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EFFICIENT TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT
PROBLEMS IN POROUS MEDIA*

RICHARD E. EWINGt AND THOMAS F. RUSSELL}

Abstract. Efficient procedures for time-stepping Galerkin methods for approximating the solution of
a coupled system for ¢ = c(x, t) and p = p(x, t), with nonlinear Neumann boundary conditions, of the form

=V la(x, c){Vp—7y(x,c)Vg =V - u=fi(x,t), x€Q, te(0,T],
Ve [bs 6 VpIVel-u Vo= g0~ v b0, xe, 1e(0,T],
u-v=qx,t), xeoQ), te(0,T],

9
ba_c= qlx, t,c),  xeoQ, te(0,T],
v

c(x,0)=co(x), xeQ,

where Q< R? 2=d =3, are presented and analyzed. This system is a possible model system for describing
the miscible displacement of one incompressible fluid by another in a porous medium when flow conditions
are prescribed on the boundary. The procedures involve the use of a preconditioned iterative method for
approximately solving the algebraic problem at each time step. The iteration need be performed only long
enough to stabilize the scheme. Motivated by the fact that the pressure is smoother in time than the
concentration, larger time steps are used for the pressure than for the concentration. Under certain
smoothness assumptions on the solution, optimal order convergence rates and almost optimal order work
estimates are obtained.

1. Introduction. We consider a numerically efficient modification of a backward
difference-Galerkin procedure to solve a coupled system of partial differential
equations which has been employed as a model for the miscible displacement of one
incompressible fluid by another in a porous medium [14]. An elliptic equation simulates
the pressure in the fluid mixture, and a quasilinear parabolic equation models the
relative concentration of one of the fluids. One application of this model is to oil
reservoirs, where an external fluid may be injected in order to push oil out of the
reservoir and into production.

This work extends the results of Ewing and Wheeler [14] in several respects. We
generalize the differential problem of [14], in which homogeneous boundary conditions
were assumed, by including a nonlinear boundary condition in the concentration
equation. This will be seen below to be natural for this problem. We modify the
time-stepping procedure by using a larger time step for the pressure than for the
concentration, motivated by the physical fact that the pressure is smoother in time
than the concentration, and we show that work is saved by doing this. Finally, we
replace the direct matrix solution of [14], which requires the factorization of two
matrices at each time step and is expensive in a problem with more than one space
dimension, by a preconditioned iterative procedure. The iterative method approxi-
mately solves the algebraic problem at each time step, and it need be performed only
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long enough to stabilize the scheme. We analyze a preconditioned conjugate gradient
procedure employing a fixed preconditioning matrix for each equation, although our
analysis will apply equally well to more general iterative methods. Only two matrix
factorizations are necessary in the entire procedure.

The analysis will require several techniques not employed in [14]. We demonstrate
that the accuracy of the underlying backward difference-Galerkin method of [14] is
maintained, while the differential problem is generalized and the work requirements
are greatly reduced. Of particular note is the result that, in many cases, a fixed number
of preconditioned iterations per time step, independent of all mesh parameters, is
sufficient to stabilize the procedure. In other cases, the number of iterations need
grow no faster than the logarithm of the time step. We therefore have optimal or
nearly optimal order work estimates for our method, a sizable improvement over
previous results. This work is an extension of some of the results of Ewing [11], [12];
reference will be made to [11], [12] for some details of the proofs.

The employment of preconditioned conjugate gradient iteration in quasilinear
parabolic problems is not new; treatments appear in [6], [10]. However, the application
of this procedure to an elliptic equation coupled with a time-dependent equation
appears to be unprecedented. We emphasize that, unlike standard iterative procedures
for elliptic equations, our method will require only a fixed number of iterations per
time step in most cases. Parabolic problems with nonlinear boundary conditions have
also been treated before [3], [19], but there is little analysis for such problems as part
of a coupled system.

The model for miscible displacement is given by

(a) =V -[a(Vp—yVd)]=V - u=fil(x, 1), xeQ, te(0,T],
(b) u-n=gx1t), xed, te(0,T],

(1.1) (o) ¢%—V~(ch-—uc)=é‘(x, t,o)filx,t), xeQ, te(0,T],

d
d) bgf—(u-n)c=g2(x,r), xedQ, te(0,T),

(e) c(x, 0) = co(x), xeQ.

The solution functions are the pressure p(x, t) and the concentration c(x, t). The
pressure is determined only up to an additive constant, so we normalize it to have
mean value zero on ). We assume that Q is a bounded domain in R?, d =2, with
boundary d(), and we let J = (0, T']. We consider the case d =3 at the end of § 4 and
show that the results are essentially unchanged. We take the coefficients to be of the
form a=a(x,c), y=v(x,c), d=d(x), ¢ =¢(x), and b=b(x,c,Vp), b=b(x,c) or
b=b(x). The convergence results in [14] depended on the nature of b, and we
demonstrate that the same holds here; we also show how the work estimates depend
on b. The physical significance of these functions is discussed in [14], [20], [23]. The
function u = u(x, ¢, Vp) is known as the Darcy velocity of the flow, and the boundary
conditions (1.1b) and (1.1d) describe the flow rates across the boundary.
Experimental results have shown that it is preferable to approximate a nondiver-
gence form of the equation (1.1c). Differentiation of the Darcy velocity term in (1.1c)
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and use of (1.1b) leads to the alternative form

(a), (b) asin (1.1),

0
© ¢a—:—V-(ch)+u-Vc=(6—c)f15f(x,t,c), xeQ, tel,
(1.2)
(d) bag:-:—=gIC+g2-=—g(x’tac)’ xean, te]a

(e) asin (1.1).

We note that the natural Neumann boundary condition is necessarily nonlinear unless
g1 is assumed to be homogeneous, as was done in [14]. Thus we are naturally led to
the nonlinear boundary condition by practical considerations.

It will be clear that, if f; and f satisfy the smoothness assumptions to be placed
on g; and g respectively in § 2, then the analysis of the f; and f terms will follow
from that of the g; and g terms. We therefore assume that f; =f=0 in what follows
for simplicity of exposition. In the oil reservoir problem, it must be pointed out that
f1 is normally taken to be a singular distribution of point sources and sinks, modeling
the effect of small injection and production wells. The analysis will fail if f; is a singular
distribution, so we are analyzing a model with smoothly distributed sources and sinks.

Possible extensions of this work include the use of interior penalties in approximat-
ing the concentration, combining with the method of characteristics to treat the
physically dominant first-order term of the concentration equation, and the use of a
mixed method to approximate the pressure. Wheeler and Darlow [25] have shown
that the results of [14] are compatible with penalties on the jumps of normal derivatives
of continuous piecewise polynomials across inter-element boundaries. Experiments
indicate that penalties improve the accuracy of standard Galerkin approximations.
The use of a mixed method, simultaneously approximating both the pressure and the
Darcy velocity, is suggested by the fact that the concentration equation (1.2¢) depends
on the pressure only through the Darcy velocity u. Details of the analysis of using
mixed methods together with interior penalties on both the function values and normal
derivatives will appear in [7]. In [22] Russell has proved that for a spatially periodic
version of the miscible displacement problem, the methods of this paper may be
combined with the method of characteristics, preserving the asymptotic order of the
errors while expecting to reduce their actual size.

A brief outline of this paper is as follows. In § 2, we define our finite element
spaces, list our constraints on the domain, coefficients, and solutions, introduce elliptic
projections of the solutions which will aid the convergence analysis, and define our
modified backward difference-Galerkin method. In § 3, we consider the algebraic
problem, describing the matrices, the preconditioned conjugate gradient iterative
procedures, and the stability conditions on which the convergence results depend. In
§ 4, we obtain global L> and H' error estimates for the procedures described in § 2
and § 3, and for any other iterative procedure achieving the stability conditions of
§ 3. Section 5 contains a discussion of the computational work estimates obtained
from the results in § 4.

2. Preliminaries and description of Galerkin methods. Let W’,ﬁ = W’,j Q)=
{¥|(6°¥/ax*) e LP(Q) for |a| =k} be the Sobolev space on () with the usual norm. If
p =2, we write H* = H*(Q) = W5 (Q) with norm |||l = ||¢/]lz* = ||l wke). We write ||y
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for ||¢]lo. On the boundary 8Q), we let H*(5€) denote the Sobolev space with norm

l|s. We define the inner products (¢, ¢) = |, ¢t dx and (¢, )= |,, o¥ do.
We also wish to consider spaces of the form

Whi((a,); X)={w: (@ b)> X

‘g—}”mnx <L’((a, b))},

p 1/p
|
LP(a,b)

where X is a Banach space. In the applications, X will be a Sobolev space W (Q),
and we will write || |lw(,s;w% = [l wias:wkay- If (a, b) = (0, T), we suppress the time
interval and write ”t[/llwz,(w’;) = ”(//"W:,((),T;W";(Q)).

We approximate the concentration ¢ and the pressure p, respectively, by families
My and N, of finite-dimensional subspaces of H 1(Q)). We assume that there exist
integers r =2 and s =2 and a constant K, independent of /4 such that these subspaces
satisfy the following approximation properties and inverse hypotheses:

with norm

1

¥ llwianix) = [ >

a=

ol

(A) inf (lg— x|+ Al —xli+ (¢ = xlle=+ hllw — xllw)

xeMp

=Koh ¢l allycH*(Q), 2=k=r,
ggdw—¢W+MM—¢m+hWﬂw~¢m@+Mw—¢%¢»

=Koh*|ll, allye H(Q), 2=kss,
where hd/2=h2/2=h;
oy hellwe = Koh™?xll; = Koh 'l allxedts, j=0,1,
lxlh = Kohlxll, all x € Ay,
IVell~=Koh™ Vo] = Kok '[Vel, all e €N
We note that it is entirely permissible to associate distinct spatial mesh parameters
h. and h, with the concentration and pressure, respectively. Since this would not

significantly affect the analysis, we use a single 4 for economy of notation.
We recall that () is said to be H "-regular if

—-Av+v={ xe,

—=, x €0Q)
on n

implies that |jv|lx = K (Q)[|¢]lk—2+ [nk-3/2]. We assume that Q) satisfies the smoothness
constraints

(S) Q is H’-regular (in certain cases we will suppose that Q is H -regular);
3Q) is Lipschitz.

Our assumptions about the coefficients require some comments. In the physical
problem under consideration, the concentration c lies between 0 and 1, inclusive. For
¢ within this range, the coefficients depend smoothly on ¢. We will therefore extend
the coefficients to values of ¢ outside [0, 1] by truncating ¢ to [0, 1] before evaluating
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them. Accordingly, we may restrict « to lie in [0, 1] in the assumptions below. The
physical coefficients also depend smoothly on Vp provided that Vp remains bounded.
Assuming sufficient regularity of the solutions, our arguments will show that the
approximate pressure gradient remains bounded. Thus we can require (7, 7) to be
bounded in the assumptions below. The assumptions are then consistent with the
nature of the physical problem. We will suppose that

(© There exist uniform constants such that, for 0=« =1, (s, 7>) bounded
inR* xeQ,te,andi=1,2,
0<ay=a(x,k)=a*=K,
0<¢:=0d(x)=¢*=Kj,
0<by=b(x, Kk, m,m)=b*=K,,
[y (x, ©)| =K,
IVd(x)| =K1,
|ui(x, &, 71, )| = Ki(1+]| (1, 772))),
lg1(x, )| =K,
lg(x, t, k)| =K7,

and, for arguments evaluated at «, 1, 7, where appropriate,

o’a
dx; oc

64g
6x,2~ ac®

da a_a

oc

o’a
ac?

9y
ac

a4g .
ax? ac atl’

> b b b b

ax,'

and all partial derivatives of b, u;, and g of order up to 3 are uniformly bounded by K.
We organize our regularity hypotheses on the solution (p, ¢) of the differential
problem according to the results in which they are used. We assume

Ry) ceL®HYNH'H HNWLH)NWo(WL)NH*HYNWE (L),
pe LX(H)YNWLH)NNWL(WH)NWEL(Wh);

(Re) ce(R)NLEH>*")NH'(H'),
pe(R)NH'(H®);

R3) ce(Re)NH (WL)N W (H™™),
p e (Re).

Let K, be a bound for the norms of the functions in all of the spaces in (R;), (Re),
and (R3)

Our analysis will use the technique of Wheeler [24] in examining two auxiliary
elliptic problems. For each te€J, we define pe N}, to be the elliptic projection of p
given by

(a(c(®)VP, Vo) =(a(c(t))Vp, Vo) =(alc)y(c)Vd, Vo) —(gi(t), @), allp Ny,
(p—p,1)=0.
As in [8], [24], the restrictions (A), (S), (C), and (R;) imply the following result. Let
6=p-p.

(2.1)
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LEMMA 2.1. There exists K3 = K3(Q, ay, Ko, K1, K3) such that, for 1 =k =5 and
teld,

o1+ Alill: éKsh"Ilka,

J

@ [l 2, = on (ot

o
—| =K.
1
For the concentration, we define a nonlinear projection ¢ for each ¢ € J satisfying,
for X eMp,
(b(c, VPIV(E —c¢), Vx) +(ulc, Vp) - V(E —c), x)+ A (E—c, x)
—(8(t,&)—g(t,¢), x)=0,

where A is a positive constant to be fixed sufficiently large that existence and uniqueness
of ¢ are assured. Define

(2.3)

1
(2.4) Glx, t)= L z—cg-(x, b ac(x, )+ (1—a)é(x, 1)) da,

and

(2.5)  Ble,x)=(b(c, Vp)Ve, Vx) +(ulc, Vp) - Vo, x) + A (@, x) —(Ge, X)-

Then for ¢ = ¢ — ¢, we also restrict A to be sufficiently large that there exists a constant
K, > 0 satisfying

B(¢ &) =K, Jl¢lT

(see [3] for such a choice of A). Then, using the techniques of [8], [19], [24] with the
assumptions (A), (S), (C), and (R;), we have the following result which will allow us
to estimate the error of our approximate concentration solution by estimating the
difference between that solution and the elliptic projection ¢.

LEMMA 22. If €=c—¢ with ¢ defined in (2.3), there exists K,=
K, (Q, by, A, Ko, K1, K>, K) such that, for L=k=randp =2 orp =00,

I€lrws + Allélrer = Kah llelleom,

ac|
(2.6) || || <K.h ( ellerare + 124 )
6[ LP(L2) at LP(H) 4 " "L (H) at LP(H")
9
| <
T FET L

We can now argue as in [3], [6], [24] to obtain bounds for the projections j and
¢. Using (A), (S), (C), and Lemmas 2.1 and 2.2, we have the following result.
LEMMA 2.3. There exists Ks = Ks(Ko, K>, K3, K;) such that if (R,) holds, then

Y
+[= +[=
at at at

||6l:|

llEllLocw,y +

. +llews,)

L*HY) L*H"Y)
a ﬁl

L®(L™)

2.7

L°°(ww) L2HY
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If (R¢) holds, then also

(2.8)

=K.
L®(W)

-
at

The nonlinear boundary condition and some integrations by parts will require us
to estimate certain boundary integrals. To do this most efficiently we will need some
negative-norm estimates in Sobolev spaces on 9{). We will also use negative-norm

estimates on () to achieve minimal smoothness requirements for the solution of the
differential problem. For k =0, s =0, define these negative norms by

l¥ll-« = sup {(, )lllelc =1}, |¥|-s =sup {(, ©)llels =1}

We collect these estimates in the following result.
LEMMA 2.4. Assume that the regularity (Ri) holds. Then there exists K¢=
Ko(Q, ay, by, Ko, K1, K2, K3, K4) such that the following statements hold:
ForeachteJand 1=k =s,

(2.9) 16]-1/2= Kesh“||pllk,

a6
|— éKf,h"(npllw
atl_-1/2

op

(2.10) o

J

If Q is H?-regular then, foreachte Jand 1=k =r,r=3,

2.11) €l-3/2= Keh e,
(2.12) I€ll-1 = Kk *Yic|li

5 Kﬁh"“(llcllw gf ) rz3,
(2.13) "—5] < e

atli—q

Kb (el +lcl

dc
ot

|), r=2.
k

Proof. We first consider 6. Let ¢ € H'/*(3Q), and let f satisfy

=V (a(c)Vf)+f=0, xe(),

(2.14) of

alc)—=4y, x €.
on

Under our smoothness assumptions, we then have ||f|. = K|¢|1/» as in [18]. Then

a%f—) ~ (V6, a(c)VH)+(6,Y - (a(c)V))
=(Vo,a(c)V(f—@))+(6,f), allpehN,,

by (2.1) and (2.14). Thus, by (A), (2.2), and the H>-regularity of Q, for ISk =s

(6, ¥)= <0, a(c)
(2.15)

K6, ¥l =K (|6l Jnf If = el +l6llliAD

(2.16) =K (" pllehlfll+ 2 I pllel D
=Kh*|pllil¢li/2,
from which (2.9) follows.
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We now differentiate the equation below, obtained from (2.1),

(2.17) (a(c)Ve, V) =0, e eN,
with respect to ¢ to obtain
d
(2.18) (a(c)Va—e, v¢) - (a“ %ge, V(p) o el
ot dc ot
Then

(2.19) <%§ ¢>=(V%§, a(c)vf) +(2—f’ V- (a(c)Vf))

=< —, a(c)V(f- ¢) (Zf f)—(gf g—fve V(p) ¢ Ny,

by (2.18). This then yields, for 1=k =s,

0] =& (|24 17~ o+ |29 17)

+ ("’—“ %G, v(f- ¢))|

dc ot

|
dc at

=K1 (Iolk+ 2] )t n (1ot +[22) i
+h " pllhl -+ ()76, 91
= K[¥(Ih+[ ] JWh+l@eva v-on]:  een

We then have

a6

|52, 0)| = &1l +

o)
e
from which (2.10) follows.
Next, we consider ¢ For the remainder of the proof, assume that () is H 3-regular.
From (2.3) and (2.5), we have

(2.20) B¢ x)=0,  xed.
Differentiating (2.20) with respect to ¢, we find that

& ) ((ab dc b 8Vp> ) ((au dc  du 6Vp) )
B(at ac ot aVp ot V&V ac ot aVp ot Ve
o’g o g{ ac 85}] >
. — 4+ —Sla—+(1—-a)— 3
@21 +<L [at ac Tac2 | ¥ar T @)y dad x

=N(x), xen
Let ¢ € H'?(30Q) and let f be the solution of

._.V, _
(2.22) [b(c, VD)Vf +u(c, Vp)f1+Af =0,  xeQ,

b6 V0 Lt lule, Vo) - n)f~Gf =4, xei,
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where G is defined in (2.4). By our smoothness assumptions, we then have ||f|; =
K|i]3/2 [18]. We also see that, by (2.3), (2.20) and (2.22),

& 1)=& ble, W)L+ {ule, Vo) - n1f - G
= (V& ble, Vp)V/ +ule, Vp)f) + (6 V - (bl VoIV + (e, Vo)) ~(GF, &
= (ble, Vp)VE V1) + (u(c, V) - V& 1)+ (6 M) ~(86, )= (4,0, f)
=B(§’f)=B(§7f~X)’ Xe‘/”h‘
Thus, for 1=k =,

& Wl =Kl inf 1 =xlh=Kr" " lellh’Ifls

(2.23)

(2.24)
= Kh* Yellklwlsa,

from which (2.11) follows.
Let ¢ € H'(Q) and let f be the solution of

=V [b(c, V)Vf+ule, Vp)f1+Af =4,  x€Q,

b(c,Vp)%+[u(c,Vp)-n]f—Gf=O, x €0Q).

