solution of the Jacobian polynomial

6f1/6ac1 e 8f1/8xm
J(z1,... ,xm) = det : :
afm/axl afm/a$m

Moreover, if the f; all have the same degree, then any non-trivial common solution to the system
(??) is also a solution of all the polynomials

oJ
8—%(x13'--,xm), ZZI,,m
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Proof. We do the case of three variables. Thus we consider a system of 3 homogeneous equations

f(z,y,w) =0
g(z,y,w) =0
h(z,y,w) =0

in the variables z, y, and w. Recall that for homogeneous polynomials we have the identities

of | of of _

o=ty +w— = (degg)g
HA w

T +y-— +w-— = (degh)h
x Yy w

g:v gy %w z (degf)f
a5 aally| = (degg)g |- (5)
Gh g_y oh | \z (degh)h

up U1 wi
Let | uo w9 w9 | be the matrix of cofactors of the Jacobian, so
uz vz w3

W _000h Oy
Oy ow Oy dw

o _ofon _onof
! Oy ow Oy ow
_0f 0g 99 0f

YT Oy ow Oy ow

etc. Multiplying both sides of (??) by this matrix yields

Jr = ui(degf) f + vi(degg)g + wi(degh)h
Jy = ug(degf)f + vo(degg)g + wo(degh)h
Juw = uz(degf) [ + v3(degg)g + ws(degh)h.

Now if (x : y : w) is a non-trivial solution to f, g, and h, then Jx =0, Jy =0, and Jw = 0. But at
least one of z, y, and w is non-zero (otherwise the solution is trivial) so J = 0. Algebraically this
means that J is in the radical of the ideal generated by f, g, and h.

Now if degf = degg = deg h = d, we can differentiate Jx again with respect to x, y, and w, to
get

OF _ gp 2% g 20 | gp 21 (91, 99, Ok
J+$8:1: =4 oz +dg(9:1: +dh oz +d<8mu1+8xvl+8xwl>'

and
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oJ ouy oy ow; of Jdg Oh >
— =df— +dg— +dh—— +d | = — —
J?ay f ay + ag ay + ay + <8yul + 9 v + ay’wl
and
aJ 0w ovq ow, of dg oh )

But remember

of dg h
a—w’u,l + 8—w’01 + B_wwl =0

so that

oJ . 8u1 (91)1 awl
J+$%—df o +d98$ + dh o +dJ

and

o0J (9’[1,1 61)1 awl

S/ S SR AT | Mot
x@y 7 oy +ag oy + oy

oJ . (9’[1,1 61)1 awl
. _df(?w +dg(9w + dh S

Now when we have a common solution, i.e., when f, g, and h are all zero, then so is J by what we
have already showed. Thus

aJ
oJ
20
T oy
oJ
— =0.
¥ ow
Likewise differentiating Jy and Jw yields:
ydJ/0x =0
yoJ/0y =0
yoJ/ow =0
wdJ/0x =0
wadJ/oy =0
wdJ/ow = 0.
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From these nine expressions and the fact that (z :y: w) # (0:0:0), we conclude
0J/0x =0, 0J/0y=0, and 09J/0w =0

as required. Again, algebraically, this says that 0J/0z, 0J/dy, and 0.J/0w are in the radical of the
ideal generated by f, g, and h. O
We now apply this to our system

arpx? + bpy? + dpzy + (erz + gr)zw + (fra + hi)yw + (cp2? + iz + jp)w?, k=1,2,3 (6)

after making it homogeneous by inserting the variable w as appropriate. Keep in mind that z is
treated as a parameter in the coefficients, not as one of our variables.

Since each entry in the 3 x 3 Jacobian matrix of our system is homogeneous linear in x,y, w,
it is easy to see that J is homogeneous cubic in z,y,w and that therefore %, g—i, and g—i are

homogeneous quadratic. Adding these three quadratic equations to (??) yields the following system:

a1 by dy (e1z+g1) (fiz+h1) (12?2 +i12z+ 1) z? 0

as bo do (622 + 92) (fQZ + hg) (0222 + 192 + ]2) y2 0

a3 bs d3  (esz+g3) (fsz+hs) (esz®+isz+j3) | |ay | _ |0 (7)
3A(z) D(z) 2B(z) 2C(z?) F(2?) E(23) zw| |0
B(z) 3G(z) 2D(z) F(7?) 2H (2%) I(23) Yyw 0
C(z?) H(z?) F(2?) 2E(z%) 21(23) 3J(2) w? 0

where

J =A(2)z® + B(2)2%y + C(2*)2*w + D(2)zy* + E(2*)zw?
+ F(2%)ayw + G(2)y’ + H(2)y w + 1(2°)yw® + J(2*)w'

and the exponents on z indicate the degree of the polynomial in z (so I(z%) is a cubic expression
in z).

In order for the system (??) to have a solution the determinant of the 6 x 6 matrix must be
zero. This determinant is an eighth degree polynomial in z whose roots are the z-coordinates of
the eight sought after points (z,y, z) that are the common solutions of our original three quadrics.
Once such a z is found, we can set w = 1 and solve (??) for z and y.

While of limited use, this trick does allow one to generate additional equations that can be
added to the system without creating new monomials in the expressions.

Geometrically, we can explain why J vanishes if f, g, and h do. Each of f =0, ¢ = 0, and
h = 0 can be viewed as a curve in the projective plane P? (using the fact that f, g, and h are
homogeneous in z,y, w). Each row of the Jacobian matrix gives the coefficients of the tangent line
to this curve. If we have a point p common to all three curves:

3
c3
p
s
Co
61 C1
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then the three tangent lines at that point cannot be “independent” because we are in dimension
2. Thus one line is a linear combination of the other two, i.e., one row of the Jacobian matrix is a
linear combination of the other two, making the Jacobian determinant J equal to zero.

