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EFFICIENT TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT
PROBLEMS IN POROUS MEDIA*

RICHARD E. EWINGt AND THOMAS F. RUSSELL$

Abstract. Efficient procedures for time-stepping Galerkin methods for approximating the solution of
a coupled system for c c(x, t) and p p(x, t), with nonlinear Neumann boundary conditions, of the form

-V.[a(x,c){Vp-,(x,c)Vg}]=-V. u=fl(x,t), xeO, re(0, T],

V [b(x, c, Vp)Vc]- u Vc qb(x)-f2(x, t, c),
dt

xf, t(0, T],

u =ql(x,t), xOl’, t(O, T],

b--=q(x,t,c), x3f, t(0, T],

c(x, O)= Co(X), x f,

where c Rd, 2 _<- d _<- 3, are presented and analyzed. This system is a possible model system for describing
the miscible displacement of one incompressible fluid by another in a porous medium when flow conditions
are prescribed on the boundary. The procedures involve the use of a preconditioned iterative method for
approximately solving the algebraic problem at each time step. The iteration need be performed only long
enough to stabilize the scheme. Motivated by the fact that the pressure is smoother in time than the
concentration, larger time steps are used for the pressure than for the concentration. Under certain
smoothness assumptions on the solution, optimal order convergence rates and almost optimal order work
estimates are obtained.

1. Introduction. We consider a numerically efficient modification of a backward
difference-Galerkin procedure to solve a coupled system of partial differential
equations which has been employed as a model for the miscible displacement of one
incompressible fluid by another in a porous medium 14]. An elliptic equation simulates
the pressure in the fluid mixture, and a quasilinear parabolic equation models the
relative concentration of one of the fluids. One application of this model is to oil
reservoirs, where an external fluid may be injected in order to push oil out of the
reservoir and into production.

This work extends the results of Ewing and Wheeler [14] in several respects. We
generalize the differential problem of 14], in which homogeneous boundary conditions
were assumed, by including a nonlinear boundary condition in the concentration
equation. This will be seen below to be natural for this problem. We modify the
time-stepping procedure by using a larger time step for the pressure than for the
concentration, motivated by the physical fact that the pressure is smoother in time
than the concentration, and we show that work is saved by doing this. Finally, we
replace the direct matrix solution of [14], which requires the factorization of two
matrices at each time step and is expensive in a problem with more than one space
dimension, by a preconditioned iterative procedure. The iterative method approxi-
mately solves the algebraic problem at each time step, and it need be performed only
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2 R.E. EWING AND T. F. RUSSELL

long enough to stabilize the scheme. We analyze a preconditioned conjugate gradient
procedure employing a fixed preconditioning matrix for each equation, although our
analysis will apply equally well to more general iterative methods. Only two matrix
factorizations are necessary in the entire procedure.

The analysis will require several techniques not employed in 14]. We demonstrate
that the accuracy of the underlying backward difference-Galerkin method of [14] is
maintained, while the differential problem is generalized and the work requirements
are greatly reduced. Of particular note is the result that, in many cases, a fixed number
of preconditioned iterations per time step, independent of all mesh parameters, is
sufficient to stabilize the procedure. In other cases, the number of iterations need
grow no faster than the logarithm of the time step. We therefore have optimal or
nearly optimal order work estimates for our method, a sizable improvement over
previous results. This work is an extension of some of the results of Ewing [11], [12];
reference will be made to [11], [12] for some details of the proofs.

The employment of preconditioned conjugate gradient iteration in quasilinear
parabolic problems is not new; treatments appear in [6], [10]. However, the application
of this procedure to an elliptic equation coupled with a time-dependent equation
appears to be unprecedented. We emphasize that, unlike standard iterative procedures
for elliptic equations, our method will require only a fixed number of iterations per
time step in most cases. Parabolic problems with nonlinear boundary conditions have
also been treated before [3], [19], but there is little analysis for such problems as part
of a coupled system.

The model for miscible displacement is given by

-V [a(Vp-yVd)]=V u =fl(X, t),

u n g(x, t),

Oc
(1.1) (c) b---V (bVc uc) g(x, t, c)[(x, t), x lq, (0, T],

b c3__c_ (u n)c g2(x, t),
On

c (x, O) co(x),

(a) xf, t6(O, T],

(b) x 60lq, (0, T],

(d) x60O, t(O,T],

(e) xO,.

The solution functions are the pressure p(x, t) and the concentration c(x, t). The
pressure is determined only up to an additive constant, so we normalize it to have
mean value zero on l). We assume that lq is a bounded domain in a, d 2, with
boundary 0f, and we let J (0, T]. We consider the case d 3 at the end of 4 and
show that the results are essentially unchanged. We take the coefficients to be of the
form a a(x, c), y y(x, c), d d(x), b b(x), and b b(x, c, Vp), b b(x, c) or
b =b(x). The convergence results in [14] depended on the nature of b, and we
demonstrate that the same holds here; we also show how the work estimates depend
on b. The physical significance of these functions is discussed in [14], [20], [23]. The
function u u(x, c, Vp) is known as the Darcy velocity of the flow, and the boundary
conditions (1. lb) and (1. ld) describe the flow rates across the boundary.

Experimental results have shown that it is preferable to approximate a nondiver-
gence form of the equation (1. lc). Differentiation of the Darcy velocity term in (1.1 c)
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 3

and use of (1.1b) leads to the alternative form

(a), (b) as in (1.1),

(c) 4-V’(bVc)+u.Vc=(g-c)f=-f(x,t,c), xsl, tJ,

(d) bV-=glc+g2=-g(x,t,c), xOf, tJ,
On

(e) as in (1.1).

We note that the natural Neumann boundary condition is necessarily nonlinear unless
gl is assumed to be homogeneous, as was done in [14]. Thus we are naturally led to
the nonlinear boundary condition by practical considerations.

It will be clear that, if fl and f satisfy the smoothness assumptions to be placed
on g and g respectively in 2, then the analysis of the fl and f terms will follow
from that of the g and g terms. We therefore assume that fl=-f= 0 in what follows
for simplicity of exposition. In the oil reservoir problem, it must be pointed out that
fl is normally taken to be a singular distribution of point sources and sinks, modeling
the effect of small injection and production wells. The analysis will fail if fl is a singular
distribution, so we are analyzing a model with smoothly distributed sources and sinks.

Possible extensions of this work include the use of interior penalties in approximat-
ing the concentration, combining with the method of characteristics to treat the
physically dominant first-order term of the concentration equation, and the use of a
mixed method to approximate the pressure. Wheeler and Darlow [25] have shown
that the results of [14] are compatible with penalties on the jumps of normal derivatives
of continuous piecewise polynomials across inter-element boundaries. Experiments
indicate that penalties improve the accuracy of standard Galerkin approximations.
The use of a mixed method, simultaneously approximating both the pressure and the
Darcy velocity, is suggested by the fact that the concentration equation (1.2c) depends
on the pressure only through the Darcy velocity u. Details of the analysis of using
mixed methods together with interior penalties on both the function values and normal
derivatives will appear in [7]. In [22] Russell has proved that for a spatially periodic
version of the miscible displacement problem, the methods of this paper may be
combined with the method of characteristics, preserving the asymptotic order of the
errors while expecting to reduce their actual size.

A brief outline of this paper is as follows. In 2, we define our finite element
spaces, list our constraints on the domain, coefficients, and solutions, introduce elliptic
projections of the solutions which will aid the convergence analysis, and define our
modified backward difterence-Galerkin method. In 3, we consider the algebraic
problem, describing the matrices, the preconditioned conjugate gradient iterative
procedures, and the stability conditions on which the convergence results depend. In
4, we obtain global L2 and/-/ error estimates for the procedures described in 2

and 3, and for any other iterative procedure achieving the stability conditions of
3. Section 5 contains a discussion of the computational work estimates obtained

from the results in 4.

2. Preliminaries and description of Galerkin methods. Let W W(I)=
{,l(O/Ox)L"(l) for la[<=k} be the Sobolev space on gl with the usual norm. If
p 2, we write Hk Hk (fl) W (fl) with norm 114’[1 I1 ,11, We write I1 ,11
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4 R. E. EWING AND T. F. RUSSELL

for IIll0. On the boundary 0f, we let HS(Of) denote the Sobolev space with norm

I1. We define the inner products (q, 6)= n6 dx and (, 6)= 0n q6 dr.
We also wish to consider spaces of the form

wlp ((a, b)’, X)= {" (a, b)-X
IlOt

with norm

LP((a,b))},

X Lt)(a,b)

where X is a Banach space. In the applications, X will be a Sobolev space W
and we will write Iloll/(,b;- II[Iw’(,b;W(. If (a, b) (0, T), we suppress the time
interval and write [[O[Iw’(wb [IOlIw’(O,T;WZ(.

We approximate the concentration c and the pressure p, respectively, by families
,/h and Wh of finite-dimensional subspaces of Hl(f). We assume that there exist
integers r _-> 2 and s -> 2 and a constant Ko independent of h such that these subspaces
satisfy the following approximation properties and inverse hypotheses"

(A)

(I)

inf (ll-xll+ hll4-x[] + h/=(ll-x[l+ hll-xllwl))
X l

<-goh lig, ll, all n (), 2 k r,

Koh11611, all 6 H (), 2 k s,

where h/= h/= h;

Ilxllwz goh-/=llxll goh-llxll, all g h, f 0, 1,

IIXI[ goh-l[x[I, all g h,

I111 goh-/=llll goh-ll[I, all @ Nh.

We note that it is entirely permissible to associate distinct spatial mesh parameters
hc and hp with the concentration and pressure, respectively. Since this would not
significantly affect the analysis, we use a single h for economy of notation.

We recall that f is said to be Hk-regular if

-Av +v =r, xf,

Ov

On

implies that [Ivllk --<--K(El)[[[sr[[k- + I,l-/, w assume that satisfies the smoothness
constraints

(S) fl is HE-regular (in certain cases we will suppose that fl is Ha-regular);
Ol) is Lipschitz.

Our assumptions about the coefficients require some comments. In the physical
problem under consideration, the concentration c lies between 0 and 1, inclusive. For
c within this range, the coefficients depend smoothly on c. We will therefore extend
the coefficients to values of c outside [0, 1] by truncating c to [0, 1] before evaluating
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 5

them. Accordingly, we may restrict K to lie in [0, 1] in the assumptions below. The
physical coefficients also depend smoothly on Vp provided that Vp remains bounded.
Assuming sufficient regularity of the solutions, our arguments will show that the
approximate pressure gradient remains bounded. Thus we can require (7rl, zr2) to be
bounded in the assumptions below. The assumptions are then consistent with the
nature of the physical problem. We will suppose that

(c) There exist uniform constants such that, for 0-<_ K <_- 1, (q7"1, 7/’2) bounded
in R2, x f, J, and 1, 2,

0<a,<=a(x, :)<_-a*<_-K1,

O<b,<-_b(x,, Zrx, r2)-<_ b*_-<K1,

It(x, I<--K1,

lui(x, K, "/T1, zr2)l-<_ KI(1 + I(rl,
Ig(x, t)l-<- Kx,

Ig(, t, ,,:)1 <--

and, for arguments evaluated at , 7rl, 7/’2 where appropriate,

Ox Oc Ot

O4g
OX 2 OC

and all partial derivatives of b, ui, and g of order up to 3 are uniformly bounded by K1.
We organize our regularity hypotheses on the solution (p, c) of the differential

problem according to the results in which they are used. We assume

(R1) cL(Hr)HI(Hr-1) W(H:Z) W(W)H2(H1)f"] W(L),
pL:Z(HS)CI W (H3) W(W2)f) W2 (wX);

(R6) c (R1) f’)L(H2+)HI(Hr),
p(R1)HI(HS);

(R3) c(g6)Hl(W) wloo (H2+e),
p (R6).

Let K2 be a bound for the norms of the functions in all of the spaces in (R1), (R6),
and (R3).

Our analysis will use the technique of Wheeler [24] in examining two auxiliary
elliptic problems. For each J, we define/ Vh to be the elliptic projection of p
given by

(a(c(t))V, Vq)= (a(c(t))Vp, Vq)= (a(c)’y(c)Vd, Vq)- (gl(t),

(p-t, ) 0.

all q e h,

As in [8], [24], the restrictions (A), (S), (C), and (R1) imply the following result. Let
o=p-.
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6 R. E. EWING AND T. F. RUSSELL

teJ,
LEMMA 2.1. There exists K3 K3(f, a,, Ko, Kx, K2) such that, for 1 <= k <-_ s and

Iloll / hllOlll g3hllpll,

O0
h
O0 <_g3h Ilpll /(2.2) +

For the concentration, we define a nonlinear projection for each e J satisfying,
for X h,

(b(c, Vp)V(- c), Vx) + (u(c, Vp). V(- c), x) + (- c, x)
(2.3)

-(g(t, ?)-g(t, c), x)=0,

where A is a positive constant to be fixed suciently large that existence and uniqueness
of are assured. Define

Og
(2.4) G(x, t)= (x, t, ac(x, t)+(1-a)(x, t)) da,

and

(2.5) B(o,X)=(b(c, Vp)Vo, VX)+(u(c, Vp). Vo,x)+X(o,x)-(Go,x).

