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A nonlinear system of two coupled partial differential equations models miscible displacement of 
one incompressible fluid by another in a porous medium. Conservation of mass for the mixture leads to 
an elliptic equation for pressure, and conservation for the displacing fluid yields a convection- 
dominated parabolic equation for the concentration of that fluid. A sequential implicit time-stepping 
procedure is defined, in which the pressure and Darcy velocity of the mixture are approximated 
simultaneously by a mixed finite element method and the concentration is approximated by a 
combination of a Galerkin finite element method and the method of characteristics. Optimal-order 
convergence in L* is proved. Time-truncation errors of standard procedures are reduced by time 
stepping along the characteristics of the hyperbolic part of the concentration equation; temporal and 
spatial errors are lessened by direct computation of the velocity in the mixed method, as opposed to 
differentiation of the pressure. Several extensions of these results are outlined. 

0. Introduction 

Miscible displacement of one incompressible fluid by another in a porous medium 0 over 
time interval J = [0, T] is modeled by the system 

-V* j&j(V!?(c)V+V~~=q, xE0, ~EJ, 

+‘(D(u)Vc-UC)=@, xE0, tEJ, 

(O.la) 

(O.lb) 

wn=(D(u)Vc-uc).n=O, ~~80, tEJ, 

c(x, 0) = co(x) , xE0. 

(O.lc) 

(Old) 
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We assume that the medium is vertically homogeneous and take 0 c W2, except at the end of 
the paper where extensions to fl C R3 are considered. The dependent variables are p(x, t), the 
pressure in the fluid mixture, and c(x, t), the concentration of a solvent injected into resident 
oil. In this tertiary oil-recovery process, solvent is injected at certain wells in a petroleum 
reservoir, mixes with oil to form a single phase, and flows to other wells where oil is produced. 
(O-la) and (O.lb) represent conservation of mass for the fluid mixture and the injected solvent, 
respectively. The coefficients and data in (0.1) are k(x), the permeability of the porous rock; 
p(c), the viscosity of the fluid mixture; y(x, c) and d(x), the gravity coefficient and vertical 
coordinate; U(X, t), the Darcy velocity of the mixture (volume flowing across a unit cross- 
section per unit time); q(x, t), representing flow rates at wells, commonly a linear combination 
of Dirac measures; 4(x), the porosity (proportion of volume available to porous flow) of the 
rock; D(x, u), the coefficient of molecular diffusion and (anisotropic velocity-dependent) 
mechanical dispersion of one fluid into the other; 2(x, t), the injected concentration at 
injection wells and the resident concentration at production wells; and c,,(x), the initial 
concentration. The initial pressure is determined only up to an additive constant by (O.la) and 
(0.1~); this indeterminacy holds at all later times as well, but it is of no consequence since u is 
uniquely determined by (O.la), and only u (not p) appears in (O.lb). Related to the 
indeterminacy is the compatibility condition Jn q(x, t) dx = 0 that must be imposed on the 
data. A detailed derivation of (0.1) appears in [18]. 

The principal variable of physical interest in (0.1) is the concentration, 0 d c(x, t) s 1, 
because it shows how much of the reservoir is swept by solvent, or equivalently, how much oil 
is recovered. In realistic displacements D is quite small, so that (O.lb) for c is strongly 
convection-dominated. Standard upwind finite difference methods used in the petroleum 
industry for such problems artificially smear concentration fronts with excessive numerical 
dispersion and produce solutions that depend strongly on the orientation of the difference grid 
relative to the streamlines of flow. Other standard techniques without upwinding produce 
unacceptable nonphysical oscillations in the concentration approximations. In this paper we 
approximate c by a modified method of characteristics that reduces these difficulties sub- 
stantially. 

This procedure was introduced and analyzed for a single parabolic equation by Douglas and 
one of the authors in [lo], using either finite differences or finite elements to discretize in 
space. The nine-point finite difference version of the method has been analyzed for (O.lb) in 
combination with either a five-point difference scheme [6] or a mixed finite element method 
[5] for (O.la). The finite element version for (O.lb) has been analyzed with a standard Galerkin 
procedure for (O.la) [17]. Optimal-order rates of convergence were obtained in all cases, 
assuming smooth data. Pironneau [15] has analyzed a closely related finite element procedure 
for the Navier-Stokes equations from a different viewpoint, allowing D to go to zero while 
proving suboptimal convergence. In this paper, we analyze the finite element method of [lo] 
applied to (O.lb) with a mixed method for (O.la); this combination has produced the best 
numerical results we have seen [13]. 

