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A model problem is presented for fluid flow in porous media which has numerical difficulties 
common with many other areas of nonlinear mechanics. Special finite element techniques are described 
which have proved useful in alleviating many of these difficulties. A modified method of characteristics, 
mixed finite element methods for fluid velocities, singularity removal, and self-adaptive local grid 
refinement techniques are presented. Both theoretical and computational results are described, 
together with an indication of the present and future uses of finite element methods in large-scale 
reservoir simulation. 

1. Introduction 

Important applications of fluid flow in porous media arise in the areas of hydrology, 
contaminant transport, and the production of hydrocarbons. In order to understand the 
complex chemical, physical, and fluid flow processes occurring in these applications well 
enough to predict the results of various flow or production regimes, simulators are constructed 
involving the numerical solution of large coupled systems of nonlinear partial differential 
equations. Many of the computational problems involved in solving these systems of differential 
equations are similar to those arising in other areas of nonlinear mechanics and flow processes. 
This paper discusses several of the complications arising in a simple model problem describing the 
miscible displacement of one incompressible fluid by another in a porous medium and presents 
certain finite element techniques for alleviating these difficulties. 

Many problems in numerical reservoir simulation involve considerably more physics and are 
exceedingly more difficult than the model problem considered here. The author has given an 
introduction to the variety of physical problems requiring simulation in [27]. We note, 
however, that although these more complex models involve larger coupled systems of 
nonlinear partial differential equations, most of these equations have forms and properties 
very similar to the equations described in our model problem. Except for sheer size and 
resulting computational complexity, the major mathematical difficulties that must be addressed 
are the same: (a) the resolution of sharp moving fronts in convection-dominated convection- 
diffusion problems, (b) the stability and accuracy of discretization of highly non-self-adjoint 

* The research of this author is sponsored in part by a USARO Contract No. DAAG29-84-K-0002. 

0045-7825/85/$3.30 @ 1985, Elsevier Science Publishers B.V. (North-Holland) 



422 R.E. Ewing, Nonlinear flows in porous media 

differential operators, (c) the need to have very accurate fluid velocities which dominate the 
flow, (d) the need to model dynamic local phenomena which govern the physics, and (e) the 
emphasis on development of efficient numerical procedures for the enormous problems 
encountered. 

In general, finite difference techniques have been used in the petroleum industry for 
reservoir simulation applications. Several authors, beginning with work by Jim Douglas and 
Todd DuPont [19,55], have considered finite element techniques for these problems. An 
excellent survey of finite element procedures, both theoretical and computational, developed 
by work of Douglas Arnold, David Brown, Bruce Darlow, Jim Douglas, Jr., Todd DuPont, 
Richard Kendall, Thomas Potempa, Jean Roberts, Thomas Russell, Peter Sammon, Mary 
Wheeler, and the author is presented in [54]. Early finite element work by Young [61] also has 
appeared in the petroleum engineering literature. Recent volumes [25,26], edited by the 
author, were designed to give an indication of the wide variety of numerical techniques which 
are being applied to reservoir simulation problems in the petroleum industry. 

In this paper we shall emphasize the power of finite element methods in treating many 
aspects of large-scale reservoir simulation problems. A model problem which illustrates many 
major numerical difficulties arising in reservoir simulation is presented in Section 2. The 
numerical stability problems associated with this transport-dominated system and the cor- 
responding pure transport problem are discussed. A modified method of characteristics based 
on combining the transport and accumulation terms in the equation into a directional 
derivative along characteristic-like curves is then described. The modified method of charac- 
teristics is heavily dependent upon having very accurate fluid velocities. Section 3 is then 
devoted to the description of a mixed finite element procedure which is designed to give 
approximations of the fluid velocities which are just as accurate as the pressure ap- 
proximations, even in the context of rapidly changing reservoir properties. Theoretical results 
which guided our choice of methods and corroborating computational results are discussed. 
Using the mixed finite element formulation a fully discrete sequential time-stepping method 
for the miscible displacement model problem is presented. Optimal order a priori asymptotic 
error estimates for this combined process are discussed together with computational results on 
a problem requiring the resolution and tracking of very sharp concentration fronts. 

The need for adaptive local grid refinement methods to resolve certain dynamic, highly 
localized physical phenomena is described in Section 4. Important considerations such as a 
choice of versatile and efficient data structures and adaptivity techniques are discussed and a 
code developed by the author and coworkers at Mobil Research and Development is 
described. Finally, the major points of the paper are summarized in Section 5. 