Then for c -, we also restrict A to be suciently large that there exists a constant
K, > 0 satisfying

(see [3] for such a choice of ). Then, using the techniques of [8], [19], [24] with the
assumptions (A), (S), (C), and (R), we have the following result which will allow us
to estimate the error of our approximate concentration solution by estimating the
difference between that solution and the elliptic projection ?.

LEMMA 2.2. ff =C--, with defined in (2.3), there exists K=
K4(, b,, h, Ko, Kx, K2, K,) such that, for 1 k r and p 2 or p m,

+h N K,h Ilcll"(+
"

(2.6)
.( o(nl

I1  11 L2(H)
We can now argue as in [3], [6], [24] to obtain bounds for the projections and

& Using (A, (S), (C), and Lemmas 2.1 and 2.2, we have the following result.
LEMMA 2.3. There exists K Ks(Ko, K2, K3, g4) such that if (R) holds, then

L(H) L(L) L2(H)
(.7)

I1 11 I1= [I+ NKs.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 7

ff (R6) holds, then also

(2.8)
L(Wloo)

The nonlinear boundary condition and some integrations by parts will require us
to estimate certain boundary integrals. To do this most efficiently we will need some
negative-norm estimates in Sobolev spaces on 0f. We will also use negative-norm
estimates on f to achieve minimal smoothness requirements for the solution of the
differential problem. For k >-0, s->_ 0, define these negative norms by

IIg,ll- sup ((, )11111 }, Ig, l- sup {(if, )1 Il-
We collect these estimates in the following result.
LMM 2.4. Assume that the regularity (R1) holds. Then there exists K6

K6(fl, a,, b,, Ko, K, K, K3, K4) such that the following statements hold"
For each J and 1 <-_ k <-_ s,

(2.9) Io1-/= -< K6h llpll,

(2.10) <- g6h IlPllk +
-1/2 k

If 1) is Ha-regular then, for each J and 1 <- k <-_ r, r >-_ 3,

(2.11) 1[-3/2 -< K6h k+llc II,
(2.12) Iis11-1 <- K6h

r->-3,- [gh
/ Ilcll+llcll =-

Pro@ We first consider 0. Let 0 e H/(OI), and let f satisfy

-. (a(c)Vf) +f 0, x
(.4

a(cl=, xeoa.

Under our smoothness assumptions, we then have I1’11 -KI4,1/ as in [18]. Then

(0, O) O, a(c)-n (0, a(c))+(O, V (a(c)V))
(2.15) (V0, a(c)V(-o))+(O,.f), all

by (2.1) and (2.14). Thus, by (A), (2.2), and the H-regularity of 1, for 1 <_- k <_-s

(2.16) <= g(h k-llPllkhllfll2 + h kllpll,llfll)

from which (2.9) follows.
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8 R. E. EWING AND T. F. RUSSELL

We now differentiate the equation below, obtained from (2.1),

(2.17) (a(c)VO, Vq) O, q 6Xh,

with respect to to obtain

(2.18) a(c)V
O0

Vo O, Vqat’ at
Then

(2.19)
(t0, )= (700t, a(c)Vf) +(OOv.ot, (a(c)7f))

=(VOOOt’ a(c)V(f-)) +( O00t’ f) -(cc Ot

by (2.18). This then yields, for 1 =< k <= s,

We then have

02g
(2.21) +(fo [Ot Oc

=-- N(X), X e lh.
Let 0 H1/2(OD) and let f be the solution of

-V. [b(c, Vp)Vf+ u(c, Vp)f] + A/c= 0,
(2.22)

b(c, Vp)-n +[U(C Vp). n]f-Gf O,

\ Ot c Ot

Ob OVpV Ou Oc Ou OVp
oVp - /.V,x)

+O---C[C-7+(1-c) dc, X

From (2.3) and (2.5), we have

(2.20) B(:,/,) 0, x e ,//h.

Differentiating (2.20) with respect to t, we find that

-, <=Khk Ilpl[ + 111/2,

from which (2.10) follows.
Next, we consider . For the remainder of the proof, assume that f is H3-regular.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 9

where G is defined in (2.4). By our smoothness assumptions, we then have
g[ol3/z [18]. We alsosee that, by (2.3), (2.20) and (2.22),

(, ) , b(c, VP)n-n + [u(c, Vp). n

(2.23)
(7, b(c, Vp)Vf+ u(c, 7p)f)+(, 7. (b(c, 7p)Vf+ u(c, Vp)f))-(Gf, tj)

(b(c, Vp)V:, Vf) + (u(c, Vp). Vsc, f) + (, Af)-(g(t, c) g(t, ), f)

B (,, f)= B , f-x), X E./h

Thus, for 1 -< k =< r,

(2.24)

I<, >1 gllllx inf I1- xl[ Kh k-allc[[kh211Ll

<-- Khk+ allc I1 I 1/2,

from which (2.11) follows.
Let 4’ E Ha(f) and let f be the solution of

(2.25)
-V [b(c, Vp)Vf+ u(c, Vp)f]+ af O,

b(c, Vp)T-+[u(c, Vp). n]f-Gf =O,
on

x Ofl.

By H3-regularity, Ilfl[3 K[IO[I1. We see at once that, emulating (2.23),

(2.26) (, ) B(, f)= B(, f-x), X

Thus

(2.27)

provided that 1 -<_ k -< r and r -> 3. Then (2.12) follows. We also have that

(2.28)
a--’ \Ot at’ f-x) + X(x)

B(Oes, f -x) -N(f-x)+ N(f).
\Ot

Then, for 1 -<_ k -< r,

(2.29)
<- Kh k+’llcllkllfll3 <= Kh k+’llc I1110111.

We then see that

(2.30) N(f) (sc, V. (aaVf))+ (sc, (V. a2)/)- , Otl- --<, [O2"

D
ow

nl
oa

de
d 

11
/1

1/
15

 to
 1

65
.9

1.
11

2.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



0 R. E. EWING AND T. F. RUSSELL

where

(2.31)

ob Oc ob
I------ --q

Oc Ot OVp Ot

Ou Oc Ou OVp
02=- ---+c %t %Vp t

Io [0t0c c2or
oEg +02goc OEg

= +(-)

O4 -+- O 5 -F- 06.

We note that

L(H2) L(H3)(2.32)

I111= K(K),

L(H2)

Also we have, by Lemma 2.2 and the trace theorem,

Kf I1,11/11,11/1111/11111/
L

(2.33)
KII/llh=- Itcll+llcll

k

eh k+l,

Then we have, using (2.11), (2.12) and the bounds on a,

r=2,

(2.34)

if r => 3, with the norm on c modified as above if r 2. Then, combining Lemma 2.2,
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 11

(2.28), (2.29) and (2.34), we obtain

(2.35) Kh- Ilcll+ h=llfll+gh llcllll011
k

KhTM Ilcll + 011
k

and (2.13) follows. Again, the norms on c are modified if r 2.
We now turn to the definition of our discrete-time Galerkin method. In [14], it

was shown that in the case of homogeneous boundary conditions, a continuous-time
Galerkin method will yield, where C is the numerical concentration approximation,

IlC CIIL’(L2) O(h + h s-l) if b b(x, c, Vp), s >-_ 3,
(2.36)

lie- O(h / if b b(x, c), r >- 3 or s >= 3.

Standard backward difference time-stepping procedures were also analyzed, and it
was shown that they introduced the expected O(At) time discretization error. We now
modify the time-stepping procedures of [14] as indicated in the introduction to this
paper.

0Let At > 0, Atp > O, At > O, Atp > 0. Here At and Atp are the time steps for the
concentration and pressure, respectively. We will see that the first pressure step must
be smaller than the later ones, and we denote it by At. In Theorem 4.6, we will
require two smaller initial concentration steps, denoted by At. We let the integer/"
denote the ratio Atp/At.

We use superscripts to denote concentration steps and subscripts for pressure
steps.Thus, t" nAt and t, At +(m- 1)Atp prior toTheorem 4.6. Welet 0" q,(t"),
0,, q,(t,), and we denote difference quotients and differences by

"+- m+-- ,-
dt," dt@m for m > 0,

Ate Atp

(2.37)

820"=4,"+1-20"+0"-1 60-, 0.,+1- 20,. + O.,-x for m >- 2,

We make the obvious concentration modifications for Theorem 4.6.
The standard backward difference Galerkin scheme in [14] employed approxima-

tions P: {0 , t, , N T}h and C: {0 , tl, , tN} egh, given by

C(x) (x, 0),

(dtC", X)+(b(C", VP")VC"+, VX)= -(u(C", VP"). VC"+i, x), x t J///h,
(2.38)

(a(C"+)VP"+, V) (a(C"+I)T(C"+)Vd, Vq), t dh,

(P"+, 1) O,
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12 R. E. EWING AND T. F. RUSSELL

where 0 or 1. We see that pO can be determined from C, and then Cn+l and
Pn/l can be found once C" and P" are known. By lagging the coefficients in the
concentration equation, the scheme uncouples the system and reduces the algebraic
problem to the solution of two separate linear systems. We note that if 0, then
the coefficient matrix arising from (2.38).is symmetric. In the physical problem,
however, the transport term dominates the diffusion term, and it may be numerically
advantageous to carry the transport term at the advanced time level by taking 1,
even though the matrix is no longer symmetric. In our methods, since we wish to
consider a preconditioned conjugate gradient iterative scheme for the algebraic prob-
lem, we will consider only the case 0.

We now describe our modifications of (2.38). With the time step ratio f chosen,
we will linearly extrapolate the pressure in the evaluation of the coefficients in the
concentration equation. Let F be a function of time, consider concentration time level, and let m be the greatest integer such that tm <t". We approximate F" by
extrapolating linearly from F,, and Fro-1 if m ->_ 1. Define u {1, 2, , j} by t"
t,, + u Atc if m _--> 1. Then set

(2.39) EF

F0, fro =0,

( l + -f -p)F’ 7 -p F, ifm=l,

1+ Fm "-TFm_
!

if m->2.

This will give an approximation of F" with error O((A6)21Id2F/dt21IL2(L2)).
This procedure requires the computation of a new pressure extrapolation at each

concentration time level. Other less accurate methods, such as an extrapolation to
the midpoint of the current pressure time interval suggested by Todd Dupont, will
demand somewhat less work. We will analyze only the linear extrapolation, noting
that first-order methods need smaller pressure time steps in all our results except
Theorem 4.6, where they fail completely.

An alternative procedure in evaluating the Darcy velocity u(x, c, Vp) in the
concentration equation is to extrapolate the velocity itself instead of the pressure
argument. This is motivated by the fact that the velocity is smooth in time, while the
individual factors depending on the concentration and pressure may be quite rough.
This alternative should take greater advantage of the use of different time steps for
the two equations. We will describe this alternative and obtain the same convergence
results as for the extrapolation of the pressure.

Next, we recall that 0 <_-c _-< 1 and that the coefficients satisfied the bounds in (C)
for concentrations in this range. If C" is the numerical approximation to the concentra-
tion, we define the truncation C*" =min {1, max {C", 0}} and replace C" by C*" in
evaluating the coefficients. This type of truncation has been discussed earlier in [4,
11], and we will analyze the resulting error. Combining these modifications of (2.38),
we obtain the scheme

(2.40)

C(x) ?(x, 0),

(cbd,C", x) + (b(C*", EVpn+I)vcn+, VX)

=-(u(C*",EVP"+I) VC", X)+(g(t"+1, C*"), X),

(a(C*m)VPm, Vtp) (a(C*,,)T(C*m)Vd, Vq)--(gl(tm), qg),

(P.,, 1)=0,
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 13

which is to be implemented in the order C,Po, Ca, Ca, Ci, P1, Cj+l, Cj+2

, C2i, P:2, etc. In Theorem 4.3 and subsequent results, the argument C*n of g will
be changed back to C n.

We conclude this section with a technical lemma which will expedite the estimation
of errors arising from pressure conjugate gradient residuals.