Example 9: Consider the system of equations

22+ —-2=0
Pyt +22-3=0
z? — y2 = 0.
The set of common solutions is easily seen to consist of the eight points (z,y,z) = (£1,+1, £+1).
We begin by homogenizing the system with respect to x and y:

122 4 1y* 4 0zy + 0zw + Oyw + (—2)w? = 0
122 + 132 + 0zy + 0zw + Oyw + (z2 — 3)w2 =0
122 + (—=1)y? 4 0zy + 0zw + Oyw + Ow? = 0.

The Jacobian is

2¢ 2y —4w
J=det |2z 2y (222 —6)w | = 16zyw(z* —1)
2z 2y 0
and

oJ
e 16yw(z* — 1)
oJ
o = 16zw(z> — 1)
oJ

Adding these last three equations to our original three yields the following “linearized” system:

11 0 0 0 -2 z? 0
1 1 0 0 0 22 =3[ v? 0
1 -1 0 0 0 0 zy | |0
0 0 0 0 16(z2-1) 0 zw| |0
0 0 0 16(2? — 1) 0 0 yw 0
0 0 16(z2-1) 0 0 0 w? 0

The determinant of the 6 x 6 matrix is 8192(22 — 1)* which is of degree eight as expected. The
roots of this polynomial in z are z = £1. Both cases lead to the system (after setting w = 1):

1 1 00 0 =2\ /z? 0
1 1 000 —2](¢? 0
1 =10 0 0 O zy|l |0
0 0 000 O z | |0
0 0 000 O y 0
0 0 000 O 1 0



This must now be solved for « and y yielding + = +1 and y = +1.

This example points up one defect of the method. While z is eliminated, we are left in general
with a system of six quadratic equations in z and y that must be solved. This system may not
have a solution, or may not have a solution with w = 1. In the later case we may get a solution
with w = 0, but that is a solution at infinity.
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3 Geometric Aspects of Elimination Theory and the Theory of
Equations

3.1 Intersections of Curves in the Plane

A curve C in the plane of degree d > 1 is described by the zeros of a single polynomial f(z,y) of
degree d. If f(x,y) factors, say as

f(z,y) = g(z,y)h(z,y)

where the degree of g is d; > 1, and the degree of h is do > 1, then C' can be written as the union of
two curves C7 and C5 of degrees dy and dy respectively. We can continue factoring until f(z,y) is
written as a product of irreducible (non-factorable) polynomials each of degree > 1. C' is then just
the union of a finite number of irreducible curves. For that reason, we often assume that f(z,y) is
irreducible to begin with, and when that is the case C will be called an irreducible plane curve.

Let (z0,y0) be the coordinates of a point P on C, i.e., let (xg,yp) be a solution to f(z,y) = 0.
We can make a change of coordinates by letting

a' = (z—xz9) and y' = (y—wyo)
which will put P at the origin. Recall that the multivariate Taylor expansion of f(z,y) around

(z0,y0) yields

0 0 .
F2.5) = (. 0) + 520, 30) & = 0) + (20 50) (o — o) + bigher orcler terus,

In these new coordinates C' is given by the equation

0 0
0=f(z'+z0,y +10) = a—f(gco,yo)x' + a—f(xo,yg)y' + higher order terms in 2’ and 7/
T Yy

and the point P has coordinates (z',y") = (0,0).
In what follows, we will assume that this has already been done so that P = (0,0) and

fay) = filz,y) + folz,y) + - + falz,y)
where f;(z,y) is a homogeneous polynomial of degree 7. In particular fi(z,y) = %(0,0W +

5L, 0)y.

Definition 1 We say that P € C is a singular point if fi is identically zero. Otherwise P is a
nonsingular (or smooth) point of C and the line fi(z,y) =0 is called the tangent line to C to P.

Note that in the original coordinates, where P has coordinates (g, o), the tangent line is given
by

0= g—i(fﬂoayo)(ff —x0) + g—g(ﬂﬂoayo)(y —40)-

Definition 2 A singular point P € C is called an m-fold singular point on C (double point, triple
point, etc.) if fi = fo ="+ = fm—1 =0 but fp, is not zero.
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Since fy, is homogeneous in two variables, it can be completely factored (over C, the complex
numbers) into linear factors

fm = [ (niz — viy).

=1

Definition 3 If the lines p;x —vjy = 0 are all distinct, we say that P is an ordinary m-fold point.
An ordinary double point is also called a node.

Example 10: Consider the point (0,0) on y? + 22 — 23 = 0.

(2,2)

(27 _2)
The real solutions to this equation are picture above. Notice that (0,0) appears to be an isolated
point. This an artifact of working over R; over C it is not isolated. In this example f(z,y) =
y? + 22 — 2% and at (0,0) we have:
fi=0, fo=y’+2* and f3=—a’
We see that (0,0) is a singular point because f; = 0, and that it is in fact a double point because

fo # 0. Moreover fy =42+ 2% = (y +iz)(y — ix) so that fo factors into two distinct linear factors
which means that P is an ordinary double point. O

Example 11: 32 — 22 — 23 =0

(0,0)

This is the more typical picture of an ordinary double point at (0, 0). O

Definition 4 A double point is called a cusp if fo = (axz +by)? and the intersection multiplicity of
the line ax 4+ by = 0 with the curve is 3 (see below).

Example 12: 32 — 23 =0
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This curve has a cusp at (0,0).

Example 13: The singularity pictured below is a double point called a tacnode:

We will be interested in solving systems like

flz,y) =0
g(z,y) = 0.

Let’s begin by considering the case where g(z,y) = ax+ by +c. This means that we are intersecting
the curve C given by f(z,y) = 0 and the line L given by g(z,y) = 0. If b # 0, we can solve for y:

a c
Yy=——— <.

b b
If we substitute this into f:

0=f (x,—%x— %) = h(zx)

the result is a polynomial h(z) in the one variable z, of degree at most d = degree f. Notice that
h could be identically zero if f(z,y) factors into az + by + ¢ times another polynomial. We will
assume that this is not the case. Then we have at most d intersection points whose z coordinates
can be found by solving h(z) = 0.

