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Reservoir simulators have traditionally used centered finite differences with upstream weighting to 

discretize the spatial terms in the partial dilferential equations describing fluid flow in porous media. 

These techniques are relatively simple to implement in huge simulation codes, and they produce highly 

stable results which are sufficiently accurate for black-oil problems. However, as more compositional 

processes are being studied, it appears that the upstream weighting may degrade the accuracy of the 
usual discretization schemes to the point that they cannot represent the sharp fronts and rapid velocity 

fluctuations associated with these more complex problems. We present in this paper a weighting 

technique based on mixed finite elements which reduces numerical dispersion by lowering the phase 
velocities and fluid dispersal at the frontal interface. The derivation of this weighting and its 
implementation into a standard, finite difference compositional model is described in detail, and a 

method for treating zero permeability grid cells with the mixed method weighting is discussed. We also 
show that the use of this new weighting technique for both immiscible and miscible processes produces 
sharper saturation and composition profiles and more rapid frontal advances than standard finite 

differences with upstream weighting. 

1. Introduction 

Black-oil reservoir simulators are used to model and predict the results of standard recovery 
techniques by assuming that the hydrocarbon system consists of only two components, oil and 
gas, whose compositions are fixed and whose properties depend only upon the pressure and 
the bubble point pressure. In contrast, compositional simulators account for multiphase flow 
and interphase mass transfer for each of several components comprising the hydrocarbon 
phases. In these models, the principles of mass conservation and phase equilibria are used to 
describe the time evolution of phase pressures and saturations, mole fractions of each 
component, and the liquid hydrocarbon fraction at each grid point in the reservoir. The 
multicomponent nature of these models is ideal for simulating a broad range of reservoir 
processes, such as: (1) miscible flooding by enriched gas or CO,; (2) cycling of gas-condensate 
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reservoirs with dry gas; (3) injection of gas into volatile oil reservoirs, and (4) natural depletion 
of volatile oil QS gas condensate reservoirs. 

Several different approaches to modeling compositional problems have appeared in the 
literature. These computational efforts are categorized by their treatment of phase equilibria 
and by the degree of coupling between the thermodynamics &onstraints and fluid ffow 
equations. The most frequently used afgorithm has been an TMPES (~~p~i~it pressure, explicit 
saturation) type scheme where the component material batances are summed to form a 
pressure equation which is solved by a quasi-Newton scheme. In this procedure, the overall 
mole fractions and phase saturations are then obtained in an explicit fashion from their 
respective continuity equations. These compositions and the pressure are next input into a 
separate phase equilibria routine which yields the mote fractions and densities of each phase, 
Finally, the algorithm returns to the pressure equation, and the entire procedure is repeated 
until ~on~erge~~e is achieved. This idea was first proposed in I%9 in a o~e_dirnen~jo~~I 
compositionat model by Robuck et al, f21] and has been applied to increasingly more complex 
problems in the works of MacDonald [17], Nolen f19] and Kazemi et al. [14]. These papers are 
distinct from later sequential formulations since they use K-values and canvergence pressures 
to perform the flash and phase equilibria calculations, The primary disadvantage of these 
thermodynamic techniques is that the equilibrium predictions may produce thermodynamic 
functions that are nut smooth or ~o~t~nuous~ and this often leads to convergence di~~u~ti~s. 

Nghiem et al. flzlj have published a mode! whose f~~rrnu~at~on is simifar to #he above except 
that a cubic equation of state describes the fluid phase properties. The equation of state is used 
in the phase equilibrium computations to determine the mole fractions of the individual 
components and is particularly useful for performing these computations near the critical 
point. The Nghiem formulation produces a pressure equation which can be linearized to give a 
symmetric, diagonally dominant Jacobian matrix. These desirable matrix features and the 
equation of state are the onty features which di~erent~ate this work from the earfier work of 
Kazemi et at. [I45 

Most commercial simuiators utilize IMPES methods, and these formulaCons appear to have 
two disadvantages, The high degree of explicit computations in IMPES method should 
produce a time-step limitation for difficult problems, although such a limitation has not been 
reported in the literature. Also the pressure equation, which contains a nonlinear function of 
both pressure and composition, cannot be exactly linearized since the compositions are 
computed explicitly. Thus, the equation must be sotvcd in a s~rni-implicit manner, and large 
numbers of iterations witf be required in probfems with s~~n~~eant corn~~si~~ona~ effects, 

Coats [Sj has addressed these difficulties by developing an equation of state model which 
couples the thermodynamic and fluid flow equations together in a fully-implicit algorithm. He 
has shown the applicability of this model by solving both immiscible and multiple contact 
miscible problems which #LIstrate the required capabilities OF a compositional simulator. 