The numerical behavior of the modified method of characteristics for (O.lb) depends 
strongly on the accuracy of the approximation of the velocity U. Thus, it is not surprising that a 
mixed method, which computes p and u simultaneously without differentiation of p and 
multiplication by the rough coefficient k/p, improves the approximation of c. The mixed 
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method considered here was introduced and analyzed for second-order elliptic problems by 
Raviart and Thomas [16]. For (O.la), the method has been analyzed in combination with a 
standard Galerkin procedure for (O.lb) in [8] and [9], using continuous and discrete time, 
respectively. Optimal results were proved for smooth data; for singular data (e.g., Dirac 
measures) and Jo independent of c, suboptimal convergence was demonstrated in [S]. As noted 
above, the mixed method has also been analyzed with the nine-point finite difference version 
of the modified method of characteristics for (O.lb) [5]. A more detailed summary of previous 
analysis and numerical work with these methods is given in [18]. 

This paper is organized as follows. In Section 1 we refine the statement of our problem and 
list the assumptions needed for the convergence analysis. We define the finite element version 
of the modified method of characteristics in Section 2, using spaces satisfying certain ap- 
proximation and quasi-regularity properties; we also define a useful projection of c into these 
spaces. Section 3 defines the mixed method and associated spaces and projections, concluding 
with the time-stepping algorithm that combines the two methods. Optimal-order convergence 
is proved in Section 4, and some extensions of the theory are outlined. The proof combines the 
techniques of [8] and [17], with considerable modification and reorganization. 

1. Statement of the problem 

We introduce here a nondivergence form of (0.1) that is used in our numerical scheme. We 
also define certain Sobolev spaces of functions, list the smoothness assumptions on the 
solution of (0.1) and indicate the properties required of the coefficients. 

The nondivergence form is obtained by expanding the convection (V - (UC)) term in (O.lb) 
with the product rule and using (O.la). This leads to 

v*u=q, xE0, tEJ, (l.la) 

(l.lb) 

u * n = (D(u)Vc) * It = 0 ) xEa.2, tEJ, (l.lc) 

c(x, 0) = co(x) , XEL?, (l.ld) 

where 4’ = max{q, 0) is nonzero at injection wells only. To avoid technical boundary difficulties 
associated with the modified method of characteristics for (l.lb), we assume that 0 is a 
rectangle and that (1.1) is &periodic. This is physically reasonable, because the no-flow 
condition (1.1~) can be treated as a reflection boundary, and because boundary effects in 
reservoir simulation are of considerably less interest than interior flow patterns. Throughout 
the rest of this paper, all functions will be assumed to be spatially 0-periodic. The boundary 
conditions (1.1~) can be dropped. 

On 0, we define the following Sobolev spaces and norms: 



We also require spaces that incorporate time dependence, Let [a, b] C S and let X be any of 
the spaces just defined. If f(x7 t) represents functions on J2 x [a, bf, we set 

If f = (fi, f2) is a vector function, such as the velocity u in (l.l), we say that f E X if fi E X 
and fi E X. We aka define the special vector-function spaces and norms 

Our assumptions on the regularity of the solution of (1.1) are denoted collectively by 
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c E Lm(Hz+l) f-l H’(H’+‘) n L”( WLJ n H2(L2) ) 

(R) p E Lm(hlk+‘), 

u E L=(f;i’+‘(div)) n L”( W:) fl WH(L”) i7 H2(L2) , 

where 1 a 1 and k 3 0 are integers to be chosen for the approximation schemes. In practice, 1 
and k are the degrees of piecewise polynomials approximating c and p, respectively. 

Note that p and u are required to have the same order of smoothness. This might seem out 
of balance, since u depends on Vp. However, in the physical problem the coefficient k/p may 
be quite rough or even discontinuous. If, for example, k is discontinuous at an interface of 
rock types, then the physical p and u should be continuous, but Vp should be discontinuous. 
Under such circumstances an assumption such as p E H’, u E H’(div) is quite plausible and 
even natural. 

The hypotheses in (R) enforce tacit conditions on the coefficients in (1.1). We will make 
explicit use of 

for constants a*, a*, +*, $I,*, D*, K*. The assumptions on k/p, 4, and D are reasonable; D is a 
tensor that depends on the first power of the magnitude of u [18]. However, the bound on 4 in 
the physical problem will be very large, since the reservoir length scale is 3 to 4 orders of 
magnitude above that of a well diameter. Our analysis will show that our methods are 
mathematically justified, but it will apply in a practical sense only to a smoothed idealization 
of (1.1). For realistic convergence rates, it will be necessary to examine the behavior of the 
approximations as 4 tends toward a singular Dirac measure. Of the studies of this physical 
problem, only 1141 has moved in that direction. 

2. A modified method of characteristics for the concentration 

The modified method of characteristics is a time-stepping procedure that can be combined 
with any spatial discretization. We define the procedure here and apply it to (l.lb), assuming 
that a velocity from (l.la) is known. Then we introduce a finite element mesh, consider a 
projection of c into the mesh, and show how the spatial and temporal discretizations are 
combined. 