Let’s consider the following special case. Namely, let P be a smooth point on a curve C' (we
assume P = (0,0) by changing coordinates) given by f(z,y) = 0. We have that

o) = 20,00+ 0,01 =0
z Yy

is the tangent line L to C' at P. After another change of coordinates, we can assume that g(z,y) =
y = 0 is the tangent line to C' at (0,0). We define the intersection multiplicity of P € L N C to be
the order of vanishing of f(z,0) at x=0. This amounts to restricting the polynomial f(z,y) to the
z-axis which is of course the tangent line given by y = 0.
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Definition 5 If this order of vanishing is 3, then P is called an ordinary flex.

Example 14: y — 2° = 0 has an ordinary flex at (0,0).

Generally a tangent line to a curve at a nonsingular point meets the curve with intersection multi-
plicity 2. If a tangent line has higher than expected order of contact at P, then P is called a flex
of the curve.

Now suppose we have two curves C; given by f(z,y) = 0 of degree d; > 1 and Cy given by
g(z,y) =0 of degree dy > 1. We will assume f, g have no common factor so that C; N Cy consists
of a finite set of points. Let P be one of those points and change coordinates to that P = (0,0).

Definition 6 If P is a nonsingular point on both Cy and Cs, and the two tangent lines are distinct,
then we define the intersection multiplicity Ip(Cy,Cs) of P € C1 NCy to be 1. The picture is:

Cy

Co

If P is singular on either curve or if Cy and Cy have a common tangent line, then Ip(Cy,Cq) > 2.
The actual definition of Ip(C1,C2) is a technical one and details can be found in Fulton [?]. In
particular, if P is an mg-fold singularity on Cy and an mg-fold singularity on Cy then Ip(Cy,Cy) >
mymg with equality if fm, and gpm, have no line in common.

The basic theorem in intersection theory is:

Bezout’s Theorem: Z Ip(Cy,Cy) = dyds.
PeCiNCy

In other words, the number of common solutions to f(z,y) = 0 and g(x,y) = 0 is the product of
their degrees d;dy. Counting is done with multiplicity, complex solutions are counted, and solutions
at infinity must also be counted.

Example 15: Let f = (X2 +Y?)2 +3X2%Y — Y3 and g = (X2 + Y?)? —4X2%Y2. The two curves
Ci defined by f = 0 and C3 defined by g = 0 intersect at P = (0,0). Fulton [?] shows that the
intersection multiplicity Ip(Cy, Cy) = 14. O
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Finally, we want to introduce a fundamental invariant of a smooth projective curve C. If C' is
given by a homogeneous polynomial F(Zy, Z1,Zs) = 0 of degree d > 1, and C' is smooth, i.e., C
has no singular points including at oo, then we define the genus g¢ of C' to be

_(d=1)(d-2)
o=y
The genus is actually a topological invariant of C' viewed as a one-dimensional complex manifold.
Notice that for d =1,2,3,4,5,... , we have ¢ = 0,0,1,3,6,..., so that certain values of g, notably
4, do not occur as the genus of a smooth plane curve.
There is also a notion of genus for singular projective plane curves. The formula involves sub-

tracting a correction term from W depending on the nature of the singularities, specifically

(d—1)(d —2) mp(mp — 1)
2 -2 2P

g =
P
where the sum is taken over all singular points P on the curve and over all singular points P that
arise during successive steps in the resolution process (these are known as infinitely near singular
points). The value mp is the multiplicity of the singularity, i.e. P is an mp-fold singular point.
This ¢ is actually the genus of the curve C obtained by resolving the singularities of C'.

Example 16: A curve of degree four with two ordinary double points has ¢ = 1. This case is
particularly relevant to an example we have in mind, that illustrates some geometric artifacts that
can be introduced when using resultants (see below). O

We conclude this section by mentioning Harnack’s theorem on real plane curves. A smooth real
plane curve consists of a number of ovals (see Harris [?, pp. 247-248]). Some cases look like those

D D

=4
(a)

Qe

Note that we are looking at things projectively, so in the ordinary plane R? some of the ovals may
go off to infinity.

pictured below:

'(I‘he)(()rer)n 3 The mazimum number of ovals a smooth plane curve of degree d can have is My =
d—1)(d—2
4 1.

2
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3.2 Intersections of Surfaces in Space

In this section, we examine the intersection of two surfaces in space. This is critical for an example
we have in mind. As before, we will frequently need to work over the complex numbers, and we will
also want to “compactify” our curves and surfaces by working in complex projective three-space
P3.

Since the intersection of two surfaces S; and So, given by f(z,y,z) = 0 and g(z,y,2) = 0
respectively, is a union of curves Cy U --- U (), it will be useful to say a few words about curves in
space before discussing surface intersections. (Note that in the projective setting S; and Sy would
be given by the homogeneous polynomials F(X,Y,Z, W) = 0 and G(X,Y, Z, W) = 0 obtained by
“homogenizing” f(z,y,z) and g(z,y, z).)

Example 17: The surfaces given by zz — y> = 0 and y — 22 = 0 intersect in two curves. One,
C1, is the z-axis defined by z = 0, y = 0, and the other, Cs, is the so-called “twisted cubic” given
parametrically by = ¢, y = ¢?, and z = t>. For this same example in P}, we would consider the
homogeneous quadratic equations XZ —Y? =0 and YW — X2 = 0. At infinity (W = 0) the only
solution is (X : Y : Z: W) =(0:0:1:0). So the two curves C; and C5 join at two points—the
origin (0,0,0) and this one point at infinity.