LEMMA 2.5. Let F, and G,,, 2 <-_ m <= k 1, be nonnegative numbers satisfying the
relations

F2 <= KRG2,
(2.41) F3 <-_I((RG3 + 2R 2G2),

F, <- KRGm + 2RFm-1 + REin-2, 4 <- m <- k 1,

where and 0<_-R < 1/(1 +/g) are constants. Then there exists a constant K
K(I, R), independent ofR bounded away from 1/(1 + /g), such that

(2.42)

k-1 k-1

=:2 =:2

Fm<-__K max Gn, 2_-<m_-<k-1.
2<=n<=k-1

Proof. Since G,-I does not appear in (2.41) until Fro_l, we see that

(2.43)
Fro-1 <- KRG -1 + rm 2R

Fm <- gRG,, +g(2R2)Gm_I + Tm_2R 2

for m _-> 4, where Tin_2 represents terms involving Gi for 2 _-< _-< m 2. For a >_- 1 and
/ >_-0, we let ca/3 denote the coefficient of KRaG,_/3 in the estimate for Fm obtained
recursively. From (2.43), we have

Clo 1, c1/3 O, fl _-> 1,

(2.44) C20 0, C21 2,

Ca0 0, a __--> 3, Ca1 0, a _>- 3,

and from the recursion estimate in (2.41) we see that

(2.45) Ca + 1,/3 2ca,/3_ -1" Ca,/3-2

(2.44) and (2.45) show that ca/3 is well defined.
We claim that ca/3 is given by the formula

-1 (2a -2)-/3

(2.46) ca/3
(/3-(a-1))2

0,

a-l__</3 <__2a-2,

otherwise

This will be demonstrated by induction on a. The case a 1 is verified in (2.44). For
a -> 2, we may assume/3 => 2 since/3 0 and/3 1 are contained in (2.44). We check
the relevant cases, using (2.46) and induction"

/<a-l:

/3 =a-l:

a-l</3 <2a-2:

/3 =2a-2:

/3 >2a-2:

ca/3 2Ca-1,/3-1 + Ca-1,/3-2 0 "- 0 0;

Ca/3 2Ca-l,a-2 + Ca-l,a-3 2(-2)2(2a-4)-(a-2) + 0 2a-a"

ca/3 2(-2 2a 3 a-2)22a--/3-2_-a+1)2 -/3- -I- (/3 _a+1)2

Ca/3 2Ca-l,2a-3 q- Ca-l,2a-4 0 q- ()2(2a-4)-(2a-4) 1

Ca/3 =’2Ca-1,/3-1 + Ca-1,/3-:2 0 + 0 0.

Thus the claim is proved.
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14 R. E. EWING AND T. F. RUSSELL

(2.47)

Finally, we note that the coefficient of ,=2 F,, is bounded by

EE%..,._,<-E Ec
m=i =1 =1 =0

=K E R(2+1 =KR E (3R)=KR,
=1 =0

where K K/(1 3R). Thus,

(2.48)
k-1 KR
=2 1 3R m=2

and the first statement is proved.
To show the second assertion, we note first that, by the definition of c,,/3, we have

(2.49) Fm =<_- Y c,,/3R m x G,,

so we require a bound independent of/3 for the sum in (2.49). To obtain this estimate,
we use the fact that

(2.50) Y (-t/3-,-) Y. (/3-- -)) =f/3 <= K0
=[(/3 +3)/2]

where f/3 denotes the/3th Fibonacci number. The first equality holds because all omitted
terms are zero, and the second can be proved by an easy induction argument, since
each term of the sum of f/3 is itself the sum of two terms, one each from the sums for
f/3_ and f/3_2. For convenience, we now assume that/3 is even; the case where/3 is
odd can be handled similarly. Using (2.46) and (2.50), we see that

B+I

(/3/2)+1

(2.51) N KoR(/3/+ ,,1,, F. 2(--/3R(--/3/
=(/3/2)+1

This last expression is increasing in R, so it suffices to show that it is bounded
independently of fl for 1 / (1 +/) eo -< R -<_ 1 / (1 + /) e t. For such values of R,
the sum grows as (4R)(/3/2)/, and the entire expression is bounded by

(2.52)
4KoKaR2((1 +vr)R)/3.

This proves the second statement.
The estimates of this lemma are not sharp, since it should be possible to replace

1/(1+/) by 1/2. The argument would require a deeper analysis of the binomial
coefficients in the proof of the second statement of (2.42). In applications of this
lemma via the theorems of 4, the constants in the error estimates will be enormous
if ualues of R near the limit are used. A practical margin of safety is not significantly
affected by the possible improvement.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 15

3. Approximate solution o| the linear equations by iteration. In this section, we
present the linear equations arising from (2.40). Since the coefficient matrices change
at each time step and have bandwidths which increase as the meshes become finer,
we wish to avoid direct factorization of them. Accordingly, we will consider a precondi-
tioned conjugate gradient iterative method for the solution of the linear equations.
The analysis will extend results of [6], [10], [11].

The convergence results of the next section will depend only upon the norm
reduction inequalities defined here. The conjugate gradient algorithm is only one
example of an iterative method meeting these criteria.

We now define some matrices and vectors. Let {Xi}cl and {i}"1 be bases for
’////h and Jh, respectively. We denote the exact solution of (2.40) by (t",/5,,), given in
terms of the bases by

K i,
i=1

(3.1)

P= E .
i=1

The matrices and vectors in the linear problems are denoted by

B(, ) (b}(, )) b ,
/=1 /=1

/=1 /=1 /=1

(3.2) +k( g ,X i,j=l,...,M;
/=1

i,i=,...,M,.

Then we can write (2.40) in the form

(3.3) (At)U"(K, )-(At)B"(K,

We will not solve (3.3) exactly; instead, we will use a predetermined number
conjugate gradient [1], [2], [5], [6], [9], [10] iterations to advance the solution one
time step. The iterative procedure will be stable provided that a sucient norm
reduction is achieved. The magnitude of this norm reduction requirement will be
analyzed in the next section. In order to speed the iterative process, we will precondition
by matrices which are known to be reasonably close to L" and A. Specifically, define

Bo ((boVx, Vxi)), i,
(3.4)

Ao ((a0V, Vi)), i,
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16 R. E. EWING AND T. F. RUSSELL

where the functions bo(x), ao(x) can be chosen arbitrarily. We then use as precondition-
ers the matrices

(3.5) Lo=-+(Atc)Bo

for the concentration and Ao for the pressure. These preconditioners are independent
of time, so only two matrix factorizations need be done in the entire procedure.
Assuming that starting procedures for CO and Po, which we discuss later, have been
performed, good choices for bo and ao might be bo(x)=b(x, C(x), VPo(x)) and
ao=a(x, C(x)). We note that in practice, it may be more efficient to update and
refactor the preconditioner from time to time.

Denote by

(3.6) C’= E K TXi and Pm= 7"l’mi(i
i=1 i=1

the approximations to C" and P,,, respectively, obtained by iteratively solving (3.3).
Assuming that C" and P, are known, we describe preconditioned conjugate gradient
iteration procedures to approximate ,,/x and/5,,/1 from (3.3). Our initial guesses will
be CO for n 0, Po for m 0, and, in most cases, linear extrapolations for n -> 1 and

n+lm _-> 1. Specifically, our concentration iteration for K --x will proceed as follows"

n =0: Xo=0,

> n--1n=l" Xo -qo L" (K, zr)xo (Ate) U" (K, zr) + (Ate)B" (K, 7r)x

So L-qo,
(3.7)

--(L’qk, q,)e
xk+l =xk +as, whereak

(Sk, L"(K, ’7)Sk)e’
k >0,

qk+l qk + OtkLn (K, "lr)Sk,

Sk+l L-lqk+l + kSk, where fig
(L-dlq+l, qk+l)e

(L-dlqk, qk)e

Here (.,.)e denotes the Euclidean inner product, and the Xk, q, and Sk are the
iterates, residuals, and search directions, respectively. Finally, after some predeter-
mined number of iterations N, set

n+l(3.8) + xrc.
Our analysis will show that for the results prior to Theorem 4.3, the linear extrapolation
for the concentration is actually unnecessary and may be replaced by Xo 0. The
pressure iteration for 7r,+1 will obey the algorithm

m=0: Xo=’rro,

m _-> 1" Xo 27r, -7r,._1,

qo A,+l(X)Xo- F,+l(X),

(3.9) so=Alqo,

Xk/l, qk/l, S/I determined as in (3.7) with Ao,

replacing Lo, L, respectively,

7Tm+l XNp, where Np is predetermined.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 17

We will see that the linear extrapolation is unnecessary for Theorem 4.6, where
Xo 7r. may be used.

It is well known [1], [2], [6], [10] that the preconditioned conjugate gradient
methods yield constants pc and tap at each time step such that

ilLO(/, 71.) 1/2(/. 1) 1/2
-to lie -<pIL(, ) (ff -)1, n 0,

llLn (K, )1/2(n+1 n+, n--l)
(s.10)

Iia()l/:(- )ll Op]Al()/2(l-O)le,
]]A+l()/2(#+-+)]e pp]]A+1()l/2(+-2 + -)]le,

where the subscript e indicates the Euclidean norm of the vector. Given the functions
bo and a0, we denote the comparability constants between the preconditioners Lo and
Ao and the matrices L and A. by 6E, DE, 63, and DA, where these satisfy the
inequalities

x rL" (K, rr)x RMc0 < 6E -< < DE, x --{0},
X TLoX

(3.11)
O<6A<__yTA"*(r’)Y<_Da, y RMp--{0}.yTAoy

We note that these constants are independent of h and t, depending only on the
bounds for the coefficients in (C). Letting

1 --(6L/DL)1/2

Qc
1 + (6E/DE)1/2’

(3.12)
1 --(6A/DA) 1/2

1 + (6A/DA)1/2’

we know from [-1], [2], [5], [6], [10] that

O ,(3.13) tac <- 2 N

Since Qc < 1 and Qp < 1, it follows that norm reductions of tac and tap can be achieved
in O(log (1/tat)) and O(log (1/tap)) iterations. In particular, a fixed norm reduction is
reached in a fixed number of iterations.

Our analysis will be aided by the definition of some weighted norms. We set

(3.14)
I1,11o-- (b(C*", EVP"+’)VO,

Iloll --(a(C* )VO,

III,lll--Ilol[, + atcllc,llg-- (0, ,)+ Atc(b(C*", EVP’+I)v,
We note that I1" II is equivalent to I1’ II, and I1’ I1 and I1’ II are equivalent to [IV" II.
We see that by (3.10),

II[01- cllllg-I]0x_ cilia/ ZXtcll01- call.
=(ff ))L(, )(

IlLO(, )1/2(/ -- )lie2
2<= pc IIL(, ) /2(/. boO)lie2
2-olll -cIIIN,
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18 R. E. EWING AND T. F. RUSSELL

so that

(3.15) iIl’-c’lllo< iIic_cOlllo,lllcOlllo"

In a similar fashion, we can derive

IIl+-c/lll<_-’lll=clll, n>-_, where6ECn=C"+l-2C"+C"-1,

(3.16) I[fi-PlllppllSPol[, wherep 1-p’
2

The convergence results of the next section depend only on the norm reductions
(3.15)-(3.16) and not on the particular iterative method used to achieve those
reductions.

We note here that we must alter the scheme (2.40) slightly since we are not
solving the equations exactly. We have

(a) (& "+-C"At X)+(b(C*,EVP+)V+, VX)

(3.17) -(u(C*",EVP"+) VC, X)+(g(t"+, C*"), X), X,
(b) (a(C)V,V)=(a(C)T(C)Vd, V)-(g(t),), h.

In Theorem 4.3 and afterward, the argument C*" of g will be changed to C. We
also note for future reference that, since 0 c 1, we have

IIc c* lie c II + II c
(3.18)

lie c*l I1" + IIc c*"ll 211" + lie cll,
Finally, we consider starting procedures to obtain C and Po. Our analysis will

require C to approximate o well enough so that

(3.19) IIc- ell gh .
This can be obtained by factoring the elliptic projection matrix and solving directly,
or by iterating the conjugate gradient procedure suciently many times. If iteration
is used, a good preconditioner would be the matrix Lo, which by (2.4) is comparable
to the elliptic projection matrix. For most of our results, the necessary estimate on
Po is

(a.0) IIPo- Poll Kh

which can trivially be procured by factoring the matrix Ao, to be used as a precon-
ditioner for future pressure time steps. If this option is not chosen, again a suciently
lengthy iteration will work. Similar comments apply to the estimate needed for
Theorem 4.6, which is

(3.21) IlPo- Poll, Kh Atp.

We remark that a detailed argument appears in [12] which weakens the estimate
(3.19) to

(3.22) IIIC- 111o gh .
In many cases, c(x, 0) is identically zero, and this sharpening is unimportant; it may
be of considerable interest if a simulation is stopped and restarted.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 19

4. A priori error estimates. In this section we obtain a priori error bounds for
the procedures described in 2 and 3. We focus our attention on the concentration
error c-C, since it is the quantity of physical interest. As noted in (2.36), it was
found in [14] that the convergence results were affected by the dependence of b on
Vp, even in the continuous-time case with homogeneous boundary conditions. We
obtain here the same convergence rates, with time truncation errors, for our iterative
procedures.