The basic idea is to think of the hyperbolic part of (l.lb), namely, r#~ &l&-t u - Vc, as a 
directional derivative. Accordingly, let s denote the unit vector in the direction of (uI, u2, #) in 
R x J, and set 

9(x) = [bud* + c$(x)‘l”‘” = [ u1(x)2 f u2(g2 + d$q2y2 a 

Then (l.lb) can be rewritten in the form 
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Note that (2.1) has the form of the heat equation, so that its numerical approximations should 
be better behaved than those of (l.lb) if a reasonable treatment of the ‘time’ derivative &/as 
can be found. 

Partition J into 0 = to < t1 < - * 8 < tN = T, with At: = t” - tn-‘. Our analysis is valid for 
variable time steps, but we drop the superscript from At, for convenience. For functions f on 
KJ x J, we write f”(x) for f(x, t”), Approximate (&‘/L&)(x) = (W&)(x, t”) by a backward 
difference quotient in the s-direction, 

If we let x = x - (u(n)/Q,(x))AhC and T(X) = f(Z), then 

9 
iv” 
as- -’ 

c” - c7-l 

At, * (2”J) 

Since the problem is &periodic, en-’ is always defined; the tangent to the characteristic (i.e., 
the ~-segment) cannot cross a boundary to an undefined location. The difference quotient 
relates the concentration at a given x at time t” to the concentration that would flow to x from 
time t”-’ if the problem were purely hyperbolic. 

The time difference (2.3) will be combined with a standard Galerkin procedure in the space 
variables. For h, > 0 and an integer 1 L 1, let M C W@2) b e a family of finite-dimensional 
subspaces indexed by h, and having the following approximation and inverse properties: 

(IJ 

where & is independent of h,. These properties hold, for example, for continuous piecewise 
polynomials of degree SE on a quasi-uniform mesh of diameter oh,. 

Our convergence analysis will use a technique of ane of the authors [19] that relies on a 
p_rojection of the exact concentration c into M. If u is the exact Darcy velocity, define 
CC., t)E M by 

(~(~(~))V~(~), YY) + (W), X) +- (W)QQ, x) = 

= (~(~(~))vc(~)~ Vx) + (c(Q, X) + (~(~~c(~)~ x) 

=- (4 $ (0, x) - (u(t) * VW, xl + W? x) “I- (QWf~), x) 9 x E M, t E J. (2.4) 

As in [ll, 171, we can use. (R), (C), (A), and (IJ to obtain the following facts about e: 
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11~11 L”(WA) s KI , (2.7) 

where K1 is independent of c and h, and depends on ll~ll~~~-, and D*. We will define a 
numerical approximation C of c in (3.10) below; with (2.5) known, the convergence analysis 
will have only to estimate I(C- C‘)l. 

We can obtain a weak form of (2.1) by multiplying by a test function in H’(0) and 
integrating by parts in the diffusion-dispersion term. A Galerkin discretization of this weak 
form using A4 and the characteristic backward difference in (2.3) is given by C”,, C$, . . . , CY E 
M such that 

C”,=P, 
(2.8) 

( ~ c;: - c;-’ 
At, 

, x 
> 
t (o(u")vcst, v,y) + $‘a, ,y)= (q’“c’“, ,y) , x E M n 2 1. 

In practice, U” must be replaced by a numerical approximation to be determined in the next 
section; an analogue of the translate Z using that approximation will be defined. 

Note that all occurrences of C$ are standard; the translation along characteristics using I 
applies only to CZ-‘. By thus looking backward in time along characteristics, we make it 
possible to solve (2.8) on a static or simply-defined dynamic mesh. Schemes that look forward 
along characteristics, such as moving-point or front-tracking methods, are difficult to imple- 
ment in two or three dimensions; these difficulties do not apply to our method. 

Note also that (2.8) leads to a symmetric positive-definite matrix at each time step, unlike 
standard methods in which the dominant convection term is nonsymmetric. Thus, (2.8) is more 
suitable than standard methods for solution by sparse iterative algorithms, which are necessary 
when the number of nodes in the spatial mesh is large. 

3. A mixed method for the pressure and velocity 

The modified method of characteristics in (2.8) requires an accurate approximation of the 
velocity u” in order to translate well along characteristics. This approximation will be provided 
by the mixed finite element method described in this section. We define a coupled weak form 
of (O.la), discretize with special finite element spaces, and introduce projections of the exact 
pressure and velocity into those spaces. Then we exhibit our fully discrete coupled time- 
stepping procedure for (1.1). 