Co

Cy

Cq Cs

Curves in Space

Every smooth irreducible curve C' in space has two fundamental invariants, its degree d and its
genus g. The degree is defined to be the number of points in C' N H for a general plane H in three
space. For certain planes, C' N H will contain fewer points (or perhaps C' will be contained in H),
but for most planes, C'N H will consist of d points. The genus ¢ is harder to define. For smooth
projective curves C' C IP’% it is the usual topological genus. What we want however is a second
notion of genus, called the arithmetic genus p,(C'), which equals g for smooth curves, but which
can be defined for any curve. One important aspect of p,(C') is that it is a birational invariant and
so remains unchanged if the space curve C' is appropriately projected into a plane.

Below is a table which illustrates possible combinations of d and ¢ that can occur for a curve
in space:
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ﬁ ] , ® — exists
" K 7 = does not exist
! ) o= don’t know yet
/ ’
8 1
: v; ___1 .......... =5(d—-1)(d-2)
~ plane curve
9 6 7 —
5 . 1
P _ 1
4 ,/ ————%— - ------ g_Zd _d+1
3 -
9 — = — _ _ - g=d-3
1 P
0 o d
1 2 3 4 5 6 7 8 9 10

The most important example occurs when a curve C' is the complete intersection of two surfaces
of degrees a and b. In that case, we have:

Proposition 1 If C is the complete intersection of two surfaces of degrees a and b respectively,
then the arithmetic genus of C, pe(C) = 2ab(a +b—4) + 1 and the degree of C' is ab.

Example 18: Consider the intersection of the cone z?+y2—2? = 0 with the cylinder (z—2)2+y%—1 =
0. These two surfaces intersect transversally because the Jacobian matrix

2z 2y -2z
20z —-2) 2y O

has rank two at any point of the intersection. (To get all three 2x 2 minors to have zero determinant,
one would need either y = 0, z = 0, or y = 0, x = 2, and it is easy to see that no point
on the intersection has these values.) Viewing things in IP’?C, where we must use the equations
X2+Y?2-Z72=0and (X —2W)2+Y?%2—-W?2 =0, we find that the surfaces intersect in two points
at oo, namely (X : Y : Z: W) = (1: +i:0:0). The intersection is also transverse at these
points. (Use the equations 1 4+ y? — 22 = 0 and (1 — 2w)? + y? — w? = 0 to compute the Jacobian

+2; 0 0

+2¢ 0 —4
4 and arithmetic genus p,(C) = 1. Because C' is smooth, the topological genus g is also 1. The
topological picture is:

which clearly has rank 2.) Thus the intersection is a smooth curve C of degree

where the two ovals are the real points. The two points at oo are also shown.
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There is an analogue of Bezout’s Theorem for the intersection of two surfaces S; and Sy of
degrees a and b respectively. It says that

ab=">_Ic(S1,82)degC
C

where the sum is taken over all irreducible curves C' that occur in the intersection and I(S1,S2)
is the intersection multiplicity of S; and So along C. For example, we previously considered two
quadrics £z — y?> = 0 and y — 22 = 0 intersecting in a line C; which has degree 1 and the twisted
cubic Cy which has degree 3. The above formula gives 2-2 = 3 + 1. It follows that I, (S1,S2) and
I, (S1,S2) are both 1 and that no other curves appear in the intersection.

Curves on Quadric Surfaces

In the examples above, the curves involved all lie on quadric surfaces. In this section, we will
briefly consider curves on smooth quadrics. As described in [?], any smooth quadric surface is
projectively equivalent to the one defined by ZyZ3 — Z1Z = 0 in IP’% This surface, known as the
Serge surface is the image of the map

Pt x P — P
(X() :Xl) (YO : Yl) — (X()YO : XOY1 : X1YO :X1Y1).

To describe a curve on this surface, one specifies a bihomogeneous polynomial F(Xy, X1, Yy, Y1)
of bidegree (r,s). This means that F' should be homogeneous of degree r in the X variables and
homogeneous of degree s in the Y variables. The degree of the curve defined by an F' of bidegree
(a,b) is a + b.

Example 19: F(Xy, X1,Y,Y1) = X3Y; — X?Y; has bidegree (2, 1).

Example 20: Suppose F(Xg, X1, Yy, Y1) has bidegree (m, m —1). The resulting curve C on P! x P!
can be described as a determinantal variety in P3. Namely, C' C P2 is just the set of 2 x 3 matrices
of the form

Zo Zv G(Zy,Z1,Z2,Z3)
Z2 Z3 H(Z07Z17Z27Z3)

that have rank < 1. Here G and H are homogeneous polynomials of degree m — 1. For example,
using F(Xy, X1, Yy, Y1) = X2Y1 — X?Y) as above, the matrices in question take the form

Zo 21 Zo
Zo Zs 4
Those of rank one are precisely the points on the quadric surface that lie on the curve cut out by

F.

Plane Projections of Space Curves

Linear projection is a technique for reducing the number of variables in a problem. In general
a linear projection is defined as follows: Select a linear subspace L? C P" of dimension d and a
second linear subspace L"~%! disjoint from L%. The projection  is a mapping

Q: P" — Ld N fjn—d—l I~ Pn_d_l.

Specifically, for p € P* — L% consider the linear space A, of dimension d + 1 spanned by L% and
p, and define ¢(p) to be the point of L" 41 which is the intersection of A, with L™ ¢~!. This is
called the projection from L<.
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Example 21: In space, P3, let L be the point (zero dimensional linear subspace) [z : y : ¢ : w] =
[1:0:0:0], and let L be the plane, P?, defined by z = 0. The projection ¢ is just the map
P?—{[1:0:0:0]} -2 P?
[T:y:t:w]—[y:t:w)].
Now if X is a subvariety of projective space P" which doesn’t meet L%, we can consider its image
©(X) c P91 under the projection. X is usually described by a system of (homogeneous)
polynomial equations fi(Xo,...,X,) =0,..., fs(Xo,...,X,) = 0. The standard tool to go from

this system of equations to a system of equations in n — d variables which describe ¢(X) is the
resultant!