ModeIs which are intermediate between the computational complexity of the fulfy-implicit 
simutators and the CompuFaFjona~ simplicity of the WIPES techniques are those presenFed by 
Fusseit and Fusseh ft3f and Young and Stephenson [27f. This method ~uples the ph@at 
phenomena together in a f~~~y-i~~p~~~~~ procedure with the important exception that the 
transmissibihties in the flow equations are treated explicitly. Young and Stephenson also 
discussed methods of approximating phase behavior with a limited number of components and 
presented a method of applying their compositional simulator to simpler black-oil problems. 
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Watts [26] has described another intermediate formulation based on the compositional 
description of the pressure and saturation equations associated with black-oil simulation. This 
formulation produces a pressure equation from species continuity equations and ther- 
modynamic identities which contains compositional effects neglected in the fMPES model [l]. 
The pressure equation and the saturation equation are solved via the sequential, black-oil 
algorithm [24] using implicit relative permeabilities. This non-Newton procedure is not 
iterative, and the coupling of the equilibrium constraints to the flow equations and the 
determination of the phase compositions was not presented. Watts and his colleagues have 
successfully merged their compositional and traditional black-oil formulations into a single 
reservoir simulator [IS]. 

Thele et al. [25] recently made an extensive comparison of several different compositional 
formulations. They compared the fully implicit formulation of Coats [S], the IMPES for- 
mulation of Nghiem et al. [18], and the formulation of Young and Stephenson [27] which is 
intermediate in computational complexity between the other two. Although Coats’ for- 
mulation seems most capable of solving difficult problems since it is fully implicit, Thele found, 
as expected, that this method has the largest computer memory requirements and computer 
times. The immense storage requirements and processing costs for the Coats formulation may 
be prohibitive for field scale models. Application of this scheme to general field problems also 
requires an efficient solver for the linearized problem from Newton’s method, and this solver 
must be capable of handling problems with large numbers of unknowns at each grid block. 

Thele et al. [25] also reported that the formulation of Nghiem et al. [lS] required the least 
memory, increasing only linearly in the number of components, N,, while the other algorithms 
required quadratic growth of memory with N,. They concluded the Young and Stephenson 
formulation [27] to be generally the fastest, and, at least at present, under the comparisons 
made, to be the most preferred method of the three. While the explicit treatment of the 
transmissibilities in the Young and Stephenson model may create some stability problems, 
their method produces a much more sparse Jacobian matrix than that of Coats’ procedure. 
This intermediate formulation has more coupling than the sequential algorithms and uses the 
coupling to form an exact pressure equation through algebraic elimination in the Jacobian 
matrix, and Young and Stephenson noted that their linearization enabled the Newton 
iterations to be considerably decreased from the iteration counts reported by Nghiem et al. 
See [25] for more detailed comparisons of the various formulations. 

Thele et al. 1253 further noted that each of the three formulations they considered exhibited 
numerical dispersion problems. In compositional simulation, numerical dispersion can diffuse 
sharp fluid interfaces yielding erroneous predictions of fluid compositions and corresponding 
errors in the velocities of the miscible frontal advance. Numerical dispersion can also effect the 
computed locations of the boundaries of the regions of single-phase and two-phase flow. Coats 
[S], in one space dimension, and the authors [9], in two space dimensions, have illustrated the 
effects of numerical dispersion by solving multiple contact miscible problems. These results 
showed that the location of the miscible front, the concentration profiles, and the hydrocarbon 
recovery were all affected to some degree by dispersion problems. 

Several methods have been proposed in the literature 14,161 as remedies for numerical 
dispersion in compositional simulation. These techniques attempt to obtain a cancellation of 
the temporal and spatial truncation errors via special time-step selections. The methods have 
been quite successful in one space dimension, but their effectiveness is not clear for multi- 



dimensional problems. The method of characteristics and modifications [IO, 19, 221 have been 
somewhat successful in controlling dispersion in reservoir models. 