2. Description of model problem and modified method of characteristics 

A model system of equations describing the miscible displacement of one incompressible 
fluid by another in a thin horizontal porous medium is given by [16,27,38,46,47,54] 

v.u=-v k .--Vvp=q, xEi& tEJ, 
P(C) 

(2-l) 
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&$+V.[uc--D(u)Vc]=~q, XEO, tEJ, (2.2) 

u - It = [UC - D(u)Vc] - n = 0 ) xEd.l-2, lEJ, (2.3) 

c(x, 0) = co(x) , XEfl, (2.4) 

for LI C W2 with boundary LU2 and J = [0, T], where p and I( are the pressure and velocity of 
the single phase fluid mixture, c is the concentration of the injected fluid, and 4 is the total 
volumetric flow rate, modeled by Dirac delta point sources and sinks describing the injection 
and production wells, 4, k, or. and D(U) are assumed to be known rock and fluid properties. D 
is a diffusion-dispersion tensor given by [47,54] 

(2.5) 

where u = (ur, u2), (u( is the Euclidean norm of U, d, is the molecular diffusion coefficient, and 
d, and d, are the magnitudes of longitudinal and transverse dispersion. An excellent discussion 
of the importance of incorporating the effects of dispersion in our simulation work appeared in 
[54]. In general, d, is assumed to be quite small with d, and d, somewhat larger. Often the 
assumption is made that d, = lOd,. Since the magnitudes of the last two terms in (2.5) are 
approximately d,]u\ and d ] I t u , we see more dispersive mixing where the velocities are higher, 
around the wells, and less out in the reservoir. Equation (2.2) is an example of a transport- 
dominated convection-diffusion equation. Since diffusion is small, the solution c exhibits very 
sharp fronts or concentration gradients which move in time across the reservoir and finger into 
production wells. The frontal width is very narrow in general, but must be resolved accurately 
via the numerical method since it describes the physics of the mixing zone and governs the 
speed of the frontal movement, and thus the production history of the hydrocarbons. 

Most finite difference simulators ignore the dispersion tensor (2.5) partially because the 
mixed derivatives it causes in (2.2) would normally require a nine-point difference formulation 
for area1 problems and twenty-seven point formulas in three space dimensions. Thus if (2.5) is 
incorporated, the bandwidth of the matrices obtained from finite differences would be the 
same as that required for finite element methods. This would greatly reduce the normal 
computational complexity advantage held by finite differences over finite elements. Due to 
grid-orientation problems, to be discussed later, many finite difference codes are already being 
shifted to the expanded finite difference stars for accuracy purposes. 

Of course if the dispersion tensor in (2.2) is ignored as in most simulators in use today, (2.2) 
becomes a first-order hyperbolic problem instead of a transport-dominated convection- 
diffusion equation. Standard highly accurate finite difference schemes for hyperbolic partial 
differential equations are known to be unstable and various upstream weighting or ‘artificial 
diffusion’ techniques have been utilized to stabilize the variant of (2.2). The upstream 
weighting techniques (described in [27]) used in the petroleum industry introduce artificial 
diffusion in the direction of the grid axes and of a size proportional to the grid spacings. Thus, 
although this stabilizing effect would be small if very fine grid block spacings were used, the 
enormous size of petroleum simulation problems necessitates the use of large grid blocks and 
hence large, directionally-dependent artificially induced numerical diffusion which has nothing 
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to do with the physics of the flow. Two major problems in numerical reservoir simulation 
today are due essentially to the use of standard upstream weighting techniques. First, the 
upstream methods, by introducing a large artificial numerical diffusion or dispersion, smear 
sharp fluid interfaces producing erroneous predictions of the degree of mixing and incorrect 
frontal velocities. Second, the numerical diffusion is generated along grid lines and, coupled 
with the standard use of five-point difference formulas which have difficulty describing radial 
flow in area1 problems, produce results which are radically different if the orientation of the 
grid is rotated forty-five degrees. This ‘grid-orientation problem’ and several attempts to 
alleviate it are described in more detail in [27]. 

If one ignores D(U) in (2.2) and must stabilize the result, or if D(U) is not sufficiently large 
to stabilize (2.2) as it is, one should add a stabilizing artificial diffusion in the form of a 
rotationally invariant tensor which will not cause grid-orientation effects. Since D, as given in 
(2.9, is already in the form of a rotationally invariant tensor, this would amount to increasing 
d, and d, until stabilization is achieved. Thus we see that rotationally invariant stabilization will 
require a tensor formulation in (2.2) which will require the use of finite difference stars and 
matrices of the same size as those used for finite element methods. Clearly, if more diffusion 
or dispersion is required to stabilize (2.2) sharp fluid interfaces will be diffused and smeared 
artificially, reducing accuracy and physical realism. Thus we have tried to develop techniques 
for stabilizing (2.2) without adding artificial diffusion or dispersion and which maintain 
rotational invariance of the operators in (2.2). 

In [Sl, 521, Russell described a technique based on a method of characteristics approach for 
treating the first-order hyperbolic part of (2.2). This technique [17,23,51,52], based on a form 
of (2.2) which is analogous to a convection-diffusion equation, was implemented by Russell 
[52] and now forms the basis for our time-stepping scheme. 

In order to introduce a nondivergence form of (2.2) that is used in our numerical schemes, 
we first expand the convection (V - UC) term in (2.2) with the product rule and use (2.1) to 
obtain 

where q = max{q, 0) is nonzero at injection wells only. To avoid technical boundary difficulties 
associated with our modified method of characteristics for (2.6) we assume that 0 is a 
rectangle and that the problem (2.1) (2.6) (2.3) and (2.4) is a-periodic. This is physically 
reasonable since the no-flow condition (2.3) can be treated as a reflection boundary condition 
and because boundary effects in reservoir simulation are of considerably less interest than 
interior flow patterns. 