The weak form of (O.la) seeks p E L2(12) and u E H(div; 0). Since p is only determined up 
to an additive constant, all references to test functions in L’, L2 norms of p and of its 
approximations, and so on, should be understood to mean the quotient space L2/{constant 
functions}. Separate (O.la) into two equations, 
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u=--&V&)W), XEO, fEJ, (3.1) 

V.lA=q, xEn, fEJ, (3.2) 

representing Darcy’s law and conservation of mass, respectively. For K E L”(R), a, p E 

H(div; a), and 7r E L*(R), define the bilinear forms 

(3.3a) 

in (3.3a), 

B(a, 7r) = -(V - a, ?T) ; (3.3b) 

the inner product is for vector functions in L*(0). Multiply (3.1) by ,u/k and a test 
function u E H(div; 0) integrate over 0, and integrate (VP, v) by parts. Multiply (3.2) by a 
test function w E L’(0) and integrate over 0. Then (3.1)-(3.2) is equivalent to the time- 
parametrized saddle-point problem of finding a map (u, p) : J + H(div; a) x L’(R) such that 

A(c; U, U) f B(u, p) = (~(c)Vd, U) , v E H(div; 0)) (3.4a) 

qu, w> = -(q, w> 7 w E P(fq . (3.4b) 

For h, > 0, we discretize (3.4) in space on a quasi-uniform triangularization or quadrila- 
teralization of 0 with elements of diameter Sh,. Let Vk C H(div; 0) and Wk CL*(R) be 
Raviart-Thomas [16] spaces of index k 20 for this mesh. For example, if the mesh were 
rectangular, the first component of Vk would be continuous piecewise polynomials of degree 
Sk + 1 in the xl-direction tensored with discontinuous ones of degree Sk in the x,-direction, 
the second component would be the reverse (thus V - Vk CL*), and Wk would be the tensor 
product of discontinuous polynomials of degree <k in both directions. These spaces possess 
the approximation 

inf Ilf- 
“EVk 

(AP) jmk Ilf- 

and inverse properties 

VII s K*IIfIME’ 7 

vllH(div) s K2Ilfllnmcc&~ 7 

,bik llg - wll s &llg(l&” , 1 c m s k + 1, 

lbll~- 6 &h;‘llvll , v E Vk , 

(Ip) lbll WLW) s Kzh ;lllvll~~~s~ , v E Vk, 3 an element of the mesh . 

As in (2.4), it is useful to define projections of the exact solutions into the mesh. Define the 
map (0, P) : J--f Vk x Wk by 
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A(c(t); o(t), v)+ B(u, P(t)) = (y(c(t))Vd, u) , t, E vk , (3Sa) 

NW, w) = --(do, w> 9 
(3.5b) 

where c(t) is the exact solution of (1.1). By arguments in [4,8], the map exists and (Ap) implies 
that 

lb - al L”(H(div)) + lb - PII L”(L’) 6 K3[v$Jk (1~ - uIIH(div)+ wl;nlE,IIP - ~111 

The constant & depends on constants in (C) but is independent of h,, u, p and c. In the same 
way that (2.7) held, the estimate (3.6) and (I,) imply that 

II fill L’(L_) c K3 * 67) 

The mixed method for pressure and velocity, given a concentration approximation C at a 
time t E J, consists of U E Vk and P E Wk such that 

A(C; U, u)+ B(v, P) = (y(c)Vd, u) , 2, E Vk , (3.8a) 

WE Wk. (3.8b) 

Existence and uniqueness of U and P is proved in [8], based on ideas of [4,16]. As in [8], 
comparison of (3.5) and (3.8) implies that 

II u - ollH(div) + ((P - PII s &(I + )I QIL~)~~c - CI( - (3.9) 

The estimates (3.6) and (3.9) will handle the coupling of concentration and velocity errors in 
the convergence analysis. 

We now present our sequential time-stepping procedure that combines (2.8) and (3.8). In 
practice, the velocity may change less rapidly in time than the concentration, even if 
characteristics are taken into account. Thus, it is appropriate to consider using a longer time 
step for (3.8) than for (2.8). Partition J into pressure time steps 0 = to < t1 < - - * < tM = 7’, with 
At: = f,,, - f,,,_1. Each pressure step is also a concentration step, i.e., for each m there exists n 
such that t, = t”; in general, At,> At,. We may vary At,,, but except for At: we drop the 
superscript. For functions f on fl X J, we write f,,,(x) for f(x, f,,,); thus, subscripts refer to 
pressure steps and superscripts to concentration steps. 

If concentration step f” relates to pressure steps by f,_l < f” S f,,,, we require a velocity 
approximation for (2.8) based on U,_, and earlier values. If m 2 2, take the linear extrapola- 
tion of U,_l and Urn_* defined by 

1+ ,‘;-_f;-l ) U,,,_, - “’ - fm-1 Um_2 ; 
ml m2 h-1 - h?l-2 
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if m = 1, set 

EU” = u, . 

