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Abstract

Semidiscrete mixed finite element approximation to parabolic initial-
boundary value problems is introduced and analyzed. Superconver-
gence estimates for both pressure and velocity are obtained. The esti-
mates for the errors in pressure and velocity depend on the smoothness
of the initial data including the limiting cases of data in L? and data in
H", for r sufficiently large. Because of the smoothing properties of the
parabolic operator these estimates for large time levels esentailly coin-
side with the estimates obtained earlier for smooth solutions. How-
ever, for small time intervals we obtain the correct convergence orders
for nonsmooth data.

1 Introduction

Since the pioneering work of Raviart and Thomas [14] the mixed finite
element approximations to second order elliptic problems have drawn the at-
tention of many specialists on numerical partial differential equations. This
method provides direct approximation of the physical quantities such as
fluxes and velocities and leads to schemes that are locally conservative. Due
largely to Babuska[l] and Brezzi [2], it is now well understood that the finite
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element spaces approximating different physical quantities (pressure and ve-
locity, temperature and flux, etc.) cannot be chosen independently. Then
the so-called inf-sup condition of Babuska-Brezzi is essential if one wants to
construct unconditionally stable schemes with optimal convergence rates.

Superconvergence results are important from an application point of view
since under reasonable asumptions on the grid and with additional smooth-
ness of the solution, they provide higher order accuracy. To our knowledge
the first superconvergence results in the mixed method for second order el-
liptic problems were proven by Douglas and Milner in [5] and by Nakata,
Weiser and Wheeler in [12]. Since then a wide variety of results has been
obtained by many other authors, see, e.g., Duran [7], Douglas and Wang [6],
Wang [18], and Ewing, Lazarov and Wang [9].

The corresponding error analysis of mixed finite element methods ap-
plied to time-dependent problems was developed by Johnson and Thomée
in [10]. Then, Squeff in [15] using the quasi-projections of Douglas, Dupont
and Wheeler, and the averaging method of Bramble and Schatz obtained
superconvergence rates for parabolic mixed finite element solutions in R?.

All known superconvergence results for mixed parabolic finite element
equations require that the solutions be sufficiently smooth, uniformly in time.
However, many practical problems involve irregularities, such as, in the ini-
tial data. This may results in a break-down of the uniform regularity of the
solutions and, therefore, a nonavailability of the error estimates obtained be-
fore. Fortunately, the linear parabolic operators have the so-called smoothing
property. Namely, if the initial data given at ¢ = 0 is nonsmooth or does not
satisfy the compatibility conditions on the boundary of the domain then the
solution is sufficiently smooth away from ¢t = 0 but has a singularity of the
form t=# with some 3 positive. This kind of smoothing property has been
proved also for the standard Galerkin parabolic finite element equations and
used to derive optimal error estimates for problems with rough initial data,
see, e.g., Luskin and Rannacher [11], Thomée [16] and Rannacher [13]. Fur-
thermore, superconvergence results for the gradient for the standard Galerkin
finite element methods with initial data of low regularity were obtained by
Thomée, Xu and Zhang in [17] and by Chen in [4]. The main goal of this
paper is to establish superconvergence estimates for the mixed finite element
methods when applied to parabolic problems with rough initail data.



2 Problem Formulation

Let Q € R? be a bounded domain with boundary 0. We consider the
following parabolic problem:

pe— V- (aVp) =f in 2 x (0, 00), (1)
p =0, on 0 x (0,00), pl|,_, is given ,

where a = a(x,t) is a sufficiently smooth function that is bounded below by
a positive constant on  x (0, 00). Our purpose is to solve problem (1) using
mixed finite element methods. To describe the mixed variational form for
(1), as usual, we introduce two Hilbert spaces. Let

W=1%Q), V={pel’Q)’ V- pecl*Q)},

and the space V' be equipped with the norm || @|lyy = (@[> + || V- |*)"/2
The inner product and the norm in L?(Q) are denoted by (-,-) and || - ||,
respectively. For the sake of simplicity, (-,-) and || - || are also used as the
inner product and norm, respectively, in the product space L?(Q)?.