In the case b b (x, c, Vp), Theorem 4.1 shows that if at least piecewise quadratic
polynomials approximate the pressure (s -> 3), then O(log (1/Ate)) concentration iter-
ations and a fixed number of pressure iterations per time step yield an L error
estimate of the form O(h + h- + Ate). Theorem 4.6, under slightly stronger regularity
assumptions, fixes the number of concentration iterations while requiring
O(log (1/Atp)) per step for the pressure. This reduces the asymptotic work estimate
by a factor of Ato/At, since the pressure is computed less often than the concentration,
and improves the H bound from O(h-+h-2+h- Ate) to O(h-+h-l+At).
Whether the improved work estimate applies for practical values of the mesh para-
meters is not clear.

In the case b b(x, c), Corollary 4.2 finds the optimal L2 estimate O(h + h / Ate)
with the iterations of Theorem 4.1, provided that either r >_-3 or s >_-3. If r- s 2,
the nearly optimal bound O(hEllogh[+At) is demonstrated. Under slightly more
regularity, Theorem 4.3 reduces the work to a fixed number of iterations per time
step for both equations and improves the H estimate. Corollary 4.4 proves an
intermediate work estimate under intermediate regularity assumptions which are
balanced for the solutions and their time derivatives.

Corollary 4.5 points out that the concentration iteration may be suppressed if
b- b(x). Corollary 4.7 remarks upon the possible benefits of updating the precon-
ditioners. Corollary 4.8 shows that the preceding convergence results are unaffected
if the Darcy velocity u, instead of its pressure argument, is linearly extrapolated in
the concentration equation (3.17a). We close this section by considering the minor
modifications needed to extend the results to three space dimensions, and by applying
the analysis to a single quasilinear parabolic equation with nonlinear boundary
condition in Theorem 4.9. The principal results of this paper are Theorems 4.1, 4.3 and
4.6.

We now proceed to derive our error estimates. Throughout, we denote generic
concentration and pressure time levels by the superscript n and the subscript m,
respectively. If we need a correspondence between these symbols, m re(n) will be
the latest pressure time level satisfying t, _-< ". A particular concentration level, often
the top index in summations on n, will be denoted by l. We define k k(l) sflch that
t_ is the last pressure time level satisfying tk-1 I. If m occurs in summations on
n, m is understood to represent m (n).

The symbol K will denote a generic constant, not necessarily the same at different
occurrences. The explicit dependence of K on norms of c, p, , and/ will often be
indicated. For economy, we suppress dependences on these norms in W(W) in
intermediate estimates, unless desired for emphasis. The symbol e will represent a
generic small positive constant.

THEOREM 4.1. Suppose that b b(x, c, Vp), (R1) holds, and s >-3. If r >-3, assume
also that 1) is Ha-regular. Suppose that the space and time discretizations satisfy the
relation

(4.1) Ate o(h),
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20 R. E. EWING AND T. F. RUSSELL

and that the pressure and concentration time steps are related by

(4.2) Atp O((Atc)2/3), Atp O(D(Atc)l/2),

where D (llll.==)/lltll.=.)/=. I we achieve norm reductions of the form
pc=O(At), alln,

=O((ato)/8).
(4.3) PP m 1,

( 1 )
/

0, < (a, m> 28+,/ /

then for h sufficiently small,

(4.4) sup (lie -cll / hllC -clll)<- gT(h + h s-1 + Ate),

where K7 K7(fl, a,, b,, $., h, K,, K0, K1, Ks, K3, K4, Ks, K6).
Proof. We recall that c- ?, and we set srn= Cn- ". Then C- c= ("-scn,

so by (I) and (2.6), it suffices to show that

(4.5) sup [l"ll<- g(h + h s-1 + Atc).

We look first at the pressure equation. Set r/, =Pm--m. Subtract (2.1) from
(3.17b) to obtain

(a (C)Vr/,, Vq)= ([a(c,)-a(C*)]V,,
(4.6) +([a(C)7(C)-a(c)T(cm)]Vd, V)

+(a(C)V(P--Pro), V), h.

Choosing the test function in (4.6), we have

(4.7)

so that

(4.8)
a,. --< K (11 ffll(&. }lcll(.)h +K(lltll&011&ll=

For the concentration, we subtract (2.3) from (3.17a) to find

(&dt(, %) + (b(C*, EVP"+)VC+
n+l

6 ?; d,e", -x ,x)

+([b (c "+1, vp"+)- b(c*", Eve"+)]ve+
(4.9)

+(u(c"+, VP"+) V"+- u(C*", EVP"+) VC", x)

+(g(t"+ C*")-g(t"+ +), x)+
tc

+(b(c,., Evp.+)(c.+ d.+l), vx), x e h.
In (4.9) we choose X (,+1 as test function in order to obtain an L estimate for (.

D
ow

nl
oa

de
d 

11
/1

1/
15

 to
 1

65
.9

1.
11

2.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 21

We multiply by Ate and sum from n 0 to n l- 1 to obtain

I--1

n--0 n=0

=o Ot
dtn .n+l At E t (n+l, .n+l) At

l-1

+ E ([b(c "+, VP"+1) b(C*", EVP"+)]V5"+, V""+) Ate
n=O

(4.10)

l-1

-+- E (U(C n+l, Vpn+l) Vn+l- u(C$n, EVP"+) VC", sr"+)
n=O

1--1

+ E (g(t"+, C*")- g(t.+, n+l), .n+l) Ate
n=O

1--1

+ E ((c"+- (:?"+1,
n-----0

l--1

+ E (b(C*", EVP"+x)V(C’+x- (.+x), V..+) At
n=O

S1 -Jr- S2 + S3 --I-- S4 + Ss -I- S6 q- S7.

2Using the inequality (a-b)a >-(a -b2), we see that the left-hand side of (4.10)
dominates

(4.11)
l1 1 n+ n+l ,,n

I--1 n
=0 =0

1 (11./11,_ iig.Oll,) + E IIg" +’llg
2,

In our estimates, we can therefore handle L2-norms of " with the discrete Gronwall
lemma, and we can hide small multiples of Hi-norms of " on the left-hand side.

We now estimate the right-hand side of (4.10). First, we note that

11( (9n+l ) 11( (n+l81..[_82 ,n+l Ate + &
=o 3t =o 3t

(4.12)

l-1

E / (n+l, .n+l) Atc,
n=o

ll [[0n+l llIS’ + &l <- g
at II’"+’lllAtc +g -die"1

.=o -x .=oll at

l--1

n=O

1-1 1-1

=0 =0
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22 R. E. EWING AND T. F. RUSSELL

Here, if r_-> 3, we have used H3-regularity in Lemma 2.4 to estimate Ila"+’latll_,. If
r= 2, we do not have an estimate on II0//0tll_l, so we must substitute II0/l/0tll
and require a bound on IIclIHI(m.

Next, we see that

(4.13)

=- TI + T2+ T3+ T4.

Now we have

1-1

IT, I_-< K E (llc +’

n-----0

(4.14)

l-1 l-1

<=g(llcllL-(no)h2"+K(Atc)2+K I1’"112 Ate +e IIC"+lll Atc,
n=0 n=0

l--1

ITI<=K Z IIVo/’IIIIVc"+’II At
n=0

l--1

-< K (llpll,(/_,))h 2s--2 _1_ E E I1"+’11 atc,
n=0

l--1

IT41i<K Z (llvn,ll+llvn,,-lll)llv+llat.
n=0

In estimating T4, we note that r/o will appear for Atp/Atc values of n, while rbn, m N 1,
will appear for to/t values of n. Using (4.8), we have

1 (tp ] llITal < g-atllVnoll:
ktc m=l =o

k-1

(4.15)
m=l

k-1 l-1

+glleo Pollao --Plla at, + E I1 I1 ate.
m=l n=0

To bound T3, we recall that

(4.16)
L(O,tl ;H 1)

m-0,

mi>l.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 23

Then

TI K[ E IIv / EV/ +’11 IIv / 11 At
m=0

(4.17)
L2(tm-l,tm+l ;H

l-1

n=0

l-1

n=0

Collecting the estimates for T through T4, we have

+g(llffll at)3

k=l

(4.18) +KIlPo Poll
m-1

k-1

+KIl’oll= At +K Y’, I1’11= At
m=l

1--1 1--1

+K X I1’"11= Atc +e E IIc"+’111 Ate.
=0 =0

Next, we split S4 as follows"

l-1

S4 E ([U(cn+l, VP n+l) u(C*n, EVP"+I)] V("+a, .,+1) Ate
n=0

l-1

(4.19) + E (u(C*", EVP"+I) V(("+- C"), (,+a) Ate
n=0

=- Ts+ T6.
We observe at once that T5 has the same form as $3 with V"n+a replaced by srn+, so
the same bounds will hold. To handle T6 we use an induction argument. We assume
that Ilu(C*", EVP"+I)IIc is uniformly bounded for n 0, 1,..., l- 1. By assumptions
on u, we know that

(4.20) [u(C*",EVP"+)[K(1 +IEVP"+aI)K(1 + IVPI + IVP-I).
It therefore suffices to bound llVP[[c= for m 0, 1,..., k 1. We assume that

(4.21) IIvPll 2K, 0 m k 1.

To start the induction, we see easily that from (2.7), (I), (4.8), (3.19), and (3.20),

IIVPoll IIVoll + IlVnoll K5 + Koh-llVnoll
K +K(Ko, IIcIk)h-(llffoll + h + IlPo o11)

(4.22)
K5+Kh-Xh
-<- 2K5,
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24 R. E. EWING AND T. F. RUSSELL

for h sufficiently small. If l- tk, we will show at the end of the argument that
IlvPll <_-2K. This will verify the comment allowing (7/’1, 7/’2) to be bounded in the
assumptions (C) of 2. With (4.21) in hand, we can write

l-1

n--0
1--1

(4.23) <--K(Atc)+K E
n----0 n=0

Next, we find that the boundary term can be estimated by

l--1

n=0

(4.24)

l--1 l--1

n=0 n=0

l--1

n=0

<- K(Atc) +K E I111= at + E I111 ate,
=0 =0

where we have used Lemma 2.4 and the trace theorem.
Finally, we have by (3.15) and (3.16) that

l-1

Is6 / S71 < E IIIc"+-
n=O

l--1

(4.25) -< ,o ’lllaClIIolll&"lllo +,o’ E Illa2c’lll,lll"+lll.

and

(4.26)

TI p’ (llllllo + IIl’l[Io)= 4- o’llllllo=

<= K At Atc + Illfflll + Illff
L2(O,t;H l)

[T8 Kp’ E (lllaa"lll + Illa"-ll[ + II1"+111 + Ili"111 +
n=l

ll (110 31
n=l Le(tn-,tn+l;H)

K(llallH’(H))(at)=/K E Ilff"ll= at +K At E Ilffll at
=0 =0

_-< K(At)+K E I1"11= a / E lift"Ill
=0 =0
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 25

for p’c O(Atc) and Atc sufficiently small. Thus,

(4.27) IS6+STI<--K(At)+K E I1"11= At + E I1"1[ Ate,
n=0 n=0

A glance at (4.26) reveals that the argument goes through with 1118C"ll[n in place of
IIl=clll, so that the linearly extrapolated initial concentration guess is unnecessary
for this theorem, as noted in 3.

Collecting the estimates (4.10), (4.11), (4.12), (4.18), (4.23), (4.24) and (4.27),
we have

1 l-1

rt=0

<__ g(llclk(H, ilc[[Hl(,_, iletl,wl [[ffllLO(wl)h2 +g(lletl(w&, IlPl[L=(H)h

(4.28) -Pollo t +K([lkw)) E IIP 112 t
k-1

+K([IILWL, II[l) E I1112 t
m=l

=0 =0

K(h +h-+(tc)2+(t)3+(tp)4)+A+A2+A3+A4+As+A6.

A1 and A6 are estimated by the starting bounds (3.19) and (3.20). A3 and A4 will
disappear when the discrete Gronwall lemma is applied, at the cost of allowing the
other constants to depend on IIPlILVI)and IIllv), A5 hides on the left-hand side
of (4.28). We now proceed to handle A2.