Many aspects of the numerical dispersion and grid-orientation problems are caused by the 
combination of inaccurate fluid velocities and suboptimal use of upstream weighting of the 

transport terms in the model flow equations. In this work we shall concentrate on the 
development of techniques for obtaining more accurate fluid velocities and thus reducing 
numerical dispersion and grid orientation difficulties for compositionat simulation. In such a 
setting, several species are present, and different phases compete for flow through the 
reservoir. The total fluid velocitiy is not sufficient to describe the flow processes, and the phase 
velocities must be determined separately. Standard finite differences or finite element pro- 
cedures for determining the phase velocities determine an approximation, P, for the pressure 
as a set of cell averages, nodal values, or piecewise smooth functions. The resulting P is then 
differenced or differentiated and then multiplied by the possibly rough function ~~~j~~~, to 
obtain the ith phase velocity, where k is the totat permeability, and kri and pi are the relative 
permeability and viscosity, respectively, for the ith phase. These processes produce rough and 
often inaccurate approximations for the various phase velocities which, in turn, reduce the 
accuracy of the other variables of interest. In this paper, we discuss the use of mixed finite 
element methods to approximate the important phase velocities in a more accurate fashion. 
These methods have been used successfully in a first contact miscible displacement setting 
[6, 10, fl, 23] and for immiscible displacement [2,3f. Motivated by these preliminary successes, 
we have begun to extend the techniques to a compositional setting f9]. The mixed method 
phase velocities are considerably more accurate than those produced by conventional finite 
difference methods and exhibit a marked effect upon the computed saturation and com- 
position profiles. 

Our use of mixed methods for approximating phase velocities is based upon the techniques 
developed in 1’7, S] for approximating the total velocity directly, as a primary variable. 
Physically, the total fluid velocity is a retatively smooth function of space, changing rapidly in 
the neighborhoods of wells. This is because local changes in the total fluid pressure compen- 
sate for rapid variation in the permeability, resulting in a smooth total fluid velocity. The use 
of the fluid velocity as a primary variable added both accuracy and robustness to the 
computations described in [6, 10, 12, 2 ]. 

In the methods presented here, a otaI t&rid velocity is first determined and then finite 5 
element techniques are used to apportion the velocity to the separate phases without the use 
of upstream weighting, As the displacement process progresses, and the number of phases 
present in the reservoir changes in time, the relative permeabihties may vary rapidly with 
phase saturations. This rapid change in the relative permeabilities enhances the difficulties 
caused by upstream weighting techniques. Careful treatment of the distribution of the total 
fluid velocity to the separate phase velocities is thus required and is treated in some detail in 
this paper. 

In the next section we shall present the mathematical formulation which is used for our test 
simulations. We shall then discuss various corn~~ta~iona~ problems which motivate our use of 
mixed finite elements. After a description of the mixed method is given, techniques for 
incorporating the finite element formulation into a finite difference simulator will be described. 
Finally, sample calculations in both immiscible and multicontact miscible displacement settings 
will be presented. 
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2. Mathematical formulation 

Mathematical models for fluid flow are obtained from various laws, relations and con- 
stitutive equations. The equations which govern multicomponent, multiphase flow in porous 
media arise from the following sources: 

(1) species continuity equations governing the conservation of mass of each component; 
(2) Darcy’s law for the flow of each phase; 
(3) thermodynamic equations describing phase equilibria; 
(4) an equation of state; 
(5) constraint equations which require that the phase saturations sum to unity and the mole 

fraction in each phase sum to unity. 
We shall assume that three phases are present: a liquid phase, a gas phase and an aqueous 

phase. Let NC be the number of hydrocarbon components present. For the present discussion, 
we shall assume that no hydrocarbon components are present in the aqueous phase. We also 
assume that the mass transfer between hydrocarbon phases is essentially instantaneous 
compared with the fluid flow. Finally, for simplicity of exposition we shall assume that the 
porous medium is homogeneous and isotropic and shall neglect dispersion, capillary and 
gravity forces. 

