MULTIGRID METHODSFOR THE BIHARMONIC PROBLEM DISCRETIZED
BY CONFORMING C*FINITE ELEMENTS ON NONNESTED MESHES*

JAMES BRAMBLE' AND XUEJUN ZHANG?#

Abstract. We consider multigrid algorithms for the biharmonic problem discretized by conforming C'*
finite elements. Most finite elements for the biharmonic equation are nonnested in the sense that the coarse
finite element space is not a subspace of the space of similar elements defined on a refined mesh. To
define multigrid methods, certain intergrid transfer operators have to be constructed. We construct intergrid
transfer operatorsthat satisfy a certain stable approximation property. The so-called regularity-approximation
assumption is established by using this stable approximation property of the intergrid transfer operator.
Optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable
V-cycle preconditioner are established by applying an abstract result of Bramble, Pasciak and Xu. Our theory
coversthe caseswhen the multilevel triangul ations are nonnested and the spaceson different levelsare defined
by different finite elements.
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1. Introduction. Multigrid methods are among the most efficient methods for solving
elliptic partial differential equations discretized by the finite element or finite difference
methods; cf. e.g. [5, 13, 10, 4] and the references therein. In this paper, we consider
some multigrid algorithms for the biharmonic equation discretized by conforming (! finite
elements. Most of the finite elements for the biharmonic problem are nonnested in the
sense that the finite element space defined on a coarse mesh is not a subspace of the finite
element space defined by similar elements on a finer mesh, even when the finer meshes
(triangulations) are obtained from the coarser meshes by a uniform refinement.

Because of this lack of “nestness’ of multilevel spaces, certain space connection
operators, which we refer to asintergrid transfer operators, have to be constructed in order
to define multigrid algorithms. In the case in which the multilevel spaces are nested, the
natural inclusion operator from coarse to fine space is used as an intergrid transfer operator.
For the nonnested case, the most natural intergrid operator seems to be the nodal value
interpolation operator, or asimple modification of it when the nodal value interpolant is not
well defined. This happens when certain second order derivatives are part of the degrees of
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freedom of the finite element space. In such a case, we can either drop the terms associated
with the second order derivatives from theinterpolation or use alocal average for the second
order derivatives.

We will assume some minimum relations between the multilevel triangulations so that
the cost in each iteration depends linearly on the number of mesh points on the finest
triangulation. This, together with the optimal convergence properties of the multigrid
algorithms, guarantees that the overall solution process is optimal. Since the multilevel
finite element spaces are nonnested in general even on nested meshes, we will assume,
throughout this paper, that the triangulations (meshes) are not necessarily nonnested.

We will not assume the multilevel spaces are defined by the same finite elements (the
spaces are nonnested anyway). The coarser spaces are used only in the construction of
the preconditioner and/or in the correction of the residual, therefore, we can use simpler
finite elements on coarser grids to reduce the cost per iteration and to make the algorithm
computational more efficient. There seems to be no reason to use more complicated finite
elements on coarser grids, although our theory does apply to such cases.

There are some earlier papers on multilevel methods for the biharmonic problem.
Peisker [16] studied the W-cycle multigrid methods using a mixed formulation. Peisker
and Braess [17] considered the W-cycle for the Morley element. The W-cycle multigrid for
some C'! elements were studied in S. Zhang [20]. In [6], Brenner studied the W-cycle for
the Morley elements and ssimplified the algorithm and analysis of [17]. Hanisch [11, 12]
considered the multigrid for mixed formulation as well as Morley element. Oswald [15]
studied some additive multilevel methods for bicubic element. X. Zhang [21] studied
additive multilevel methods and V-cycle multigrid for bicubic elements. All these papers
considered the cases when the multilevel spaces are defined by the same finite element and
none of them discussed nonnested meshes.

This paper is organized asfollows. In §2, we briefly describe the multigrid algorithms
and summarize the basic theory of Bramble, Pasciak and Xu [3]. In §3, we define some
intergrid transfer operators and establish a certain stable approximation property of thesein-
tergrid transfer operators. Using this stable approximation property of the intergrid transfer
operator together with some standard finite element estimates, we prove the regularity and
approximation assumption in the abstract multigrid theory. We remark that once the stable
approximation properties of the intergrid transfer operators are established, the verification

of the regularity and approximation assumptionsfollowsinaway similar to that in §7 of [3]
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or [19].
Our result is based on the abstract result of Bramble, Pasciak and Xu [3] for the
multigrid methods with nonnested spaces.