Considering m 1 first, we see that

(4.29)

1/2

’Atppp

<-_ K(Atp)1/S[K (llcll(u)h /K(ll’ol] /

+ [IPo Poll.o + lIP1 --/5111al] +K(At)9/8,

and, using (3.19), (3.20), and (4.8), letting p;, O((Atp)l/8), and taking Atp sufficiently
small, we obtain

(4.30) liP1 Pill < K(l[clk(H)h2r + KII,IlI /K(Atp)9/4al

Since (Atp)9/4 Atp O((Atc)9/4"2/3+1/2) O((Atc)2), we see that the first summand lIP1-
2PIII +/-t of A is bounded in the proper fashion. For future reference, we let

(4.31) F" lIP" /5., 2I1,
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26 R. E. EWING AND T. F. RUSSELL

and we note that for suitable constants/o and R1 we have shown that

(4.32)
2rFo <- Koh

F1 ----< Rl(h 2r . ii  ll / (Atp)3).

that
Now we consider m _-> 2, and we note, using (a + b + c + d)2 <- 4(a 2 + b2 + c 2 + d2),

am

)2<(O (1

+K(itp)3 02- 2

(4.33) N4

LZ(tm_2,tm;H1)

(1

Letting

(4.34)

L2(tm-2,tm ;H 1)

we have shown that

(4.35)

where

F. <-_ R G., + 2fro-1 + Fro-2),

1

2+x/ 1

2 +4-----e

Using (4.32) and (4.35), we can see that, since F1 -</a2 and Fo /oG2,
F2 -<_ R (G2 + 2F +Fo) _-< R (1 + 2/1 +/o)G2,
F3 <- R (G3 + 2F2 + F1)

(4.36)
<-RG3 + 2R(1 + 2/1 +/o)G2 +g/lG2

<=RG3+ 2R2(1 + 2/1 +/o +2) O2.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 27

Letting / 1 +2/1 +/o+/1/2R, we see that all hypotheses of Lemma 2.5 are
satisfied. The lemma tells us that

k-1 k-1

(4 37) , IIP.-_.II2 Atp <K G Atp <g(h2r +(Atp)4+A3
=2 =2

Thus A2 is bounded by terms already on the right-hand side of (4.28).
We now apply the discrete Gronwall lemma to (4.28), obtaining

I-1

n=0

(4.38) g(llllLW&’

+g (ll fill w&m’))(t)3 +g(llffllH=m))(ato)4],
With the time step choices

I111(. (Arc):z/3,
(4.39)

I111,(> ’/

atp(l;] (tc)1/2,

we obtain the desired result (4.5), assuming that the chosen constants are the dominant
ones.

It remains to check the induction hypothesis (4.21) if l: tk. We have

IIvPll= (llv& I1= + Ilvnll=) 2(llv&ll= + IlVnll=)
(4.40) + 0h-llV,ll

2 +rh-(llCll + h’ + IIP
We ow know that IIcII (hr + h"- + (at<)). Furthermore, we can apply Lemma
2.5, with a term of the form

(4.41) K(Ate)4
0p 2

replacing the last term of .. The second statement of Lemma 2.5, with m running
from 2 to k, yields

(4.4e) IIP-- "-Pll(h’+h +(at

so that

(4.43) IIvPll: 2r +h-(h’ + h"-+ (at)) 4
for h sulciently small, provided that s 3 and Arc o(h).

We remark that the optimal relationship between h and Arc is At< O(h + hs-),
and that for all values of r 2 and s 3 this lies well within the rstrictions of the
theorem.

Examination of the proof of Theorem 4.1 shows that the term h’- arose only
in the estimation of 3 and 4. It is obvious that, if b b(x, c) instead of b b(x, c, Vp),
then h’- will not appear in 3. We remark in the next result that in the estimation
of $4, we can use the form of u to integrate by parts and improve the error estimate
from h"- to h".
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28 R. E. EWING AND T. F. RUSSELL

COROLLARY 4.2. Suppose that b =b(x, c), (R1) is strengthened by adding c
L2(W2)f-IL(H2/) and pL(HS), and allow r= s 2. Assume that the other
hypotheses of Theorem 4.1 hold. Then, for h sufficiently small,

+ h + Atc), r > 3 or s > 3
(4.44) sup(IIC"-c"ll+hllC"-c"l[1) < Ks(h2llog hi+ Ate), r s 2.

Proof. It suffices to revise the estimate for $4. We write
l-1

S4 Z ([U(Cn+l VP n+l) Vn 1)] V )Atell(cn+ + n+l n+l
l-1

+ E ([u(c "+, V/"+a) u(c+, EV,6"+a)] V?"+a, r"+) At
n=0

(4.45)
l-1

+ E ([u(c "+x, EV/"+) u(c "+x, EVP"+X)] Va"+1, sr"+x)
n=0

l--1

+ E ([u(c "+a, EVP"+) u(C*", EVP"+)] 7"+, r"+) Ate
n-’0

U + U2 + U3 + U4.
U2, U3, and U4 are estimated analogously to T3, T4, and T, respectively, in (4.13);
these bounds do not involve h2-. For U, we use the form of u(c, Vp)=
-a(c)[Vp- (c)Vd] to write

1-1

U (a(c"+l)v(-p)"+ Vt"+, ’"+) Atc
n:O

(4.46)

I-1., (a(cn+l)von+.Vn+,,n+l)Atc
n=0

l-1

(a(c"+a)VO"+x. Vc +a, sr’+a) At
n=O

Integration by parts in U6 will improve the convergence rate. We could not integrate
U by parts directly because we could not place two spatial derivatives on . We have

l-1

n=O

l--1

K X hS-llp"/l[shr-llc"/llrh-lll/llAt

l-1

K(llplkw, Ilcl[L(’)h.2r+zs-6 +K X I1’"+[I=

(4.47)
l-1

K(IIPII=H, IlcllHo)(h2 + h2) +K X I1"+11= ate,
n=0

l--1
n+l

n=O

r->3 or s-->3,

l-1

n=0

l-1

K(llpll=, Ilclk0h411og hi +K X II’"+lf ate,
n=0

r=s=2:
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 29

where the L estimate in the latter case depends on results of [15], [21], and

(4.48)

U6 0n+l
=o

1--1

2 On+, V" (a(cn+l)(n+Vcn+)) At
n=O

U-U.

Using Lemma 2.2 of [3] and c e L(H2+), we obtain

Thus,

l-1

UI<=K Y Io"+l_/l"+l/llc"+ll+ at
n-’-0

l--1

n=0

l--1

K(llclko+, Ilpllw)h + E IIr"+lll2 Ate,
n=0

l--1

n’--O

l--1

K(llPll,_.=,_r, Ilcll,.)h: + e E IIc"+llf
n=O

(4.50)

The rest of the proof of Theorem 4.1 goes through as before, except that
Kh -2(h4llog h z) appears in (4.43) if r s 2.

The use of the test function X sr"/a does not produce the best possible results
with our time-stepping methods. In (4.26), we were unable to take advantage of the
differences of the form [11=111=; we would hope to obtain a factor of Ate, but we had
to appeal to the norm reduction for this. In (4.29) and (4.33), we had to introduce
factors of the form a*/a, in order to perturb the indices on the weighted norms. If
we could estimate the change of sr (and hence C) with time, we could avoid this
problem also. By using the test function X sr’+ ’" Ate dt instead, we can obtain
an a priori estimate on dt in the discrete L2(L2)-norm and find better results. In
addition, we derive an estimate for sr in the discrete L(H) norm, which gives us a
better H error estimate by removing the need to appeal to the inverse assumption
(I). We need a bit more regularity to do this, as the next result will show. We first
consider b b (x, c).

THEOREM 4.3. Suppose that b b(x, c), (R3) holds, and allow r s 2. Suppose
that the discretizations satisfy the relation

(4.51) ht o(h),
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30 R. E. EWING AND T. F. RUSSELL

and that the pressure and concentration time steps are related by

(4.52) Atp O((Atc)2/3), Atp O(D(Atc)x/2),

where D (I[IIHZ(H1)/IIIIH2(H1))I/2. If we achieve norm reductions of the form
pc O((Atc)x/2), n 1,

pc<=6c<1/2, n>--2,

(4.53) pp O((Atp)l/8), m 1,

1
ppSp< m>2

3+4’

with 6c and 6p independent of n and m, then for h sufficiently small

(4.54)

supllC,_c,ll<[K9(h +h +Ate),
tg9(h211og hi + Ate),

sup IIc"-c"ll < Ig9(hr-x+ h + Ate),
tK9(h Ilog hi+ Ate),

r>=3 ors>=3,
r=s=2,

r>--3 ors>=3,
r=s=2.

Proof. It suffices to show that

< IK(h + h + Ate), r >-- 3 or s >- 3,
(4.55) sup [K(h 21log h[ + fi, tc), r s 2.

We obtain (4.8) exactly as in Theorem 4.1. We also have (4.9) with b independent
of its second argument. Taking rn+l r" (Ate) dt( and summing from n 0 to
n l- 1, we obtain

(4.56)

1--1 1-1

E ((dtn, dt(n) Atc + , (b(C*")V("+x, Vd,’") Atc
n=0 n=0

11 (
n+l

n=O
-dt?" dt( Atc- E a(n+l, dr(")Ate

n=O

l--1

+ 2 ([b(c"+X) b(C*")]Tc7"+x, Vd,r") Ate
n=0

l--1

+ (u(c n+, vpn+l) Vn+x- u(C*n, Evpn+I) VCn, d,(") Ate
n=0

l--1

+ 2 (g(t"+1, C")-g(t"+x, ("+X), dt(") Ate
n=0

1--1

+ E ((c"+’- d"+’), a,")
n=0

l--1

+ E (b(C*")V(C"+X-’"+x), Vd,(") Atc

S -[- S2 q- S3 -[- S4 "[- S5 -[- S6 q- S7.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 31

We see that the left-hand side of (4.56) is equal to

(4.57)

1 l-1

Y. [2(Od,’’, d,")+ At(b(C*")Vd,", Vd,’")] At
2 .=o

1 l-1

+ E (b(C*")V(""+1 + ’"), V(sr"+x- ’"))
n=O

Thus we can hide small multiples of L2-norms of dr( on the left-hand side, and we
will be able to apply Gronwall’s lemma to Hi-norms of sr after perturbing the
weighted-norm indices.

We proceed to estimate $1 through $7. First, we have

Sl "+" S2 4) dt"
=o Ot

+ ck dt" dt Atc
=o Ot

(4.58)
l-1

Y. a (,,+1, dt(") Arc,
n=O

l--1

181 + 821 K(llclli*(u)h 2r de K(llll=(L=3(at)= + X IId, d’"ll= ate.
n=O

We note that since we cannot estimate IId,’"l[1, we were unable to use the H-l-norm
on O/Ot, and hence were forced to assume Oc/Ot L2(Hr).

In handling $3, we again must avoid having to bound IlVd,’ll. We therefore sum
by parts in time, reducing Vdt’" to V"n, which can be treated. We see that

(4.59)

$3 ([b(cl) b(C*t-1)]V, l, V(l)-([b(cl)-b(C*)]V. 1, V)
1-1, ([b(c n+l) b(C*n)]vn+l -[b(c")- b (C*"-l)]Vt",
n=l

=- T- T- T.

Now

(4.60)

ITl[ < KIIc C* l--iII ve/Ikqlv

<= K (llc c ’-111 + II@ l- 111 + IIl- *ll)llv
<=g(llCllLm)h 2r +g(Ate)2 + gllffl-lll2 +
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32 R. E. EWING AND T. F. RUSSELL

and a similar estimate holds for T2. To bound T3, we write

l--1

T3 ([b(c’+l)-b(C*"l]V(5"+l-5"), V"1
n=l

l--1

+ Y’. ({[b (c n+l) b(C*")]-[b(c")- b (C*"-l)]}Vt", Vsr")
n=l

(4.61)

l-1

g(llcllLH’3h2 /K(at)2/K E (ll ’"ll=+ll ’"ll )Ate.
n=l

To bound T5, we define

(4.62)

Then

(4.63)

Thus

b(c"+) b(c") (c "+x cn)bl,n,

b(C*")-b(C*"-x) (C*" -C*"-X)b2.,,.

1-1

T5 E ([bx.,,dtc" bz.,,dtC*"-a]V5", vr") At
n=l

(4.64)

l-1

E (d,c"[b., bz.,]V6", V’") Ate
n=l

l-1

+ ., (b2.,,{[d,c dtc"-]+ d,"- + d,("-x}Va", vr") Ate
n=l

=- T6 + TT.
We note that

b,,-b2, (cn++(1-)c -c(C +(1-)c-) d

+ (ac" +(1-a)c )-(aC*" +(1-a)C*"-) da

[ htdt(ac" +(1-a)c"-)
(4.65)

O2b
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 33

SO that

+Io [c(c-C*)" +(1-a)(c-C*)-]

02b
Oc--([c+(-)c-]+(-/)[C*+(-)C*-])d/d,

(4.66)

Thus

l-1

n=l

(4.67)

l--1 1--1

<-g(llcll(,v)hz +K(Atc)z+g E IIn[Iz Atc +K E Ilffll ate,
n=0 n=l

l--1

n=l
l--1 1--2

n=l n=0

Combining the estimates (4.60) through (4.67), we have shown

l-1

n=0
l-1 1--2

(4.68) +K
n=l n=0

Next, we see that

l-1

$4 2 ([U(Cn+l, VP’+I) u(C-n, EVPn+I)] Vn+l, dt() At
n=O

l-1

(4.69) + ., (u(C*", EVp+I) v(n+l-cn), dtn) At
n=0

=- Ts+ Tg.