The modified method of characteristics is a time-stepping procedure that can be combined 
with any spatial discretization. First introduced into the present application areas in [51,52], it 
has been used predominantly with finite element spatial discretizations. 

The basic idea is to consider the hyperbolic part of (2.6), namely, 4 &/dt + u - Vc, as a 
directional derivative. Accordingly, let s denote the unit vector in the direction of (ul, uz, 4) in 
J2 X J, and set 

$(x) = (241(x)* + u*(x)* + cyy* . (2.7) 
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Then (2.6) can be rewritten in the form 

(2-8) 

Note that the spatial operator in (2.8) is now self-adjoint, symmetric matrices will result from 
spatial discretization, and the associated numerical methods will be better behaved. Since 
iterative solution techniques are used to solve the nonlinear equations resulting from finite 
element discretization of (2.8) and since symmetry is very important in any of the useful 
conjugate-gradient iterative solvers, this change to symmetric matrices is very important. 

We must next discretize the directional derivative &/as in an accurate fashion. Partition J 
into 0= t”<t’<t2<*. * < tN = T with At,” = t” - t”-‘. For simplicity of exposition we will 
henceforth assume uniform time steps. For functions f on L? x J, we denote f(r, t”) by f”(x). 
We shall assume that u” is a known function. We shall then discuss the coupling of (2.1) and 
(2.6) in more detail. Approximate &Ids by a backward difference quotient in the s-direction 
[23,34,51,52], 

T(x)= 
c”(x) - c”-’ x - 

A&(1 + U:(X) + z&(.x) + #‘(x))“” ’ 

If we let % = x - [u(x)/~(x)]AtC and f(x) = f(x), th en, differencing back along the characteristic 
yields 

+” ac= _ + = rb C"(X) - P(z) 

as At, ’ 
(2.10) 

Extensions of some of these ideas to higher-order time-stepping procedures and nonlinear 
problems appear in [34,53]. 

As discussed in [54], the critical aspect of the modified method of characteristics is the 
accurate approximation of the directional derivative dc/ds. Many methods based upon charac- 
teristics fix a grid at time t”-’ and try to determine where these points would move under the 
action of the characteristics. These ‘moving point’ or ‘front tracking’ methods must then 
discretize (2.6) and solve for the unknowns c” on a mesh of irregular or unpredictable nature. 
If too large a time step in chosen, serious difficulties can arise from the spatial and temporal 
behavior of the characteristics. Front-tracking in two space dimensions is difficult while in 
three dimensions, it is considerably more difficult. Similar arguments can be made about some 
of the moving finite element methods f42,43]. 

In this method, a fixed grid is considered at the advanced time level rz, and information is 
sought back along the characteristic from which the grid point came. Therefore the solution 
mesh is controlled by the method and not by the flow. Although all numerical work on this 
method has previously used a fixed grid, making extensions to two and three space dimensions 
very straightforward, the grid could be adjusted to changing flow patterns in an uncomplicated 
way to take advantage of a priori estimates of the flow. 
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We note that in general i, found by following the tangent to the characteristic from a grid 
point back to time level n - 1, will not coincide with grid point at time level n - 1. If finite 
difference spatial techniques are used, this will necessitate interpolation from grid points at 
time level it - 1 to obtain c”-’ - (x). Using finite element techniques, a functional approximation 
of c”-’ is known and must simply be evaluated at X, once X is found. At this point this 
interpolation or function evaluation can cause mass balance errors, especially if the charac- 
teristic reaches out of neighboring grid blocks during the time step. Some of the recovery 
techniques of Morton [44] may help to eliminate small mass balance errors and overshoot and 
undershoot associated with the basic finite element approximation of sharp fronts. 

In the next section we will define our discrete approximations for both p and u. We will 
then define a sequential time-stepping method which decouples the equations and makes the 
assumption of a known approximation for un-l, which was made in this section, natural. 

3. Mixed finite element methods for pressure and velocity 

Since both the modified method of characteristics and the diffusion-dispersion term in (2.6) 
are governed by the fluid velocity, accurate simulation requires an accurate approximation of 
the velocity u. Using the Dirac delta functions for well models, we see that u is not even 
square integrable at the wells and thus standard approximations for u do not converge at the 
wells. A technique for removing the leading singularity in u and accurately approximating the 
result is presented. Also, since the lithology in the reservoir can change abruptly, causing rapid 
changes in the flow capabilities of the rock, the coefficient k in (2.1) can be discontinuous. In 
this case, in order for the flow to remain relatively smooth, the pressure changes extremely 
rapidly. Thus standard procedures of solving (2.1) as an elliptic partial differential equation for 
pressure, differentiating or differencing the result to approximate the pressure gradient, and 
then multiplying by the discontinuous k/p can produce very poor approximations to the 
velocity u. In this section a mixed finite element method for approximating u and p 

simultaneously, via a coupled system of first-order partial differential equations, will be 
discussed. This formulation allows the removal of singular terms in the equations and 
accurately treats the problem of rapidly changing flow properties in the reservoir. We shall 
define a coupled weak form of (2.1) as well as special finite element spaces for the method. 