(2.25)

By H’-regularity, ||f|ls = K|¢|l:. We see at once that, emulating (2.23),

(2.26) &v)=B(H=BEf~x),  xeMn

Thus
2.27) & WI=K|él inf. I —xlli = Kn“Hellh | flls = Kn“ e,

provided that 1 =k =r and r=3. Then (2.12) follows. We also have that

(2.28) (5o =055 1) =555 1) +N 00

Il

B(%, 1) -N(F=x0+ N (.

Then, for 1=k =r,

o]
at
= K Ylellll = K el

op|
at

el int 1 =xlh

L¥(W )

|N(f—X)|§K(K17 o s 00
L™(L™)

(2.29)

We then see that

230) NP=EV- @) +E T ap—{6ar L) (g [ar 1 +ast )

n
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where
ab dc db an
o= — e ——
ac ot aVp at’
oy 2w e, ou 3V
(2.31) *Tac ot oVp ot

o’g agac ¥ g f]
= +— —_—
@3 I [atac ac? ot ac2(B P

=4+ as+ ae.

We note that

ac
wgr? éK(K, “ )
||‘11"L (H?) 1 atll . (H’) 3l Lo,
ac ap
"C¥2||L°°(H2)§K<K1, — , ‘—' ),
(2.32) tll p=zy2y 102l Lom?)
leallL oz = K (K1),
ac
||as||L°°(H2>§K(K1, — )
ot L=

Also we have, by Lemma 2.2 and the trace theorem,

2

o

(asé, )= aczf Lw|§t||§|
%8 /2] 4 11/2)] /2| £]]1/2
<284 el el el e

(2.33)

= Kl el + el

i)
atll,
ac }

, r=2,
athly

K=k lelfi+ el

A

eh**1, rz3.
Then we have, using (2.11), (2.12) and the bounds on «;,

IN(OIZNEN-V - (@1 TPl +NEN-1I(V - a2)flla

3 +
(2.34) +|§|—3/2{ al_a—r];cl ) +|[a2~n]f|3/2+|[a4+a5]f|3/2}+ehk !
3/2

= Kh" el Al = Kn“ el

if =3, with the norm on ¢ modified as above if r =2. Then, combining Lemma 2.2,
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(2.28), (2.29) and (2.34), we obtain

Geo)l=l

(2.35) gKh"“{lIcnk +

inf [|f = xll+Kh* eyl

1 xeMp

% St xr et

5 Jiots

and (2.13) follows. Again, the norms on ¢ are modified if r = 2.

We now turn to the definition of our discrete-time Galerkin method. In [14], it
was shown that in the case of homogeneous boundary conditions, a continuous-time
Galerkin method will yield, where C is the numerical concentration approximation,

= Kh el +

536 IC —cliewsy =0k +h*"") ifb=b(x,c,Vp), s=3,
@36) | cleun= O +h%)  ifb=b(x,c), r=3orsz3.
Standard backward difference time-stepping procedures were also analyzed, and it
was shown that they introduced the expected O(At) time discretization error. We now
modify the time-stepping procedures of [14] as indicated in the introduction to this
paper.

Let At. >0, At,>0, A2 >0, Atg >0. Here At. and At, are the time steps for the
concentration and pressure, respectively. We will see that the first pressure step must
be smaller than the later ones, and we denote it by Atg. In Theorem 4.6, we will
require two smaller initial concentration steps, denoted by Af2. We let the integer j
denote the ratio At,/At.

We use superscripts to denote concentration steps and subscripts for pressure
steps. Thus, t" = nAt, and t,, = Aty + (m —1)At, prior to Theorem 4.6. Welet " = ¢/ (¢"),
¥ = yY(tn), and we denote difference quotients and differences by

n__ ¢n+1_¢n Ym+1— Um
dt‘/’ - Atc ’ dt‘//m" Atp form>0’
_Y1—do
d:‘flo— Atg s
2.37 n_ ntl_ gn
@3N sym—ymioyr, 8m = Y1~ Yy

X" =y =24 +¢" T, 8 =Y = 2¢m Yoy fOr m =2,

At,

17
ALY

We make the obvious concentration modifications for Theorem 4.6.
The standard backward difference Galerkin scheme in [14] employed approxima-
tions P: {0=1¢%¢", -, N =T}>N,and C: {0=¢°,¢",- - -, t"} > M,, given by

C’x)=¢é(x,0),

(@d:C™, x)+(b(C", VP )VC"*, Vx) = —(u(C",VP") - VC""', x),  x €M,
(@(C"HVP", Vo) = (a(C")y(C"")Vd, Vo), N,
(Pn+1’ 1) = 0’

52ll/1=(//2“( Atp)lﬁl"'

(2.38)
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where i =0 or 1. We see that P° can be determined from C°, and then C"*' and
P"*! can be found once C" and P" are known. By lagging the coefficients in the
concentration equation, the scheme uncouples the system and reduces the algebraic
problem to the solution of two separate linear systems. We note that if i =0, then
the coeflicient matrix arising from (2.38) is symmetric. In the physical problem,
however, the transport term dominates the diffusion term, and it may be numerically
advantageous to carry the transport term at the advanced time level by taking i =1,
even though the matrix is no longer symmetric. In our methods, since we wish to
consider a preconditioned conjugate gradient iterative scheme for the algebraic prob-
lem, we will consider only the case i = 0.

We now describe our modifications of (2.38). With the time step ratio j chosen,
we will linearly extrapolate the pressure in the evaluation of the coefficients in the
concentration equation. Let F be a function of time, consider concentration time level
t", and let m be the greatest integer such that ¢, <t". We approximate F" by
extrapolating linearly from F,, and F,,_; if m=1. Define ve{1,2,--+,j} by t"=
tm +v At if m=1. Then set

FO, lf m = 0,
v At, v At, .
(2.39) EF" =4 (1+f Atg)Fl i At?, Fy, ifm=1,
(1 +—1.})Fm——',me_1, it m=2.
] ]

This will give an approximation of F" with error O((At,)*||d>F/ dt*||L22).

This procedure requires the computation of a new pressure extrapolation at each
concentration time level. Other less accurate methods, such as an extrapolation to
the midpoint of the current pressure time interval suggested by Todd Dupont, will
demand somewhat less work. We will analyze only the linear extrapolation, noting
that first-order methods need smaller pressure time steps in all our results except
Theorem 4.6, where they fail completely.

An alternative procedure in evaluating the Darcy velocity u(x, ¢, Vp) in the
concentration equation is to extrapolate the velocity itself instead of the pressure
argument. This is motivated by the fact that the velocity is smooth in time, while the
individual factors depending on the concentration and pressure may be quite rough.
This alternative should take greater advantage of the use of different time steps for
the two equations. We will describe this alternative and obtain the same convergence
results as for the extrapolation of the pressure.

Next, we recall that 0 =c¢ =1 and that the coefficients satisfied the bounds in (C)
for concentrations in this range. If C" is the numerical approximation to the concentra-
tion, we define the truncation C*" =min {1, max {C", 0}} and replace C" by C*" in
evaluating the coefficients. This type of truncation has been discussed earlier in [4,
11], and we will analyze the resulting error. Combining these modifications of (2.38),
we obtain the scheme

C’(x)=¢é(x, 0),
(@d.C", x)+(b(C*", EVP*)VC", V)

(2.40) =—(u(C*", EVP"*") - VC", x)+{g(t""", C*"), x),  x €My,
(a(CHRIVP, Vo) = (a(Ch)y(Ch)Vd, Vo)~ (gi(tm), @), @ €Ny,
(P, 1)=0,
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which is to be implemented in the order C°, P,, C', C?---,C’, P, C'*", C'*?,
«++, C%, P,, etc. In Theorem 4.3 and subsequent results, the argument C*" of g will
be changed back to C".

We conclude this section with a technical lemma which will expedite the estimation
of errors arising from pressure conjugate gradient residuals.

LEMMA 2.5. LetF,, and G,,, 2=m =k — 1, be nonnegative numbers satisfying the
relations

F,=KRG,,
(2.41) F;=K(RG3+2R*G>),
F,=KRG,+2RF,_+RF,_,,  4=m=k-1,

whe_(e K and 0=R<1/(1 +v g) are constants. Then there exists a constant K =
K (K, R), independent of R bounded away from 1/(1 +\/5), such that

k—1 k—1
Y F.=KR Y} G,,
m=2 m=
(2.42) ’
F,=K max G, 2=m=k-—-1.

2=n=k-1
Proof. Since G,,_; does not appear in (2.41) until F,,_;, we see that
F, 1=KRG,,_1+T, R,

(2.43) _ " ,
F.=RRG, +K(2R*Gp-1+Tn >R

for m =4, where T,,_, represents terms inv_olving G;for2=i=m—-2.Fora=1 and
B =0, we let ¢,z denote the coefficient of KR*G,,_p in the estimate for F,, obtained
recursively. From (2.43), we have

cl():l’ ClB=0’ Bél’
(2'44) C20~ 0’ €21 = 2’
Ca0=0, aé3, Ca1=0, a§3,

and from the recursion estimate in (2.41) we see that
(2.45) Cat1,8=2Cap-1+F Cap—2;

(2.44) and (2.45) show that c,g is well defined.
We claim that c,g is given by the formula
2R @ —-1=p=2a-2,

(2’533a~n)
(2.46) Cop = {
0, otherwise.

This will be demonstrated by induction on a. The case @ =1 is verified in (2.44). For
a =2, we may assume B =2 since 8 =0 and B =1 are contained in (2.44). We check
the relevant cases, using (2.46) and induction:

B<a-—1: Cap =2Ca-1,-1FCa-1,8-2=0+0=0;

B=a—1: Cap =2Ca-ta—2F Catia3=2( )22V 0=2"",
a—-1<B<2a-2: Cop = 2(57241) 2% PP (52027 P P = (322778,
B=2a-2: Cap =2Ca-120-3F Ca-12a-4=0+ (i:%)z(z"“‘"@"“" =1;

B>2a—2: Cap ='2Ca_1,,3_1+Ca_1,3_.2=0+0=0.

Thus the claim is proved.



Downloaded 11/11/15 to 165.91.112.146. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

14 R. E. EWING AND T. F. RUSSELL

Finally, we note that the coefficient of G; in Z'f,;lz F,, is bounded by

S B Y Reami=K ¥ (R“ 5 caB)
m=i  a=1 a=1 8=0

(2.47)

=K § R*(2+1)*'= § (BR)* =KR,
=1 a=0

where K = K/(1-3R). Thus,

KR k-1
(2.48) Z F, _1 IR mZsz’

and the first statement is proved.
To show the second assertion, we note first that, by the definition of c.g, we have

(2.49) F, =<IZ'( 5 ca,;R“)(max G,,),
a=1 n

so we require a bound independent of 8 for the sum in (2.49). To obtain this estimate,
we use the fact that

2 e g1 1++/5\°
(2.50) Y (3lla-r) = ) (3_?a-1>)=fg§Ko( > ) ,
a=1 a=[(8+3)/2]

where fz denotes the Bth Fibonacci number. The first equality holds because all omitted
terms are zero, and the second can be proved by an easy induction argument, since
each term of the sum of f, is itself the sum of two terms, one each from the sums for
fs—1 and fg_>. For convenience, we now assume that B is even; the case where B is
odd can be handled similarly. Using (2.46) and (2.50), we see that

5 ! 1 (2a—2)-B
o a— a—2)— «
Y CapR*= ¥ (3-(e-1)2 R
a=1 a=(/2)+1
1+vV5\%  ex N
(2.51) éKoR‘B/2)+1(_) T pG2-BRa-1-8/2
a=(B/2)+1

B
=KoR® 2’“(—1 +2J5) Bf (4R)".

This last expression is increasing in R, so it suffices to show that it is bounded
independently of B for 1/(1+v5)—eo=R=1/(1 +«/5) €1. For such values of R,
the sum grows as (4R)*®/?*! and the entire expression is bounded by

KR(B/2)+1(1+2~/5) K1 (4R)®/2*1 = K0K1(1+2~/_) (2R)P*?

2.52
(2.52) = 4K K R*(1+V5)R)®.

This proves the second statement.

The estimates of this lemma are not sharp, since it should be possible to replace
1/1+ \/5) by 3. The argument would require a deeper analysis of the binomial
coefficients in the proof of the second statement of (2.42). In applications of this
lemma via the theorems of § 4, the constants in the error estimates will be enormous
if values of R near the limit are used. A practical margin of safety is not significantly
affected by the possible improvement.
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3. Approximate solution of the linear equations by iteration. In this section, we
present the linear equations arising from (2.40). Since the coefficient matrices change
at each time step and have bandwidths which increase as the meshes become finer,
we wish to avoid direct factorization of them. Accordingly, we will consider a precondi-
tioned conjugate gradient iterative method for the solution of the linear equations.
The analysis will extend results of [6], [10], [11].

The convergence results of the next section will depend only upon the norm
reduction inequalities defined here. The conjugate gradient algorithm is only one
example of an iterative method meeting these criteria.

We now define some matrices and vectors. Let {x;}1%; and {¢:}/= be bases for
M, and N}, respectively. We denote the exact solution of (2.40) by (C", P,,), given in
terms of the bases by

(3.1

The matrices and vectors in the linear problems are denoted by

® = () = (x5 X)),
B" (e, m) = (b, ) = ( (o «ba)*,E

=1

—_
MR

U (e, ) = (e, ) == (X 71" Ve) - ¥ ci x)

(3.2 H{e (% wix *) X)), =1 M
(% xni) ) verve).
) = (i) = (a3 i) ) A(( 3 ) )9, V) - et 00,

Lj=1,-+-, M,
Then we can write (2.40) in the form
L"(k, m)(R" —k")=(D+At.B" (k, m) (" = k")
(3.3) = (At.)U" (k, w)— (At.)B" (k, )K",
A (k)T =T (k).

We will not solve (3.3) exactly; instead, we will use a predetermined number of
conjugate gradient [1], [2], [5], [6], [9], [10] iterations to advance the solution one
time step. The iterative procedure will be stable provided that a sufficient norm
reduction is achieved. The magnitude of this norm reduction requirement will be
analyzed in the next section. In order to speed the iterative process, we will precondition
by matrices which are known to be reasonably close to L" and A,,.. Specifically, define

BO= ((bOVXi’ VX!)), i’j= 1a tte aMc’

(3.4) o
AO = ((aOV‘pjs V‘Pl))9 l,] = 1’ Tt Mp)
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where the functions bo(x), ao(x) can be chosen arbitrarily. We then use as precondition-
ers the matrices

(3.5) Lo=®+(At.)Bo

for the concentration and A, for the pressure. These preconditioners are independent
of time, so only two matrix factorizations need be done in the entire procedure.
Assuming that starting procedures for C° and P,, which we discuss later, have been
performed, good choices for by and ao might be bo(x)=b(x, C°(x), VPo(x)) and
ao=a(x, C°(x)). We note that in practice, it may be more efficient to update and
refactor the preconditioner from time to time.