As in Theorem 4.1, we make the induction hypothesis (4.21) to treat T9. This allows
us to write

l--1

l-1 l-1

<__g(zxt)=/g I1’11 At+e E IId,’ll= ZXt,
n--0 n=0

l--1

T8 ([U(C n+l, Vp"+a) u(c "+a, V/"+x)] V"+a, d,’") Ate
n=O

(4.70)
1-1

+ Y ([u(c "+1, V/"+) u(c"+, EV/"+I)] V"+, d,(") Arc
n=0
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34 R. E. EWING AND T. F. RUSSELL

l-1

+ Z ([u(c "+1, EV/"+1) u(c "+1, EVP"+I)] V("+1, d,’") Ate
n=0

l--1

+ E ([u(c "+1, EVP"+I) u(C*", EVP"+I)] V?"+1, dt(") Atc
n=0

Tlo + T11 + Tlz + T13.
To estimate rl, recall that

(4.71)
L(0, ;H

Ilvt"+ EVp-+all= <= g (Atp)3 -ll LZ(t,,,_l,t.,+l.,H1 )’
Thus

m 0,

l-1

n=0

(4.72)

=0

l-1

0)3<--g(llffllwH))(ato +g(llffllH=H))(at)4 + e Z IId,"
n=0

Next, we have

l--1

ITIK E [IEV"+IIIIdtff"[

(t - 2 (tp l--1

Poll.o
k-1

(4.73) +g E IlPm 2 o-Pll +KII&II
k--1 l--1

+g E I1’..11z at / E [[d,’"llz Atc,
m=l n=0

l-1

n=O

l-1 l--1

<-_K(llcll,-())h2+K(Atc)z+K Y I1-"11 Ate +e E IId,"ll2 ate.
=0 =0
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 35

We now analyze T10 in a fashion similar to U1 in Corollary 4.2. We see that

(4.74)

l-1

Tlo E (a(c"+X)V(ff-P)"+" V(’-c)"+x, dt(") Ate
n=0

I--1

+ E (a(c"+X)V(-P)"+a" Vc"+x, dt(") Atc
n=0

T4 + Ta5.

Now in the manner of (4.47), we have

(4.75)

l-1

ITs4[ -<- (llPll-(m), Ilcllom0(h + h=)+ e f IId’ff"ll=l_l Arc’

n--0

r>3ors>3,=

r=s=2.

We wish to integrate by parts in T15. However, this would demand an estimate for
Ildtsr"lll, which we do not have. We avoid this difficulty by first summing by parts in
time to obtain

T15= _(a(cl)Vo Vc l, (l)+(a(cl)Vo Vc 1, .o)
l-1

+ E (a(c"+a)vO’+a" Vc
n=l

n+l -a(c")VO". Vc", ’")

(4.76)

Similarly,

(4.77) IT,ll <= Kh 2s + Kil,Oll.

We split Tx8 into three terms,

(4.78)

l-1

T8 E ([a(c"+t) a(c")]VO"+" Vc"+a, (")
n=l

l-1

+ Y (a(c")Vd,O". Vc"+, r") Atc
n=l

l--1

+ E (a(c")VO" Vd,c", ") At
n=l

Tx + T=+ T3.
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36 R. E. EWING AND T. F. RUSSELL

Letting a,, (Oa/Oc) On+lc +(1 -a)c") da, so a(c"+l)-a(c) a, dtc Atc,
l--1

T21 Y (ad,c"O"+1" c+,)t
n=l

l--1

E (0n+, V" (anndtcnVcn+)) At
n=l

(4.79)
+ a,,("dtc" Arc

T24 "+" T25
and noting that IVa.[ <-_ 102a/Oc OXi[ IOC/OXi[ is bounded, we have

l-1

[T241<-K X Ilo"+llll"lllld,c"ll’[Ic"+ll At

(4.80)

Also,

l-1

n=l

l--1 Ilocn+lll
n=l

l--1

n=l

l--1

T22 E (dtO", V (a(c")"Vc"+)) At

ll( OC n+l)+ d,O", a (c)(
On

At =- Ta + T,

(4.81)

l-1

n=l

l--1

-< K(llclloov, Ilplln)h= +K Y I1"111= ate,
n=l

l--1

n=l

l--1

n=l

Finally,

T23 E (0", V (a(c")("Vd,c")) At + 0", a(c")(" (d,c") At
n=l n=l

T8 + T:9,
l-1

(4.82)
l-1

n=l
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 37

l-1

Thus

(4.83)

l-1

<--r(llcll,,(m+, Ilpll,,-r)h +g E IICII ate.
n=l

k-1 l-1

+ KIl’oll atp +K E I1,.11 Atp +K E I1’"11 At
m=l n=O

l-1 l--1

+K E II’"tl atc + gllll + ell’/ll + e E IId, C"ll ate,
=0 =0

with the appropriate modification if r s 2.
Next, we split $5 by writing

l-1

Ss= E (g(t"+, c")-g(t"+, "), "+-
n=O

I--1

(4.84) +
n=O

To+ T.
For the same reasons as before, we sum by parts in time. For T31, we have

T31-- (g(t, 1"1-1) --g(t, _,I), rl)__(g(tl ,0)_ g(t, ,), o)
l--1

(4.85) E <[g(t"+x,8")-g(t+ c +x)] [g(t -) g(t )],
n=l

Then

T32..I- T33 -- T34.

IT3l <- KIId,-lllllll zXt <- K( ] L(H)
(4.86)

IT,ll <-- glld,elllllll at <_- g (Ate)2 + ilcOll.
We then split T34 as follows’

l--1

-T34- E ([g(tn+l, e")--g(t"+,
n=l

-[g(t", ?")-g(t", e"+)],
(4.87)

t-a

+ E ([g(t", ")-g(t", ("+)]-[g(t", "-)-g(t", ?")],
n=l

T35 -I- T36.
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38 R. E. EWING AND T. F. RUSSELL

We next define

(4.88)

and we note that by an argument like (4.65)-(4.66), we have

(4.89)
\Ot Oc

<dozg 5n-1[g2.. g3,.I-.=\cU(ld, 1+ [d,e" 1) Ate.

We then see that

(4.90)

and

l-1

E (dtn(gl.n-gz.n), (n) Ate
n=l

l--1

n=l

l-1

n=l

(4.91)

l-1

d~n ,.,nlnZ (gz.. X )Atcg3,ndtc
n=l

l--1

E (dt("[gz.,,-g3,,.]+(dt("-dt"-l)g3.,,, (") Ate
n=l

l--1
_-< K(II,UIIH=(.1))(At)zz +K E I1"112 Atc,

n=l

To bound T3o, we define

(4.92)
Og

g4,n cc(tn+l, ceC + (1 ff)(n) d.

We note that g4.n- g4,n-1 can be split into two terms and analyzed by an argument
like (4.65)-(4.66) to obtain

(4.93)
Ig4,n g4.n-ll <= K (Ate + [C" C"-al + I"

_-< K Ate(1 + Id,ff"-l + Idt’-ll).
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 39

Then

l-1

T32 E (g4,n(n, (n+l_
rt=0

(4.94)
n=0

1 - +) 1
d(g4,n ,sr d,(")(Atc)2

2 n=0E (g4,n, (n __(n)2) n=0
T37 + T38.

Summing T37 by parts, we have

1 >_1T37 (g4,/-, (’t) (g4.0, (.0)2)

(4.95)
I--1 l--1

n=l n=l

l--1

n=l

1--2

[T381K E (d, ff", dtfn)(Atc)2+K((l-(l-l, (l_(l-1)
n=0

1-2

n=0

l-2

n=0

We note that we would like to have avoided the evaluation of g on n by summing
all of $5 by parts at once. This does not work, since the analogue of T36 in T3o becomes

l-1 -1 .na term of the form n=l (dr(" )Ate, which demands a bound on IId,  - ll We
would also like to have replaced C by C* in $5, but this would prematurely introduce
absolute values into the argument (4.94)-(4.95) and cause the summation by parts to
fail. We collect terms in (4.84) through (4.95) to see that

l-1

n=l

(4.96)
1-2

+K E [Idt("[[2(At)zh-1 + Kllff’l[ + glll-lllz

2 02
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40 R. E. EWING AND T. F. RUSSELL

We note that the evaluations of g on C" were confined to 0 <= n <- 1. By an induction
argument like the one for (4.21), we can show that C", 0-< n <_-l-1, and ? may be
assumed to lie in I-e, 1 + el. Then the evaluations of g on these arguments present
no difficulties.

Finally, we analyze $6 and $7 together, noting that for Ate sufficiently small,
l-1

=< d[S6-1- S7l IIIc Olllollld,[llo + Z IIIc"/ "/’lll,lll , IIl
n=l

l--1

’lllClllollld,ll[o + E ;111 = Clllllld,’lll T4. + T4,
n=l

(4.97)

and, since p’ < ]/(1-)= for n 2,

n=l

L2(tn-l, H 1)

(4.98)
n=l LZ(t n+l;H

n=l

Noting that

(4.99)

we have

n=l

(4.100)

() ’-=
Id,ff III.At[ +g at( +lld," IIL)]+2 -e E =

n=l
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 41

Thus,

(4.101)
1 1--2

n=O

We note that the linearly extrapolated initial guess was essential here, since the factor
(Arc)3/2 in the argument (4.98) could not be replaced by Ate.

Combining (4.56), (4.57), (4.58), (4.68), (4.83), (4.96), and (4.101), we have
shown that

I/ I/
2 n=O n=O

+

1--1

(4.102)
n=l

k-1

m=l

1--2 k-1

+g Y. [[dtnll2(Atc)Zh- + K(llll,:o(w3 X liP., -P.,II..
n==0 m=l

+K(llell co(,oo,)llrll /K(llellL,W)llPo- P011 ao
=--K(h2 +h2 +(Atc)2+(At)3+(Atp)4)+AI+A2 + +A12,

with the appropriate modification if r s 2.
Our next step is to modify the left-hand side of (4.102), intending to obtain a

collapsing sum in a norm equivalent to the Hi-norm. To add L2 terms to the sum,
we note that

(4.103) (’"+1 r", r"+ ’") + 2(’", ’"+’ ’")

Ild,sr"ll2(At)2 + 2((", d,(") Ate.
Summing this from n 0 to n l- 1 we obtain, for Ate sufficiently small,

1-1

II"ll=-II’ll== E (ll’"/’ll=-II’"ll=)
n=O

1-1 I-1 1-1

(4.104) <_-Ate E Ild,r"[12 At +e E Ild,r"[[2 At +K
n=0 n=0 n=0

<-e(AI +A2)+A3+A.
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42 R. E. EWING AND T. F. RUSSELL

This also shows that

(4.105) A9 <=e(A1 +A2)+A3-t-A11,

and by summing from n 0 to n l- 2 we can similarly estimate A 10. To make the
sum collapse, we must replace Ilffll by I1’11-. An index perturbation argument of
the form of (4.99) shows that

so that

l-1

(4.107)
n=l

Adding (4.104) and (4.107) to both sides of (4.102), we have a sum collapsing in the
norm (1111= / I1’11-)/=, which is equivalent to the Hi-norm.

Next, we make the induction hypothesis that

1-2

(4.108) Y’. IIId,"lll at <K(h2r + h2 + (Ate)2),
n=0

with the appropriate modification if r s 2. For 1 this is vacuous, and we will
demonstrate at the end of the argument that it holds if summed through n l- 1. As
a consequence, we have, for h sufficiently small,

(4.109)

1--2 1--2

E IId,’"ll At <_ Koh -1 Atc ,
n=0 n=0

goh -1 Ate Y’, IId,’"ll
n=0

I-2 ]1/2<-_Koh -1 Ate (/-1) E Ildtsrnll2
n=0

/-2 ]
1/2

--<Koh-r/ 2 IId’ll= arc
n=O

<-Kh-l(h + h + Ate)

since At o(h). If r= s 2, we have an extra term of the form h-l(h211og hi), which
is still small. Thus, in particular,

(4.110) Ate(1 / Ild,’"ll) < , 0_-<n _--<I-2,
l-1

(4.111) Z (1 +lld,"-’}l,_:o) at K.