2. Abstract theory. Let {V;} beafamily of spaceswhich are subspaces of acommon
Hilbert space 1 with an inner product (-, -). Denote by || - || the norm induced by (-, -). Let
a(+,-) be an uniformly bounded and coercive bilinear form on V. Consider the following
problem: Find u;, € V}, such that

aluwe, xe) = (f,xe): Xk € Vi
Define A, : Vj, — V}. by
(Apug, vp) = alug, vy),  Yug,vp € V.

Let R, : Vi — V; bealinear smoother and set &\ = R, if s isodd and B\ = R! if s is
even. Here R} isthe (-,-) adjoint of R,.. The spaces V). ; and V}, arerelated by “intergrid”
transfer operators 7, : Vj._1 — V.. We defineZ} : V, — V,_1and Z; : V}, — V,_; to be
adjoints of 7, with respect to (-, -) and (-, -) respectively. If the spaces {1/} are nested and
7, isthe natural inclusion operator, then 7, and Z; are the projections with respect to (-, -)
and a(-,-). We remark that only Z;, and Z;. will be used in the multigrid algorithm and Z;
isused only in the theoretical analysis.

The multigrid operator B, : V). — V). isdefined by induction as follows.

ALGORITHM 2.1. Set By = Ay*. Define Bi.g = 3?™* in terms of B,_, as follows.

(1) Set 2° = 0 and ¢° = 0 and define

. _ s+m ) y _
z® =2’ ! + R/(e k)<g - flkxs 1)1 5

Il
L

ey, Mg

(2) Define y™+ = x™* + 1,.q°, whereq' fori =1, ..., p is defined by

’ ’

¢ =q "+ Bia|Zi(g — Aa™) — Apag' Y.

(3) Definey® fors = my, +1,. .., 2m,. by

ys — ysfl + R/(;H‘mk)(g _ Aky.sfl)'

Here m,. is the number of smoothing iterations on level k. Thecasesp = 1and p = 2

correspond respectively to the V- and the W-cycle.
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We now summarize the theory of multigrid methods with nonnested spaces [3].

Let Ay = Amax(Ax) be the maximum eigenvalue of A;. The first assumption relates
the regularity of the continuous problem and the approximation properties of the intergrid
transfer operator.

A.1 (REGULARITY/APPROXIMATION ASSUMPTION): Thereexists0 < a < 1 such that

JAcul?

a((T — T, I yu,u) < C? (
’ Ak

) (Apu, u)=", Yu € V.

Let Kt = 7 — R Ay, and K = 7 — R} Ay, the adjoint of I with respect to a(-, -).
Let R, = (Z — K;K)A.* = R, + R, + R} A, R;.. Thefollowing assumptions regard the
properties of the smoother and the number of smoothing in each space.

A.2.1 (SMOOTHER ASSUMPTION):

CA\Mu,u) < (Rpu,u), Yu € V.

A.2.2 (SMOOTHER ASSUMPTION): There exist 1 < y < (3, such that the smoothings
for variable V-cycle satisfy

ﬁonﬁbk S Mig—1 S /‘/31771]\?-
Let 6, or 6 be the contraction number for the multigrid algorithm,
|a((Z — BrAp)u, u)| < dpalu, u).

THEOREM 2.1 (W(n, m)-CYCLE). AssumeA.l andA.2.1 hold. Then there exists M >
0, independent of % such that for m large enough, but independent of k

THEOREM 2.2 (VARIABLE V-CYCLE). Assume A.1, A.2.1 and A.2.2 hold. Then there
exist ng, 71 > 0, independent of k, such that

noa(u, u) < a( BpAgu,u) < ma(u, u).

Remark: Notice that there is no requirement on the number of smoothing steps on
the finest level for the variable V-cycle multigrid preconditioner. Thisisin contrast with
the requirement of sufficiently many smoothing steps for the W-cycle multigrid method.

Hence, when both algorithms may be applied, the variable V-cycle is more robust.
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3. Multigrid methodsfor biharmonic finite element problems. Consider the weak
formulation of the biharmonic Dirichlet problem: Find « € H5(€2) such that

Q) a(u,v) = (f.v), Yo € HZQ),

where, (-, -) denotes the usua L, inner product and a(u, v) = (u, v)y2 = (Au, Av).