Denote by
M

MC P
(3.6) C"=3 kixi and Pn= Y g
i=1

i=1
the approximations to C" and P,, respectively, obtained by iteratively solving (3.3).
Assuming that C" and P,, are known, we describe preconditioned conjugate gradient
iteration procedures to approximate C"** and P, from (3.3). Our initial guesses will
be C° for n =0, P, for m =0, and, in most cases, linear extrapolations for n =1 and
m = 1. Specifically, our concentration iteration for «"*' —«" will proceed as follows:

n=0: x0=0,
n=1l: xo=«"—-«k""1,
qo=L"(k, m)xo— (AL)U" (k, )+ (At;)B" («, m)&",

So = L61QO,
3.7 .
= (Lo G qic)e

Xik+1 = Xk +aksk, where A = (S L"( ) ) s
ks K, T )Sk)e

k=0,

Qr+1= qx + aL" (k, )5k,

_ Lo Qicrr, .
Sk+1=Lo 1qk+1+BkSk, where Bk =£—Oflf—+lq-k—ill
(Lo G qic)e

Here (-, ). denotes the Euclidean inner product, and the xi, qx, and s, are the
iterates, residuals, and search directions, respectively. Finally, after some predeter-
mined number of iterations N, set

(3.8) k"= k" +xn.

Our analysis will show that for the results prior to Theorem 4.3, the linear extrapolation
for the concentration is actually unnecessary and may be replaced by xo=0. The
pressure iteration for ,,.; will obey the algorithm

m=0: xqg=mo,

m=1: xo=2%m—Tm-1,
qo=Am+1(k)x0 =T ps1(k),
3.9) s0= A qo,
Xi+1, Qk+1, Sk+1 determined as in (3.7) with Ag, A, 11
replacing Lo, L", respectively,

Tm+1 = XN,, Where Nj, is predetermined.
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We will see that the linear extrapolation is unnecessary for Theorem 4.6, where
Xo = 7, may be used.

It is well known [1], [2], [6], [10] that the preconditioned conjugate gradient
methods yield constants p. and p, at each time step such that

IL°(k, )2 ("~ ke = peIL (e, )12 (" = e n=0,
(3.10) 1™ e, m) 2™ = k"Dl Z pelL” (e, ) 2R = 26" + 1" D)oy z1,
A1) (71 = m)lle = pollA1 ()2 (71 = o) m =0,
1A m 1) > (i1 = T Dlle = PplAm 1 () *(Fmi1 = 27w + T)e, mZ1,

where the subscript e indicates the Euclidean norm of the vector. Given the functions
bo and ap, we denote the comparability constants between the preconditioners L, and
Ay and the matrices L" and A,, by 8., Dy, 64, and D,, where these satisfy the
inequalities

xTL"(k, m)x

- =D;, xeRY {0},
X L()x

0<érL=

(3.11)

Y AL (Kk)y

0<8s= =Da, y e RM —{0}.

We note that these constants are independent of 4 and ¢, depending only on the
bounds for the coefficients in (C). Letting

_1-(8,/Dp)""?

(3.12) T L+(/Du)™
' 0, = 1—(84/Da)"?
P 14+(84/Da)"*
we know from [1], [2], [5], [6], [10] that
(3.13) P =20,  p,=205".

Since Q. <1 and Q, <1, it follows that norm reductions of p. and p, can be achieved
in O(log (1/p.)) and O(log (1/p,)) iterations. In particular, a fixed norm reduction is
reached in a fixed number of iterations.

Our analysis will be aided by the definition of some weighted norms. We set

lwll% = (B9, ),
llls-= (b(C*", EVP""\Vy, Vy),
Iz, = (@(Ch)Ve, Vi),
Nwllz=1lwll5+ Aoz = (b4, )+ At (b(C*", EVP" )Vy, Vi).

We note that | - |4 is equivalent to || ||, and || - ||l,» and || - |la,, are equivalent to ||V - ||.
We see that by (3.10),

IE" - Cle=IIC* - '+ AcllC* = C3-
=(&"'=k "Lk, m)(&' - k")
=[IL(k, )2 (k" — k|12
=pe L%k, m)' 2 (R = kO

=pclIC* =G,

(3.14)
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so that
(3.15) IC* = CMlo éf;:”lC 1= C%o=p.lIEC Y o-
In a similar fashion, we can derive
e - . =pLll6°C™"ly, n=1, where§’C"=C""'-2C"+C"",

Pp
1-p,
“Pm '_Pm"am éPIpHSZPm—l"am, m=2.

(3.16) ||Py—Pillo, = ppll6Pollay, Where p, =

The convergence results of the next section depend only on the norm reductions
(3.15)-(3.16) and not on the particular iterative method used to achieve those
reductions.

We note here that we must alter the scheme (2.40) slightly since we are not
solving the equations exactly. We have

C‘.n+1_Cn
(a) (¢T
(3.17) =—(u(C*",EVP"™) . VC", x)+(g(t""", C*"), x),  x €My,

(b) (a(CHIVP,,Ve)=(a(CE)y(CE)VA, Vo) —(gi(tn), ), @ ENn.

In Theorem 4.3 and afterward, the argument C*" of g will be changed to C". We
also note for future reference that, since 0=c =1, we have

lle” —C*"||=lle” - C™l=llg"+lie" — ™,
le” —C* =gl +lle” — C*"l|=2[lg" || +[le” - €.

Finally, we consider starting procedures to obtain C° and Po. Our analysis will
require C° to approximate &° well enough so that

(3.19) |C®-é% =Kn'".

This can be obtained by factoring the elliptic projection matrix and solving directly,
or by iterating the conjugate gradient procedure sufficiently many times. If iteration
is used, a good preconditioner would be the matrix Lo, which by (2.4) is comparable
to the elliptic projection matrix. For most of our results, the necessary estimate on
P 0 is

(3.20) [Po— Pols = Kh',

which can trivially be procured by factoring the matrix Ao, to be used as a precon-
ditioner for future pressure time steps. If this option is not chosen, again a sufficiently
lengthy iteration will work. Similar comments apply to the estimate needed for
Theorem 4.6, which is

(3.21) |Po— Bolls =Kh' At,.

We remark that a detailed argument appears in [12] which weakens the estimate
(3.19) to
(3.22) e —éllo=Kn'.

In many cases, c(x, 0) is identically zero, and this sharpening is unimportant; it may
be of considerable interest if a simulation is stopped and restarted.

,X) +(b(C*", EVP™* )V ™! Vy)

(3.18)
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4. A priori error estimates. In this section we obtain a priori error bounds for
the procedures described in §§ 2 and 3. We focus our attention on the concentration
error ¢ —C, since it is the quantity of physical interest. As noted in (2.36), it was
found in [14] that the convergence results were affected by the dependence of b on
Vp, even in the continuous-time case with homogeneous boundary conditions. We
obtain here the same convergence rates, with time truncation errors, for our iterative
procedures.

In the case b = b(x, ¢, Vp), Theorem 4.1 shows that if at least piecewise quadratic
polynomials approximate the pressure (s = 3), then O(log (1/At.)) concentration iter-
ations and a fixed number of pressure iterations per time step yield an L* error
estimate of the form O(h" + h*~" + At.). Theorem 4.6, under slightly stronger regularity
assumptions, fixes the number of concentration iterations while requiring
O(log (1/At,)) per step for the pressure. This reduces the asymptotic work estimate
by a factor of At,/At,, since the pressure is computed less often than the concentration,
and improves the H' bound from O(h"'+h°*>+h™" At,) to O(h" '+ h* " +At,).
Whether the improved work estimate applies for practical values of the mesh para-
meters is not clear.

In the case b = b(x, c), Corollary 4.2 finds the optimal L* estimate O(h" +h* +At,)
with the iterations of Theorem 4.1, provided that either r=3 or s=3. lf r=5=2,
the nearly optimal bound O(h’|log h|+At,) is demonstrated. Under slightly more
regularity, Theorem 4.3 reduces the work to a fixed number of iterations per time
step for both equations and improves the H' estimate. Corollary 4.4 proves an
intermediate work estimate under intermediate regularity assumptions which are
balanced for the solutions and their time derivatives.

Corollary 4.5 points out that the concentration iteration may be suppressed if
b =b(x). Corollary 4.7 remarks upon the possible benefits of updating the precon-
ditioners. Corollary 4.8 shows that the preceding convergence results are unaffected
if the Darcy velocity u, instead of its pressure argument, is linearly extrapolated in
the concentration equation (3.17a). We close this section by considering the minor
modifications needed to extend the results to three space dimensions, and by applying
the analysis to a single quasilinear parabolic equation with nonlinear boundary
condition in Theorem 4.9. The principal results of this paper are Theorems 4.1, 4.3 and
4.6.

We now proceed to derive our error estimates. Throughout, we denote generic
concentration and pressure time levels by the superscript n and the subscript m,
respectively. If we need a correspondence between these symbols, m = m(n) will be
the latest pressure time level satisfying #,, =¢". A particular concentration level, often
the top index in summations on n, will be denoted by t'. We define k = k(/) such that
te-1 is the last pressure time level satisfying f,_, <t'. If m occurs in summations on
n, m is understood to represent m(n).

The symbol K will denote a generic constant, not necessarily the same at different
occurrences. The explicit dependence of K on norms of ¢, p, ¢, and p will often be
indicated. For economy, we suppress dependences on these norms in Wk (W) in
intermediate estimates, unless desired for emphasis. The symbol & will represent a
generic small positive constant.

THEOREM 4.1. Suppose that b = b(x, ¢, Vp), (R1) holds, and s =3. If r =3, assume
also that Q is H>-regular. Suppose that the space and time discretizations satisfy the
relation

4.1) At. =o(h),



Downloaded 11/11/15 to 165.91.112.146. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

20 R. E. EWING AND T. F. RUSSELL

and that the pressure and concentration time steps are related by

4.2) A, =0((A)™), A= O0(D(AL)'"),

where D = (|&||lg2e /| Pllerzarn) . If we achieve norm reductions of the form
p. = O(At,), all n,

4.3) Py = O((Alt?,)” *‘1)/,2 o m=1,
e ) e

then for h sufficiently small,

(4.4) sup (|IC" —c"[|+ A|C" —c" [V = K7(h" + h* " + Ar),

where K7 =K7(Q, ay, by, ¢y, A, Ky, Ko, K1, K>, K3, Ka, Ks, Kg).
Proof. We recall that é=c—¢, and we set (" =C"—¢". Then C" —c"=¢"—-¢",
so by (I) and (2.6), it suffices to show that

4.5) sup "= K (A" +h° 1 +AL).
We look first at the pressure equation. Set n,, = P,, — . Subtract (2.1) from
(3.17b) to obtain
(@(Cr)Vm, Vo) = ([a(cm) = a(Ch)IVPm Vo)
(4.6) +([a(Cr)v(Ch)—alem)y(cm)]Vd, Vo)
+Ha(ChIVPn—Pn),Ve), @M
Choosing the test function ¢ = 7,, in (4.6), we have
Il = K (19l + IV dlle=Mlem = Cr IVl + 1P = Prla Il

4.7) _
= K(enll? +1&ml®) + 3P = Pl + G+ &0l
so that
8) Inmllz,. = KBl cewiy, llellc=@h® + K (|l c=cwi)IEml

+(1 + 8)"Pm _Pm"im‘
For the concentration, we subtract (2.3) from (3.17a) to find
(@d.L", x)+(b(C*", EVP" V", Vy)
acn+1 ~n n+1
=(¢( —d.¢ ),x)—)\(i > X)
at
+([b(Cn+1, Vpn+l) "‘b(C*n, EVPn+1)]V5n+1, VX)
+(u (Cn+1’ Vpn+1) . V5n+1 _ M(C*n, EVPn+1) . Vcn, X)
Cn+1 _ én-&-l
At, ’X)
+(b(C*", EVP"V(C"™ ' =C"™), Vx),  x My

4.9)

g™, C) =g, &), )+ (6

In (4.9) we choose xy =¢"*" as test function in order to obtain an L? estimate for L.
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We multiply by Az, and sum from n =0 to n =/ —1 to obtain

-1 -1
L (@@ =M+ L e A

- 86‘"“ ~n n+1 =1 n+1 n+1
=% (o ——ae) o) s T A o A

-1

+ Z ([b(Cn+1, Vp"+1)—b(c*n, EVPn+1)]V5n+1, V{n+l) Atc
n=0

-1
+ Z (u(cn+1 Vpn+1) V~n+1 M(C*n EVPn+1) Vcn é,n+1) Atc
(4.10) ':_

+ éo (g(tn+1’ C*n)_g(tn+1, En-l-l)’ £n+1> Atc
-1 _

+ Z (¢(Cn+1_Cn+1)’ {n+1)
n=0

-1
+ Z (b(C*n, EVPn+1)V(Cn+1__én+1)’ V£n+1) Atc
n=0
=81+5,+853+S4+S5+Sc+S,.

Using the inequality (a —b)a =3(a*—b?), we see that the left-hand side of (4.10)
dominates

-

z [(as;"“, Y= (9L ¢+ z g™ Hen At

n=0

(4.11) . o
=5 U511 + z g™ M3 A,

In our estimates, we can therefore handle L*>-norms of ¢ with the discrete Gronwall
lemma, and we can hide small multiples of H'-norms of ¢ on the left-hand side.
We now estimate the right-hand side of (4.10). First, we note that

a§n.+l ac~n+1
Si+8,= ¥ (¢ ) Ak Z ( (= —dié"), ) s,
n=0

_lil A(gn-ﬂ’ £n+1) Atc,

an+1

ac
ot

a§n+1
ot

g™ M At +K z —d &l At

-1 n=0

|S1+8,=K Z

n=0

4.12) L
+K L lle™ il A

= K (lclla @y, lellzzam)h® + K (l€llmzw) (At )?

-1 -1
+K Y 1P AL +e X127 At
n=0 n=0
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Here, if r =3, we have used H>-regularity in Lemma 2.4 to estimate ||9¢" " /a¢||_;. If
r=2, we do not have an estimate on [[9¢"""/dt||_1, so we must substitute ||o£" " /a¢|

and require a bound on ||c||x 2.
Next, we see that

-1

S3= Z ([b(cn+1’ Vpn+l)—b(c*n, Vpn+1)]V5n+1, V{n+1) Atc

=0

-1
+ 3 ([b(C*", Vp" T —b(C*", V5 THIVE, Ve At
n=0
-1
(4.13) + 3 ([B(C*, Vp™ )= b(C*", EVF"THIVE, V" A,
n=0

-1
+ % ((b(C*", EVp™ ) —b(C*", EVP""HIVE™, V™) A,
n=0
= T1+T2+ T3+ T4.

Now we have
-1
|T\[=K ;0 (e =™+ lg" 1+l vl At
2r 2 L 2
=K (lellezam)h™ + KAL) +K E || Ate+e T IE R A,
-1
4.14) |TI=K ¥ (V6" IV At
n=0
25—2 il +1)12
= K(lplcarh™ +e 3 16" o,

-1
|T=K ZO (V0| + IV 2maDIV ™) At
In estimating T, we note that 7, will appear for Atg/ At, values of n, while n,,,, m=1,
will appear for Az,/At, values of n. Using (4.8), we have
Aty
Az,

At,
At,

k—1 -1
T =K[—EIVnol* At + ¥ [Val® At |+e X I Az
=1 =0
k—1
(4.15) =K (cle=ar)h® + KNl Aty + K F 12nll* Aty
_ k-1 _ 1-1
+K|Po—Polay Aty +K Y 1P —Pull’, A, +e X 1" IE At
m=1 n=0

To bound T3, we recall that

2

~n ~n 3p
V5"~ BV P =K (a2 : m=0,
w16 At 2,11
. . y 2512
V5 +1 —EVj +1“2 éK(Atp)3 125| , m=1
Ot N L2t 1ty HY
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Then
T =K| £ 195 - B lIve ) A
m=0

+ 3§ V- BV A

2~2

4.17) <K(A )(At,,) (At)+K< )(At,,) z

At

L?(tm—1.tm+1:HY)

t
+e z g™ 1T At
n=0

-1
=K (Ipllwea)(A6)’ + K (|Blzar)@n) +2 % 2"} At..
n=0

Collecting the estimates for T; through T,, we have
|S3]= K (lelleem)h® + K (Ipllz2as)h > > + K (At.)?
+K (|llw ) (A1p)* + K (| llerzan) (At,)*

k=1
(418) +K”PO PO"ao Atp +K Z “P Pm”am Atp
m—1
2 A L0 kot 2
Kl Aty + K el A,

-1 -1
K T 6" Arte TR A
Next, we split S, as follows:

-1
S4= z ([u(cn+1, Vpn+1)__u(c*n’ EVPn+1)] . V6n+1, {n+1) Atc
n=0

-1
(419) + z (u(c*", EVPn+l) . V(6n+1_cn)’ £n+1) At
n=0

=Ts+ Te.

We observe at once that T's has the same form as S3 with V¢""" replaced by ¢
the same bounds will hold. To handle Ts we use an induction argument. We assume
that [|u(C*", EVP"*")||.~ is uniformly bounded for n =0, 1, - -, [ — 1. By assumptions
on u, we know that

(4.20) lu(C*", EVP"*)| =K1 +|EVP"" ) S K(1+|VP,|+|VP,_1)).