The coupled system of first-order equations used to define our methods arise from Darcy’s 
Law and conservation of mass, 

u = -Gp, XEO, (3.1) 
CL 

v*u=q, XEO, (3.2) 

subject to the boundary condition 

u*n=O, irEan. (3.3) 

Clearly (3-l)-(3.3) will determine p only to within an additive constant. Thus a normalizing 
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constraint such as Jfl p(x) dx = 0 or p(a) = 0 for some X, E 0 is required in the computation to 
prevent a singular system. 

We next define certain function spaces and notation. Let L’(0) be the set of all functions on 
G whose square is finite integrable. Let H’ = H’(a) consist of those functions in L*(0) whose 
first-order partial derivatives are also in L*. Let H(div; a) be the set of vector functions 
u E [L’(0)]’ such that V - v E L*(0) and let 

V=H(div;fl)n{u.n=Oon aa}. (3.4) 

Let W = L*(0). S ince p is determined only up to an additive constant, where approximate, 
one should think of W as the quotient space L*(JI)/{constant functions}. 

Let (u, w) = J R VW dx, (u, w) = Jan wu ds, and (\u)(* = (v, v) be the standard L* inner-products 
and norm on 0 and 80. We obtain the weak solution form of (3.1)-(3.3) by dividing each side 
of (3.1) by k/p, multiplying by a test function u E V, and integrating the result to obtain 

( 1 %u =(p,Vv), VE v. k (3.5) 

The right-hand side of (3.5) was obtained by further integration by parts and use of (3.4). Next, 
multiplying (3.2) by w E W and integrating the result, we complete our weak formulation, 
obtaining 

(V*u,w)=(q,w), WE w. (3.6) 

For a sequence of mesh parameters h > 0, we choose finite-dimensional subspaces Vh and 
W,, with V,, C V and W,, C W and seek a solution pair (U,, ; Ph) E V,, X W, satisfying 

(fuh)- (P,,,divt),,)=O, z),,E VI,, (3.7) 

WV & Wh > = (4, wh) , w,, E w,, . (3.8) 

We can now complete the description of our mixed finite element methods with a discussion 
of particular choices of V,, and wh. 

For a region S, let C’(S) be the set of all functions which are j times continuously 
differentiable on S with C-‘(S) being the set of discontinuous functions. Let P,,,(S) be the set 
of polynomials of degree not greater than m on S. For a partition S of an interval S given by 
6 = (x0, X1, . . . ) xN~}, Xi > Xi-17 we define 

MjyS) = {tj E C(S): JIJ(xi-,,xi)E Pm, i = L2, . . . , Xl * 

Assume that 6, is a partition of (a, b) and 8, is a partition of (c, d) and let 

h= max 
i=l,Z ,..., N,,j=1,2 ,..., NY 

{(Xi - Xi-l), (Yj - Yj-1)) * 
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We next define two different sets of Raviart-Thomas [48] subspaces on (a, b) x (c, d). The 
first-order or ‘lowest-order’ spaces are denoted by 

Thus the first-order space for pressures is composed of discontinuous constant functions on 
each grid block. The associated space for the x-component of the velocity is Co-linears in x 
tensored with discontinuous constants in y. The space for the y-component of the velocity is 
similar, with the roles of x and y interchanged. Since cell-centered finite difference methods 
can be considered as utilizing piecewise constant pressures and velocity approximation at cell 
boundaries, there is a close relationship between the first-order mixed method and cell- 
centered finite difference methods as noted in [54]. 

The second-order Raviart-Thomas spaces in this paper can be described on (a, b) x (c, d) by 

Thus the second-order space for pressures is composed of discontinuous linears in x tensored 
with discontinuous linears in y, while the x-component of V,, is composed of CO-quadratics in 
x tensored with discontinuous linears in y. Again the space for the y-component of velocities 
is obtained by interchanging x and y in the above description. We recall again that Wh C W, 
p,, C V and V,, C V for each of the two sets of Raviart-Thomas subspaces. 

In order to treat the point sources and sinks which model wells in our codes, we remove the 
singularities at the wells for the velocities and then solve for the remaining portions via the 
mixed finite element techniques described above. As suggested by 
presented in [12,20,21,32,33,36,40], we decompose u into its regular 
and u,, respectively): 

u= u,+u,, 

I& = 2 Qj(t)VNj 3 
j=l 

Nj = & loglx - Xj ( 7 j = 1,2, . . .) NW 7 

Douglas Arnold and 
and singular parts (u, 

(3.9) 

(3.10) 

(3.11) 

where N, is the number of wells, Qj(t) are the flow rates at the wells located at Xi, and u,, the 
regular part of u, satisfies the relations 

v*u,=o, XEO, (3.12) 

u,*n = -u;n, XEcm. (3.13) 
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Let U, be the finite element approximation to U, from Vr, ; let 

u= u,+u, (3.14) 

be our numerical approximation of U, and let P,, E W,, be our approximation to p. We then see 
that U,E V,, satisfies 

- (P,,, div v,,) = - (;US,%), VhE vh, (3.15) 

(div u,., wh) = 0, wh E wh , (3.16) 

v,, E v,, . (3.17) 

We note that (3.17) requires that the net flow across ~5’0 of each boundary element be zero. 
Extensions of the techniques to compressible fluids and thus mixed methods for parabolic 

partial differential equations have been considered [22,32,50]. Douglas and co-workers 
continue to study more efficient methods for solving the resulting linear equations. 