Let u = aVp; then the pair (p,u) € W x V satisfies the following mixed
variational equation:

(ptﬂ/))—(v'u’w):(fﬂ/))a VT?GVVJG(O:OO)’ (2)
(au, )+ (V-p,p) =0, VeeV,te (0,0),

where p; = Op/0t, a = a~' and p(0) is given. We note that the boundary
condition p = 0 on 02 is implicitly contained in (2).

Given the finite-dimensional spaces W), C W and V;, C V, 0 < h < 1,
the so-called mixed finite element approximation (p,,u,) € Wy x V7, to the
pair (p,u) € W x V is the solution of the following problem:

{ (Phts V) — (V- wn, ) = (f,0n), Y n € Wi, t € (0,00), (3)
(a'u,h, cph) + (V . cph,ph) =0, YV, € Vy,te (0, OO),

where, p,(0) € W), is given. We note that u,(0) is determined by p;,(0)
through the second equation of (3).

To ensure the existence and convergence of the solution of the above
formulation, we assume that V-V, C W), and there exists a linear operator



0, V — V} such that V-1, = Q,V - . Here, the operator @, : W —
W, is the L?-projection. The classical inf-sup condition is then satisfied.
Further, we assume that there exists an integer » > 0 such that the following
approximation properties are satisfied:

lo ~Tupll< ch @l g Y€ H®), 1<i<r+l (4

1 — Qui < e’ |[®llmi), YV eH(Q), 0<i<r+1.  (5)

Here, and throughout the paper, the letter ¢ is used as a generic constant,
which is independent of h, p, u, etc. H*(Q2) denotes the standard Sobolev
space W52(Q) with H°(Q) = L*(Q). Examples of spaces of piece-wise poly-
nomials that satisfy the conditions stated above are the triangular and rect-
angular Raviat-Thomas elements from [14] (for other examples see Brezzi
and Fortin [3]).

3 L%-error estimates

This section is designed to provide the preliminaries for deriving the super-
convergence results obtained in the next section. The main results are con-
tained in Theorem 1, where L?- estimates for (p—py,)®)(¢) and (u—wuy)® (t)
are derived for homogeneous equations with initial data from H*(2), 0 < i <
k + 1, including the case of data just in L?(€2).

Lemma 1 Let (p,u) € W x V and (py, ws) € Wy, x V', be the solutions of
problems (2) and (3), respectively. If pp(0) = Qxp(0), then

t t
1@ =p) @I + [ N —wn|? ds <e [ flu—Toul? ds. ()

| =) Ol ™ [1pO) @y 0Sij<r+1  (7)
t
| U= pall® ds < b |p(0) | 8)
(o= p)(O)1< cht 2 1p(0)]] )

Based on the above lemmas we prove the main result of this section
stated in the following theorems. Below, for a function (), we denote its
k-th derivative with respect to t as 0% (t).
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Theorem 1 Let (p,u) € W x V and (py,uy) € Wy, X Vi, be the solutions
of problems (2) and (3), respectively. If f =0 and q,(0) = Qrq(0), then,

(o= )@)€ ™= p(0) ey, (10)

(= un) (@) | ch™t= D2 Y p(0) || 3, (11)
where 0 <i<m <r+1, k>0 and p(0) € HY(Q).

Proof : This is the most technical result. We prove it by induction and
using the results of the lemmas and theorems stated above.

4 Superconvergence

The estimate obtained in the previous sections can be interpreted in the fol-
lowing way: the maximum rate of convergence for p—pj, is O(h" 1t~ ("+1-9/2)
while for w — uy, is O(R™1#+279/2) for initial data in H'(Q). Obviously,
for any fixed ¢ > 0, the convergence is asymptotically O(h"*!), due to the
smoothing properties of the parabolic operator. For smooth initial data, i.e.,
p(0) from H™(Q), the error for p is asymptotically O(h™!) for any ¢. Tt
should be pointed out that the estimates (10) and (11) cover the whole range
of smoothness of the initial data, including the worst case of data only in
L?*(Q).

The estimates (10) and (11) are of optimal type and cannot be improved
in terms of the norms involved even if the solutions are smoother. However,
in the case of a smooth solution one can select special points or postprocess
the finite element solution in order to obtain higher order convergence. Such
estimates, called superconvergence estimates, have been obtained for the
standard Galerkin method for parabolic problems by Thomée, Xu and Zhang
[17].