Example 22: Suppose C' is a curve in space described by two equations:
ar(y, )" 4+ ar_1(y,t)z" "L 4+ +ag(y,t) =0
and
bs(y, £)7° + bs_1(y, )z""" + -+ + by(y,t) = 0.

If we project C to the y,t-plane, we get a curve ¢(C) described by one equation, R(y,t) = 0, in
two variables. R(y,t) is computed via the resultant:

ar(y,t) ar—1(y,t) e s ap(y,t) - 0---0
0 Qr (ya t) arfl(ya t) toe ap (y, t) 0---0
0 ar(y’t) ao(y,t)
R(y,t) = det bs(y,t)  bs_1(y,t) 0---0
0 s(y,t 0---0
: 0

which is the determinant of an r + s by r + s matrix.

Now suppose C' C P? is a smooth irreducible curve of degree d and arithmetic genus g. We
can project from any point p € C to a plane also disjoint from p. The result of this projection is
an irreducible plane curve ¢(C) also of degree d and arithmetic genus g. The curve ¢(C) however

. . (d—1)(d—2)
may be singular. In fact, if g # —5—
the following:

then ¢(C) will be forced to have singularities. We have

Theorem 4 The general linear projection of a smooth irreducible curve C C P3 from a point
p €P3, p & C is a plane curve having at worst only ordinary double points (nodes) for singularities.

( F)‘{om) our formula for the arithmetic genus above, we see that the number of nodes must be
d—1)(d—2
{e-lfla-2) _

Example 23: If a non-singular curve C is the intersection of two quadrics in space, it will have
degree four and arithmetic genus one. The general projection will be a plane curve ¢(C') of degree
four with two ordinary double points.

Away from these double points the map from C to ¢(C) is one-to-one. The picture is:
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Note that for projections in special directions things might become bad. O

Detailed Example

We conclude this section with a lengthy example. For the most part we will work in ordinary
three space, as opposed to projective three space. Thus our equations will not be homogeneous in
four variables, but rather just polynomials in three variables. To analyze behavior at infinity it will
be necessary to homogenize the equations.

Our example starts with the curve C' defined by the intersection of two conics:

P+ y-12—-t2=0

(o) -2 -1

In R? with coordinates x,y,t, the first equation represents a cone with vertex at (0, 1,0)

and the second equation represents a slanted cylinder:
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Another interpretation is that the first equation represents an expanding circle in the plane and
that the second equation represents a moving circle. Pictured below is the situation at time ¢ = 2:

Notice that x =2, y = 1, ¢t = 2 is the point of “first contact”.
Projectively, we would need to work with the homogenized versions of the equations (?7?):

22+ (y—w)?> =t =0

o)) -3 -

The points at infinity in P? correspond to solutions with w = 0. There are exactly four such points

in P, namely

+ iy
1t

W
=~ w
+
>~ .
—_
o)
N———

(x:y:z:t)=(—4:1:0:0), (i:1:0:0), <—

3 1+ 3 1

With a little work one can show that C' C P? is a smooth irreducible curve (as usual we are assuming
that we are working over the complex numbers C).
The real solutions form two ovals in R3:
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Now we will project C into the y, t-plane, the plane defined by « = 0. This is a linear projection
¢ from the point (1:0:0 :0) in P? to the plane z = 0. Note that (1:0:0:0) € C so that the
projection ¢ is well-defined on all of C. To find the equation for ¢(C) C P?, we write our equations
as polynomials in z:

2+ (1) =

0
4o + (4t — 32)z + ((t — 8)* + 2y — t)® —4) = 0.

We then eliminate z by taking the resultant:

0 y? — t? 0

1 0 y? —t2
4t — 32 * 0

4 4t — 32 *

det *x=((t—8)* + (2y — t)* — 4).

S = O =

The result (after dividing by 4) is

g(y,t) = (8% — 80t + 272)y> + (—12t> + 48t% — 48t — 288)y + (5t* 4 16¢> — 20t — 512t 4 1040)
(9)

and the projection (C) is described by g(y,t) = 0, or in projective space P? with homogeneous
coordinates y, t, w by:

0 =8t2y% — 80ty*w + 272y%w? — 1263y + 48t2yw — 48tyw?

— 288yw? + 5t* + 163w — 20t2w? — 512w + 1040w?. (10)

This is a plane curve of degree 4. We expect this degree because the original C' C P? had degree
4, being the intersection of two quadrics. Now a smooth plane curve of degree 4 has arithmetic
genus 3 while our curve has arithmetic genus 1. This means our curve has some singularities. In
general, we expect it to have two ordinary double points (nodes), but it could have cusps instead,
or it could have a single tacnode. These singularities occur as a result of the projection:
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We will see below that ¢(C) does in fact have two nodes.
What do the real points on (C) in R? look like. We can view

0 = (8t — 80t + 272)y? + (—12t3 + 48> — 48t — 288)y + (5t + 16> — 20t> — 512¢ + 1040)
as a quadratic equation in y of the form
Ay? + By + C = 0.
The discriminant is B? — 4AC, which equals
—16t% — 6445 + 3776t — 5120¢3 — 200704¢> + 917504t — 1048576.

The roots of the discriminant are —16, —9.40312, 2, 3.40312, and a double root at 8. This double
root is a bit curious. It is an isolated point at (y,t) = (13,8).

131 «(13,8)

11 @

—16 —9.40312 2 3.40312 8

-

We see the two ovals we expect. When ¢ = 2, we have (y,t) = (1,2) being the point of “first
contact” discussed above. The other times ¢ = —16, —9.40312, and 3.40312 also correspond to
when the two circles are tangent.
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One can easily show that (y,t) = (13,8) is an ordinary double point. We change coordinates to
move this point to the origin by setting

t=r+8 and y=s+13
in g(y,t). This leads to
12(43r% — 28rs + 125%) + higher order terms.