Under the above assumptions, the mass balances in the model are derived from the species 
continuity equations for each hydrocarbon component and water: 

-V.@,XiV,+p,yiV,)+qi, i=l,2,...,N,; (2.1) 

(2.2) 

In several compositional formulations, it has been convenient to sum the N, equations 
represented in (2.1) to form an overall hydrocarbon balance which is often used to solve for 
pressure: 

where 

(2.3) 

Any of the other NC- 1 equations from (2.1) can be used with (2.3) to replace the original 
(2.1). 

The phase velocities in (2.1) and (2.3) are related to the reservoir pressure by Darcy’s law. 
Neglecting capillary pressure and gravity forces, the oil velocity is expressed as 

V, = -(kk,,lpcJW’. 

Similar expressions hold for the other 
meabilities and viscosities. 

We also assume that thermodynamic 

phase velocities using their respective relative per- 

equilibrium exists between the hydrocarbon phases, 



and this equilibrium is expressed in a set of PI, constraints requiring that the oil and gas 
fugacities are equal for each component 

fi*=fig, t=l,2,...,N~. (2.6) 

We have empfoyed the ~eng-Robinson [20] equation of state 

z’--(I-B)z*-(A-3B2--2B)z-(AB-B2-B3)=0 

to derive the fallowing equation: 

(2.7) 

from which the fugacity may be computed. The mathematical description is then completed 
by the following molar and saturation constraints: 

s,+s,+s,=1. (2.10) 

Also, zi can be related to xi and Yi by an overall molar balance 

zj=JLq+ vyj7 i= l,Z,...,LX, (2.11) 

which indicates that only two of three molar constraints are linearly independent. 

3. Finite difference discretization 

The flow equations in the mathematjca~ model are differenced in the usual industry 
fashion-backward differences in time and central differences in space. The species balance 
equations become 

+ij ( 
m+l_ 

CVZk i,j ) @zk yi_. 
At - 
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for i= 1,. . .,N, andj= l,.. ., N,,, The overall hydrocarbon balance equation becomes 

k=l 

for i = 1, . _ . , I’& and j = I,. . _ f IVY The water balance equation becomes 

=- 

Ax 

(3.2) 

(3.3) 

for i = 1,. _. i N, and i = I,. =. I NY. The production and injection terms, Qjj are either 
constant (rate specified wells) or functions of pressure (wells 
pressure). 

In standard finite difference formulations the transmissibilities 

T = pkkrlp 

are upstream weighted 
simulators, 

with specified bottom hole 

(34 

for stability purposes, For example, using Dar&y’s law, in standard 

and 

This upstream weighting, although useful for stability, is known to cause numerical dispersion 
and grid-orientation problems. The aim of this paper is to discuss new techniques which 
produce stable solutions without resorting so heavily upon upstream weighting. 

Normally (34, (3.6) and corresponding equations for the other phase velocities are 
substituted into (3.1~(3.3) tu eliminate the phase velocities and express the flow equations in 
terms of the pressure. In the mixed method formulation, the phase velocities are approximated 
directly at these interblock boundaries and these approximations are used in (3.1~(3.3) 
without introducing the pressure approximations into (3.1~(3.3). We shall describe the mixed 
finite element techniques in the next section. 



168 RX. Ewing, R.F. ~e~ne~ann, Mixed FE approximation of phase velocities 

4. Mixed finite elements 

Our use of mixed finite element techniques in a compositional simulation setting is 
motivated by their success on model problems for less complex physical processes. Mixed 
finite element methods have been used to study both miscible displacement and immiscible 
displacement processes. These techniques have been successful in eliminating numericaf 
dispersion and grid-orientation difficulties for first contact miscible displacements in 
[6, 10, 12, 231 and for problems describing immiscible flow of two fluids by Chavent and 
coworkers in [2,3]. In these settings, mixed methods have been used to approximate the Darcy 
velocity of the total fluid. We will first review the application of these techniques in the 
miscible displacement setting and then discuss differences and difficulties encountered in 
extending these ideas to more complex compositional processes. 

4.1. Miscible displacement problems 

We first review a model problem describing the displacement of one incompressible fluid by 
another, totally miscible with the first, in a horizontal porous reservoir 0 C IIt* over a time 
period J = [a tl]. If c is the concentration of the invading fluid, and p and u are the pressure 
and Darcy velocity of the total fluid, then a model system of coupled quasilinear partial 
differential equations relating c, p, and u is given by [lo] 

-v. +p -v.u=q, 
[ 1 

xEf2, fEJ, 

~~--v#m-uc]=qE, XER, fEJ. 