We retain the superscript on At: because EU” is first-order correct in time during the first 
pressure step and second-order during later steps. 

The combined time-stepping procedure is a map C : {to, t’, . . . ,P}+ M and a map 

u-4 P) : {to, t1, . * . , tM}+ Vk X Wk defined by 

C?=d”, (3.10a) 

( P-@’ At, 
) x 

> 
+ (D(EU”)VC”, Vx) + (q”c”, x> = G”C x) 

A(Cm; Urn,~>fB(u,P,)=(y(C,)Vd,~,), DE Vk, 

qun, w) = -(&I9 w), WE Wk, m?O, 
where 

P-‘(X) = C’-‘(a) = C”-’ (x - w A&) . 

xEM, n31, 

(3.10b) 

(3.1Oc) 

(3.10d) 

We solve for C’, then (Uo, PO), then C’, c”, . . . , C”’ such that t”’ = t,, then (U,, P1), and so on. 
The convergence analysis will make use of an analogue of i defined for the exact velocity 

u”. If f is a function on 0, set 

f(x) = f(i) = f(x - % A&) ; 

the time step t” will be clear from the context. Throughout the analysis, K will denote a 
generic constant, independent of h,, h,, At, and At,, but possibly depending on constants in 
(C), norms in (R), and Ki, 0 G i ~4. Similarly, F will denote a generic small positive constant. 

4. A priori error estimates 

In this section we demonstrate that the mixed/modified-characteristic approximation (3.10) 
converges at an optimal rate in L*(0) to the exact concentration for any order of approximat- 
ing polynomials (k 2 0, 12 1). Optimal error estimates for velocity in H(div; 0) and pressure 
in L’(0) follow at once from (3.6) and (3.9). Possible extensions of the analysis to estimates in 
H’(0) and to modifications of (3.10) will be noted. 

THEOREM 4.1. Suppose that the assumptions (R), (C), (A,), (IJ, (A,) and (I,,) hold. For I> 1 
and k a 0, assume that the discretization parameters obey the relations 

At, = o(h,), h5” = O(h,) , (At;)“’ = O(h,) , (A tJ2 = O(h,) . 
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Then the error of the approximation (3.10) of (1.1) satisfies 

The size of the At, term depends principally on Ij8”c/aT*\(, w h ere T approximates the characteristic 
direction s of (2.1). The sizes of the A& terms depend principally on JJau/atJl and lla*u/at*)l. The 
spatial terms depend principally on the H’+l and Hk+l norms in (R). 

PROOF. Set 5 = c - C, 6 = C - 6: By (R) and (2.5) it suffices to show that 

sup Jl(“(I s K[h;‘+ hi+‘+ At,+ (At;)“‘+ (Aa)‘] . 
n 

(4.1) 

To obtain a suitable variational equation for 6, subtract (2.4) from (3.10b) and manipulate to 
the form 

&g , ,y + (D(EU”)Vf”, Vx> = 
c 

= @$+Eu”.V+j c”~~“-‘,~)+([U”--Eu”].Vc”,~) 
([ c 

+ ([II@“) - D(EU”)]VC”, Vx) + (<b “’ A[“-‘, x) - (5”, x) - (@“5”, x) 

) x E M, n 3 1. (44 

For an L* estimate of 5, choose x = f” as a test function and denote the resulting terms on the 
right-hand side of (4.2) by T,, T,, . . . , T,,. The inequality a(a - b) % $(a* - b2) shows that 

& [(+r, 5”) - @r-l, r-l)] + (D(EU”)Vl”, Vr) s 7’1+ T2 + . . . + T,, . (4.3) 

We now estimate TI through TI1, after which the discrete Gronwall lemma will yield (4.1). 
For the estimate of T,, let 

a(x) = [+(x)‘+ IEu"(x)I~]~'~, 

so that 
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where T approximates the characteristic unit vector s of (2.1). Let 7 E [O, l] parametrize the 
approximate characteristic tangent from (x, t”)[f = 0] to (5 t”-‘)[7 = 11. In the same way that 
we derived (2.3), we see that 4(c” - E”-l)/At, is a backward-difference approximation of 
a &?/a~ along the tangent. The usua1 backward-difference error equation, over a r-segment of 
length ~A~=/#, is 

dc” d, cn -rt --- 
ar CT At, 

t”-1)2]1R$dT.. (4.4) 

Multiplying (4.4) by o and taking the square of the L2(fi) norm, we obtain 

By a change-of-variable argument to be presented in detail in the estimate of Tla, (i5x’ c 
(1 - 5)x, t) can be replaced by (x, t) in (4.5) at the cost of a multiplicative constant. Thus, 

(4.6) 

fn (4.6), note that T(X, t) is equal to 7(x’, t”), where x’ is such that the approximate 
characteristic tangent at (x’, t”) passes through (x, d). The difference between 7(x, t) and the 
true characteristic direction could be reduced by a modification of the method, in which i 
would be determined by an approximate characteristic polygon corresponding to a partition of 
[t”-l, t”] into sub-timesteps. This has been done in practice [13] near wells, where u varies 
rapidly in space. In any case, for convection-dominated problems the norm of d2c/drZ 
appearing in (4.6) is much smaller than the corresponding a*c/&* of standard procedures, so 
that time-truncation error is reduced and larger At, is appropriate. 