Since no linear term is present (13,8) is a singular point, and because 43r? — 28rs 4 1252 factors
into two distinct (complex) linear factors, it is an ordinary double point. Two points on C' project
to (y,t) = (13,8); they are (z,y,t) = (4v/—5,13,8) and (—4y/—5,13,8).

C must have another singularity, which in this case occurs at infinity. Setting w = 0 in (?7?)

gives us the points of C at infinity. They are (y : ¢ : w) = (1 : 0 : 0), (% + %,: 1: 0), and
(%—%:1:0). It is clear that (z :y:t:w)=(1:1:0:0) and (—i:1:0:0) on C both project
to(y:t:w)=(1:0:0).

To see what ¢(C) looks like near (1:0:0), we set y =1 in (??) to get:

8t? + 272w? — 80tw + higher order terms.

Again, 8% +272w? — 80tw factors into two distinct complex lines showing that (1 : 0 : 0) is a second
node on (C).

Apart from these two points (y : ¢ : w) = (13:8:1) and (1:0:0) on ¢(C) and the four points
above them on C, the projection from C' to ¢(C) can be shown to be one-to-one. Each smooth
point on ¢(C') has exactly one point on C projecting to it. This concludes our example. It is an
excellent example of the kinds of geometric, algebraic, and numerical phenomena that can occur
when we use resultants to eliminate variables.
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4 Complexity and Computational Issues

4.1 Resultants and Combinatorial Methods

In this section we briefly address certain complexity and computational issues related largely to
the number of terms that can appear in the classical Sylvester resultant.

Terms and Coefficients in the Resultant

We begin by attempting to understand what monomials and what coeflicients can occur in a
resultant. As easy examples show (see section 1 above), the number of monomials that actually
occur is far less than the maximum (the total number of monomials of the appropriate degree and
homogeneity).

Let f(z) = amx™ + -+ a1z + ap and g(z) = byax™ + -+ - + byz + by and write

Rimn(fi9) = Z Cpqal b
D,q
where

P =(Po,---Pm), q=1(q0,--- ,qn)
a? =abPalt .. abr, Y =Bl L b

and p € Z7 with Y1 p; = nand ¢ € Z"/" with > i—0qj = m. Here Z is the set of non-negative
integers.
We denote by A™(n) the set of all p = (po,... ,pm) € ZTH with > pi = n.

Example 24:

A2(2) ={(2,0,0),(0,2,0),(0,0,2),(1,1,0),(0,1,1),(1,0,1)}.
O
Note that ¢y, = 0 unless p € A™(n) and g € A™(m).

Now given ¢ € A"(m) define a symmetric polynomial My(z1, ... ,Z,) as the sum of all mono-
1,00 am

mials z{"z5? ... 3™ such that go of the exponents «; are equal to n, g; of the exponents are equal
to n — 1, etc., down to ¢, of the exponents equaling 0.
Example 25: If m =n =2 and ¢ = (qo, q1,¢2) = (1,0, 1), then

2,0,.0.2_ 2 2
M,(z1,22) = xizy + 225 = 27 + 5

because we must have all monomials with one exponent equal to 2 and one equal to 0.

Example 26: If m =n =2 and ¢ = (qo, 91, ¢2) = (0,2,0), then
My(z1,z2) = iz = iz

because we must have two exponents equal to 1.

The M,(z1,... ,zy) are clearly symmetric polynomials and so can be written in terms of the
elementary symmetric functions e;(z1,... ,Tm) = Y 1<j,<.cji<m Ty - - - Tjs, for i =0,...,m.

Example 27: m =2, ¢y =1, e; = 1 + z2, and ey = z129.

The next result tells how to compute the coefficients cpq, p € A™(n), ¢ € A™(m) in the resultant
Rinn(f,9).
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Theorem 5 For p = (po,... ,pm) with p; > 0 and Y " op; =n and ¢ = (qo, ... ,qn) with ¢ > 0
and }77_ q; = m, the coefficient cyq of the monomial ap’ ...almbl’ .. b in the resultant Ry, »(f, 9)

where f(x) = apz™ + -+ ap and g(z) = byz™ + -+ + by is (—1)2?;0 Wi times the coefficient of
[T ei(zi,... ,om)P" in the expansion of My(x1,... ,%y) in terms of the elementary symmetric
functions e;(x1,... ,Tm).

Example 28: m = 2, n = 2, p = (po,p1,p2) = (1,0,1) and ¢ = (g0, q1,92) = (1,0,1). We
are looking for the coefficient of agasbgbe in the resultant of two quadratic polynomials. (Note
apazbpbe = ajalaibibibl.) Example 25 shows My(z1,72) = 27 + 23 and in terms of the elementary
symmetric functions (Example 27),

My (21, 72) = % + 25 = (z1 + 22)* — 22129 = €3 — 2ey.
The coefficient ¢, we are looking for is (—1)? times the coefficient of e2. Thus ¢, = —2 which is

correct (see the last term in Example 1).

Algorithm. This yields an algorithm for finding the coefficients of the resultant based on the
algorithm for writing a symmetric polynomial in terms of the elementary symmetric polynomials.
4.2 Partitions, Symmetric Functions, and Newton Polytopes

Partitions play an important role in the representation theory of the symmetric group. They also
play an important role in determining which terms can occur in the resultant.

Definition 7 A partition of length < m is just a sequence of non-negative numbers \y > Ao >
-+ > A, which we denote by A = (A1, Ao, ... \p). The numbers \; are the parts of .

Each partition gives rise to a symmetric polynomial

mx(Z1y... , Tm) = > AR il
(@1 ,0m ) =0 (A1 50 s Am)
where o runs through all distinct permutations of (Aq,... , Am).

Example 29: \ = (2,1)

2.1 1,2 2 2
m(2,1)(301, T2) = T{Ty + T1T5 = T{T2 + T175.