(4.1) 

(4.2) 

The main difference between (4.2) and the continuity equations from Section 2, e.g. (2.2) is 
the inclusion of the diffusion-dispersion tensor D in (4.2). The form of D can be found in the 
literature [23]. Also the viscosity p in (4.1) is determined by some mixing rule, such as 

p(c) = p (o)((P4 - 1)M - 1)-4, W) 

where M is the mobility ratio between the injected and resident fluids. In addition to 
(4.1 j(4.2) initial conditions and no-flow boundary conditions are specified. 

In the mixed finite element method, (4.1) is solved for both the pressure and the total fluid 
velocity simultaneously via the following system of first-order partial differential equations: 

U=-~vp, x E 0, t E J (Darcy’s law), (44 

V*Z#=g, x E 0, t E J (conservation of mass). (4.5) 

In more standard finite difference simulations, the k/p, term in (4.4) is upstream weighted for 
each grid block to obtain the velocities at interblock locations as in (3.5)-(3.6). This upwinding 
is used for two reasons. First, k/F is standardly known only at cell block centers, and second, 
this weighting gives added stability to the resulting linear system. 



The finite element methods presented in [7,8] give a better weighting of the k/p term due 
to the ability of its integral formulation to maximize the use of the spatial information on 
permeability and viscosity. Two distinct formulations can be obtained for the system (4.4)- 
(4.5). If pl and w are functions, which have similar form and play the same role at the variables 
II and p> respectively, we can obtain either the system 

V.uwdx= qw dx, 

or a similar system obtained by replacing (4.6) by 

pV.v dx. 

(4.6) 

(0 

(44 

We note that through the integral f~rmu~atiun of the finite element method, the divergence 
theorem is applied (~ssentja~ly integration by parts) to move the derivatives on the pressure p 
from (4.4) onto the smoother test function v in (4.6) and (4.8). This is important. Physically, 
the fluid velocity is a smoothly varying function. If the permeability or the fluid viscosity 
changes rapidly in a region, the pressure changes rapidly in a compensatory fashion to produce 
the smooth ve1ocit.y. Thus, if (k/p) greatly varies over 0, so must p, and hence Vp; then 
determining IL from (4.4) by obtaining an approximation of p, and its derivative which is 
multiplied by f--k/p) produces inaccurate results. This is the motivation for removing 
derivatives from p. Similarly, if (k/p) changes rapidly in space (4.8) wilt be a more accurate 
formulation than (4.6) which involves derivatives of (k/~). 

The approximations for u and p are linear combinations of basis functions, defined locally 
on one or two cell blocks. We first define a particular choice of basis functions. The pressure 
approximation is a piecewise constant function with, possibly, a different constant value for 
each grid block. This corresponds exactly to the finite difference interpretation. The cor- 
responding approximation for the Darcy velocity is a two-compunent vector. The x-com- 
ponent is a continuous piecewise linear function in x with values specified at the grid 
boundaries and a constant function of y on each cell; the y-component is piecewise linear in y 
and constant in X, Therefore, the velocity is specified exactly at the locations needed by the 
finite difference formulation exemplified in (3.2). This will allow the mixing of finite element 
and finite difference techniques in later discussions. This particular set of basis functions can 
be interpreted as finite difference approximations, for which asymptotic error estimates and 
convergence results have been proven [3,8, if]. In the computations discussed in [& l&12], a 
higher-order set of basis functions were used to obtain more accurate approximations at 
greater computational expense. 

If there are N, grid blocks in the x-direction and NY in the y-direction, we note that a basis 
for the space of pressure approximations has NXNY elements while, utilizing zero normal 
velocities for no-flow boundary conditions, we have (N, - l)N,, and N,(N, - 1) elements in the 
bases for the X- and y-components, respectively, of the velocity. We replace the test function 
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w in (4.7) by each different basis function from the pressure space to obtain NJV,, equations in 
the N,N, unknown pressures. Similarly, using the basis elements for the velocity as test 
functions we obtain (N, - l)N, + A$(& + 1) equations for the unknown velocity components 
from (4.8). The special choice of basis functions yields a block system of equations of the form 

where P, U, and U, are the unknown vectors for pressure and the X- and y-components of 
velocity. Mi and Mz are tridiagonal matrices of order (N, - l)N, X (N, - l)N, and N,(N, - 1) 
x A$(& - l), respectively; NI and A$ are nonsquare matrices of order N& X (NX - l)N, 
and NJ’+,, x ~~(~~ - l), and N: and N: are the corresponding transpose matrices. 