It therefore suffices to bound ||[VP,,|.= for m =0, 1, - - -, k —1. We assume that

(4.21) IVP.li>=2Ks, O0=m=k-1.

To start the induction, we see easily that from (2.7), (I), (4.8), (3.19), and (3.20),

IV Poll.= = V5ol + IV noll= = Ks + Koh ™[Vl

= Ks+ K (Ko, llcllz=em)h " (1ol + 1" +]|Po— Pollx)
=Ks+Kh 'h'
=2K;,

n+1 n+1

(4.22)
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for h sufficiently small. If t’=tk, we will show at the end of the argument that
VP |l.~=2Ks. This will verify the comment allowing (71, 7,) to be bounded in the
assumptions (C) of § 2. With (4.21) in hand, we can write
-1
|Te|=K ;0 (vE T =eml+Ive bl At

-1 -1
(4.23) SK@LP+K T ¢ A+e T¢I A,

n=0 n=0

|Sal =|S5| +|T|.

Next, we find that the boundary term can be estimated by
-1
ISsl=K ¥ K" =@ =é"), " AL
n=0
il il an+1 ~ n+1
=K X 1¢7e"h A+ K E e =l A
(4.24) s
+ T 1l A
1 1
=K@’ +K T |"P ar+e ¥ 12" A,
n=0 n=0

where we have used Lemma 2.4 and the trace theorem.
Finally, we have by (3.15) and (3.16) that

-1 _
[Ss+87l= X et =& lalie™

-1
(4.25) =plI8Colle Mo+ o L li&>Cllllg™

EET}*‘T%,
and

T4\ = p L (1660 + 11182 °lo)* + p 2l I
oc 2
o

= K (16l @) (A )* + K (1P + 121 At + K AT+ 1D A2,

=K Atc[

AR+ G

L%0,:};H!

-1
ITs|=Kp: ¥ (oe™ I+ Mae™ = M+ g™ I+ g™ 0m+ g™ )

4.26 "
(4.26) §f|
ot

2

-1
=K At Y (

n=1

2 s T

L (t"_l,l"+l;H1)
+e 1 A+ A+l A
1 1

S K (o) @y +K Y P A+ K A Y 217 A

1 1
=K@ +K ¥ I Acte T I AL,
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for p. = O(At,) and At, sufficiently small. Thus,
! 1
(4.27) Se+S7|=K (ALY’ +K ¥ [I"IF Are+e T 127 At
n=0 n=0

A glance at (4.26) reveals that the argument goes through with ||§C"||. in place of
[162C"|ll., so that the linearly extrapolated initial concentration guess is unnecessary
for this theorem, as noted in § 3.

Collecting the estimates (4.10), (4.11), (4.12), (4.18), (4.23), (4.24) and (4.27),
we have

1 -1
5"('”3@"‘ ¥ g™ e At
n=0
= K (el le e, 1Ele=w iy, I Blleewz)h® + K (IEllzewy, 1plezas)h*

+K (llellzrrtys Nelloow s NElle s €2z (AL )?

4.28) +K (1€lc=cwy, 1Pllwier)(Atp)® + K (lelle=wy, | Bllerzam)(At,)*

+R (el WPy~ Pole, At + K (ks . 1P Pl At
+K 1Bl 1mws) T Wonl? Ay
K (=i § 1" A +e 3 [e"1R e+ KIETP

=K MY +h” 7+ (AL’ + (A’ + (A1) + A1+ A+ As+ A+ As+ As.

A1 and Ae are estimated by the starting bounds (3.19) and (3.20). A3 and A4 will
disappear when the discrete Gronwall lemma is applied, at the cost of allowing the
other constants to depend on |||lL=wz, and ||é]l.=(w2). As hides on the left-hand side
of (4.28). We now proceed to handle A,.

Considering m =1 first, we see that

1Py = Pilla, = pol16Pollay = o5 (18F0llas +[Imollay + lIm1]la,)

a xy 1/2
(%) pplinoh sl + Ky A3
*

(4.29)
=K (A K (clle=@n)h" + K (|l + |21l

+[1Po— Pollag + 1P1 = Pilla, ]+ K (A15)°"",

and, using (3.19), (3.20), and (4.8), letting p,, = O((At5)"®), and taking Af, sufficiently
small, we obtain

(4.30) 1Py = P, = K (lclle=@m)h® + K|\l + K (Af5)*,

Since (Afp)*"* A, = O((At)** */>*1/%) = O((At.)?), we see that the first summand ||P; -
P2, At, of A, is bounded in the proper fashion. For future reference, we let

(431) Fm = ”Pm —Pmntzzmy
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and we note that for suitable constants IZ’O and K; we have shown that

Fo=Koh™,

(4.32) .
Fi=Ri(h™ +|6lP + (Ag)).

Now we consider m = 2, and we note, using (a +b +¢ +d)’=4a*+b*+c*+d>,
that

Fr=(pp)16? Pl
= (pp)> (L + N8> Nm—1llz,. + K6 Brm—1ll2..
= (pp)*(L+ &) Mmllan + Mm—1llay, +1Mm-1llar, + [1m—2llan)?

2 a2

ap

+K (At,,) pYe

L%(ty 2ty H )

(4.33) <4( )(Pp) (1+3)(”7lm" +2“77m lnam 1+""7m 2“am 2

8 p
+K (At
( p) at* L (tm—2:tm;HY)
1 ,
=_<_( _— s) (Fo +2F 1+ Fp )+ K ([c|lLen) i’
2++/5
aZi; 2

+K (&P +1Em -1 +lem-2l) + K (A1)

L2 (tm—2:tm s HY)

Letting

G =K (| le=wy, lcle=emh® + K (| plleow i) Wml? +18m -1l +1m—2l?)
(4.34) 2 win

a°p
+K (At,)? o

’
L2(tm— 2ot HY)

we have shown that

(4.35) F,=R(G, +2F,,_1+F,_,),
where
1
—— €
2++/5 1
= < —
( 1 ) 1++v5
- — &
245

Using (4.32) and (4.35), we can see that, since F; §I€1G2 and Fo,=K,G>,
=R(G,+2F,+Fo)=R(1+2K;+K,)G>,
F;=R(G;3;+2F,+F,)

(4.36) D .
=RG;3+2R (1 +2K; +K0)G2+RK1G2

<RG,+2R (1+2K1+Ko+ )62
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Letting K =1+2K,+K,+K,/2R, we see that all hypotheses of Lemma 2.5 are
satisfied. The lemma tells us that

k—1 _ k—1
(4.37) Y Pu—Puli. A, =K Y Gn At,=K(h* +(At,)* + A;.
m=2 m=2

Thus A, is bounded by terms already on the right-hand side of (4.28).
We now apply the discrete Gronwall lemma to (4.28), obtaining

-1
1P+ X "l A
n=0
438 =K (1 Blle=cw s lell=cw i )IK (lellewm, lelleta-1)A> + K (|pllez@m)h ™
+ K (lellert @2, lEller @, IElmzaa)(A)?

+ K (| llwa)(Atp)* + K (| Bllerzrny) (As,) 1.
With the time step choices
~ 2/3
¢llwz
(B
Weol(H!
(4.39)

At z( lellere2y ) 1/Z(At )2
’ ||I3||H2(H1) <

we obtain the desired result (4.5), assuming that the chosen constants are the dominant
ones.
It remains to check the induction hypothesis (4.21) if t' = t,. We have

IVPel|22 = (IVBille=+ IV nell=)? = 2(IVBil| 2=+ Vil )
(4.40) =2K2 +2Koh Vil
=2K3 +Kh (|Gl + h* +||Pe — Pill2).

We now know that ||| = K (h*" + h** 7>+ (At,)?). Furthermore, we can apply Lemma
2.5, with a term of the form

g

at>

replacing the last term of G,.. The second statement of Lemma 2.5, with m running
from 2 to k, yields

2

(4.41) K (At,)*

L™ty 2.t s HY)

(4.42) 1P — P2, =K (h* +h* 7>+ (A + (At,)Y,
so that
(4.43) VP i>=2K3 +Kh>(h* +h* *+(At.)") =4K3

for h sufficiently small, provided that s =3 and Az, = o(h).

We remark that the optimal relationship between h and At, is At. = O(h" + Y,
and that for all values of r =2 and s =3 this lies well within the restrictions of the
theorem.

Examination of the proof of Theorem 4.1 shows that the term h*™" arose only
in the estimation of S5 and S,. It is obvious that, if b = b(x, ¢) instead of b = b(x, ¢, Vp),
then h*~"' will not appear in S5. We remark in the next result that in the estimation
of S4, we can use the form of u to integrate by parts and improve the error estimate
from h*~' to h°.
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COROLLARY 4.2. Suppose that b=b(x, c), (Ry) is strengthened by adding c €
L* (W2)NLY(H?***) and pe L*(H®), and allow r=s=2. Assume that the other
hypotheses of Theorem 4.1 hold. Then, for h sufficiently small,

Kg(h™+h®+At), r=3ors=3,
Kg(h’llog h|+At), r=s=2.
Proof. 1t suffices to revise the estimate for S,. We write

-1
S4= Z ([M(Cn+l, Vpn+1)_u(cn+l’ Vﬁn+1)]'V6n+1, §n+1) Atc
n=0

(444) sup (IC" =<+ hIC" ~ "l =]

-1
+ Z ([U(Cn+1, Vﬁ"”)—u(c"“, Evpvn+l)] . Vérn+1, {n+l) Atc
n=0

-1
(4.45) + Z ([M(Cn+1, Evﬁn+l)__u(cn+1, EVPn+1)] . V6n+1, {n+1) Atc
n=0

-1

+ Z ([u(cn+1’ EVPn+1)_u(C*n, EVPn+1)] . Van+1, Zn+1) Atc
n=0

= U1+ U2+ U3+ U4.
U,, Us, and U, are estimated analogously to T, T4, and T3, respectively, in (4.13);
these bounds do not involve h*72. For U,;, we use the form of u(c, Vp)=
—a(c)[Vp—y(c)Vd] to write
-1
U= Y (a(c™HV(F—p)"*" - V&, ¢ Ar,
n=0

-1
= Z (a(cn+1)V0n+l . V§n+1, {n+1) Atc
n=0

(4.46) -
_ Z (a(cn+1)V0n+1 . VCn+l, {n+1) Atc

n=0
=Us— Us.

Integration by parts in Us will improve the convergence rate. We could not integrate
U, by parts directly because we could not place two spatial derivatives on ¢. We have

-1
Usl=K ¥ Vo™ IvE™ g™l Ar

-1
§K 2—;0 hs-—1||pn+1"shr—1||cn+1”rh—1”£n+1" Atc

-1
= K(|pllcza lelieamh® >+ K go g™ At
-1
(4.47) = K(Iplcza, lellce@m)(B* +h*)+K ¥ 1" A,  r=3ors=3,
n=0
1-1
|Usl=K >;0 Vo™ Y=lVe™ e | At

-1
=K ¥ hllog hlllp™ Hliwzhlle™ el Ar

-1
=K (Iplle2way, clle=r)hllog h* + K L lle " AL, r=s=2,
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where the L™ estimate in the latter case depends on results of [15], [21], and

-1

d n+1
U6= z <0"+1,a(6"+1){"+1 4 >Atc

n=0 on

(4.48) _ Z (0n+1,v . (a(cn+l){n+lvcn+l)) Atc

n=0

= U7—U8.

Using Lemma 2.2 of [3] and ¢ € L*(H***), we obtain
il +1 +1 +1
U =K Z_:O 16" 12" 1 salle™ llave Ate
Il s n+1
K'Y Wlolle v
2s 1l n+1y2
(4.49) =K (lellz=@z, |pl2am)h™ + & >;0 ™11 Az,
oty n+1 n+1 n+1 n+1
|Us|= EO 6" Mlla ™ Mwale" lallc™ llwz At

-1
= K(|ple=a llcllzwz)h™ +& 20 2" At..
Thus,

|UL| = K (| pllezss lelleo@m)h®
(4.50) +K (I plle=cr, lele=ems, lellzowzy, lelleewz+)h

-1 -1
+K Y P AL+ T 2R A
n=0 n=0

The rest of the proof of Theorem 4.1 goes through as before, except that
Kh~*(h*|log h|*) appears in (4.43) if r=5s=2.

The use of the test function y =¢""" does not produce the best possible results
with our time-stepping methods. In (4.26), we were unable to take advantage of the
differences of the form ||6¢"|||.; we would hope to obtain a factor of Az, but we had
to appeal to the norm reduction for this. In (4.29) and (4.33), we had to introduce
factors of the form a*/a, in order to perturb the indices on the weighted norms. If
we could estimate the change of ¢ (and hence C) with time, we could avoid this
problem also. By using the test function y = """ —¢" = At d,{" instead, we can obtain
an a priori estimate on d,¢" in the discrete L*(L*)-norm and find better results. In
addition, we derive an estimate for ¢ in the discrete L*(H") norm, which gives us a
better H' error estimate by removing the need to appeal to the inverse assumption
(I). We need a bit more regularity to do this, as the next result will show. We first
consider b = b(x, ¢).

THEOREM 4.3. Suppose that b = b(x, ¢), (R3) holds, and allow r =s = 2. Suppose
that the discretizations satisfy the relation

(4.51) At.=o0(h),
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and that the pressure and concentration time steps are related by
(4.52) At =O((At)*?),  At,=0(D(At)"?),

where D = (|¢ll2an/ || Bllazam)'’?. If we achieve norm reductions of the form

p. =0(A)"?, n=1,

p.=8. <3, nz2,

(4.53) pp=O((A)®),  m=1,
Py =8, <——  m=2,
PTP T3445

with 8. and 8, independent of n and m, then for h sufficiently small

Ko(h"+h’+At,), r=z3ors=3,
Ko(h’[log h|+At), r=s=2,
Ko(h" '+h°+At), r=z3ors=3,
Ko(h|log h|+At.), r=s=2.

sup " —c"l=
(4.54) "
sup " — "l =

Proof. 1t suffices to show that

K "+h*+At) rz3ors=3
4.55 " é{ ’ ’
*.53) P I = g 2og ni+AL), s =2,
We obtain (4.8) exactly as in Theorem 4.1. We also have (4.9) with b independent
of its second argument. Taking xy = ¢""' —¢" = (At.) d;¢" and summing from n =0 to
n=1[—1, we obtain

1

-1 -1
. (d:l", dil™) At + T (B(C*VE™, VA, L) At,
= n=0

n

-1 e -1
= % (¢S5 de"). dd”) A= T G ) A,
n= n=0

-1
+ 3 (™) =b(C*IVE™, Vd,L") At
n=0

1—

1
+ ¥ (u(c", Vp™thy . vErtt —y(C*", EVPMTY VO, d L) At
n=0

(4.56) -
+ 3 (g™, CM—g(t", E*h, diL") At,
n=0

-1
+ L (@(CM=C, dig™)

-1
+ 3 (B(C*)V(C" =C"), Vd L") At
0

n=

ESI+Sz+S3+S4+S5+S6+S7.
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We see that the left-hand side of (4.56) is equal to

Z (pd.L", dil )Arc+2 g (B(C*V[ =D+ + M1, VAL A,

2T 064" 4"+ Mrelb(CTIVAL VAL AL
(4.57) 1”1_1
+3 T BC™VE 4@ =)

Lt e, LS .
23 3 I an+3 T 06,

Thus we can hide small multiples of L*-norms of d.{ on the left-hand side, and we
will be able to apply Gronwall’s lemma to H "_norms of ¢ after perturbing the
weighted-norm indices.

We proceed to estimate S; through S,. First, we have

n+1 -1 an+1
Si+8:= Y (¢a§ L") A+ 3 (¢(ac —d,c‘"),d,{”) Ar,
n=0 n=0 at
-1 1
(4.58) - Y AT, dl) A,
n=0

1-1
1S1+ 8ol = K (lellerar)h™ + K (lllazas)(Ar)* +6 L lldig "I At..

We note that since we cannot estimate ||d,¢"|;, we were unable to use the H ™' -norm
on 8¢/9¢, and hence were forced to assume dc/dt € L*(H").