For problems with smooth coefficients and smooth forcing functions, standard ap- 
proximation theory results show that, by using higher-order basis functions, correspondingly 
higher-order convergence rates can be obtained. For the fluid flow in porous media ap- 
plications, the source and sink terms CJ are not smoothly distributed, but are sums of Dirac 
delta functions. As shown by Ewing and Wheeler [34], the resulting smoothness of u is 
reduced; u is not contained in the space L* and thus using the methods described by (3.7) and 
(3.8), the velocity approximations & would not converge at the welts. This result was obtained 
theoretically by Ewing and Wheeler [39] and Douglas et al. [20,21] and computationally in 
[33]. By removing the leading term of the singularities (the logarithm terms), the remaining 
parts of the velocities are now in H*-” for any E > 0. Thus the approximations to these parts 
will now converge at the wells since we have regained sufficient regularity for convergence. 

Douglas, Ewing and Wheeler [20,21] have obtained the following theoretical results. 

THEOREM 3.1. With q defined as a sum of Dirac delta functions, if the leading terms in the 
singularities are removed and the remaining parts of u are approximated by either the first- or 
second-order mixed method, we obtain 

and 
((U - uj] d Clh In h-l, 

III’ - p(I G C2h In h-l, 

(3.18) 

(3.19) 

where C, and C2 are constants depending upon the smoothness of u and p. 

If no wells are present in the model and all sources and sinks are smoothly distributed, 
Douglas, Ewing and Wheeler [20,21] obtained the following stronger results. 

THEOREM 3.2. For smoothly distributed sources and sinks, for the first- and second-order 
spaces, respectively, we obtain 
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where C,, C,, C, and C, are constants depending upon the smoothness of u and p. 

Special choices of basis functions for the Raviart-Thomas spaces based upon Gauss-point 
nodal functions and related quadrature rules have significantly aided in the computational 
efficiency of these methods. For detailed descriptions of these bases and computational results, 
see [12,33,40,59]. The observed convergence rates matched those predicted in Theorems 3.1 
and 3.2 above. Also superconvergence results were obtained at specific locations which can be 
utilized in quadrature and reduced quadrature considerations in the coupled systems described 
in Section 2. 

The algebraic system arising from our mixed method system can be written as 

where the vectors cyl and (Y~ contain the coefficients of the x- and y-components of the velocity 
and /3 contains the coefficients of the pressure p. Eliminating tyl and (Ye from (27) yields the 
system for /3 given by 

(B:A;‘B, f B:A;‘B,)P = B:A;‘R, + B&A;%,- R3. (3.23) 

The matrix found on the left-hand side of (3.23) is not positive definite and care must be 
exercised in its solution. Similarly with the explicit A;’ and A;’ appearing, it is inefficient to 
even form this matrix, much less invert it directly. This motivates our use of preconditioned 
conjugate-gradient techniques for obtaining p from (3.23). For efficient ideas for pre- 
conditioning and solving (3.22) see [9,33,60]. 

Now that we have described the mixed finite element process for approximating u and p 
from (2.1) we can define the sequential time-stepping procedure for the system (2.3)-(2.5), 
(2.8) and (3.15)-(3.17). In practice, the velocity may change less rapidly in time than the 
concentration, even if characteristics are taken into account. Thus, it is appropriate to use a 
longer time step for (3.15)-(3.17) than for (2.8). Partition J into pressure time steps 0 = to < 
t, < * * - < t, = T, with At; = t, - tm_l. Each pressure step is also a concentration step. Thus for 
each m there exists an n such that t,,, = t”. In general At, > At,. For pressure time steps we 
write fm(x) = f(x, t,,,), hence distinguishing subscripts for pressure time steps and superscripts 
for concentration time steps. 

If concentration step t” relates to pressure steps by tm_, < t” G tm, we need a velocity 
approximation for (2.8) based upon U,_, and earlier values. If m 2 2, we take the linear 
extrapolation of U,_l and U,,_, defined by [35,37,51] 

EU” = 1 + ,‘I-_“;-; )&- ‘” - &-l u,_, . 

ml m2 &I-I - fm-2 

(3.24) 
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If n = 1, set 

EU” = UQ. (3.25) 

For h > 0, let M,, denote the family of subspaces of H’(a) consisting of Co piecewise 
bilinear functions on a concentration grid. This will define our test and trial spaces for the 
concentration approximation. 

The fully discrete time-stepping procedure for our miscible displacement problem can now 
be considered as a map Ch : (to, t’, . . . , tN}+ Mh and a map (I&, Ph): {to, t,, . . . , tn}+ V, x W,, 
defined by 

co=@, XEft, 

( 4 c” - Cn-1 At 
, x 

1 
+ (D(EU”)VC”, Vx) = (c?;“(E” - C”), x) , x E Mz, n 2 1 

( kG&J v 

k #?I, 1 
-(P,,,,divu)=O, uE Vh, ma0, 

(div K, w> = (qm, w), WE wt, mao, 
where 

C’“-‘(X) = C”_‘(i) = C+ - E$;;) *t) . 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

We first solve for Co, then (UoPo), then C’, C2, . . . , C”’ such that t”’ = tl, then (Cr,, PJ, and so 
on. 