Example 30: M;(z1,... ,zx,) defined above for ¢ = (qo,... ,qn), ¢j > 0, 37— ¢ = m coincides
with my(z1,... ,zy) for the partition

A=(n,...,nyn—1,...,n—1,...,1,...,1,0,...,0).
—_—— ~ —_——  ——
qo times q1 times Qqn—1 times ¢p times

Notice A has 3°7_, q; = m parts.

Example 31: The elementary symmetric polynomials e; (1, . .. , Z,,) are also of the form m (21, ... , Zn)
for the partition A = (1,...,1,0,...,0). Notice A has m parts.
——— N —

1 times m—i times
Now the m) as A runs over all partitions with m parts form a basis for the infinite dimensional
vector space of symmetric polynomials in m variables z1,... ,z,,. A different basis is given by

m
H ei(xla s 7$m)pi‘
=0
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We encode this by a partition p having p; parts equal to ¢ for 1 =0,... ,m

w=m,.... mm-—1,... m—1,...,1,...,1,0,...,0)
Pm times Pm—1 times p1 times po times
and we write
m
@i vwm) = [[eier.. am)
i=0
for any partition p with parts < m but of any length. Note: we define ey(z1,... ,z,) = 1.

A key observation is that the coefficients in the resultant are essentially the entries in the change
of basis matrix between the m) and the e,. Unfortunately this doesn’t yield much information.
However, if we write

ey = Z dym
A
much can be said about the dy,. If A = (A\y,... ,A\p) and p = (1, ..., pp) with p; <m for every
J, then d),, is equal to the number of m X n matrices with 0,1 entries having row sums Ay,... , Ay,
and column sums g1, ... , lin.

Example 32: m =2, n =2, A = (2,0), u = (2,0); then dy, = 0 as no 2 x 2 matrix can have the

required row and column sums, i.e., (Z Z), a,b,c,d € {0,1} witha+b=2,¢c+d=0,a+c=2,
and b+ d = 0. Notice that

2
; 1.0.1
ey = H ei(z1,x2)P" = egejeq = ea = 119
i=0

because u = (2,0) has one part equal to 2, no parts equal to 1, and one part equal to 0. To check
that dy, = 0, note that

ma,1) = 122
so that e, = m( ;) and as my = my ) doesn’t occur in this relationship, we have dy, = 0. If

we had chosen p = (1,1) then dy, would be 1 because the matrix has row sums 2,0 and

11
0 0
column sums 1,1, and it is the only such matrix. The d), play an important role in combinatorics
and in the representation theory of finite groups.

We must define two concepts:

Definition 8 If A = (A\1,... ,\p) and v = (v1,... ,vy) are two partitions of length m. We say
that v dominates A and write v > A if vy +---+v; > A+ 4+ X fori=1,... ,m—1 and
VI U = ALt A

Example 33: (4,1,1) dominates (3,2,1) because 4 >3,44+1>3+2, and4+1+1=3+2+1.

Definition 9 If u = (p1,... ,pn) is a partition with parts p; < m for all j and if p has p; parts
equal to i, then we define the conjugate partition p* to be:

v = P14 F PPt Py s Pm)-
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Example 34: m =3, u = (3,2,2,0) then u* = (3,3,1) because py = 1, py =0, p, =2, and p3 = 1.

We can now bound which terms appear in the resultant.

Theorem 6 Let p = (po,... ,pm) with p; > 0 and Y ;" yp; = n and ¢ = (qo,... ,qn) with g; > 0
and E?:o q; = m and let X, i be the following partitions:

A=(n,...,nyn—1,...,n—1,...,1,...,1,0,...,0)
—_——— N —_——— ———

(Note: X has length m and p has parts puj < m.) Then c,q = 0 and the term ab’...alm bl ... b
does mot appear in the resultant unless p* < X. Moreover if p* = X then cpq = (—I)Zi=0 ipi

(_I)Zi 0dd P

Theorem 7 The pairs (p,q) = (Pos--- sPms G0y --- »qn) € ZTT™H2 C RVF™F2 with 1* = X are
exactly the vertices of the Newton polytope of the resultant. Thus a term occurs in Ry m(f,g) only
if it is in the convex hull of this set of points.

Note: Without loss of generality, we can assume p has py parts equal to 0, so that p will have
length n.

Example 35:

f(z) = agz® + a1z +apg, as #0
g(z) = box?® +byz + by, by #0

p = (po,p1,p2) and ¢ = (qo, q1, g2) must be in the set {(2,0,0), (0, 2,0), (0,0,2),(1,1,0),(0,1,1),(1,0,1)}.
Thus there are at most 36 monomials in the resultant Ry 2(f,g). We make a table

*

>
=
I

— ok oo N
SR = O N O
= =)

o N O O

N = NN O

—
—_
——_ o=

NN AN N N N
~— ~— — ~— ~— ~—
N o~~~ o~

We then list the partitions which a given A dominates:

OO = O =N

NN N N N N
N = N O =N
— — ' — N~ ~——

41



This leads to seven pairs for which A > u*, six of which have A = p*. We list the corresponding
(po,p1,p2) and (qo, q1,q2). Remember that ¢ goes with A and that p goes with x, and that p goes
with the a’s and ¢q with the b’s

(90q192) (pop1p2)

(2,0,0) (0,0,2) a3b}
(0,2,0) (1,0,1) aOa?b%
(0,0,2) (2,0,0) ab?
(1,1,0) (0,1,1) a1a260b1
(0,1,1) (1,1,0) aoalblbg
(1,0,1)  (0,2,0) | a2bobo
(1,0,1) (1,0, 1) aoagbon.

2 .
The coefficients of the first six terms are given by (—I)Eizo P, Thus the resultant is
Ryo(f,g) = agbs + aibobs + a3bg — agaibiby — ayasbobi + agasbi + yaoazbobs

which agrees with Example 1 except for the one unknown coefficient +.