We now estimate most of the terms A through A 12. By (4.110), A hides on
the left-hand side of (4.102). A2 hides at once. A3 and A4 will disappear when the
discrete Gronwall lemma is applied in the Hi-norm, at the cost of allowing the other
constants to depend on Ilcllw, IIllw, and I[ffllL(w). 35 hides since Atch -1=
0(1). A6 is estimated below. A7 and A8 hide in the collapsing H sum. A9 and
were handled in (4.105). A 11 and A 12 are estimated by (3.19) and (3.20), respectively.
We note that the treatment of A3 depended on (4.111), which in turn depended on
our ability to estimate d,’, which we could not do in Theorem 4.1. The estimate for
d," also enabled us to perturb the norm in (4.99) without losing a factor of the form
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 43

b*/b,, which would have demanded a norm reduction pc of order b,/b*. We will
also be able to avoid a factor of a,/a* in pp by using the dt( estimate to perturb the
a,,-norms. Thus we achieve stability for the method with a number of iterations per
time step which is both fixed and small.

It remains to estimate A6, which will require the a,,-norm perturbation. Using
(4.108), we see that for r >- 3 or s => 3,

0

(4.112)
1-2

Kh-(t)/2(h +h +t), On I-2,

so that for 1 k-2, since tp O((t)/),

(4.113)

< Atp
(max IId,C IIL Ate)=At

AtoKh 1/2(h<-- -l(Atc) + h + Ate)

<=Kh-l(h, + h" + Ate)

Then for 2 -< m <- k 1, we have the norm perturbation

(4.115) =<
2 1
2--<

by (4.113), for Atv sufficiently small. A slight extension of this calculation shows that,
for 3-<_m-<_k-1,

(4.116)

Using (4.114), we obtain

(4.117)
Ilnoll = Ilnoll o(1 + e ),

for h sufficiently small. A trivial modification of (4.112)-(4.113) handles the case
r s 2. Similarly,

(4.114) IId,ff011  At at -1 /2(h<--z-TKh (Ate) r+h +At)<e.
zXtc
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44 R. E. EWING AND T. F. RUSSELL

We now bound A6. Considering m 1 first, we have

(4.118) tiP1 2 ,2 2 (AtO)/4lleoll2ell, <- (oo) IIPol[ -<- K al

and we proceed exactly as in (4.29) to obtain the proper bound. Since

pp< 1-
3 2+4

for m >_-2,

__< II-n_,ll/ KII=t_II=
(2 +4) a-1

+ K(atp)3 - Lz(,,,,_:,t;U)
(4.119)

2+4g

(llnll+ 21Into-Ill a

+K(t.)
:

L(t_.t;H)

if we use (4.115), (4.116), and (4.117), as (a+b+c+d)N4(a+b+c+d). We
are now in exactly the position of (4.33), and we argue as in Theorem 4.1 to find that

(4.120) A6 <=K(h2 +(Atp)4)+A4.
Combining (4.102) with the analysis of A through A12, we have shown

l-1

[K(llcllu, Ilpll)h=
(4.121) + K(llcllL, IIc[l,[IPllu, IIcll’Mh=

+K(llclw, Ilcll’, Ill)(at)

with a term of the form K(h 41 log h ) if r s 2. With the time step choices

Atp kl:)./
(Atc)/3,

(4.22)

we obtain the desired result (4.55), assuming that the chosen norms dominate.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 45

Finally, we check the induction hypotheses (4.21) and (4.108). We verify (4.21)
exactly as in Corollary 4.2, requiring the hypothesis Atc-o(h). Next, (4.108) is
immediately checked by (4.121) and (4.122), and the proof is complete.

The regularity assumptions c L(Hr), Oc/Ot L2(Hr), p L(HS), and Op/Ot
L2(H) of Theorem 4.3 do not balance if time differentiation is considered equivalent
to two space differentiations. For this reason, we would like to weaken the assumptions
on the time derivatives to Oc/Ot LE(Hr-l) and Op/Ot L2(/-/s-1). The next result shows
that, under certain hypotheses, we can do this and obtain a work estimate intermediate
to those of Corollary 4.2 and Theorem 4.3.

COROLLARY 4.4. Let the hypotheses of Theorem 4.3 hold, weakened by requiring
Oc/Ot LE(Hr-), Op/Ot LE(HS-1), and strengthened by assuming that both r >- 3 and
s >-_ 3, lq is Ha-regular, and pc O(h) for n >- 2. Then, for h sufficiently small,

(4.123)
sup IIC" c"l[ gxo(h + h + Ate),

sup I[C" -c"lll <--Klo(h -1 + h- + Ate).

Proof. We combine our earlier results. The proof of Theorem 4.1, as modified
in Corollary 4.2, goes through up to (4.26), where we have

(4.124)

_<-- g(Atc)= + gh2111d,lll?, Arc / 1111/ 11 I1o Atc,

since p’c 0 (h), and

(4.125)

so that

1-1

(4.126)
1--1 1--1

+K E Ilff"+ll At / E I1’"+111 Ate +
n=l n=0

Hiding the e terms, we obtain the estimate (4.28) with the additional term

l-1

(4.127) To Kh2 IIId,’"lll. Ate
n=0

on the right-hand side, and with new dependence in the coefficient of (Ate)
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46 R. E. EWING AND T. F. RUSSELL

With r-1 and s- 1 playing the roles of r and s, we see that all hypotheses of
Theorem 4.3. are satisfied. Examination of the proof of Theorem 4.3 shows that the
logarithm in the final result for the case r- 1 s- 1 2 appears only in (4.75), which
does not require Oc/Ot L2(Hr) or Op/Ot L2(H’). Thus we may apply Theorem 4.3
and obtain from (4.121) the estimate

(4.128) Zo <__Kh2(h2r-2+h2S-2+(At)2)<__K(h 2r +h + (Ate)a).

Theorem 4.3 also gives us the bound [Isrtlll<-g(h2r-2+ h 2s-2 + (Atc)2), which suffices
to prove our H result. From here, the argument of Theorem 4.1 carries through,
except that A2 of (4.28) must be estimated by the argument for A6 of (4.102) in
Theorem 4.3.

A special case of important physical interest occurs when b b (x) is independent
of both the concentration and the pressure gradient. A glance at (3.2) and (3.3) reveals
that this causes the matrix Ln(, zr) to be independent of the time step n. Thus we
can suppress the concentration iterative procedure and replace it with a factorization
of + AtcB, done only once, together with a simple backsolve at each time step. We
get results corresponding to Corollary 4.2, Theorem 4.3, and Corollary 4.4.

COROLLARY 4.5. Suppose that b b(x), (R1) holds, c L2(W2 ), and p L(HS).
If r >= 3, assume also that 12 is H3-regular. Suppose that the relations (4.51) and (4.52)
hold, and that we achieve norm reductions of the form

(4.129)
O((fi,t)/s), m 1,

O< -t-4/ (a_**) m>=2"

Then for h sufficiently small,

(4.130) sup (lie -c"ll+ hllC-c[[)<iKS(hr + h + Atc),
tK8(hllog hi+ Ate),

r>=3 ors >=3,

r=s=2.

If also (R3) holds, then without the assumption of H3-reguiarity and with the norm
reduction

1
(4.131) pp<-_6p< m _>- 2,

3+4g’

where 3 is independent of m, we obtain

[K9(h + h + Ate), r > 3 or s > 3
sup ilC,_c,ll<__

t K9(h 211og h + Atc), r s 2,
(4.132)

sup IIC" c"111 <
K9(h -1 + h + Ate), r _--> 3 or s >= 3,
tK9(h Ilog hi+ Ate), r s 2.

If we weaken (R3) to require Oc/Ot L2(H-1) and Op/Ot L2(H’-1) instead of Oc/Ot
L2(H) and Op/Ot L2(H), then by demanding H3-regularity and both r >= 3 and s >= 3,
we can obtain

(4.133)

sup I[C cnll _-< Klo(h + h + Ate),

sup IIC" -c"111 <- Klo(h r-’ + h s-’ + Ate).
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 47

We now consider the use of the more efficient test function X .n+l._ (n Atcdtn
for the case b b (x, c, Vp), aiming for an improvement on the asymptotic work estimate
for Theorem 4.1. As in Theorem 4.3, we need a bit more regularity, though not as
much as in Theorem 4.3. Sonle other hypotheses will also have to be strengthened.
As before, we will have to use summation by parts in time to avoid the term IId,rlll,
and the new dependence of b on Vp will cause some discrete time derivatives to
appear which did not occur in Theorem 4.3. One of these, Ildt(V-EV/)II, will be
estimated by O(Atp) instead of O((Atp)2), and so we will need Atp O(Atc) instead of
Atp O((Atc)I/2). Careful analysis will show, however, that Atp can still be a large
constant multiple of Ato Another term, IldtVnll, will force us to consider the difference
IldtV(P-)ll, which will fail to provide us with a factor of Atp. Because of this, we will
have to require lap O(Atp). In relation to Theorem 4.1, the result will be that we
transfer the poor iteration count from the concentration to the pressure, which is not
computed as often, and that the fixed concentration iteration count will be independent
of variations of the coefficients. Thus the asymptotic work estimate is reduced by a
factor of Atp/At. Since Atp is smaller in this result than in Theorem 4.1, it is unclear
which result gives the better work estimate for practical computations. As in Theorem
4.3, the test function X (n+_ r, will yield a better H error estimate.

As by-products of the altered assumptions above, the connections between the
space and time discretizations will be weakened somewhat, the stronger starting
estimate (3.21) is needed, and the initial time steps will be slightly different. The first
pressure and concentration time steps, denoted by Atp and Atc, will coincide and be
of order O((Atp)2), and the second concentration step will also be At. The obvious
modifications of (2.37) will apply. For economy of notation, we will often write
expressions such as

when we actually mean

I-1

X IId,ff"ll2 At
n=0

l--1

=0 =2

where also dt (1/At)(r"+- ’n) for n 0 or 1.
THEOREM 4.6. Suppose that (3.21) holds, the above modifications to the initial

time steps are made, b b(x, c, Vp), (R6) holds, and s >-_3. Let the space and time
discretizations satisfy the relation

(4.134) At o(h),

and assume that the pressure and concentration time steps are related by

o(4.135) At Atp O((Atp)2), Atp O(D Ate),

where

(4.136) D
I[/ ll n2(n 1)"
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48 R. E. EWING AND T. F. RUSSELL

I]: we achieve norm reductions of the form

(4.137)

where is independent of n then, for h sufficiently small,

(4.138)
sup IIc" -c"ll<-K11(h + h s-1 + Zktc),

sup IIC" -c"ll, <=gl(h r-’ + h s-1
-b Atc).

Proof. We follow the proof of Theorem 4.3, making changes and additions where
necessary. The dependence of b on ’p changes (4.56)-(4.57) to

(4.139)
Sl "1- $2 -b- S3 -[- S4 -1- S5 q- S6 -1" S7,

where the definitions of the weighted norms have been modified to include the
dependence of b on ’p, and where S3 and $7 have been changed to

(4.140)

l-1

/93 Z ([b(c "+1, Vp"+l)_ b(C*", EVP"+a)]V(’*+, Vd,’") ZXtc,

l-1

S7 Y’. (b(C*", EVp"+I)7(C"+1- On+l), Vdt(") Ate.
n=O

We collect in one place the induction hypotheses which the analysis will require.
We assume (4.21), (4.108) with s- 1 replacing s, and

1-2

(4.141) E Ila,’"ll At ,
n=0

(4.142) I[sr.,l]2 <- K(h2 + h2’-2 + (Ate)2), 0<=m <_-k-l,

k-2

(4.143) 2 I[dtVrl,,l[2 Atp <=g(h 2r + h2s-2 + (Ate)2),
m=0

where the constants have the same dependences as KI, to be determined later. For
1, we check (4.21) as in Theorems 4.1 and 4.3. Except for (4.142), the others are

vacuous. We immediately check (4.142) from (3.19). At the end of the argument, we
will verify (4.108) and (4.141) for the next value of l, and if = tk we will check the
others for the next value of k.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 49

(4.144)