In this paper, we consider conforming C* finite elements approximations to (1). Some
examples of the C* elements are the Argyris and Bell elements, the Hsieh-Clough-Tocher
(HCT) element, the reduced HCT (RHCT) element, the singular Zienkiewicz (SZ) element,
the reduced SZ (RSZ) element, the Birkhoff-Mansfield (BM) triangle, the reduced BM
(RBM) triangle, the Powell-Sabin (PS) element, Bogner-Fox-Schmit’s (BFS) bicubic ele-
ment, the Fraeijs de Veubeke-Sander (FAV S) quadrilateral s, and thereduced FdV S (RFAV S)
quadrilaterals. The definitions and approximation properties can befound in Ciarlet [8] and
Powell and Sabin [18]. We will assume that the finite elements are also in 172>°()). Note
that this condition is not part of the definition of ! elements, however, al the C* elements
we know are in fact in W2°°(Q).

Let {7, } be afamily of quasi-uniform triangulations. We allow nonnested triangula-
tions, however, we assume that the triangulations are essentially nested in the sense that the
mesh parameters satisfy 0 < 71 < hyy1/hi < 72 < 1. Let V, beafamily of finite element
spaces defined by some conforming C* elements with respect to 7. Our theory does not
require that the spaces {1;.} on different level are defined by the same finite element. It is
computationally more efficient to user smpler el ements on coarser grids. Thefinite element
solutions u;, € V,, satisfy

(2) alug, xk) = (f. xk), Vxw € Vi

All the finite elements listed above, except the BFS and PS elements, are nonnested
even when the triangulations {7.} are nested. For the BFS and PS elements defined
with respect to a family of nested triangulations {Z}, a uniformly convergent theory for
multigrid V-cycle can be established along the line of [2]; cf. [21] for more details.

Wewill denote by || - ||s,.0 and || - ||s.p the standard norm on Sobolev spaces W*( D)
and H*(D) = W*?(D),and by | - |5,,.p and | - |s.» the semi-norms.

We will make the following standard assumption on the finite element spaces V.. The

verification of these assumptions is straightforward.
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AssuMPTION 3.1. Thefollowing local inverse properties hold for v € V.

v

(i _1
3) (0]gr < Chyp 7

spre 1<p.g<o0, 0<s<2 7€
The basis functions ¢ are uniform to order 2:
(@) (/] ogr < CHHT 1< q<0,0<5 <27 €T,

Here ¢' stands for any basis function associated with a derivative of order ¢.
Let A, : V. — V. bedefined as

(Apug, vp) = alug, vy),  Yug,vp € V.
The L, projections (). : L, — V. are defined by
(Quat, i) = (u, 1.
It can be shown (cf. e.g. [22]) that

(T — Qr)uls < ChZ|ula,  Yu € H3(RQ).

It is convenient to use the following discrete Sobolev norms defined by

lull2 = (A7%u,u), VseR, uc€ V.

Itistrivial tosee||uf, < |||u|||i{|_2,), |||u|||%/_27, Vs, € R. Using eigen-expansion and the Hol der

inequality, we have the convexity for the discrete norms (cf. e.g. [4]),
lull. < Bl ully. s = Asi+ (1= A)s2 0< A< L.
In particular,
lullz+2 < fullz*[lulli. 0<a <l
The norm equivalence
lulls < fuls, 0<s <2

is easy to see as follows. The cases s = 0 and s = 2 follow from the definition of the
discrete norms. Theresult for 0 < s < 2 follows by interpolating the operators Z and ();
cf. Bank and Dupont[1]. For polynomial or piecewise polynomial elements, the result can
be extended to the case 2 < s < 5/2 based on the same reasoning asin [3], whereit is
shownthat V. ¢ H'"* and |Jul|, < |u|, with 0 < s < 3/2 for C° polynomial elements V..
We do not know however whether or not this equivalence still holds for singular elements.

We do not even know if V,, € H%+* for some s > 0.
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3.1. Intergrid transfer operators. Let A be the set of nodes associated with the
degrees of freedom of V. Let ¢¢ be the nodal basis functions of V. a x; € N, where «
indicates the order and directions of the derivative of the corresponding degree of freedom.
With a slight abuse of notation, we denote by |«| the order of the corresponding degrees of
freedom. Let deg(V}.) be the maximum order of the derivatives in the degrees of freedom
of V... Note that for the fourth order problem, deg(V;) = 1 or 2. Let A; be theindex set for
the degrees of freedom at #;. Let A? = {«;« € A;, o] = 0}, A} = {a;a € Ay fa| = 13,
A? = {a;a € Ay, |a] = 2}. Notethat if deg(1;) = 1then A2 = () and A; = AU A},