The Newton Polytope of the Resultant
The section above describes an algorithm for finding the Newton polytope of the resultant.
Recall that the Newton polytope N(f) of a polynomial in several variables

f=fEnam) = S el aly

a=(at,... ,CmﬂEZi
with only finitely
many cq7#0

is defined to be the convex hull in R™ of the integral lattice points o = (cv,... ) € Z7T for
which ¢, # 0.

Example 36: f(71,22) = 1 + 21 + 22 + 2223 has N(f) equal to the convex hull of
{(0,0),(1,0),(0,1),(2,2)}, i.e., N(f) looks like:

Notice that (1,1) is also in N(f) but the monomial z122 does not occur in f. Thus knowing the
Newton polytope of a polynomial only bounds what terms can occur.
We can prove a few facts about the Newton polytope Ny, ,, of the resultant R, ,(f,g).
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Theorem 8 The polytope Ny, has dimension m +n —1 in R™ 742 and lies in the linear space
cut out by

m n m
Yopi=n, D g=m, > (m —sz+zn—9q]—mn
i=0 =0 i—0 =0

O

Example 37: When m = 2 and n = 2 the first two equations yield 36 possibilities for (pg,p1,p2)
and (qo, q1,4g2). The third condition forces

2po +p1+29 +q1 =4,
reducing us to the following possibilities:

(p03p13p2) (quq13q2)

(2,0,0)  (0,0,2)

(0,2,00  (0,2,0) or (1,0,1)
(0,0,2)  (2,0,0) :
(1,1,0)  (0,1,1)

0,1,1)  (1,1,0)

(1,0,1)  (1,0,1) or (0,2,0)

for a total of 8 possibilities of which only seven actually occur. The pair that does not appear is
(0,2,0),(0,2,0) which corresponds to the monomial a2b?.

Example 38: N, has dimension 3. It can be realized in R and is pictured below.

Theorem 9 If m,n > 2 then Ny, has exactly mn + 3 faces.

Example 39: m = 2, n =2, then Ny 5 has 7 faces. N3 is pictured below with its 6 vertices. Since
it has 7 faces and 6 vertices it must have 11 edges as #vertices — #faces + #edges must equal 2.

a%b%_ —2@092()062 _a%b%

apan b%

Note that the one non-vertex point (1,0,1,1,0,1), which corresponds to agazbgbe, is the midpoint
between (2,0,0,0,0,2) and (0,0,2,2,0,0).

There are additional combinatorial ways to describe the vertices of N,,, but they involve
considerable technicalities.
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a3x3+a2$2+a1$+a0,

S~~~ o~~~ o~ o~ o~ o~ o~
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S A AN A A A N A A A NN NN M
SN’ N N N N N S S e S e S e e S S S S SN N
NN N N N N N N N N N N N N N N N N N
o AN Mmoo o AR oA N Ao oo "N o o oS
S A MmN S ST T AN NN S AN
T N o R g T e A A o e o o oA
N’ N N N N N N N N N e e e N e S N e N N

AN AN N AN SN N TN N N N TN N N TN TN TN N N N N

M AN 4O N 4O T NODO+H - OO0 O O OO

byz® + boz® + by + by, by # 0. The resultant R33(f,g) is bihomogeneous of

bidegree (3,3). There could be as many as 400 terms. We list the 20 possibilities for (pg, p1,p2,p3)

and (qo, q1,42,93), and the associated partitions X, u, p*.

Example 40: As a final example, we work out the m = n = 3 case. Let f(x)

as 75 07 and g(]?)
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We now list the partitions for which A > p*.
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e e e e e e e e e e e e e e e e e S e

This leads to 34 terms; 20 terms
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where the sign + is equal to (—I)Zi”i = (=1)P1*tP3_and 14 terms

(2,0,1,0) (0,1,0,2) c1a1a3b3bs
(2,0,0,1) (0,1,1,1) | c2aiaza3bbs
(2,0,0,1) (1,0,0,2) c3apa3bibs
(0,2,0,1) (1,1,0,1) | cqapaiazb?bs
(1,0,2,0) (1,0,1,1) 05a0a2a3b0b§
(1,0,0,2) (1,1,1,0) | cgapaiasbob’
(1,0,0,2) (2,0,0,1) —czatazbob3
(0,1,0,2) (2,0,1,0) —c1a3asb b3
(1,1,1,0) (1,0,0, 2) —06a0a§b0b162
(1,1,0,1) (0,2,0,1) | —cqa?azbobibs
(1,1,0, 1) (1,0,1,1) C7a0a2a3bgblbg
(1,0,1,1) (1,0,2,0) —C5a0a%b0b263
(1,0,1,1) (1,1,0,1) —C7a0a1a3bgb2b3
(0, 1, 1, 1) (2, 0, 0, 1) CQa%agblebg

where there are 7 unknown coefficients (due to symmetry).

References

[1]

J. Canny, Generalized characteristic polynomials, Journal of Symbolic Computation 9 (1990),
241-250.

Cox, Little, and O’Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathe-
matics, Springer-Verlag, 1992.

W. Fulton, Algebraic Curves, Benjamin, Inc., 1969.

M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, Resultants,and Multidi-
menstonal Determinants, Birkhauser, Boston, 1994.

Gleeson and Williams, A Primer on Polynomial Resultants, Naval Air Development Center
Technical Report, 1991.

J. Harris, Algebraic Geometry: A First Course, Graduate Texts in Mathematics 133, Springer-
Verlag, 1992.

A.P. Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific
Problems, Prentice-Hall, Inc., 1987.

B. Roth, Computation in kinematics, Computational Kinematics (J. Angeles et al., eds.),
Kluwer Academic Publishers, 1993.

G. Salmon, Lessons Introductory to the Modern Higher Algebra, Chelsea Publishing Co., Bronx,
New York, 5th edition.

J.P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, Springer-Verlag, 1971.

B.L. van der Waerden, Modern Algebra 1 and 2, Frederick Ungar Publishing Co., 1949 and
1950.

46