In handling S, we again must avoid having to bound |Vd,¢"|. We therefore sum
by parts in time, reducing Vd,{" to V¢", which can be treated. We see that

S3=([b(c")—b(C* HIVE, V¢~ ([b(c") - b(C*)IVEL, VL0

-1

(4.59) =¥ ([b(c" ) =b(C*IVET = [b(c") - b(C*"HIveE", VL")

= Tl“ Tz_ T3.
Now
1Ty =K' = Cc* Ve l=IVe)

(4.60) =K(lc' =" +IE I+
=K (lcllrowm)h® + K (AL + K| P +elld'I3,
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and a similar estimate holds for T,. To bound T3, we write

-1
T;= gl ([B(c" ) =b(C*IVE" =), V¢™)

-1
+ §1 (6™ =b(C*)]=[b(c™) = b(C** HYVE", V™)

=T4+Ts,
4.61)

-1

Ti= Y ([b(c")—b(C*")VAE", VL") A,
n=1
-1
ITd=K ¥ U™ ="+ lg" 1+ DIvdie™l.=Iv¢"|| Az

-1
=K (lclezamh™ +K A6 +K T (16" IF+1e"D) At

To bound T, we define

1
bin= J %(ac"+1+(1 —a)c") da,
0 ac
(4.62) 1 ap
b =J' ‘l(ac*" +(1-a)C** ™) da.
0 ac
Then
b(cn+1)_b(cn) = (cn+1_cn)b o
(4.63) ) "
b(C*")=b(C*" ™) =(C*" = C*" by
Thus
-1
Ts= Y ((bydic" —bandC*"'IVE", V™) At,
n=1
-1
= Z (dtcn[bl,n —bl,n]vgn’ V{n) Atc
n=1
(4.64)

1-1
+ Y (bonfldc" —dic™ 1+ d&" +d LV TIVEN, VL) At
n=1

= T6 + T7.
We note that

1
i)
bl,n—bz,n=j [—b(ac"H+(1—a)c")—-a—b-(ac"+(1-—-a)c”—1)] do
o Lac ac

1

+J’0 [gg(ac"-‘-(l—a)cn—l)—gg(ac*"+(1_a)c*n—1)] da
1

=J Atd(ac"+(1—a)c" ™

(4.65)

1 42
g—cg(a[ac"“ +(1-a)c"1+(1-B)ac"+(1—a)c" ') dB da
0
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1

+] Late-cnr+a-aye-cr
1.2

b
L ac—z(ﬂ[ac”+(1—a)c"“]+(l—B)[ac*"+(1—a)c*"-1]) dB de,

so that

(4.66)  |b1n—bon| S KAL(dic"|+|dic” N+ K€"+ €™+ + 12" 7).

Thus
-1
|Te| = gl dec"lL=llb1,n = b2,alIVE™ |~V ™| At
2r 2 e 2
=K (elezan)h™ + K@) +K T 187F A+ K T (1673 At
(4.67) " "

ITASK T (de” = die" |+ Jdg™ I+ " DIVE" 0" o
= K (el b + Klelus) 0P +K T "I e T g At
Combining the estimates (4.60) through (4.67), we have shown
18512 K (il h™ + K (ellan) 8"+ K X [P A
@.68) K Y IR Ate T P A

+K 11+ KNP+ el

Next, we see that

-1
Se= Y (u(c™,Vp" ™ )—u(C*", EVP"N]- Vé™ ' diL™) At,
n=0

-1
(4.69) + Y (u(C*", EVP™") - V(@E"*'—C"), di¢") At,
n=0
= Tg+ Tg.

As in Theorem 4.1, we make the induction hypothesis (4.21) to treat Ty. This allows
us to write

-1
|To|= go lu(C*", EVP" (V""" = "+ V" Dldig || At
2 a2 = n)2
SK@P+K T IR Arere 3 [P A,
-1
T8= Z ([u(cn+1, vpn+1)_u(cn+1’ Vﬁn'i—l)].vé-n-ﬂ-l’ dt{n) Atc
n=0

-1
(4.70) + Z ([u(cn+1, Vﬁ"“)-—u(c"”, EVﬁn+l)] . V5n+1, dt{n) Atc
n=0
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-1
+ Z ([u(cn+1, EVﬁ"“)—-u(c"“, EVPrH-l)] . V6n+1’ dt{n) Atc
n=0

-1
+ 3 ([u(c", EVP™ Y —u(C*", EVP"™)]- V& d,™) At,
n=0 :

= T10+ T11 + T12+ T13.

To estimate T, recall that

on o apl?
w5 - BV = k] m=0,
4.71) L=k
~n+ ~n a
V5" ~ EV5" P =K (At,)? ~—" mz1
at L? (b — lr,,H.lH)
Thus
|Tul=K z Vg™ — EVE™ Ve c=lldg "I AL,
<K[ Z ”V ~n+1 EVﬁn+1"2 At + Z "V ~n+1 EV[;"+1"2 Atc]
+e }: di" > At.
4.72)

1 82[7 2
——2.‘
=1 008" N L2,y tyrnsEY)

K(A”’) (A©0) At, +K(2::’) @A)

-1
te ¥ lld.£"|I* At

At.

-1
=K (Plwia)@A6)* + K (Bl a2 (AL)* + & Z_‘.O ld:¢"|” At..
Next, we have

-1
|T|=K Z=:0 IEVR"Hllld.¢" || At

=Kl (32) A K T Il (22) ar e S hag o
=K (lclleery)h® +K||Po—Pol, Aty

k-1 _
(4.73) +K Y ||Pm—Pul3, At, + K|l ALY
m=1
k—1 2 -1 2
+K T el Aty +e 3 " A,
-1
|Tis|=K go (le™ =<+ €™ 1+ " Dlldeg || At

-1 -1
=K (cl2@m)h® + K (At +K z " At.+e T |ldig" | At..
n= n=0
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We now analyze T in a fashion similar to U, in Corollary 4.2. We see that

-1
Tio= ¥ (a(c™)VE-p)"™" - V(E—c)"", dl"™) At
n=0

-1
(4.74) + Y (alc"™HVE-p)" Ve dit™) At
n=0

=T+ Tis.

Now in the manner of (4.47), we have

-1
K (lpllc2crsy, llell =) (B +h*) + & L Idi"I* A,  rz3orsz3,
475) |Tul= o
K(“P“L’(wi» |lc[|L°°(H2))h4|log hlz +te go |Id:£"l|2 At,, r=s=2.

We wish to integrate by parts in T1s. However, this would demand an estimate for
lld:.¢"|l;, which we do not have. We avoid this difficulty by first summing by parts in
time to obtain

Tis= —(a(c" Vo' - V', &)+ (a(chVer - Ve, 0

-1

+ 2 (a(cn+1)V0n+l . Vc"“—a(c”)VO" . VCn, {n)

n=1
=Ti6+ T17+ Ths,
(4.76) l
! NPT ! I ,10C
Tio=(6, V- (@()2'Ve) (0", ('3 ) = Tig+ Tao,
|Tio| = K16 llla(cMwali¢ lillc lwz = K (lcllzewa, llplle=er)h +&li¢'|I3,
ac’
| T20l =K 16'-1/2/¢"|1/2 a1 =K (lelleoaz=, lplee@)h* +elle'|13.
Similarly,
4.77) | Tl = K> + K|

We split T’ into three terms,

-1

Tis= ¥ ([ac™™)—a(c")IV""" - Ve ™, ¢")
n=1

-1
+ Y (a(c™)Vd,8" - Ve &™) Ar,
n=1
4.78) L

+ Y (a(c™)VO" - Vd.c", ") At,
n=1

=To1+ Tor+ Ths.
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Letting a, = ]'; (da/ac) (@' '+ (1—a)c™) da,so a(c"™)—alc")y=a, d.c" At.,
-1
Tor= Y (audic"VO" - V", ™) AL,
n=1
-1
==Y (6", V- (a.l"dic"Ve" ) At,
n=1
(4.79)

-1 ) acn+1
+ Y <0" ,axl"de” >AtC
n=1 on

=T+ Ths,

and noting that |Va,|=|9"a/ac ox;||dc/x;| is bounded, we have

-1
T2l=K ¥ o™l llldec " lwlle™ llwa At
e

-1
=K (lellczowi, Ipllz=er)h* + K gl "I} At
(4.80)
acn+1
on

-1
|Tos|=K Zl 16" _1/2l¢" 1 s2lldc ™1 At
=

1+¢
2s g n|2
=K (lello@ze, llelwiw o, lplr2as)h™ + K 21 eIy At
=
Also,
-1

Ton=—- 3 (d6"V:(ac")" V")) At

n=1
n+1

-1 ac
+ X <dt0", a(c"){"7> At. =T+ Ty,
n=1

-1
|Ta6l=K 21 d:6™lla(c™Mwllg"lulle™ Hlwa, At
(4.81) o
=K (lcll=w2), Il atas)h® + K Z_:l "% At

-1
|Ty|=K ;1 di8"|-1/21¢" 12l ™ Hlore Ate

-1
= K (lcllz=@+), Ipllaars)h® +K Z—:1 ™17 At.
Finally,
-1 -1 9
Ta= = $ 0",V @(c")"Vdie") A+ 5 (0% ae)g"s (de™) e
n= n=1
= Thg+ T,
-1
|Tos|=K 21 6" Mla (e Mwlg"llldec ™| wa At

(4.82) o
= K (lcll e w2, Il o)™ + K 21 ll¢™I1% At
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-1
|T2|=K Zl 16" |-1/21¢" 172l ¢ " llo+e A
R

-1
= K (lcllwiz+e, pl2as)h* + K 21 2" 1% At..
Pt

Thus
1S4l = K (lcll =y WPl )
+ K (lell =y, llellwiaz+y, leletoway, Ipllaes)h* + K (At)
+ K (I8 wioaty) (Atp)’ + K (1Bll 2 (Af,)*
_ k=1 _
(4.83) +K||Po=Polle Atp + K T 1P = Pulc,, Aty

k-1 -1
Kol Aty + K ¥ enl’ At +K 3 2" At

-1 -1
+K T T A+ KT+l +e T " A

with the appropriate modification if r =5 = 2.
Next, we split S5 by writing

-1

SS - go (g(tn+1, C")—g(tn+1, 5n)’ {n+1_{n>

-1
(4.84) + % (g™ EM =gt &M, ¢ =)
n=0
=T30+ T31.
For the same reasons as before, we sum by parts in time. For T3, we have
T3l = <g(tl9 61—1) —g(tl, El); {l>—<g(t19 50)—g(tla 51)’ £0>
-1
(4.85) - Z_Zl (g™, M —gt™, & MH]-[g(t", é" ) —gt", éM), ™)

=T+ Ta3+ Taa.
Then

gg’l
at

|Taal = Kl lallg lls Az = K (Ar)* +[1¢°).
We then split T3, as follows:

I Tsol =Kl 'l ar, < K{ )@ +ele'Ii,

L¥(H")

(4.86)

-1
—Ts34= 2=Il gt  é™y—g(t™™!, é™ )]
_ n oany n ~n+1 n
4.87) 5 [g(", c")—g",¢" )], L")
+ gl (g(t", ém—g(t™, " H]-[g(t", é" ) —g(t", éM1, &™)

= T35+ T3e.
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We next define

ol
ad on on

gin = —g(t"“,ac +(1-a)é"" da,
Jo ac
pl Bg

(4.88) gn=| =" aé"+(1-a)é"") da,

J0 (:)C
rl ag

gGn=| —("aé" ' +(1-a)é") da,
Jo dc

and we note that by an argument like (4.65)-(4.66), we have

62g )
n— n = Atc’
81,0 — 82l K(a_t Y

(4.89) .
9 e o
|g2n — 8o = K(—aci)(ld,c Y +|d.é")) At,.

We then see that

-1
|T35| = 2:41 (dtgn (gl,n _g2,n), {n> Atc
-1
(4.90) = L 1di"lolgrn g2l rl¢"lo At

-1
= I<(”(::"Wgo(Hl))(Atc)2 +K z_:l ”{n"% Atc,

and

| T3 =

-1
2—:1 <g2,nd15n _g3,ndté’n_la £n> Atc

(4.91) =

-1
21 <dt6n[g2,n - g3,n]+ (dten - dtén_l)glm {n> Atc
- 2 i 2
=K (lellazar)@e) +K L [E"]7 At
To bound T3, we define

1
(4.92) Zan =J -g—f(tnﬂ,aC"+(l—a)c~")da.
0

We note that g4, —g4,,-1 can be split into two terms and analyzed by an argument
like (4.65)-(4.66) to obtain
lg4,,, — g4,n—1‘ éK(Atc + |Cn — Cn—ll + ‘En — En_ll)

(4.93)
=K At (1+|d.L" 7Y +|dé" 7).
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Then

-1

T = go (g4,n{", {"H - §n>

- i l n+1 n _}_ n+l __ on n+l__ ¢n
= § (gl g+ -3 =) -0
(4.94)
11 n+1y2 N 2
=5 Z (g4,n’ ({ ) _({ ) >_§ Z <g4,ndt{na dt£n>(Atc‘)
n=0 n=0

=Ts7+ T3s.
Summing T3, by parts, we have
1 1
T3 = 5(g4,t—1, - ‘2’<g4,o, %%

-1
3 21 (84,0 — 8an—1, ({")2>E T30+ Tao+ Tay,

|Tso| =K' P=KIEIP+eld'I13
| Tuol =K II2°13,

-1
ITal=K ¥ (1+]dg" |+ |de" ™, @) At
(4.95) " »
=K L (VALK Y " (e ) A
-1
=K L (1+d" el A
=2
I Tss| =K L (did", did")Ar) + K =7 =4

-2
=K ZO!\dri"lllldtf"lll(Atc)z+K||£’||||{'||1+KII{'_1I|||£'_1I|1

-2
=K T ldg" @ h™ + KNP+ Klg I + el +elle I

39

We note that we would like to have avoided the evaluation of g on ¢" by summing
all of S5 by parts at once. This does not work, since the analogue of T3¢ in T3¢ becomes
a term of the form Y., (d,¢" 7", ¢") At,, which demands a bound on ||d,.¢""|l;. We
would also like to have replaced C by C* in S, but this would prematurely introduce
absolute values into the argument (4.94)-(4.95) and cause the summation by parts to

fail. We collect terms in (4.84) through (4.95) to see that

-1
ISs1= K (Ellrear)@e)’+ K L (1+]dg" e)le" | At

-2
(4.96) +K ¥ |dd" P h T+ KICIP+ KR
n=0

+eld IR+ el R+ KNI
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We note that the evaluations of g on C" were confined to 0 =»n =/ —1. By an induction
argument like the one for (4.21), we can show that C", 0=n =[/-1, and ¢ may be
assumed to lie in [—¢, 1+ €]. Then the evaluations of g on these arguments present
no difficulties.

Finally, we analyze S¢ and S together, noting that for At, sufficiently small,

1S5+ 87| =MC" = Clolldeg llo+ z lic "= Ml Nl

-1
=pellsCllollla: £ o+ L pell8*C lllldeg "l = Taz+ Tas,

4.97) i
| Tl = K (A2)"*(18E°No + At Mol Mo

= K (A1) (|ld:&llo+llde L) At
=K(AL) +¢||d. 23 At,,

and, since p. <%/(1—3)=%forn =2,

& 1 2an 24n n
ITuls £ (=€) U5+l gl
n=1 4

=|-- KAL) " —
(4 ¢ ngl (ac) ar L2, e oY
+ ALl + g™ )| - "

1 il 12|76 n-1 n
@98 s(z-¢) I [k +dig" | lldid "l A

4 n=1 ot llL2n=1,m+ 1Y)

1 -1 nin2
+(37¢) L eI an
n=1

. 1/1 -1 e
=K@y AL’ +=(=—¢) T IId:L" M5 At
2\4 et

2(2-0) T "Il ave
2 4 n=1
Noting that

e %= lded ™71 + Az [B(C*") = b(C*" HIVAL" T, VdiL" ™)

=|ldg" -1+ KIC™ = C* M=V P At

(4.99) _ e n—
=lldd" Mazill+ K Ate(dié™ =+ lded" )]
=|d " 2o+ K At (1+]|deg™ )],

we have

o 371 _
| Tas] §K("C||H2<H‘))(Atc)2+5(Z—€>|||dz§1 71 Az
1/1 o2
(4.100) +§(Z—-e)ll|d,{ I2 At

1 -2 " "
+2(5-e) % "I Ar[1+ K Ar(1+]did "))
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Thus,

. 3 -
[Set So1= K (el (Bao+ (3 - )l s A,

2
(4.101) ) 12
+(5“ ) T g™l Arel1+ K Ate(1+]did" =)

We note that the linearly extrapolated initial guess was essential here, since the factor
(At.)*? in the argument (4.98) could not be replaced by At,.

Combining (4.56), (4.57), (4.58), (4.68), (4.83), (4.96), and (4.101), we have
shown that

1 -1 1 -1
= ¥ e a AL +5 T e Bl 15w
2 n=0 2 n=0
= K (lellerany, lellwaw=, lellwaways Iplezer, Bleeway)h®
+ K (lcll =y, el warz+o), ol e, lelmtawz)h™®

+ K (lell=cways lellwaa=), lelaza, lellwawa, IEl 2@ (At)?

+ K (|61l =weors 1Bl weoier) (At9)? + K (€]l 2w IBllerzcery) (At )*

1 \=2 . 3 _
+(3-¢) T "l Ar[1+K Atc(1+]dg oo+ (5 el I A
-1
(4.102) +K (el waw=, el wawy) Z_:l (L+{lde " Mol I1T At
. . k-1 2
+ K (€l Lecway, 1Bl ewa)) 2_1 &mll* Aty

-2 k—1 _ .
+K ZO ld:"IP (AL 2R + K (léllowa) 2—1 P — Poull2,. Aty

+elld'IF+ el IR+ KNP + K el eewalie P
+ K (||l ww)ll("ll? + K (¢l Leway)|Po— f’o"zzzo Atg
=Kh> +h* + (AL’ + (A0 +(A,)Y+ A1+ A+ -+ + Ay,

with the appropriate modification if r = s = 2.