Theoretical convergence estimates for this coupled system using both the modified method 
of characteristics and mixed methods will appear in [373. We recall that At, and At, are time 
steps for the concentration and pressure equations; let h, and h, denote corresponding 
average spatial grid sizes. Briefly, an a priori error estimate of the following form is valid [37]. 

THEOREM 3.3. Under appropriate smoothness assumptions on the coeficients and functions 
and smoothly distributed sources and sinks, and if the discretization parameters satisfy, for 12 1, 
and ka0, 

At, = o(h,) , 

then we have 

h:l= O(h,), (AQ3” = O(h,) , @GJ~ = O&J, 

max Ilcn - C”ll G K[hP’ + hE+’ t At, + (Ati)3’2 + (AtP)2] . 
Osn=sN 

(3.31) 

The size of the At, term depends principally upon l[d2c/dr2jj w h ere r approximates the charac- 
teristic direction s (Section 2). The size of the A& terms depends principally on l~~u/~tll and 
~~~‘u/~t’~~. The spatial terms deal p~n~ipa~ly upon the spatial sm~thness assumptions f37]. 
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Computational results and further discussion appeared in [36]. Chavent et al. [lo, 111 have 
used mixed methods in an immiscible displacement process where the fluids do not mix but 
flow as separate competing phases. Similar applications for accurately approximating separate 
phase velocities in compositional simulation describing multiphase flow with mass transfer 
between phases appear in [30,31]. Mixed finite element techniques have also been applied 
successfully to compressible and time-dependent flows by Ewing and Koebbe [32]. 

In order to illustrate the accuracy and usefulness of finite element techniques in reservoir- 
simulation problems, we next present some computational results obtained by Tom Russell, 
Mary Wheeler and the author [36] using mixed finite element methods and the modified 
method of characteristics in the miscible displacement setting. The numerical results stem from 
the simulation of a quarter of a five-spot flooding pattern. The computational domain was a 
square with an injection well in one corner, a production well in the opposite corner, and 
no-flow boundary conditions. The concentration grids were nonuniform with finer subdivision 
near the wells. For more details of specific grids, see 1521. The pressure grids were uniform but 
of different size than the concentration grids. Time steps in the range of 0.01 to 0.04 pore 
volumes were found to be appropriate for these computations. These are larger by an order of 
magnitude than time steps required for comparable methods not utilizing the method of 
characteristics. This is an important feature of these methods. 

There was slight overshoot and undershoot around the moving front, but they were 
everywhere less than 3.5%, even on coarse (20 X 20) concentration grids. The overshoot and 
undershoot occurred only in the neighborhood of the moving front and did not persist as the 
front moved on. Thus, they were not instabilities in the method, but merely indications that 
the grids chosen were too coarse to accurately resolve the very sharp fronts caused by high 
mobility ratios and dispersion coefficient ratios. As the grid was refined, the overshoot and 
undershoot were reduced correspondingly. 

The recovery curves and concentration profiles indicated that, even with high mobility ratios 
and dispersion ratios, there was little grid-orientation problem. Concentration profiles are 
shown at 0.3 and 1 pore volumes injected in Figs. 1 and 2, respectively. The 20 X 20 
concentration grids had diagonal grid orientation (see 1271) while the 28 x 28 concentration 
grid had parallel orientation. As noted in Figs. 1 and 2, the profiles are very similar before and 
after breakthrough to the production well indicating little grid-orientation effect. 

Fig. 1. Concentration profife, 0.3 PV injected. M = 10, #d, = 0, #x& = 10, +ds = 1. (a) Diagonal orientation, 20 x 20 

concentration, 15 x 15 pressure. (b) Parallel orientation, 28 x 28 ~n~ntration, 20 x 20 pressure. 
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Fig. 2. Concentration profile, 1 PV injected. M = 10, t$d, = 0, ddt = 10, 4dt = 1. (a) Diagonal orientation, 20 X 20 
concentration, 15 x 15 pressure. (b) Parallel orientation, 28 X 28 concentration, 20 X 20 pressure. 

In order to illustrate that our model will propagate fingers due to grid-size permeability 
variations, a problem with mobility ratio one hundred, &.&,, = 0, &I, = 10 and $d, = 1 was 
simulated by Thorn Potempa and Mary Wheeler, using a random number generator to choose 
a permeability variation between 0.002 and 1016 millidarcies. The results of the fingering 
produced in this way are illustrated in Fig. 3. Note that due to the ratio of the dispersion 
coefficients, the width of the front in the direction transverse to flow is very narrow while the 
contours are highly dispersed in the direction parallel to flow. 

4. Adaptive local grid refinement 

The objective of reservoir simulation is to understand the complex chemical, physical and 
fluid flow processes occurring in a petroleum reservoir sufficiently well to be able to optimize 
the recovery of hydrocarbon. Many of the chemical and physical phenomena which govern 
enhanced recovery processes have extremely important local character. Therefore the models 
used to simulate these processes must be capable of resolving these critical local features. Field 
scale hydrocarbon simulations normally involve reservoirs of such great size that uniform 
gridding on the length scale of the local phenomena would involve systems of discrete 
equations of such enormous size as to make solution on even the largest computers pro- 
hibitive. Therefore local grid refinement capabilities are becoming more important in reservoir 
simulation as the enhanced recovery procedures being used become more complex with more 
localized phenomena (see [27]). 

Fig. 3. Fingering for variable permeability. 
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In most enhanced recovery processes, fluids are injected into some wells in a reservoir while 
petroleum is produced through other wells. As one fluid displaces the others the localized 
phenomena occur along the moving interface between the fluids. If the complex fluid 