Next, we routinely see that 

where tmw2 and tmml are the previous pressure time levels that define the extrapolation Eu” at 
concentration time level t”. If t” d tl, so that Ed = ~0 (extrapolation not possible), then the 
temporal error term is replaced by rc(Ar~)211au/atllZ-~~,, ft; L2). 

For the TS bound, note that by (3,6), 

IIEu” - HPII 6 Kl(u,-1- ii,-111 + K1IZ4,,,-2- iL-l,+ K[(lpllC”(H”+‘), I(~I~L-~~‘+‘~di~))lh15+1 9 

(4.8) 
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and that by (3.9) and (2.5), 

IlEo” - EU”ll s Kllcm-l- cm-111 -I- K~(c,_,- c,,,_211 

sG ~ll5m-Ill+ mm-211 + ql5m-Ill+ Kll!&*ll 
== KMI L”w4c+1 + mL1ll+ KllLl . 

Thus, using (4.8), (4.9) and the estimate in (4.7) 

IT31 s K[llu” - Eu"l( + I(Eu” - El?'\\ + IIE@ - EU”II]I\F@“lk-IIVS”II 

(4.9) 

(4.10) 

The remark after (4.7) about the temporal error term applies here as well. 
By (2.6), we have 

and (2.5) yields at once 

IT’s1 s K[l(cII~-~n~+l~]~~‘+~ + Klll”ll’ 3 

/ Td s Klk”ll’ . 
(4.12) 

The estimates of T,, Ts and T9 fit into the following general picture. Let f be defined on 0; 
in the three estimates, f will be c, ,$ and 5, respectively. Let z denote the unit vector in the 
direction of EU” - Ed’. Then 

= (At,)-’ I, 4 [I,’ 5 ((1 - Z)x’ + 22) di] 12 - 215” dx 

= ’ 5 ((1 - 2)x’ + 22) di] IE(u - U)nIr dx , (4.13) 

where Z’E [0, l] parametrizes the segment from x’ to f and we have used the fact that 
2 - x’ = At,[Eu”(x) - EU”(x)]/+(x). Let 

t?f (4 = I olG((l-i)f+ZQdS; 
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then we can write three special cases of (4.13) 

IT71 s IlscllL*IIw - WIlIlYnIl 9 
l Td c kdl flE@ - u)” ll lk%- 9 
I a G Ii&II 11% - u)” Ii lK%* - 

In the T3 estimate, we showed that 

IIE(u - U)“(j2 G Kh:” f Kh:‘+‘+ K11&,,-#+ 14414-,,p21t2 . 

Since g=(x) is an average of certain first partial derivatives of 
IIcn-‘IIW;, (4.14) leads to 

I T71 s KIIW - WYI” + m3 * 

(4.14) 

(4.15) 

c “-I, which are bounded by 

(4.16) 

To bound kdl and krll, we require an induction hypothesis. Assume that 

i = 1~2. (4.17) 

If concentration time level t” coincides with pressure level t,,,, we verify (4.17) for U,,, at the 
end of the proof. Now note that 

Define the transformation 

G&)=(1-++Z~=X:- 
E(U - U)“(X) A&. 

4(x) I 

Letting 3 run over the elements in the pressure mesh, (4.18) becomes 

(4.18) 

(4.19) 

(4.20) 

The Jacobian of Gz is the identity matrix, plus At, times terms involving first partial derivatives 
of d, and Eu (which are bounded) and of EU (which exist on each F; U is discontinuous at 
pressure mesh edges). On each F, the V(E~}At= terms can be bounded by (I,) and (4.17) 

IV(EU)lAtC < Kh,‘(IU,,,_,IIL-At,< K [$]1’2 = o(l), 
P 

(4.21) 

since At, = o(h,). Thus 
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det DG$ = 1 + o(1). (4.22) 

Changing variables in (4.20), it then follows that 

(4.23) 

We also see that G8 is a one-to-one mapping on each Y’, because (4.19) and (4.21) imply that 

furthermore, G,- maps Y into itself and its immediate-neighbor elements, since 

Hence, Gt is globally at most finiteIy_many-to-one (with repetition factor bounded by the 
number of neighbors of an element) and maps LI into itself and its immediate-neighbor 
periodic copies. This implies that the sum in (4.23) is bounded by finitely many multiples of an 
O-integral, so that 

fkf IP si fmf”-*tr - (4.26) 