If (4.6) is used to obtain the velocity equations, M, and A& have constant coefficients while 
those of N, and N2 depend upon k/p, locally. If (4.8) is used, M, and M2 have coefficients 
depending upon CL/k, while N1 and Nz have constant coefficients. The system (4.9) has been 
shown to be solvable using either (4.6) or (4.8) and asymptotic error estimates have been 
obtained [6,7,11]. Fig. 1, from [lo] illustrates typical results of computations using mixed 
methods on a fairly difficult miscible displacement problem. There is essentially no grid 
orientation and little apparent numerical dispersion in evidence in Fig. 1. In these results and 
in all other mixed method investigations it should be noted that k/p is nonzero over the entire 
domain R. 

4.2. Displacement involving compositional efects 

In compositiona simulation, we must determine phase velocities for each flowing phase. 
The phase pressures are determined separately in standard finite difference techniques, and 
the phase velocities are obtained from the corresponding pressures via approximations of 
Darcy’s law. Usually, upstream weighting of the transmissibility terms is used to obtain the 

lb) 

Fig. 1. Concentration profiles-l PV injected. M = 10, +d, = 0, &dl = 10, $~d, = 1. (a) Diagonal orientation, 20 X 20 
concentration, 15 x 15 pressure. (b) Parallel orientation, 28 X 28 concentration, 20 X 20 pressure. 
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velocity approximations at the cell boundaries. The high relative permeabilities for the phase 
behind a fluid interface coupled with upstream weighting causes excessively rapid advance and 
smearing of the interface. Through the finite element implementation, the values of the 
transmissibilities are weighted in a manner which more accurately describes the fluid flow, 
resulting in lower phase velocities at the interface and a better frontal resolution. 

We first assume that a fluid pressure approximation has been obtained via a mixed method 
formulation, finite differences, or some similar method. Then, defining the total fluid mobility 

as 

hT _ kkm I kkr, I kkw 
PO CLg PCL, ’ 

(4.10) 

we can describe the total fluid velocity 

UT = -&VP, (4.11) 

where the spatial variation of the total mobility, h -,., is more gradual than the variation of the 

individual phase mobilities. The approximation for the total velocity can be obtained from P 

via (4.11) in a variety of ways: upstream weighting, mixed finite element techniques, etc. 
Once an approximation to UT is obtained, the phase velocities can be computed via finite 

element distributed weighting of the coefficients in an inexpensive manner. The phase 
velocities are determined by combining (2.5) and (4.1 l), multiplying the resulting equation by a 
test function v, and integrating over the reservoir to obtain [9] 

Ui ‘2, dx = u-r-2, dx, i = 0, g, w . (4.12) 

We can immediately see a computational difficulty arising from (4.12). In (4.8) we make the 
assumption that the permeability of the medium k was nonzero. However, in a multiphase 

flow situation, in regions where the phase saturations are zero or in the residual saturation 
range, the corresponding relative permeability is also zero. These naturally appearing zeros in 
the denominator of (4.12) must be treated specially. Zeros of the corresponding analogs for 
(4.6) while not appearing in the denominator cause severe oscillations on coarse grids if 

standard finite element techniques are applied. 
Using upstream weighted finite differences, flow between adjacent grid blocks with relative 

permeabilities of one and zero is treated exactly the same as if the relative permeabilities were 
both one, hence forcing too much fluid to flow and diffusing sharp fluid interfaces. In this 
situation, the standard formulation of (4.12) cannot be used without modification. Since we are 
considering a repeated five-spot flow problem, we assume there are no velocity reversals with 
respect to the wells. Thus, moving along a row of grid blocks, if the relative permeability of 
the gas phase is zero in one cell, it is zero in all of the remaining cells in that row. When a zero 
relative gas permeability is encountered, communication between those cells in the matrix is 
removed, and all the remaining velocities are set to zero. In effect, this reduces the phase 
velocity to a fraction of the calculated total velocity, thereby lowering the flow at the front in a 
manner consistent with the finite element weighting of the permeabilities. 