Our next step is to modify the left-hand side of (4.102), intending to obtain a
collapsing sum in a norm equivalent to the H L_norm. To add L? terms to the sum,
we note that

e =l ="+ =M
(4103) — ({n+1_{n’ £n+l__{n)+2({n, {n+1_{n)
=|d:L"IP(AL) +2(L", diL™) At

Summing this from n =0 to n = [ —1 we obtain, for At sufficiently small,
-1
I == £ e 1P ~le" 1)
-1 2 -1 2 -1 2
(4.104) =At L Idg"IFArc+e ¥ AL A +K EE7 AL

§8(A1 +‘A2)+A3 +A11.
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This also shows that
(4.105) Aog=e(A1+A2)+A3+Aq,

and by summing from n =0 to n =[—2 we can similarly estimate A;o. To make the
sum collapse, we must replace [|{"[|3» by [|¢"||3--1. An index perturbation argument of
the form of (4.99) shows that

(4.106) e lon =l on—r = K Ate(1+1lded™ =)™ 15,
so that

-1
(4.107) Z el =Ne"E-) = As.

Adding (4.104) and (4.107) to both sides of (4.102), we have a sum collapsing in the
norm (|¢"|* +||¢"||3+-1)*/?, which is equivalent to the H'-norm.
Next, we make the induction hypothesis that

-2
(4.108) Y dg % Az, = K (™ + 1% +(AL)?),
n=0

with the appropriate modification if r =s =2. For [ =1 this is vacuous, and we will
demonstrate at the end of the argument that it holds if summed through n =7-1. As
a consequence, we have, for A sufficiently small,

-2 -2
L lldg" o= At =Koh™ e ¥ [ldig"]

1/2

s (Fpac)
1-2 1/2
(4.109) =Koh™! Atc[(l -1) ,.go ld.¢ "||2]

-2 1/2
=Koh'TY 2[ Y lld.e" I Atc] =Kh ' (h" +h°+AL)
n=0

<eEg,

since Af, =o(h). If r=s =2, we have an extra term of the form & ~'(h’|log h|), which
is still small. Thus, in particular,

(4.110) At (1 +]d L o) <e, O0=n=I-2,
-1

(4.111) T (L+|ded" M=) A =K.
n=1

We now estimate most of the terms A; through A;,. By (4.110), A; hides on
the left-hand side of (4.102). A, hides at once. A; and A, will disappear when the
discrete Gronwall lemma is applied in the H !_norm, at the cost of allowing the other
constants to depend on |lc[wai=), €l wiwz), and ||B]lz=ws). As hides since At.h ™' =
0(1). Ag is estimated below. A; and Ag hide in the collapsing H' sum. Ag and A
were handled in (4.105). A;; and A, are estimated by (3.19) and (3.20), respectively.
We note that the treatment of A; depended on (4.111), which in turn depended on
our ability to estimate d,Z, which we could not do in Theorem 4.1. The estimate for
d.¢ also enabled us to perturb the norm in (4.99) without losing a factor of the form
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b*/b,, which would have demanded a norm reduction p. of order b,/b*. We will
also be able to avoid a factor of a,/a* in p, by using the d,{ estimate to perturb the
an,-norms. Thus we achieve stability for the method with a number of iterations per
time step which is both fixed and small.

It remains to estimate A, which will require the a,,-norm perturbation. Using
(4.108), we see that for r=3 or s =3,

ldig "o At =[||d.L |7 =(AL)*]?
-2 1/2
s[ X b liea?]

(4.112) 12 1/2
éKoh_l(Atc)m[ Y |ds"I? Atc]
n=0

sKh ' (A)YX (W +h+AL), 0=n=I[-2,
so that for 1= =k —2, since At, = O((A%.)"/?),

ld il Aty = = Lill== X g™t ="

A, .
A, (max|[did" = Ar)

tC m=m

=

(4.113) g-ﬁ—f‘lKh"‘(Atc)”z(h,+hs +At,)

=Kh Yh,+h*+At)
<eg

for h sufficiently small. A trivial modification of (4.112)—(4.113) handles the case
r=s=2. Similarly,

Aty
At,

(4.114) IdeLollc> Are =—LKh ' (At.)*(h" +h* +At) <e.

Then for 2=m =k — 1, we have the norm perturbation
-1l = Mm-illz._, + [a(CE) = a(Ch-1 )V Nm-1, V1)
= m-1llz_, + KlICn = Cnalle=l VI
(4.115) = [l [1+ K Aty (Idim-alle=+didim-1]le=)]
=[m-1lla L1+ K Atp(1+[ldeimal|)]
=lmm-il,.-.(1+¢)

by (4.113), for At, sufficiently small. A slight extension of this calculation shows that,
for3=m=k—1,

(4.116) 1m -2l = 12z, (1 + ).
Using (4.114), we obtain
Imollz, = lInollze(1 + &),

(4.117)
“"70"31 = "770"20(1 + 8)'
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We now bound Ag. Considering m =1 first, we have
(4.118) Py~ Pillz, = (05) 18P0z, = K (At5) 8Pl

and we proceed exactly as in (4.29) to obtain the proper bound. Since

p'<——1——/(1— L )— 1 form=2
’ T3+45 3+v5) 2445 -

1P = Prull2,. = (0) 8% Prn il

1 ~
=)l K1

1
o et L L B e
A

1 2 2 2
= _—’E>( mam+2 m— am+ m—2llam
(5272 e) Ul 2l o)

+K (A1)

L% (tm—2,tm :H )

(4.119)

2~2

o°p

+K(At,,) Py

=(:27

+K (At,)?

L*(tm—2,tm:H")

<) Ut 2+l

a’ﬁl
2 )
O N L2ty st s Y

if we use (4.115), (4.116), and (4.117), as (a+b+c+d)*=4(a’+b>+c*>+d”). We
are now in exactly the position of (4.33), and we argue as in Theorem 4.1 to find that

2

(4.120) A=K (h* + (A1) + A,
Combining (4.102) with the analysis of A; through A;,, we have shown

-1
ZO lldeg ™I At + 1117 = K (el waw=, 1€l waoway [Bllz=mw)
e

*[K (el e, lpll 2 >
(4.121) + K (lell = el waowa Iplle e, el ovz)h>
+ K (el zoway, el 1l e (Ae)?
+ K (Il waar) (A1) + K (1Bl 2 (A5)*),
with a term of the form K (h*| log h|?) if r = s = 2. With the time step choices

| 2/3
AL z( ||f||H2(H‘)) (AL,
151wty

At z(||5||H2(H‘))1/2(At )2
P Bl ez “

we obtain the desired result (4.55), assuming that the chosen norms dominate.

(4.122)
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Finally, we check the induction hypotheses (4.21) and (4.108). We verify (4.21)
exactly as in Corollary 4.2, requiring the hypothesis At. =o(h). Next, (4.108) is
immediately checked by (4.121) and (4.122), and the proof is complete.

The regularity assumptions c e L°(H"), ac/ate L*(H"), pe L*(H®), and dp/dte
L*(H*) of Theorem 4.3 do not balance if time differentiation is considered equivalent
to two space differentiations. For this reason, we would like to weaken the assumptions
on the time derivatives to dc/at € L*(H"™") and ap/at € L*(H*™"). The next result shows
that, under certain hypotheses, we can do this and obtain a work estimate intermediate
to those of Corollary 4.2 and Theorem 4.3.

COROLLARY 4.4. Let the hypotheses of Theorem 4.3 hold, weakened by requiring
ac/ate L*(H™™Y), ap/ot e L*(H*™"), and strengthened by assuming that both r=3 and
s=3,Q0isH 3-regular, and p. = O(h) for n 2. Then, for h sufficiently small,

sup |[C" —c"||=Kio(h"+h° + At,),

(4.123)
sup |[C" —c" i =Kio(h" ' +h* 1+ AL).

Proof. We combine our earlier results. The proof of Theorem 4.1, as modified
in Corollary 4.2, goes through up to (4.26), where we have

IT5| =K (o) 6CYI5 + £l I3
(4.124) =K (pu)* (1815 +1182°115) + e li¢ I3
=K (At +Kh|d O At + el 115+ el 2o At
since p. = O(h), and

Tl 5 (08 CrlEg+lle I av)

1-1 ’ o 1
=Ko T (%" l+llos" I+ llee" Il 5

-1 -1
(4.125) + X ™ Na A+ At T g™ Han At
. At.)’ i1 At)? n
< Klelfun G+ K1 T IS+ S 1 av
Ate n=0 Atc n=1

-1
+e Z "{'H-l"%"Atc’
n=1
so that

-1
S+ Sr1 =K (1ellsarn)(@r)” + K> 3 Jldg" I Are
(4.126) I "
K T et TN At + el 3.

Hiding the £ terms, we obtain the estimate (4.28) with the additional term
-1

(4.127) To=Kh®> ¥ |ldi"l2 At
n=0

on the right-hand side, and with new dependence in the coefficient of (Atc)z.
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With r—1 and s —1 playing the roles of r and s, we see that all hypotheses of
Theorem 4.3 are satisfied. Examination of the proof of Theorem 4.3 shows that the
logarithm in the final result for the case r —1 =5 —1 =2 appears only in (4.75), which
does not require ac/dte L>(H") or dp/dt € L*(H*). Thus we may apply Theorem 4.3
and obtain from (4.121) the estimate

(4.128) To=Kh*(h* 2+ h>* 2+ (At)H =K (W* + 1> + (AL)D).

Theorem 4.3 also gives us the bound ||| =K (h* >+ h* ?+(At.)?), which suffices
to prove our H' result. From here, the argument of Theorem 4.1 carries through,
except that A, of (4.28) must be estimated by the argument for A¢ of (4.102) in
Theorem 4.3.

A special case of important physical interest occurs when b = b(x) is independent
of both the concentration and the pressure gradient. A glance at (3.2) and (3.3) reveals
that this causes the matrix L"(k, ) to be independent of the time step n. Thus we
can suppress the concentration iterative procedure and replace it with a factorization
of ®+ At.B, done only once, together with a simple backsolve at each time step. We
get results corresponding to Corollary 4.2, Theorem 4.3, and Corollary 4.4.

COROLLARY 4.5. Suppose that b = b(x), (Ry) holds, c € L*(W2), and p € L*(H*).
If r=3, assume also that Q is H>-regular. Suppose that the relations (4.51) and (4.52)
hold, and that we achieve norm reductions of the form

pp=0(Ar)"?), m=1,

1 )1/2<a*)1/2
L < - =1, mz=2.
or <8+4~/5 a*

Then for h sufficiently small,

(4.129)

Kg(h"+h°+At,), r=3ors=3,

4.130 cr—c"|+hicm - el =
(@130 sup (" = I+ RICT == onog v an),  r=s=2.

If also (R3) holds, then without the assumption of H?-regularity and with the norm
reduction

(4.131) Pp =6, <3 \/ m=2,
where 8, is independent of m, we obtain
wple? e A TR
@132 Kg(hr_1+hs+ACt’) r=3 or;23
S“P"C"—C""é{Kg(h]lothAtcc , r;s=2 -

If we weaken (R3) to reqmre ac/ate L*(H™™Y) and ap/ote L*(H*™") instead of dc/ote
L*(H") and op/ot e L*(H®), then by demanding H -regularzty and bothr=z3 and s =3,
we can obtain

sup |[C" —c"|=Kio(h"+h° +At,),

(4.133) L .
sup |C" —c"|i=Ko(h"™ +h° +AL).
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We now consider the use of the more efficient test function y = ¢"*' —¢" = At.d "
for the case b = b(x, ¢, Vp), aiming for an improvement on the asymptotic work estimate
for Theorem 4.1. As in Theorem 4.3, we need a bit more regularity, though not as
much as in Theorem 4.3. Some other hypotheses will also have to be strengthened.
As before, we will have to use summation by parts in time to avoid the term ||d.{|;,
and the new dependence of » on Vp will cause some discrete time derivatives to
appear which did not occur in Theorem 4.3. One of these, ||d,(Vp — EVp)|, will be
estimated by O(At,) instead of O((Atp)z), and so we will need At, = O(At,) instead of
At, = O((Atc)l/ %). Careful analysis will show, however, that A¢, can still be a large
constant multiple of Az,. Another term, ||d,Vn||, will force us to consider the difference
|d. V(P — P)|,, which will fail to provide us with a factor of At,. Because of this, we will
have to require p, = O(At,). In relation to Theorem 4.1, the result will be that we
transfer the poor iteration count from the concentration to the pressure, which is not
computed as often, and that the fixed concentration iteration count will be independent
of variations of the coefficients. Thus the asymptotic work estimate is reduced by a
factor of At,/At.. Since At, is smaller in this result than in Theorem 4.1, it is unclear
which result gives the better work estimate for practical computations. As in Theorem
4.3, the test function y = ¢"*' —¢" will yield a better H' error estimate.

As by-products of the altered assumptions above, the connections between the
space and time discretizations will be weakened somewhat, the stronger starting
estimate (3.21) is needed, and the initial time steps will be slightly different. The first
pressure and concentration time steps, denoted by Atg and Af2, will coincide and be
of order O((At,,)z), and the second concentration step will also be Af2. The obvious
modifications of (2.37) will apply. For economy of notation, we will often write
expressions such as

-1
L " P A,
when we actually mean
1 -1
L I A+ Y g A,
where also d.¢" = (1/At) ("' = ¢") for n=0or 1.
THEOREM 4.6. Suppose that (3.21) holds, the above modifications to the initial

time steps are made, b =b(x,c,Vp), (Re) holds, and s=3. Let the space and time
discretizations satisfy the relation

(4.134) At, =o(h),

and assume that the pressure and concentration time steps are related by

(4.135) A2 =Af)=0((At,)%),  At,=O0(D At,),
where
(4.136) D= ”C~HH2(H‘)

Blzay
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If we achieve norm reductions of the form

pe <t n=1,
[ <3 nz2,
@137 po=0(A)"),  m=1,
pp = O(At), m=2,

where 8, is independent of n then, for h sufficiently small,

sup |C"—c"|=Ku(h"+h* +Ar),
(4.138) "
sup |[C" —c"li=Ku(h" ' +h" "+ Ar).

Proof. We follow the proof of Theorem 4.3, making changes and additions where
necessary. The dependence of b on Vp changes (4.56)-(4.57) to

1 ny 2 | ny2

=% ldg" Az += X 2" o=l )
2n=0 2n=0

(4.139)

§S1+52+S3+S4+S5+S(,+S7,

where the definitions of the weighted norms have been modified to include the
dependence of b on Vp, and where S3 and S7 have been changed to

-1
Sy= Y ([b(c"*, Vp"™)—b(C*", EVP" IV, VdL™) At
n=0
(4.140) 1-1
S;=Y (b(C*',EVP"HV(C"' = C"), Vd") At..
n=0

We collect in one place the induction hypotheses which the analysis will require.
We assume (4.21), (4.108) with s —1 replacing s, and

-2
(4.141) zo Idil™ || AL, < e,
(4.142) IEnlP=K(RY +h* 2+ (A1), O0=m=k-1,
k-2
(4.143) Y | d:Vnml? At, =K (B> +h> 2+ (AL)%),
m=0

where the constants have the same dependences as K, to be determined later. For
=1, we check (4.21) as in Theorems 4.1 and 4.3. Except for (4.142), the others are
vacuous. We immediately check (4.142) from (3.19). At the end of the argument, we
will verify (4.108) and (4.141) for the next value of , and if t' = 1, we will check the
others for the next value of k.
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Next, we obtain new bounds for Ss;. We write

-1
Sy=Y ([b(c"™, Vp"*)=b(c", Vp " HIVE", Vd ™) At,
n=0

l
+

1
([b(c", VP ) =b(E", Vp" HIVE ™, VdL") At

0

™M

n

-1

+ 2_:0 (bE", Vp" ™) —b(C*", Vp" IV, Vd L") At
-1

(4.144) + Y ([(B(C*, Vp™ T —b(C*", V" IVE", Vd L") At

n=0
-1

+ ¥ ([b(C*", V" —b(C*", EVF" V&, Vd ™) At,
n=0

-1
+ ¥ ([b(C*", EVp"TY)—b(C*", EVP"T)IVE™, Vd ™) At,
0

ET1+T2+T3+T4+T5+T6.