We now apply (4.26) to (4.14) and use an argument of Douglas [5]. Douglas cites a theorem 
of Bramble [l] which, since 5” is a test function in two dimensions, implies that 

By (4.14), (4.26), (4.27) and (2.5), we have 

From (4.15), it is clear that /E(u - U)“/ = o(flog k$112), 
ductively) that l/&,-s]] = O[hE1 + II;*’ 

since our theorem will prove (in- 
f At, f (A ti)“’ + (A a)“]. Thus, emulating (4.28) 

I q 6 KIIE=*(u - u)” II bg hclr’2115” IIf 
s ~II~1I: * (4.29) 



Combining (4.15), (4.16) (4.28) and (4.29) we have 

py t p-81 t IT91 s Khy t KW2 + mtl-1112 f mL2112 + KIlJ” 112 + E 115” 11: * (4.30) 

Before estimating T 1oy we examine (4.13). The difference (P-* -p-‘)/At= behaved like a 
s~~~u~ derivative of f times iR - #A&. Similarly, we expect (tn-’ - p-‘&A& in T,, to be fike a 

spatial derivative of 5 times IX - Xl/A& = @P(.x)~/~(x) = U(l). To obtain an optimal (U(ht*‘)) 
L2 error estimate, we must therefore use an H-l norm on (t”-l- p-‘)/At, and an H1 norm on 
the function 4,5”. We have 

by periodicity, G may be considered as a differentiable mapping of 0 into itself. We claim that 
G is in fact a differentiable homeom~rphism of 0 onto itself. 

First we note that analogues of (4.22) (4.24) and (4,25), with O(A&) in place of o(1) and 
o&J, hold for G; they are easier to demonstrates since U is not involved and G is smooth. It 
follows from the analogue of (4.22) and the inverse function theorem that G is locally a 
differentiable homeomorphism onto its image, and the analogue of (4.24) shows that G is 
globally one-to-one. Since b is compact, G is a closed one-to-one mapping of 0 and is 
therefore globally a homeomorphism onto its image. It remains only to show that G is onto. 
Let d be the union of Q and its neighboring periodic copies, and suppose that there exists 
X@ E Q such that x0 $Z G(a). Let f be a loop in fi wrapping around x0 at distance greater than 
~I~~~~~~~~~A~~ from X~ and a$?. By the G-analogue of (4.23, G(f) still wraps around 
x& G(d). But G(a) is simply connected since d is, so we have a contradiction. This proves 
the claim. 

Thus, we can change variables in (4.31) and write 

- I, ~-t(x)f(G-l(x)) det DC(X)-’ dx]) 

s &Y# llflll 0 

[-J-J [“-‘(x)f(x)[l- det DG(x)-‘] dn] 

+~~~~[~J~ e-l(x)ff(x) - f(G-‘(x))] det DG(x)-’ dxl 

= w*+ w2. (4.32) 

The G-analogue of (4.22) with O(At,) instead of o(l), yields 
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I WI d K S”P Ell~“-lllllflllllflIll d ~ll6”-‘11 * 
fEH’ 

89 

(4.33) 

A bound for det DG(x)-’ and an argument like (4.13) lead to 

5”-‘(x)g;(x)tx - G-‘@)I dx] , (4.34) 

where 

g?(x) = I ,l$((‘- z*)G-‘(x) + Z*x) dZ* 

and z* is the unit vector in the direction of x - G-‘(x). By the G-analogue of (4.25) we have 

Ix - G-'(x)l Q KAt, , (4.35) 

Since G-’ is continuous and differentiable, a simpler global version of the argument leading to 
(4.26) tells us that 

Ml G Will * 

Combining (4.34), (4.35) and (4.36) we have 

(4.36) 

I WI d KII!e”-llt * 

By (4.32), (4.33), (4.37) and (2.5), we have the estimate 

(4.37) 

ITlcll d Kh:‘+2+ EllC”II:. (4.38) 

The same argument gives 

I LI 6 m”-‘l1’ + &Its” II: * (4.39) 

We now combine (4.3) with the estimates (4.6), (4.7), (4.10), (4.11), (4.12), (4.30), (4.38) and 
(4.39) to see that 

& k#G l”) - (44’? l”-‘)I + (D(Eu”)V<“, vr) c 
c 

o K(IIcII~~(H~+~))~~~+~ + Kllcl~~l(p-1, ,~;~~+$ff+2(AfJ-1 

+ K(llpIl~m(~k+l~, IIUIIL”(Nk+l~~iv)))h~‘+2 

+K 2 II II 
2 

2 At+K J?f! 2 
L*(r"-'. P;L2) 

C 
(I II at2 ~*(t-*, tm,;L’) 