interactions in the region of this moving interface are not accurately resolved, the physics is 
lost and inaccurate frontal velocities and fluid behaviors are often predicted. Since this is the 
region that must be resolved accurately via local grid refinement we are naturally led to the 
need of dynamic grid-refinement capabilities. Since large-scale reservoir simulation involves 
hours or even days of computer usage, monitoring the simulation process and changing the 
grid refinement manually as the displacement proceeds would be impossible. Therefore 
self-adaptive local grid refinement is essential for accurate simulation of many of the dynamic 
recovery processes. 

As we have described earlier, the pressure and velocity have near-singular behavior in the 
vicinities of wells with Dirac delta functions serving as good models. If special well models are 
not used, extremely high fluid pressure and velocity gradients near the well bore require that a 
fine gridding be placed in the neighborhood of each well to accurately resolve these variables. 
It has been shown [57] that local refinement around these singularities greatly increases the 
accuracy throughout the reservoir, if the discretization scheme properly treats the local 
refinement. 

In an involved production strategy, new wells are drilled and old wells are often shut in to 
produce optimal sweep by the injected fluid and increase the hydrocarbon recovery. Thus the 
need to dynamically turn wells on or off necessitates the ability to add or remove local 
refinements around the wells without regenerating the entire grid. The ability to dynamically 
change the number of elements without greatly disrupting the solution process is highly 
desirable. A data structure and solution process with these capabilities will be discussed. Many 
of the local or moving grid refinement methods currently in use do not have these features. 
Techniques which rely upon mapping from a regular grid system (e.g., see papers in [56]) have 
great difficulty in smoothly adding or removing elements since this greatly disrupts the matrix 
solution process. The same argument applies to the moving finite element methods [42,43]. 
The multigrid techniques however are designed to efficiently treat the use of several grids and 
have had preliminary success in local grid refinement. 

A fairly sophisticated data structure is required to support an adaptive local grid-refinement 
capability. There are several excellent data structures available in the literature, each with its 
own advantages and disadvantages when reservoir simulation applications are considered. Due 
to the enormous size of reservoir problems, data storage requirements are already large, even 
for supercomputers, and the storage burdens of a data structure must be carefully balanced 
against natural efficiency requirements. 

A data structure and corresponding code have been developed by Uhler, Jones and the 
author [14,15,28,29] at Mobil Research and Development Corporation which has attempted 
to utilize the best aspects of the data structures of Rheinboldt and Mesztenyi [49] and Bank 
and Sherman [6,7]. The structure of Rheinboldt and Mesztenyi is very efficient if data storage 
is severely limited. It is a general labeled tree structure and is designed for storage of minimal 
data and pointers at the expense of possibly a considerable amount of traveling the tree to 
obtain necessary data to build and solve the associated matrix problems [41,49]. We have 
added some pointer storage to facilitate access to this needed information efficiently. 

The data structure presented by Bank and Sherman [6,7] is an excellent one if storage 
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restrictions are not a problem. By storing all essential information locally, extremely efficient 
construction and solution of the finite element matrices are possible. In large-scale reservoir- 
simulation problems where storage restrictions are severe, this structure is too storage 
intensive and time spent in data management severely deteriorates its efficiency. The Uhler- 
Jones-Ewing structure [14,15,28,29] has both storage requirements and solution efficiency 
intermediate between the Rheinboldt-Mesztenyi structure and that of Bank and Sherman. 
The code also supports local enrichment and removal of refinement without regenerating a 
new grid, a capability missing in the other structures. This feature is extremely important for 
time-dependent problems where the grid may need to be changed only slightly from one time 
step to the next. A more detailed description of the data structure mentioned here and 
comparisons with other structures appear in [15,28,29]. 

Application of any of the data structures and algorithms mentioned above to finite 
difference discretization requires special treatment but is important since essentially all 
field-scale reservoir simulators now in use utilize finite difference techniques. Special solution 
stars must be determined in the neighborhood of local refinement [57]. We are currently trying 
to use the finite element formulations to determine suitable finite difference stars for these 
applications. Similarly, desire to incorporate the grid-refinement ideas in finite difference 
simulators in two and three space dimensions motivates the use of rectangular grid structures. 
In a finite element setting, this requires care to maintain continuity across element boundaries 
and conservation of mass in the presence of local grid refinement. Finite difference techniques 
have been applied successfully in [8]. They have a patch-type of local refinement so the 
difficulties of special finite difference stars are restricted only to the boundaries of the patches 
and the communication between the different grids. They have also addressed the problem of 
conservation of mass between grids. 

Many different adaptive methods have recently been proposed for the solution of partial 
differential equations (see [l-5, 8, 13-15, 18, 24, 42, 43, 581). For a ‘state-of-the-art’ survey of 
adaptive refinement for finite elements, see [4]. Adaptive multigrid methods include [5] while 
adaptive finite element methods have been presented in [2,3,5,13,42,43,58]. For large-scale 