Our first choice for the intergrid transfer operator is the (modified) nodal value inter-

polation operator: 7, : V. 1 — V., defined by

(5) Tiu=> > Oaulx;)ef.
¢ aeAUAL
If deg(V,.) = 1, e.g. V}. defined by the HCT, RHCT, SZ, RSZ, PS, RBM, FdVS or RFdV'S
element, then theintergrid operator isin fact the standard nodal value interpolation operator.
If &l the spaces {V}} are defined by the Argyris, Bell, BFS or BM element, we can
also use the following intergrid transfer operator:

© Tu=3 Y Oaule)ef +3 % uiof,

t acAluAl i a€A?

where, u® = A\i(x;)0,u(ay) + Ao(x;)0,u(az) + A3(x;)daulaz), With z; € Aajazaz € Tp_q
and \;(x) isthe ith barycentric coordinate of =. Alternatively, we could define «' to be the
average value of 0, u at ;.

Note that for 7, defined by (5)—(6), we need to evaluate 9, u(m;) at midpoints m; of
the edges of 7,._;, which means that we have to evauate g, <I>f (m;) for the basis functions
(I)j of V;._1. Toavoid that, we can use the following simplified “ 4 preserving interpolation
operator” which is determined by

(7)  OuTiulr;) = M(2)0sular) + No(2:)0qulaz) + Aa(2:)0aulaz), o € AP U AL

where x; € Aajazaz) € Tp 1.

Note that (5) and (7) are well defined on C1(©2), and (6) is well defined only on a
subset of C1(Q2). If in addition, v isasoin H2(Q), then Z,u € V;, C HZ(Q)) automatically
satisfies the homogeneous boundary conditions.
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We note that 7, defined by (5)—(7) preserves linear functions; i.e.
Iip|lr =p, Vp€ Py, 7€T.

By definition, Z;. defined by (6) also preserves quadratic functions, and if deg(1;) = 1, then
7. defined by (5) isthe standard nodal value interpolation and thus also preserves quadratic
functions.

It iswell known that Z, is not bounded in | - [,—norm, however, restricted to the finite
element space V},_; (and thus alocal inverse property holds), 7, has the following stable
approximation properties.

LEMMA 3.1. LetT € 7T, and 7 = U,eq,_, 7. There exists C' > 0 independent of ©

TINr#£

such that T, defined by (5)«(7) satisfies

|Zpw — ulsr, < hi®

ulpr, Yu€ Vi, 0<s<2
As a consequence,
(8 | Zpw — uls0 < hi_s|’11,|2,gz, Vue V1, 0<s<2

Proof. Note that [0, u(2;)] < [ufja)ec, 8N || < |t]j0).00,7. By the definitions of Z;

and Assumption 3.1, we have

deg(Vi) 2
Zeulsr < > Chit =ty 02 < > Chit =ty 00.4 -
r=0 r=0

Since 7 isaunion of 7 € 7,_1, theinverse inequality (3) holdsfor v € V,_; on 7,
U] poes < Chity|ulrs = C(hy /I )b ulvs < ChpYul,z.
By the triangle inequality

2
(Z — T )u|s» < Z Chy*|ul,z.
r=0

Now using Z;.p|, = p for p € P, and the Poincaré inequality, we obtain

2 2

(T — Ti)uls, < inf D" Chy *lu+plos <D Chy *hiulas < ChZ *|ulys.
' pen =0 ‘ r=0 ’ ’ ' ’

Squaring and summing the above inequality over 7 € 7., we obtain

|<I — I/i.)’l.l,|5752 S Chi_'s|’11,|279, S = O, 1, 2.
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Theresult for 0 < s < 2 follows from the convexity of the norms. 0

If {7,.} are nested, the proof can be slightly simplified, in particular, 7 can be replaced
by ' € 7;._1 which contains .

Remark: Inthe case when 7. preserves quadratic polynomials, instead of the Poincaré
inequality, we can use the Bramble-Hilbert lemma

2
inf > q|u4ple: < Chifuliz, 2<t<5/2
peEP, =0 ’ ’
in our proof to obtain a stronger result

5
|Zeu — uls0 < C’h,f_‘“(z |u|$f)1/2 < Ch'"™"luio, w€Vp,0<5<2 0<t< >

If {7,} are aso nested and V}, as well as V}._; are polynomial elements, then the above

inequality also holdsfor 2 < s < 5/2. This property will not be used in our analysis.

3.2. Multigrid theory for C* elements. We now verify the regularity and approxi-
mation assumption A.1. We assume the following a priori estimate (cf. [9])

9) )20 < [|A%u]| 210,, fOrsome ag> 0.