@a)" 

+ Kk”i* + KIIS”-11i2 + Kk’nt-1(1~ + Klllm-2112 + #‘s”l~ . (4.40) 
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If t” d tl, the remark after (4.7) applies. Multiply (4.40) by At, and sum on n, noting that the 
(AQ3, &-I and f;n_* terms repeat At,/At, times and that the (At:)’ term of the remark after 
(4.7) repeats Atk/At, times. The E term hides on the left-hand side of (4.40), and the l terms 
disappear by the discrete Gronwall lemma (with an obvious generalization 
c jj&,l~AtP term) at the cost of a multiplicative constant. Since p = 0, we obtain 

to cover the 

max [Ic”[~+ C llV~j~AtC~K(hf’+*+ hEk+*+ (AtJ*+ (At:>‘+ (At,P), 
” ” 

(4.41) 

from which (4.1) follows at once. 
It remains to check the induction hypothesis (4.17) if t” = t,,,. We have, by (3.7) (I,), (3.9) 

(2.5) and (4.41) that 

llu&-~ lIallLm+ IlKI - anIlL= 
s K+ Kh,‘llU, - Omll 
d K + Kh,‘llc, - C,ll 
=s K + ~~,‘(ll5”ll+ ll5”ll> 
~K+Kh,1[h~‘+h~+‘+At,+(At;)3’2+(Atp)2] 

h 
[ 1 

l/2 

“i$ 
(4.42) 

for h, sufficiently small, since At, = o(h,) and the other terms in parentheses are O(h,). This 
completes the proof. 0 

By combining Theorem 4.1 with (3.6) and (3.9) we obtain at once the following result. 

COROLLARY 4.2. Under the assumptions of Theorem 4.1, the errors in velocity and pressure 
are bounded by 

max(l]u,,, - UmIIH(div;a)+ lip,,, - P,,,)I) c K[h’p’+ hE+‘+ At,+ (At;)“‘*+ (At,,)‘] . 
m 

Extensions and remarks. Of the mesh restrictions in Theorem 4.1, the only significant one 
is At, = o(h,), and it is important only in the case k = 0. We would prefer to be able to choose 
At, = O(h,) in that case. If the pressure mesh is uniform, this minor difficulty can be 
circumvented with a postprocessing method of Douglas [7]. In that work, the computed 
velocity U is convolved with a Bramble-Schatz kernel [2,3] that takes advantage of supercon- 
vergent points to double the global order of accuracy in h,. It is clear that the proof of 
Theorem 4.1 would go through with this higher order, so that the requirement At, = o(h,) 
would become insignificant even when k = 0. 

As we noted after (4.6), the modified method of characteristics reduces the time-truncation 
error of standard procedures. We see also in (4.40) that the mixed method causes most error 
terms that would otherwise be pressure-dependent to depend on norms of the velocity, which 
is a smoother function. Numerical computations [13] have shown that this combination of 
methods can use long time steps; the approximations improve over those of standard schemes 



from the viewpoints of stability, rotation invariance, and avoidance of numerical dispersion. 
It is possible to obtain an optimal-order error estimate in H”(0) by using the test function 

(g” - r-l)/A& in (4*2). Th e proof is a straightforward modification of the proof of Theorem 4.1 
if the di~usi~n-dispersion cuet%cient D is i~~e~ende~t of velocity (ie, if it represents 
molecular di~usi~~ only) In the velocity-dependent case considered here, a lengthy argument 
based on summation by parts in time is necessary to handle the analogue of T3 in Theorem 
41. It is also possible to incorporate into the analysis an approximate solution of the algebraic 
equations, such as preconditioned conjugate-gradient iteration, at each time step. The tech- 
niques needed to analyze these extensions have appeared in [12,17]. 

It should also bc possible to extend the results to three space dimensions. To obtain (2.7) 
and (X7), we would have to assume c E -t”(H3), p f L”(H2), and u E ~m(~~(div))_ We woutd 
have to replace hi’ 6y kp3= in (4+42), 4~ = of&,) by d& = o@~“) in ?%emem 4,1, atsd ~~~~~~~~~/~ 

by ~~1~[~~~/~~~]*~2 in (4.17). Then @.21), as modified, would still hold. Assuming that (4.27) 
could be replaced by O[h:“*1log h,l I]f”I] ] 1 , we would replace 21 by 21- 1 in (4.28) and the 
entire proof would still go through, The tightened restriction At, = o(hz’“) would be serious 
when k = 0, making the postprocessing procedure mentioned above potentially useful in that 
case L 

Much of this work traces back to ideas of Jim Douglas, Jr,, who has inffucnced all of the 
authors greatly, The second author thanks the management of Marathon Oil Company for 
permission to publish this paper. The first author is supported in part by the U.S. Army 
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