reservoir-simulation problems, any dynamic refinement decisions must be made in a self- 
adaptive fashion. Also, the efficiency of the decision process is critical since these decisions 
must be made repeatedly, at each time step throughout the simulation. 

The adaptivity of a method is driven by some estimate of the errors present in different 
spatial locations which need to be reduced. Traditional error estimates for finite element 
methods are a priori bounds, predicting the asymptotic rate of convergence as the mesh size 
tends to zero. Unfortunately, this tells us little about the true error for a fixed grid size in a 
difficult problem. Recently, locally-computable a posteriori error estimators have been 
developed, primarily by BabuSka and Rheinboldt [l, 31, Bank [4] and Weiser [58]. Under 
suitable assumptions, these error estimators converge to the norm of the actual error as the 
mesh size tends to zero. The most recently developed estimators are asymptotically upper 
bounds for the norm of the true error and can be computed locally, element by element (see 
[58]). These a posteriori error estimators are extremely important for problems involving 
elliptic partial differential equations in determining the reliability of estimates for a fixed grid 
and a fixed error tolerance in a given norm. The error estimators are used to successively 
refine locally until the errors in some specified norm are, in some sense, equilibrated. These 
techniques have proven to be very effective for elliptic problems. However, the estimators 
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drive the local refinement at only one or two levels per iteration. Thus obtaining an ‘optimal’ 
grid normally takes several iterations. Although the local error estimation is a relatively small 
part of the solution of an elliptic problem, this is not the case for time-dependent problems. 

For the parabolic or transport-dominated problems arising in reservoir simulation, there is 
much information which can be used from preceding time steps to help drive the adaptivity 
process. In parabolic problems, where the solution changes smoothly in time, the ‘optimal’ 
grid used at the previous time step should be a very good approximation to the desired grid at 
the advanced time step. Thus beginning with a new course grid at each time step and using the 
elliptic techniques of error estimators to drive the local refinement would be wasteful, The 
estimators would also need to have the capability of initiating removal of unnecessary grid as 
well as placement of needed grid. 

The placement or removal of refinement in the Mobil code SAFES [14,15] is triggered 
through a problem-independent grid analysis based on local cell indicators. The analysis is 
local in that only neighboring cells are considered in the decision process. An attempt is made 
to equalize the indicators on a local level rather than on a global level as in [l]. The local 
indicators used in the computations for [14,15] were L2-norms of the gradients of the solution. 
For other tolerance criteria, other norms can be used for the local indicators. These techniques 
are similar to those used in [13]. 

For hyperbolic or transport-dominated parabolic partial differential equations, sharp fronts 
move along characteristic or near-characteristic directions. Therefore the computed velocity 
determines both the local speed and direction of the regions where local refinement will be 
needed at the next time steps. This information should be utilized in the adaptive method to 
move local refinement with the front. Using these techniques, the refinement is not ‘optimal’ 
as with the methods described earlier or the moving finite element method to be discussed 
later. However, these methods are considerably cheaper to perform and some waste in using 
more grid than absolutely necessary is compensated for by the overall efficiency. In applying 
these techniques, we have found that moving the grid at each time step is inefficient. A 
considerably more effective technique is to use a larger, refined area within which the front 
will remain for several time steps and move the patch less frequently, after several steps. This 
concept is similar to the patch-refinement techniques of [S]. Efficiency is crucial in large-scale 
reservoir simulation. 

More detailed discussions of the adaptive criteria used in the code developed at Mobil and 
termed SAFES (Self-Adaptive Finite Element Simulator) appear in [l-5,28,29] together with 
calculations on typical simple rese~oir-simulation problems. This code is presently capable of 
treating only linear parabolic or elliptic partial differential equations and major extensions are 
necessary before many reservoir applications are accessible. 

5. Conclusions 

In this section we shall summarize several of the main points of this paper. 
(1) Fluid flow in porous media shares many computational problems with other areas of 

nonlinear mechanics: (a) stabilization of large-scale transport or transport-dominated proces- 
ses, (b) accurate resolution of sharp moving fronts, (c) accurate treatment of geometry or other 
singularities. 
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(2) The modified method of characteristics can efficiently stabilize convection-diffusion 
processes in several space dimensions without the addition of artificial diffusion which can 
smear sharp fronts and cause grid-orientation problems. 

(3) Mixed finite element methods produce very accurate approximations to fluid velocities, 
even in the presence of rapidly changing flow properties and singularities. Singularities for 
velocities at the wells must be treated in a special manner to obtain convergence there. 

(4) Analysis and a priori asymptotic error estimates have been instrumental in the choice of 
numerica techniques used in reservoir simulation. 

(5) Dynamic local physical phenomena which may govern the entire flow process must be 
resolved with efficient, self-adaptive local grid-refinement capabilities. 

(6) Finite element techniques have the versatility and power to yield very effective tech- 
niques in large-scale reservoir-simulation applications. 
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