For reasons noted earlier, we sum each term by parts in time. The terms T}, T>,
and T3 are similar to S; of Theorem 4.3. An analogous argument, with extra terms
coming from time differences on Vp, leads to the estimate

|Ty+ o+ T3| =K (lclle @) h®” + K (el 2z (At)?
-1
(4.145) K L (14" "R Are

+ K¢+ KON+ el R

The arguments for the other three terms have a similar but slightly different form.
We sum T}, by parts in time and obtain

Ty=([b(C* ', Vp" —b(C* 7, VpHIVE, V¢
—([b(C*°,Vp!)—b(C*°, VpHIVE', V¢0)

-1
(4.146) = L (e, p = b(C*, v THIvE
~[b(C*" ™, Vp") = b(C*" 71, Vp™)IVE", V™)
=T+ Tg— To.
Then
|T7| = K|Vo'lIVE |~V | = K (Ipll o) h ™ 2+ eI I13,
|Ts|=Kh> 2+ KO3,
=1
To= Y ((b(C*",Vp"™)—b(C*", V5" ")IVd,E", V™) At,
n=1
-1
+ Y ({[b(C*", Vp" Y —b(C*", V5" )]
=1
(4.147)

—[b(C**, Vp")—b(C*", VF")I}VE™, V™)
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-1 .
+ ;1 {[6(C*",Vp™)—b(C*",Vp")]

—[b(C*" L, Vp™)—b(C*" 7, V" IVE", VL)
=T+ T11+ Ty,

-1 -1
Tl =K % IV IV oAV At =K (plar)h™ 4K L 7P A

To analyze T4, and T,, we set

1
bon= fv-l’;<0*",an"*‘+<1—a)Vﬁ"+l) de,
(4.148) ° ,
d n n ~n
b4,,,=J‘0 ﬁ(c* ,aVp"+(1—-a)Vp") da,

and by an argument of the form of (4.65)-(4.66), we see that

b n -
1bs.n=beal S K{552) (V™| + V5" A,

aVp*
(4.149) 2
0
- < xn _ ~xn—1 < ~n—1 n—1
|ban—bani]|= acavp)‘c C* =K (dé" Y +]de" ) At
Then
-1
Ti=Y ((03,V0"" —b,,V0"IV¢", V™)
n=1
-1 -1
=Y (b3,9d,0"V¢", V") At + Y, ([b3n—b4,n]VO"VE", VL)
n=1 n=1
=Tiz+ T1a,
-1
|Tisl=K g IVd.6"IVe™|=lIVe™| At
2s—2 i 2
=K(pllar @ )h” " +K z_:l g™ It At,
-1
| T4 = Zl (IVdp"[le=+Vdp" =) Atc|VO"IIVE™ ||V "l
(4.150)

-1
=K (lpllcza)h* >+ K Z_:l ™17 At
-1 .
T12 = 21 ([b4,n - b3,n—1]vanvcn9 Vgn)’
-1
Tl =K z (Idc" = +lldg" =) Ar[Vo" IV E™ =V £"|
o n—1 n|2
SK 'Y (+lag lemver P ac
& n-1 n)2
+T A R A

-1
=K(lple=ar)h®*+K ¥ (1+dd" e=)le" A,
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by (4.141). Thus,
-1
4151 T =K (ollar)h™ 7+ K L (1+dg" Il [Far + el IF+ K.

Next, we handle T’ similarly, with j, Ep, and p — Ep playing the roles of p, p,
and 6, respectively. This yields the analogues

IT5|=K|Vp' - EVH'|||Vé =V )
=K (AL +elll']3,
ITs|=K A2+ K3,

-1
ITh|=K ¥ V5" = EVE" M IVdi ||~V " | At

-1
=KL +K Y |"RAt,
(4.152) n

-1

IThs|=K T 1d(V5" = EVE"IINE" |V ¢ |lAc

-1
=K|\d.(Vp' ~EVF A +K ¥ |d(V5" ~EV5" A

t">t,
-1 n I Atc -1 5
+K 3 V5" ~EVF A ) +K £ "lRae
n= D n=

"=ty
k-1 ’
+K 2_2 ”(m”lAtp
EF] +F2+F3+G,

where the term F; has At replaced by Af° since n = 1. To bound F;, we note that
EVp'=Vp",
EVp*=2Vp'-Vp°, sincer*—t'=1'—1"=As,

(4.153)  d,(EVp"H= 1t0(2v51—2vls°)=2d,v;s°,
d,(Vp'—EVpY ) =d,Vp' —d(EVp")=d,Vp'—2d,Vp°,
Fi=KAt. =K (At,)?,

since At¢ = O((At,)%). In F, let t" = t,, + v(At,), 1=v <j. Then

EVp" = (1 +’—f>v,3,,, Ui,
] ]

Evﬁn+l=(l+y+1)Vﬁm—V+1

]. Vﬁm—la

d,(EVp")=

1/1 1 1
=V ~m -=V ~m—- ) = ~m - ~m—~ = ~m—
Atc(j D= VP Atp(Vza Vbm-1)=dVpm-1,

(4.154)  d,(Vp" —EVp")=d.Vp" —d:Vpp-1,
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I, (V5" ~ BV = K

-1

F,=K Y.
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82p 2
aJ

L*(tm—1.tm+1:H
2

At,,

L*(tm—1,t"* 1 HY)
2

At,At,

At,
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2 (32) a0t = K ) 1)
L2 (tm—1,tm+13H )

In F3, we have

Evﬁn = 2Vﬁm-—l —Vﬁm~2’

Ev~n+1 (1+ )me__vpm 1,

o 1 . . . .
d,(EV5") = At[ Vb me-1)+<me—2me_1+me_2)]
=szI5m—1+(AAt;) d2 DPm—1,
(4.155) (At )
d/(Vp" —EVE") = (d, V5" —d,Vpm_1)— A" d?Vp_1,
ld. (V5" — EVp™)|P = At,
L2(tm 1, t"+l JH )
(Atp) 9 Pu —1
+ — At R
(Ar)? L2<tm_z,tm;H‘>( 2
At,) At. .
Fy=K(A, Cy: )Atc( ) S K (Bl 85
(At.)’ b
Thus
-1
(4.156) T3 =K (Blerar)(B6)° + K 3 18" 1Az.
Next,

-1
ITul=K L (1d.V5" L=+ dEVE" =) AL|VE" — EVE" V™ [l~lV "
(4.157)

-1
=K L (1+ ldEVE"|2=)|V5" — EVS" At +G.

We recall that

vp! EVﬁ‘]I2<K“ ] (AR =K (At,)*,
(4.158) Stll=ary
. .
uv;s"—EVﬁ"lFéKIf"'—’; (A fornz2.
Ot N L2,y HY

To bound ||d.EVp"||;~, we consider the cases n =1, t">1,, and 1" =1, and use the
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formulas found in (4.153) through (4.155). We have
ld.EVE |~ =2lld V5 =K,
ldEVE oo =dVm-sl==K, — t">tm,

(At,)?
At,

§K+K(

Putting these bounds together, we have

At,
At,

for At. sufficiently small. Next,

(4.159)

|d.EVp"||L~=K + ”d?Vﬁm—llle

op

at

)25
Lowdy/ At

-1
(4.160) IThel S K{$2)46) + G =6 (Mt + K L ll¢" I,

1-1
IT2|=K gl (Idee” Mo+ ded " =) AteV5" — EVF* V" |V ™|
s 2 ! 12 2
(4.161) =K 21 V6" —EVp"|*At. +K 21 (1 +{|dg" =)l 7 AL

-1
se(Ar)’+K L+ g™ Z=)lIe " 1A,
using (4.158). Collecting, we see that
|Ts|= K (|l 2 (A2,)* + € (AL,)* + K (A£0)?

-1 k-1
(4.162) tK L (1+1d" i A+ KL mliAr

+elt'IE+ K¢l

53

Finally, we perform the same argument for T, with Ep, EP, and En replacing

p, D, and 6, respectively. We obtain
1751 = KIEVA [IVE =V = K IVl + [V mic—2l) + £ ¢ I,
|IT% | = KIIVnol® + KNI = K (el coar)h® + KNI,

by (4.8), (3.19), and (3.20). Also,

-1
ITi|=K ;1 IEV" IVdi ||V ¢ " AL
i 2 2 -
=K El (V7] + IV 7 —1[IP) AL + K gl ll¢"lr Az
k-1 ) =1
SK T [FnalPan+K T

-1
T |=K 5;1 e (EVn™)IIVE™ | L=V AL
(4.163) " .
=¢e|d.(EV"IPAL +& ¥ ||d.(EVn™)|PAL,
n=2

t">t,
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ve % IEInPA5E) +Kploows) T e
=

k=1
+ K (|BllLowy) Z=2 igmlRAt,

EH1+H2+H3+G.

The dependence of G on || [i]l Lo(wl) is required here because the ¢ terms will lead to
a sum of the form € Z,,, % ld:V |’ At,, which will later be partly bounded by

8("P||L°°(wm>) Z

% |l degm|PAt,. We must choose & small enough to hide this term on

the left-hand side of (4.139). We now have
d.(EVn")=2d,Yn,,
H: = s||d,Vno||2At2,
d.(EVn")=d,Vm-1, t" >t

-1 k-2
HySe 3 ld:VrmilPAt.=e Y |d.Vn.l A,
n= m=0

(4.164) d(EVn")=d,Vnm_1+

H;=¢ Z (

(Atp)

dvml

At
= d'vnm"l +A—tg(dtVnM—1 - dtvnm—Z)’ "= tms

At At
) (1 P+ 1T P00 25)

14

Next,

(4.165)

k=2
=e ¥ ld: V0l A,

k-2 -1 k—1
Thise 3 MVn,Pa,+K T 1CFA+E 3 Kl

-1
4|=K L (Ide(EVE™)lo+de (EVP™)|l=)ALe[|[EVR "IV ™| V¢"

-1
=K gl (Id: (EVE™)l|l=+|d:(EVn" L= EVn"|||IV¢" | AL,
=e(1+|d(EVn)Z=)|IVnol*Ar2

-1
te L (A +HIdEIn L) (00l + 19701 Are
"
-1 At 2 ) Atc
ve 2 ((£2) +1ETn ) TP 4197 P00 o)
n=2 \\At Ar,

"=t

-1 k—1
+ K (Ipll Low)) 21 " FAL + K (| ]l =cw ) E_:z I¢mli AL

=1+1+7:+G,
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where we have used (4.159) and have chosen ¢ to cancel the effect of ||p||L>w2). We
find that

Ji=e(1+[|d: Vol z=)IVnol*At?
=e|Vnol*Atl + eh™?|ld, VoIV nol* At2,

-1
Jo=e ¥ (LAY a0Vl + [V -1 At

k-1 k=1
e ¥ [Vnal*At+en™ L Id: VAPV Rl + 1V 70m—1[*) At

m=0
(4.166)
k1T AL 2 2 At,)\? 2 2
nse 3 |(32) +1dVamoilie+(5E) 1Tl +1d, Y rmoal)
m=2 t. Atc
At,
AV AP + 9P A 5
tp
k=2 2 2 k22 2 2
=e Z_OHVan At, +¢eh 2—1 Wd: V1l +ld: VN -1ll9)
IVl + IV 1) At
Thus
k—2
IThal=en™ L 1AV nmlP (Nt + 190 + 19 70-11)Arp
k-1 s 3 =1
(4.167) +e Z_0||V"Im|| At, + K (|pll Lecw ) 2_:1 ll¢" Az
o kot 2
+K (|8l L=way) 2;2 mllTAL,.
Next,
-1
T |=K gl (IdE™ e+ de " =) AL BV "™ V"
il n)|2 o n—1)2 2
(4.168) =K gl IEVn"|*At. + K ;l (L+|ldd"lz=)lIz" 1At

k—1 -1
=K ¥ IValfa,+K L (1+]de" =) fAce.
Collecting terms, we have
-1
| Tl = K (lelle=m)h® + K L+ g Iz=)l¢ " [F Az
k—1 iz k-1 2 k—2 5
+K 2_2 i ”1Atp+K Z——o "V"lm” At,+e Z_Olldtvnm" At,

(4.169) o
teh™ L 1Vl (V19 0]+ [V 71V AGy

+ el + KN + KV il + K[V mie—all.

Collecting the estimates of T through T, we have a revised bound for S;.
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The term S, from Theorem 4.3 is unchanged, but we use a different bound for
the term T, arising in the analysis of S, since we have nothing to gain by integrating
by parts. We write, using the form of «,

-1
Tio= ¥ ([u(c™™, Vp" ) ~u(c"™, Vp" )] VE"', d{ ™)AL,
n=0

-1
- z (a(Cn+1)V0n+l'V€n+1, d,{n)Atc,
n=0
(4.170) .
ITwl=K X Vo™ HlIve™ lle=lldi " |lAs,

-1
S K(plzardh™ 2 +e T lldd It

This simpler estimate imposes fewer regularity requirements than the one in Theorem
4.3. This leads, subject to the induction hypothesis (4.21), to a revised estimate for S,.
Next, we note that the new weighted norm definitions are such that

-1 _
(4.171) ISs+ S| = 2_)0 et =C lalldg ™l
still holds. For n =0 the time step AR = O((Atp)z) enables us to write, noting p. <
GFE/1-%) =3,
llc* = EMllollldit °llo = p ENSC Mol *llo

= G- &) I8¢ N0+ Arllldeg Mol Mo
(4.172) =@-e)lld lisaee + KlldiL lloAte

= G- ol IoAL2 + K AL +ellldig lpAL2

= G- e)lldL°MoAL + K (el wa ) (A,).

For n = 1, the analysis of (4.98)-(4.100) must be modified to handle the dependence
of b on Vp in the analogue of (4.99). This can be done by an argument of the form
of (4.178) below. The estimate of S¢+ S7 in Theorem 4.3 is then unchanged, save for
the addition of the term K (|¢]lw i) (A2,)°.

Combining the new estimates of S; through S;, we have

-1 N 1 -1 n N
L Il A +3 & g™ =l

N | =

= K (leller e, lellwiow, 1Pl et awdy, | Blleewi)h®
h2s—2

+ K (|l wowdy, 1Pl a, Ipllwiowsy, | Bllwiwd)
+ K (lel a2y, lelwiasy, 1l wiowiy, Ilazay, |platem)(At)?

+ K (|6l wiwiy 1Bl ) (B> + A+ A

-1
+K (lellwiowi 1Bl wiwiy lpllwiowiy) Zl (1 +[ld" =)l "R AL
(4.173) i
+ K (|éllLecwiy, | Bllwiowsy) 2_22 g™ I3 AL
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+A5+A6+A7+A8+A9+A10+A11 +A12

k-1 k-2
K (elwiows) T [Vmnlfay+e L 4 nnlPar,
m= m=

k—2
+eh -2 ZO lldtvnmllz(llv"]m+1l|2 + ||V'flm||2 + "Vnm——lllz)AtP

+ K (|él w1l + K (Il ocw i)V el
=Kh*> +h> 7+ (At +(AL) )+ A1+ Az + -+ Ayqg,

where the unwritten A’s are as in Theorem 4.3.

We proceed as in Theorem 4.3 to form a collapsing H' sum on the left-hand
side of (4.173). The only alteration needed is in the index perturbation (4.106), where
the weighted norm definition has changed. We note first that, from the induction
hypothesis (4.143) and the assumption that At = o(h), we can make an argument of
the form (4.108)—-(4.109) to obtain

k-2
(4.174) ) . |V nmll=At, =&,
which at once yields
(4.175) z I sl =t = z T mlie( ,)AtCSe

Now we see that

-1 -1
E (g le—Ne"lE- = ¥ (6(C*", EVP™)=b(C*", EVPMIVE", V")

(4.176) + lil ((b(C*", EVP™)—b(C*" ', EVP")IV", V™)
n=1

=B, + B,.

We bound B; in a manner analogous to (4.99). To handle B;, we write
-1

(4.177) |Bi|=K gl (IdEVE"|| >+ |dEVn"|=)¢"|;At. = B3+ Ba.

By (4.159),

A
B=K T WRa+K 3 I(32)an

t >t,,. t —tm

-1 2 k-1 5
=K ¥ [¢"FiA+K T [lgaliAg,

n=1 m=1
=SA3+A,,

-1
@178)  Bi=K 3 ldVnm-le=le"ias

t" >t

KT (T m e+l m ) ) I
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s ny|2
=K Z_;l 2V -1l =l " [ AL
-1 9
+K Z_l(Ilsz'flm—luL‘”+"sz’fIm—2||L°°)"Zm||1Npa

using (4.164). By (4.174) and (4.175), these terms may be considered as part of As
and A, when the discrete Gronwall lemma is applied.

The argument proceeds unchanged through (4.111), up to the bound for As.
Instead of estimating Ag itself, we will bound the larger sum

k-1 _ 1
(4.179)  AZ=(88)7" T I1Pn—Pulle,bty + (A1) T 1P = Pulle,Alp.

This wil_l be crucial in the bound for A4, and also will give us a better bound for
V(P — P)|.. For m =0, the starting estimate (3.21) yields

(4.180) (A1) |Po— Pollag = (Af9) " (Kh"At,)* = Kh™".
For m =1, since p, = O((A2)"?), we have
(Atp "Pl P1"a1 = (Atp) (pp)2”5P0”
= K (|6mollz, +1860l1%,)
(4.181) =K (A1) + K (IVnol? + Va4l

= KA+ K (|l + 1l + k> +|1Py = Pyl%, +1Po— Poll2,)
=K (ALY + K (|6l +|¢:lP) + KR,

where we have used (3.16), (4.8), and (3.21), and where we hide ||P; — Py||Z, for Arp
sufficiently small. For m =2, we set

(4.182) Fou = (A1) 2P = Pl
and we note that, since p, = O(At,),

Foo = (A4,) 2 (0) 1182 Prm—illz.
= K (16" m-1ll2 + 182 Bm—1llz,)

(4.183)

3P
= K{ I3+ 211y ol + B2

=K(At,)(Fp+2Fp_1+Fn_2) +K (lclle=@m)h®

2

L (tym—2.tm ;H‘)>

P

+ K (Iml? +1m -1l +11m - 2||2)+K(Atp)

L2ty 2.t 3 HY)

We are now in the position of (4.33)— (4 36) with R = O((Atp) ), F,, as above, a factor
of (At,)"> on G, and a factor of (At,)* on K, and K;. We can apply Lemma 2.5 to
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see that

k—1 _ k—1
88)7 % 1Pn=Pullc, Aty = T FnAs,

k-1
(4.184) =K (lclro@)h® +K Z_O ImIP AL, + K (1 5ll ez (A5,)*,

and so A¥is bounded by the same estimate.
To complete our estimate, we must bound the new terms A;; through A;;. By
(4.8), we have

k-1 _
A=K Z—o (hzr +"{m”2+"Pm _Pmuim)Atp

(4.185) <K(||C“ N )h27+A +(At )ZA*
= L™(H") 4 p 6

Using (4.142), we also see that, forO=sm=k -1,
RVl = Kh ™20 + |l + 1P = PrallZ,)

SKh 2P+ KW 2+ h> 4 AL)Y) + Kh T 2ALAY,
(4.186) " pAo

k—1
A¥*=KhY +K Y |l¢"|PAL, +K(AL) =K (R +h* 72+ (AL)Y),
m=0

WAV = KB 2+ h>* +h 2 (Ar)) e

for h sufficiently small, since Az, = 0(h). Thus A5 is bounded by A 14, which we handle
below. For A ¢, we have

A=K (lcllc=@n)h® + K|l + K|Pi-1 — Pe-illz,_,
=K ¥ +|&e + At,A¥),

where ||¢._1|* can be bounded by the same technique as Ao and A, in (4.103) through
(4.105). A7 is handled similarly.