172 R.E. Ewing, R.F. ~eine~ann, Mixed FE a~proxi~a~on of phase velocities 

In summary, the calculation procedure for the compositional applications is as follows: 
(1) a pressure approximation is obtained via standard finite difference techniques; 
(2) this pressure is used in (4.11) to obtain an approximation to the total fluid velocity, u7.; 
(3) uT is apportioned into separate phase velocities via (4.12); 
(4) the approximate phase velocities are used in (3.1)-(3.3) to determine residuals for the 

flow equations; 
(5) these residuals are used to obtain the next pressure approximation via a finite difference 

formulation and the process is repeated. 
The particular choice of basis functions in the finite element calculations allows easy use of 

these approximations in a finite difference simulator. 

5. Examples 

In this section, we review two example problems [9], which have been previously presented 
to compare the use of finite differences with upstream weighting versus the mixed method 
weighting. Gas was injected in both problems into a three-component hydrocarbon system 
which consisted of 44% methane, 12% butane and 44% decane. Gas was initially not present 
in the reservoir since the pressure was greater than the bubble point pressure; the water 
saturation was set to its irreducible value of 22%. Both problems were configured as a one 
quarter, five spot with a porosity of 1.5%, permeability of 100 md, constant production rate of 
22,500 lb moles/day and constant injection rate of 25,000 lb moles/day. 

The composition of the injection gas in the first problem was 100% methane which rapidly 
raised the bubble-point pressure and created an expanding region of two phase, immiscible 
flow. The results in Fig. 2 illustrate how the gas travels across the reservoir and fingers into the 
production well at 125 days. While both weighting techniques produce similar S,= 0.2 
contours, we see that the upstream weighting contours are quite smeared since this weighting 
of the relatively high gas permeabiiities rapidly disperses this phase into the reservoir. Since 
the finite element weighting more accurately describes the fluid velocities, the gas dispersal is 
retarded, producing contours that are much closer together and indicating a much sharper 
frontal advance. Methane builds up behind the front and actually concentrates along the 

FEET 

0 .2 .4 A .8 ‘1.0 
FRACTIONAL DISTANCE 

BETWEEN WELLS 

Fig. 2. Gas saturation contours for immiscible dis- 
placement at 125 days (5 x 5 grid). 

Fig. 3. Methane mole fraction along the diagonal be- 
tween wells at 125 days. 
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Fig. 4. Gas saturation contours for miscible displacement at 265 days. 

diagonal flow path between the wells which leads to the pronounced fingering in Fig. 2. Fig. 3 
compares the methane profiles and illustrates the severity of the differences of the two 
weighting approximations. This figure also shows that the methane fraction at the producer is 
lower for the finite element computations which accounts for the higher methane concen- 
trations away from the well. 

The second example is identical to the first except the composition of the injection gas is 
changed to 70% methane and 30% butane. This mixture composition enables the injection gas 
to become miscible with the in-place fluid via a multiple contact mechanism. Fig. 4 compares 
the results produced by the different weighting schemes at 265 days. We see that the mixed 
method weighting yields contours which are again closer together and also retards the 
dispersal of the injection gas so that the miscible front (S, = 0.78) moves further into the 
reservoir. This figure also illustrates a spatial oscillation in the S, = 0.2 contour, a difficulty 
which was regularly observed in this problem. This oscillation is due to the coarse grid 
employed and the resultant grid-orientation problems arising from such a grid. Similar spatial 
oscillations have been observed for the miscible displacement prototype using standard, 
higher-order approximations for the pressure and velocity with extremely adverse mobility 
ratios and an anisotropic dispersion tensor on much finer grids than the one used here [22]. 
These difficulties lead to inaccurate velocity approximations that cause the nonphysical 
curvature of the saturation contours. 

The results from the mixed method weighting on these immiscible and miscible displace- 
ment problems show its potential in compositional simulation. It should be emphasized that 
the above results were generated from a 5 X 5 grid. Because of the huge storage requirements 
of compositional models, grids of this crudeness may remain in reservoir engineering practice 
for some time. Attempts to reduce grid orientation and numerical dispersion must face this 
problem at least until full-field capabilities for local grid refinement become operational. 
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