Note that the estimate also holds for 0 < « < aq.
We now establish the regularity-approximation assumption in a series of lemmas.
LEMMA 3.2. Let P, 1 : H3(Q)) — V.1 bethe Galerkin projection. Then

(10) (Z — P 1)ulpo < Chyuly, Yu € Hg./ 0<a<ag

(12) (Z — Pi_1)ulz, < ChY|ulosa, Yue Vi, 0<a< ag

Proof. The first inequality follows from the standard finite element error estimate and
aduality argument. To prove the second, we note
(T — P )ul3 = a(u,(Z — Po_1)u) = a(u, P(T — Pp_1)u)
< Nullarall Pe(Z = Pe-v)ullz-o
< Clluflosal Pe(Z = Pi-a)ulo—a

AN

By the triangle inequality and (10), we have

|Pe(Z — Prp—1)tt|2—a

INA

(Z — P )T — Pr_a)ufo—a + (T — Pi1)ulp—a
Chi|(Z — Pr_1)ula + Chi_1|(Z — Pr_1)ul2

S Ch}: (I - P/g,]_)?l;|2.
9
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In the second inequality, we have used obvious facts that (Z — B 1)?2 = (Z — P, ;) and
(Z — Po_y)u € H3(). O

LEMMA 3.3. For0 < a < ag, we have
(12) (Z; — Pr—1)ur]2 < Chf|lur] 240
Proof. By the definition of Z; and P._;, we have for any v,_; € Vj_1,

a((Zp = Pr—1)ug, vp—1) = alug, (I — T)vp—1) = alug, (I, — Pr)vr—1)
= [urlla+a l(Z = Pr)vi-ill2-a

< Clurllz+al(Ze — Pr)vi-1]2-a-
Using the triangle inequality, Lemma 3.1 and (10),
(Zk — Po)vr-1l2-a < |[(Tk = Dvr-tl2-a + [(Z = Pr)vi-1]2-a < Chi|vr_a]2.
Therefore,
a((Z; = Pe—1)ug, vi-1) < Chigllugllzsalve-1l2.

The lemmafollows by setting v, 1 = (Z; — Pr_1)ug, O
LEMMA 3.4. For0 < « < «ag, we have the following estimate for T; .

(Z — T ukla < Chifluplzia,  Yur € Vi

Proof. The lemma follows trivially from (11) and (12), O
THEOREM 3.5 (REGULARITY-APPROXIMATION). For o = ap/4, we have

] s wza—ey (Nueld\™ 1o [ TARug]13N "
a((Z = LTy yue, ue) < Cllue]l? Y C(Apug, ug) T )

Proof. Let o« = ag/4. Then by Lemma3.4

a((Z = L Zp)ue, we)] = |a((Z = Zpyup, (T + I Jur )|

AN

(Z = T )ur|2/(Z + Z; Jug2

IN

Chilgllaraolurl2

elirel [T Paul I g

IN

Here we have used the convexity of norms [Ju [|lo4a, = lltrll2rae < Jluels 2 Jucl2>. O
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In the cases when Vi, ¢ H?*™(Q) N H3(N) and |Julloye ~ |u|21a, the proof of
Theorem 3.5 can be simplified dightly. If the spaces {V;} are nested and Z,, = Z, then
Theorem 3.5, with a = ag/2, isadirect consequence of (11).

The following is our main result. It is aconsequence of Theorems 2.1, 2.2 and 3.5.

THEOREM 3.6. If the smoother R, satisfies A.2.1, and the number of smoothing my, =
m is sufficient large, but independent of k, then there exists an M > 0 such that the the
contraction number for W-cycle multigrid satisfies
If the smoother R, satisfies A.2.1 and the number of smoothing my. satisfies A.2.2, then
there exist an M > 0, such that the variable V-cycle preconditioner satisfies

(u,u).

my M+ mg
——a(u,u) < a(BrAru,u) < ———a
M+ mj3 (u,) < a(Brdyu,u) < me

Thus, o(BA) C [k M) and the preconditioned equations are uniformly well

/] oy o
M4+m % my

conditioned.

Our agorithms and theory can be generalized easily to the cases when the coarser level
triangulations 7;, are defined only on asubregion €. C Q, with dist(0€;, 02) = O(hy). In
particular, using inequalities

(13) lullzove, < Chillull24a, 0<a <1/2, we HH&?
[l oone, < CHEul, 0<s<2  we HEQ),

it is easy to see that conclusions in Lemmas 3.1 and 3.2 remain valid. The rest of results
follow from Lemmas 3.1 and 3.2. Inequalities similar to (13) can be found, for example,
in[14, 2, 4, 7], we refer to Bramble and Pasciak [2] for a proof.
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