To bound A4, we require an a priori estimate of d,Vn,,, which we obtain as
follows. We recall the pressure equation (4.6) at time level ¢, subtract it at #,,_1, and
divide by At, to obtain

(4.187)

(a(Cf:.>Vdmm_1,V¢>=([a(c;‘:,_l)—a(cmwm_l,vwi
+(alen) ~a(CE)Vdifn1, Vo)
+({[a(em) = a(CEN~[a(cn1) ~a(Ch IV, vwi
(4.188) +([a(CEIY(CE —alen)¥(en)]

[a(C% ) y(CE 1)~ alem1)y(cm_1}Vd, vwft—

p

+ @RIV = Po) = B = P )], Vo) 1

+(@(Ch)~a(Ch VP =P ), Vo)z o 0 ENn
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We choose ¢ =dn,-1 as test function, multiply by Az,, and sum from 1 to k-1 to
obtain

(4.189) Z |1l Aty = D1+ Dy + D3+ D4+ Ds+ De.

We estimate D; through Dg in turn.
First, we see that

k—1
Dy =K 2_1 1Cm-1 = Calle=IV N1l IV ey -1l
k—1
=K % (ldCm-1ll2= +dilm-1llZ=)V 1m—1|* Aty

k-1

ve 'S I 2.0
(4.190) " s
=KA 3+ K (lclle@m)h® 2_ . di&m-1ll7=At,

k-1
K 3 -l Ar

k—1 k—1
+KALA¥ 21 dilm-1lli=At, + & 21 detm-1ll%,. Ay,
m= m=

and we need a bound for ¥ 5, Ildz{m—xllimAtp. By (4.108), we know that

Atc +1 Atﬂ
n n dt s
At, At, mzm LR T A, o &

> (At At,,) )
- d("l’,

lddalPAty S 3 ldd" AL
(4.191)
kol 2 ok 2 213 n|2
Y ldim-1li=At, = Koh Zl Idi&m-1lI"At, = Koh ZO lldeg"|I" At
m=1 m= n=

1
ddwm= K;;(Jml {m)=

- Atc)2
‘dtgml - (Atp

X dd"

m=m

=Kh 2(h* +h> 2+ (A)%)

=e,

for h sufficiently small. Then
2 k! 2 2
|IDi|=KA13+eh” +K 2—1 de&m-lL=llm—1lI" Aty
(4.192) o
+eA¥ +e 2—1 It -112,. A,

By (4.191), the discrete Gronwall lemma will handle the third term.
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Next, we write

k—1
DA=K % (6nl-+ DIV iV dirn-i1s
2 k-1 5 k-1 2
(4.193) S K(cloah? +K S [nlty e 3 i, At

k—1
=K(lcllc2@am)h® +Ag+e zllldmm_lllimmp.
=

To bound A;, we set
1

a1=j Z—j<acm+(1—a>cm_o da,
(4.194) 3
a2=j 08 aC% +(1-a)C% 1) da,
o dc

and by an argument of the form of (4.65)-(4.66), we have

82
(4.195) a1~ ) = K{35) 0|+ 1|+ 1]+
Then

k-1
D;= 2—1 ([al(cm —Cm—-1)— az(Cik,, - C;l:t—-l )]Vﬁm—l, Vdmm-1)

k-1
2—1 ([(a1—az)dicm-1+ ax(di(c = C*)m-1)IVPm-1, Vdmm-1)At,,

k—1
IDa=K L (mll+1gmll+ 1l + [EmsDlldicm sV PV et 1] As
(4.196) .
+K L (dénall+lddmsDIVEm-sll=lVdmmillAt,

k—1 k—1
=K (lclla@m)h® +K Z_O||(m||2Afp+K(||ﬁ||L°°(wé,>) Z_1||dr{m—1||2Afp

k—1
+e X "dtnm—lu?zmAtp’
m=1

and we recall that ¢ in (4.163) was chosen sufficiently small so that the fourth term
hides in A;. The argument (4.191) shows that the fourth term may be converted from
a sum on m to a sum on n.

Next, D, is bounded in the same way as D3, using a bound for |Vd||.«. To handle
Ds, we see that

k-1 _ _
‘D5| =K 2—1 ("Pm _Pmnam +"Pm—1 _—Pm—luamq)"thnm—l"
k-1 _ k—1 )
(4.197) =KWAL) " Y Pn—P.liAt+e Y [Vdmm-al At
m=0 m=1

k-1
= A>6k +e Z . “dr"lm—lnimAtp'
me
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This is where the norm reduction p, = O(At,) leading to the estimate of AZ is essential.
Finally, Ds is handled by the analysis of D;, since |[V(Pn—-1—P._1)|* is one of the
terms used to bound ||V7,,_4|].

Combining the estimates of D, through D¢, we have shown that

k-1
(4.198) Au=Kh"+K ¥ |ddm-sli=lm-1l’At, + KAs+eA1+Ad +Ass.
m=1
Assembling (4.173) and the subsequent modifications and estimates, we have
-1
Ll l7Ae +1'13

=K (clle=wi, lellwiw=, lellwawi, Iplwiovs, 1Al wiws)
[K (el a)h® + K (pllata)h ™™
+ K (lell ez, 1llerzcer, [Pl ezar)(At)® + K (15l ez (A8,)°].
With the time step choice

(4.199)

At~ ( ||C~||H2(H1)) At,
||P||H2(H1)

we obtain
-1

(4.200) Y lldd AL + IR = K (B> +R* 7%+ (At),
n=0

which yields the desired result as in Theorem 4.3.
It remains to check the induction hypotheses. The argument for (4.21) is easier,
because (4.184) allows us to replace (4.42) by

(4.201) 1P — Pil2. = K At,(h*" + h** ")+ K (At,)°,
so that (4.43) becomes
VP |ie =2K3+ Kh™(h* + h> 2+ (AL)?)
=4K3

for h sufficiently small, requiring that Az, =o(h). We verify (4.108) as in Theorem
4.3, and (4.142) is immediate. With (4.108) in hand, we can check (4.141) by an
argument of the form of (4.109). To check (4.143), we follow the argument (4.188)
through (4.198) which bounded A4, summing from m =1 to k and dropping the
multiplier . From (4.198), we obtain

(4.202)

k k
L N4V nm-ilPAt, S K3 +@6))+K ¥ lddm-llz=lén-il Aty

(4.203) . .
+K Z_O I&nlPAL, + K 2_1 |dlm-1P AL, + AE + Ay,

where AZ and A;; are now summed through m = k. Since we now have (4.108) at
the advanced time level, we can obtain (4.191) summed through m = k. Then (4.108),
(4.142), and (4.191) handle the summations in (4.203). Finally, we can bound Ag
and A3 by the arguments (4.179) through (4.185), yielding a term of the form
Yk —oll¢™|PAt, which is estimated using (4.142). Thus (4.143) is verified and the proof
is complete.
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We remark that if linear extrapolation is not used in the initial guess for the
pressure iteration, we obtain (4.184) with time truncation term K |05/ 0¢||7 21,(A1,)°,
and this suffices for the rest of the argument. Thus we may use the last pressure as
an initial guess for this theorem.

The time truncation error O(At,) might suggest the use of a first-order method,
instead of linear extrapolation, to evaluate the pressure arguments of the concentration
coefficients. A glance at (4.154) shows that this will not work, since d,(EVp") will be
replaced by zero and d,(Vp" — EVp") by d,Vp", which is bounded but is not of order
At,. Linear extrapolation gives order Af,, and higher-order extrapolation does no
better.

We now consider the possible benefits of refactoring the matrices L™ and A,,
every O((At,)™"?) and O((Atp)“l/ %) time steps, respectively. As noted in [6], [13], if
L" isso factored and used as an updated preconditioner, we achieve the norm reduction
O((A1.)""?) with one iteration and O(Af,) with two. Similar statements hold for A,,.
We obtain the following corollary.

COROLLARY 4.7. If we refactor L™ every O((At, ) time steps, then we obtain
the results of Theorem 4.1 and Corollary 4.2 with a fixed number of pressure iterations
per time step, and with two concentration iterations per step. If At. = O(h?), then we
obtain the result of Corollary 4.4 with one concentration iteration per time step. If we
refactor A, every O((At,,)—l/ %) time steps, then we obtain the result of Theorem 4.6 with
a fixed number of concentration iterations and two pressure iterations per time step.

Next, we consider the alternative of extrapolating the Darcy velocity u, instead
of its pressure argument, in the concentration equation (3.17a). We replace (3.17a) by

-1/2
)

ol con B
(¢T, X) +(B(EU™VE™, Vy)

(4204 = —(EU"" -VC", x)+(g(t""!, C*"), x),  x €My,
where
4.205) U =u(C¥ VPy), if m=0,

EU™ = (1 +§>u(C§, VP,) —-;—,ju(Cik,,_l, VPn_y), ifm=1,
where ve€{1,2,- -, j}is chosen so that
(4.206) "=t +vAtL.

We obtain the following corollary.

COROLLARY 4.8. If (3.17a) is replaced by (4.204), then all previous error estimates
still hold.

The proof uses mostly the same ideas already presented. Details of the arguments
can be found in [22].

Since the physical problem modeled by our coupled system is three-dimensional,
it is of interest to see how the results are altered if d = 3. The error estimates for each
of the theorems and corollaries hold for d = 3. Dimensionality was used only in those
parts of the arguments involving inverse inequalities and imbedding properties. The
assumptions in (I) relating L™- and L*-norms must lose & ~>/? instead of A", and ¢
will have to lie in Wk (H>) in order to bound the W -norm of the elliptic projection
¢. Each of the theorems must require Af, = o(h>’?) instead of o(k) in order to verify
various induction assumptions, such as (4.21).
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Finally, we consider the application of our analysis to a single quasilinear parabolic
equation of the form

(c) ¢%—V-(b(x,c)Vc)+u(x, c) Ve=f(x,tc), xeQ, tel,

1.2) (@ b(x,c)aa—;=g(x,r,c), xeoQ, ted

(e) c(x, 0)=colx), xeQ.

We can modify our numerical scheme (3.17) by eliminating the pressure equation and
all dependence of the concentration equation on the pressure, and by using a uniform
time step Atz. With the resulting scheme, we can argue as in Theorem 4.3 to obtain
the following theorem.

THEOREM 4.9. Suppose that (Rs), as applied to c, holds, that At = o(h), and that
we achieve norm reductions of the form

p=0(An"?, n=1,

(4.207)
p=6<1/5, n=2,

with 8 independent of n. Then, for h sufficiently small,

sup [|C" —c"|= Ko(h"+Ab),

(4.208)
sup [|C" —c"[i = Ko(h" ™' + A1),

Proof. Since u no longer depends on p, the term T} in (4.70) does not appear.
Thus the form of u is never used, and the term 4°|log k| in the case r =5 =2 is gone.
We still need At = o(h) at several places in the argument.

We note that by arguing as in Theorem 4.1, we can reduce the regularity on dc/o¢
to dc/dt € L*(H'~") and eliminate the mesh restriction At = o (h), at the cost of assuming
H?-regularity of Q and a norm reduction p = O(h). Details of this type of analysis
together with analysis of a Crank—Nicolson version of (4.208) which yields L? error
estimates of O(h” + (A?)®) under weaker initial conditions can be found in [12].

5. Computational considerations. In this section we obtain some estimates for
the work involved in our preconditioned conjugate gradient (PCG) method. We will
see that the operation counts are optimal or nearly optimal.

We consider the case d =2. We note that the analysis will permit the use of
distinct mesh parameters /. and A, for the two equations. Assume that 4, and 4, are
chosen so as to balance the corresponding error terms; in practice, since p is smoother
than ¢, this will usually mean that h, > h.. Assume also that Az, and Az, are chosen,
as in the theorems, to balance their error terms. Then Theorem 4.1 yields an L? error
estimate of the form

(5.1) Ei=0Oh. +At,)=0OM:"* +N1),

where M, =dim ., = O(h.*)and N, = T/At, = O((At,)™"). We correspondingly define
M, and N, for the pressure.

We now examine the work W; required to achieve this estimate. By (3.13) and
(4.3), we know that a fixed number of PCG iterations per pressure time step and
O(log N.) iterations per concentration step are needed to stabilize the procedure.
Assume that the work necessary to factor the preconditioners Lo and A, is O(M2'?)
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and O(M f’,/ %), respectively; the nested dissection process of George [16] can achieve
this in the case of a rectangular mesh on a rectangle, and the work of Hoffman, Martin
and Rose [17] shows that it cannot be improved. Given the factorizations, the work
required for the backsolves in each PCG iteration is O(M, log M_) and O(M,, log M,),
respectively. Then the total work estimate is

W,=OM?"? + N.(M, log M,)(log N,) + M}/* + N,(M, log M,))
=O0MY®* (log M,)?),

where we have assumed that M, > M,, N.>N,, and N, = O(M 2). An optimal work
estimate would be the number of parameters in the solution, or

(5.2)

(5:3) W = O(M.N. + M,N,) = O(M.N.) = O(M™"?),

so we see that our estimate is nearly optimal.
This is a large improvement over the estimate for the standard backward
difference-Galerkin procedure, which has the form

W, = O(N.(M¥? + M, log M)+ N,(M>? + M, log M,,))
- O(M(r/2)+(3/2))

is dominated by the work of refactorization, and is far from optimal. For example, if
r=2 and the errors are balanced, the PCG procedure obtains L?* error O(h?) with
work O(h;*|log h.|*), while the standard method requires O(h_”).

In Theorem 4.3, we can stabilize the procedure in the case b = b(x, c) with a
fixed number of iterations for each equation. This replaces (log M.)* by log M. in
(5.2). In Theorem 4.6, at least asymptotically, the pressure work dominates, having
the form

(5.4)

(5.5) Ws = O(N,(M, log M,) log N,,).

For practical values of the mesh parameters, this domination may not take place, and
it is not clear which of Theorems 4.1 and 4.6 provides the better work estimate for
the case b = b(x, c, Vp).

In certain cases, we may improve the work estimates still further. If the elements
being used are such that the matrices L° and A, are comparable with their diagonals
D° and D,, or with band matrices M® and M, with bandwidths independent of A, we
may use D° and Do, or M° and M, as preconditioners instead of L° and A,. The
work required for a backsolve in a PCG iteration is then O (M) instead of O(M log M).
This will eliminate one power of the logarithm in each of the preceding work estimates.
In particular, we obtain optimal estimates in Theorem 4.3.

The procedure outlined in Corollary 4.7 may also be helpful. If we refactor every
(Atc)—l/ =N 2/ 2 time steps in the concentration equation, the factorizations will require
work of order O(M":/ZNi/2 )= O(Mi/”'/4 )= O(MlJ"/2 ), which (5.3) already contains.
Then the backsolve will again be O(M, log M.), but a fixed number of PCG iterations
will suffice, and one power of the logarithm in (5.2) will be eliminated. Similarly, we
can refactor the pressure matrix every (At,,)_l/ =N ‘1,/ % steps in Theorem 4.6, erasing
a logarithm in (5.5).

It should be emphasized that the iteration counts supported by our theorems are
pessimistic in practice. Rather than iterating a predetermined number of times in a
computer program, one can monitor the norm reduction actually produced at each
step of the iteration. Thus the process can be stopped when a sufficient norm reduction
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is achieved. Additional stopping criteria can be built into the monitoring process. A
discussion of such criteria for related problems appears in [6].

Finally, we briefly consider the case d = 3. It is conjectured that optimal factoriz-
ation and backsolve estimates are O(M?) and O(M 4 3, respectively, for a space of
dimension M. An optimal estimate for the work in our problem is

(5.6) W =O(M.N,+M,N,) = OM:"?),

since N, =0((At.)™)=0(h.")=0(M"?). The work required by our method in
Theorem 4.1 would be

Wi=OM? +N.M?¥? log N.+ M2 + N,M%4?)
p p

(5.7)
=OM ™ log M,),

with similar estimates for the other results. A standard method would need
W, = O(N.(M? + M)+ N,(M; + M;"?))

5.8
e =0M:™),

a much larger work requirement.
All of these observations can be applied appropriately to the single quasilinear
parabolic equation outlined in Theorem 4.9.
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