For Raviart-Thomas finite elements of order r+1, which fit into the frame-
work of this paper, Ewing and Lazarov in [8] derive O(h"*?) error estimates
for both p — p, and u — u; at the Guass points in the case of sufficiently
smooth solution for all £ > 0. Our goal in this section is to obtain super-
convergent, type estimates for more realistic situations, namely, for data in
H'(Q), for 0 <i <7+ 2, including the case of data in L?().

In order to bound the temporal derivatives of QQ,p — p, we we need esti-
mates for Q,p— p, and I, u — uy, in the L2-norm. We begin with an estimate
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for Qpp — pr, and then we derive estimates for the derivatives of Ilyu — uy,
and Qnp — p, with respect to time. Next, the duality argument for the er-
ror estimates discussed in Theorem 2, requires estimates in negative Sobolev
norm. These estimates are obtained in the following lemma.

Lemma 2 Let (p,u) € W x V and (py, uws) € Wy, x V', be the solutions of
problems (2) and (3), respectively. If f =0 and p,(0) = Qnp(0), then

1 (Qup = pn) (8) [l11-5(2) < b7 || p(0) |

1(@up = pr) (1) [lz1-r2) < ch™ 2 [log 1| || p(0)

mr+2), 0<j7<r-—1, (12)

H™+2(Q) - (13)

Now, we are ready to obtain the main results of this section, namely,
estimates of Qp — pp, for problems with nonsmooth initial data.

Theorem 2 Let (p,u) € W xV and (pp,u,) € Wy, x V', be the solutions of
problems (2) and (3), respectively. If f =0 and py(0) = Q4p(0), and k > 0,
then

1 (@np — pr)®) () | < chm P24~ TF2D270 5 (0) || i, (14)
| (Mpw — wp) P (8) || < ch™ 2 D278 p(0) ]| ooy, (15)
where 1 <1 <71+ 2.

Now we present one possible way of using the results of Theorem 2 for
superconvergent, recovery of the solution p and w from their finite element
approximations p, and w, in the case of Raviart-Thomas rectangular ele-
ments in rectangular domains 2. Let T} be partition of the domain €2 into
rectangles with sides parallel to the coordinate axes.

Let P,(e) be the restriction of the polynomials of total degree r to the set
e and P,;(e) the restriction of P,(R') x P(R") to element e. We set

Vi) = Py (e) x Pr,r-l-l(e)a Wie) = Py (e),

Vi={veV:v|,eVi(e),ecTy}, W,={weW:w|, ¢ W(e),eecT}.

The spaces V', and W), defined above satisfy the approximation properties
(4) and (5) and the projection operators I, and @), are defined element by
element.



Next, we introduce some discrete seminorms in W and V. Let g;, 1 =
1,...,7+1 be the Gauss points in the interval [—1, 1], i.e., L, 11(g;) = 0, where
L, is the Legendre polynomial of degree r + 1 orthogonal on the interval
[—1,1]. Each finite element e € T}, can be transfered by an affine mapping
F to the reference element é = [—1,1] x [—=1,1]. Then, the inverse mapping
F~!introduces in e the set of points G(e) = {F'(g;, §;),4,7 =1,---,r+1}.
The seminnorms in W and V are defined by

1/2
lwlll= (Z > thZ(x)) sl llI= o+ lezlll, v = (o1, v2).
€T, z€G(e)
It is easy to see that there is a constant ¢ > 0 such that
llwall< ¢ Jwall, — llvalll< clloall, vV wn € Wa, vn € V.

Now, we bound the errors for p—p;, and u —wu,, in the discrete seminorms
defined above, which arte the desired superconvergence estimates.

Theorem 3 Let (p,u) € W x V and (py,ws) € Wy, x V', be the solutions
of problems (2) and (3), respectively. If f =0 and py(0) = Q,p(0), then

i = po) Ol ch™ 227972 | p(0) |

(e — wn) ()| < b 27037072 || p(0) |
where 1 <1 <714 2.
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