Next, we obtain new bounds for $3. We write

l-1

$3 E ([b(c"+, VP"+X) b(c’, VP"+)]Vt"+, Vdtsr" At

l-1

+ E @(c", vp"+) 6(e", vp"+)]ve"+, vdd")
n’-O

l--1

+ E ([b(cT", 7p"+) b(C*", 7p"+a)]7c7"+, Vdtn) At
n=O

l-1

+ E ([b(C*", Vp"+) b(C*", 7/5"+)]V"+a, Td,sr") At
n---O

l--1

+ E @(c*", vt"+) b(C*", EVt"+)]V"+, V4C") At
n--O

l--1

+ Z ([b(C*", E7/5"+) b(C*", EgrP"+x)]Tg’’+a, Td,sr’) At

T + T2 + % + T4 + Ts + T6.
For reasons noted earlier, we sum each term by parts in time. The terms T, T,

and T3 are similar to Sz of Theorem 4.3. An analogous argument, with extra terms
coming from time differences on Vp, leads to the estimate

l-1

(4.145) +K
n=l

The arguments for the other three terms have a similar but slightly different form.
We sum T4 by parts in time and obtain

T4
-@(C* Ve)- (C* VO)]Ve VC)

l-1

(4.146)
n=l

-[(c

Then

(4.147)

IT81--< Kh 2s-2 q_ gllffOll,
/=1

T9 Z ([b(C*", Vp"+) b(C*", V/"+x)]Vdt", vsr")

l--1

+ Z ({[b(C*", Tp"+x)- b(C*", "+1)]
n=l

-[b(C*", Vp")-b(C*", VP"I]}V",
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50 R. E. EWING AND T. F. RUSSELL

l-1

+ Z ({[b(C*", Vp") -b(C*", V/")]
n=l

_[b(C*- Vp")_b(C*"- Vp")]}V, Vsr
Tlo q- TI + T12,

I-1 I-1

n=l n=l

To analyze TI and T12, we set

C*" da,
Ob

b,,.= { ,Vp"++{-)V"+

(4.148)

o

Ob

and by an argument of the form of (4.65)-(4.66), we see that

oEb
(4.149)

< oEb lC*-C*"-l<K(ldt-l+ld,:-l) Ate.Ib4,-b3,-=XOcOVp]
Then

(4.150)

l-1

Tll Z (.I-b3,._v b4,nVO ]VC V
n=l

1-1 1-1

E (b3,nVdtOnVn, Vn) Atc + Y. ([b3,n- b4,n]VOnVn, Vn)
n=l n=l

T13 + T14,
l-1

n=l

l--1

<- K(llpllH<H>)h2-2 /K E Ilff"ll Ate,
n=l

l--1

n=l

I--1
<- K (llpllL=H)h 2s-2 /K E liar"Ill Ate,

n=l

I--1

T12 Y’. ([b4,n ba.._I]V0"V", Vsr"),
n=l

1--1

n=l

l--1

<-K E (+Ildt"-IIL)IIVoII=At
n=l

l--1

n=l

l--1

<--K(IIP[ILn)h2-2+K E (l+lld,ff"-lloo)llffll Ate,
n=l
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 51

by (4.141). Thus,
l--1

(4.151) IT4l<- g(llp[[n(n))h 2-2 +K E (l/IIdX"-IIL)I["[121Atc 4-11"11 /KI1’1[1.
Next, we handle T5 similarly, with , E, and -N playing the roles of p, ,

and 0, respectively. This yields the analogues

K(Atp) +

l-1

n=l

(4.152)

l-1

<=K(At)+K Y II’llat,
n=l

l-1

n=2
tn>tm

n=2 n=l
=tin

+K E
m=2

FI + F2 + F3 + G,

where the term F1 has Atc replaced by At since n 1. To bound F1, we note that

EV/2 2V/ V/, since 2- o At,
(4.153) dt(EV1) A--o(2V/ 2V/) 2dtV#,

F1 <-KAt <- K(Atp)2,
since At O((Atp)2). In F2, let t" t,, + v(At), 1 -<_ v <]. Then

E/ 1 + /.--:p._,

(v+l) v+l
EV/

(4.154) dt(V
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52 R. E. EWING AND T. F. RUSSELL

L2(tm_l,t ;H 1)

=2 L2(tm_l,tm+l ;H 1)

m=l L2(trn_l,tm+l;H1)k’c] tc g (lltli.=..))(at..)=.
In F, we have

zvi 2v.,_1

EV/5’’+= 1 + V/,,,- _,
1

1117~ ]dt(EVfi")=-[7( pm-V/m_1)+ (V/,- 27/,_1

dtTfi-i + t
d 7fi_1,

(4.155)
dt(V" -EV")= (dtV -dtV_a)-(Atp)2d2V_

At

LZ(tm_,t ;H 1)

(ato)-,

Thus

l-1

(4.156)

Next,

(4.157)

l-1

l-1

n=l

We recall that

(4.158)

<_ (Atc)2<_K(Atp)4,
L(n1)

IlVt"-EVt"II - L2(tm_I,tn;H1
for n >-2.

To bound IId,EVO"II2o, we consider the cases n 1, t"> t,,,, and t"= t,,, and use the
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 53

formulas found in (4.153) through (4.155). We have

IId,EX7tII 211d,X7ffll,. <_- K.
IId,EX7t II, -[[dtVff-XI[L <= K, > t,,,

(4.159)
(zX6)IId,EVff"IIL <-_ K +, atc lid,

g +
( z-/

Putting these bounds together, we have

Atp )3
I-1

(4,6o) ITS4 I /(t + (t)=+K =E
for At suciently small. Next,

1-1

(4.161)
l--1 l--1

n=l n=l

l--1

n=l

using (4.158). Collecting, we see that

TI K (11 11=0(At,)= + (Ate)= +K(At )2
1-1 k-1

(4.162) +K 2 ( /lldt’"-xll)ll’"llAt +K E II’,.lla6
n=l m=2

Finally, we perform the same argument for T6, with E/, EP, and Er/ replacing
p,/, and 0, respectively. We obtain

ITI<-_KIIE’IIII’IILIIIlI<-K(II._II / IIX7._=II=) / I1’11.
ITI<__KIIVolI=+KIIOlI_<K(IIClILH)h 2r + gll.Oll,

by (4.8), (3.19), and (3.20). Also,
l--1

n=l

l--1 l-1
-< K Z (llx7,.ll= / IIX7,.-II=)At /g E II’llAt

n=l n=l

k-1 l-1

m=0 n=l

(4.163)

l-1

n=l

I--1

1) 0

tn>tm
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54 R. E. EWING AND T. F. RUSSELL

k-1

m=2

=- HI + H2 +H3 + G.

The dependence of G on II/IILOO(wL)is required here because the e terms will lead to
-= II=at, which will later be partly bounded bya sum of the form e

(lltll,) E-==0 Ildgll=. We must choose sma enough to hide this term on
the left-hand side of (4.139). We now have

dt(E)=2dto,

H1 < e ]ldt V 2 ooll
dt(EVn")=dtVn_, t>t,

l-1 k-2

n=2 m=0

.) (ate)(4.164) dt(En dtVnm- + t

d,Vn_+(d n_- d,Vn_), t,

n =
k-2

m=0

Next,

k-2 l-1 k-1

m=0 n=l m=2

l-1

ITS4 IK E (lld,(EVt")lloo/ IId,(EVP)II,.)atIIEV"IIIIVIIIIII
n=l

(4.165)

=- JI + Ja + J3 + G,
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 55

where we have used (4.159) and have chosen e to cancel the effect of ][/]ILOO(w). We
find that

J1 < e (1 + liarVr/oll2)llv noll2Ate

l-1

12 -< e E (1 /lld,Vn,._ll)(llvn,.ll= /llvn,._.ll=)at
n=2

(4.166)

Thus

k-1 k-1

E IlVn,.ll=At,/eh -= E IId, X7n,.-ll=(llVn,.ll=/llVn,.-ll=)ato.
m=0 m=l

m=2 Ate]

(llvn,._llz /

k-2 k -2

m=0 m=l

(llx7nll= +

k-2

IT4 I eh -2 E IId, X7n,II2(IIX7,,,+II= +llvnll= +llVn-ll=)Ato
m=0

(4.167)
k-1 l-1

m=0 n=l

Next,

k-1

m=2

l--1

n=l

(4.168)
l--1 l-1

n=l n=l

k-1 1-1

m=0 n=l

Collecting terms, we have

l--1

IT6I <- g(llcll,’))h +K E (1
n-----1

(4.169)

+K
k-1 k-1 k-2

=2 =0 =0

k-2

+eh-2 E IId, X7ll=(llx7/ll=+llvll=
m----0

Collecting the estimates of T1 through T6, we have a revised bound for $3.
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56 R. E. EWING AND T. F. RUSSELL

The term S4 from Theorem 4.3 is unchanged, but we use a different bound for
the term Tlo arising in the analysis of S4, since we have nothing to gain by integrating
by parts. We write, using the form of u,

l-1

Tlo Z ([u(c "+, VP"+) u(c "+, VF"+)] V?"+I,
n=O

(4.170)

l-1

(a(c"+)VO"+. V5"+1, dt")Atc,
n=O

l--1

n=0

l--1
<--_ K(llpllt2(n,))h2S-2 + e X II[dt"lll2At.

n----0

This simpler estimate imposes fewer regularity requirements than the one in Theorem
4.3. This leads, subject to the induction hypothesis (4.21), to a revised estimate for $4.

Next, we note that the new weighted norm definitions are such that

l-1

n=O

still holds. For n =0 the time step At O((Atp)2) enables us to write, noting p’ <
/1-A =,

(4.172)

Iiic lllollld,’lllo o’lllClllollld,’lllo
_<_ (- )(lllelllo / Arc IIId,’lllo)llld,rlilo

d o 2Ato< (- e)lll ," Illo + Kllld,llloAt
d ,ot,2Ato o d o 2Ato

<- (-- e)llldXlllAt +K (llall W(H1))(Atp)2.

For n -> 1, the analysis of (4.98)-(4.100) must be modified to handle the dependence
of b on Vp in the analogue of (4.99). This can be done by an argument of the form
of (4.178) below. The estimate of $+$ in Theorem 4.3 is then unchanged,.save for
the addition of the term K(IIII wL(n’))(At,)2.

Combining the new estimates of S through $7, we have

+ g(llll(, IlPll’,, IlPll,, Ilffll,)h

+ K(llell,, Ilffll=,)(ato)= +A +A2

n=l

(4.173) -m=2D
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 57

+As+A6+A7+A8+A9+Alo+A11 +A12
k-1 k-2

m=O m--’O

k-2

m-’O

-K(h2r +h2S-2+(At)2+(Ato)2)+Al+A2 +" +A17,

where the unwritten A’s are as in Theorem 4.3.
We proceed as in Theorem 4.3 to form a collapsing H sum on the left-hand

side of (4.173). The only alteration needed is in the index perturbation (4.106), where
the weighted norm definition has changed. We note first that, from the induction
hypothesis (4.143) and the assumption that Ate o(h), we can make an argument of
the form (4.108)-(4.109) to obtain

k-2

(4.174) [ld,Vn.[lAto <-- e,
m=0

which at once yields

l--1 k-2 [ Atp\
(4.175) ,,=o’Y-" IId’X7n’-ll"At <-- ,.=oE IId,Vll -)Atc <--e.

Now we see that

l-1 l--1

E (11"11--I1’"11o-) E ([b(C*", EVP"+I) b(C*", EVP")]Vsr’,
n=l n=l

l-1

(4.176) +

--BI+B2.
We bound B2 in a manner analogous to (4.99). To handle B1, we write

l--1

(4.177) ]Bxl <-K X (IId,EVff"IIL+ild,EVn"II)IIff"IIAt=-B3+B4.
n=l

By (4.159),

l-1 k-1

n=l m=l

<=A3+A4,

(4.178)
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58 R. E. EWING AND T. F. RUSSELL

l-1

n=l

l--1

rn=l

using (4.164). By (4.174) and (4.175), these terms may be considered as part of A3
and A4 when the discrete Gronwall lemma is applied.

The argument proceeds unchanged through (4.111), up to the bound for A6.
Instead of estimating A6 itself, we will bound the larger sum

(4.179)
k-1

A6*=(Atp)-:2 E IIP.-PII Atp+(At)-:2 Y IIp-PII: Atam liana P"
=-:2 =0

This will be crucial in the bound for A14, and also will give us a better bound for
IIv(P-P)II. For m 0, the starting estimate (3.21) yields

(4.180) (at)-llPo Poll.o < (atp)-1 (KhrAto):2 <= Kh :2.

O((Atp)1/:2) we haveFor m 1, since O p

(At)-llpl-Plll <(Atp)-1-- (pp):ll(Pol[l
<_- K (1160112a1 / P0llal)

(4.181) <--K(Atp):2
/K(llV,oll= / IIV,II=)

-<_ K(At):2 +K (11oll= / I1’111= / h= / lIP1-/51111 / IIPo-
<= K(At):2 + K(lloll= / 11111:2) / Kh2r,

where we have used (3.16), (4.8), and (3.21), and where we hide [IP /51112al for Ate,
sufficiently small. For m => 2, we set

(4.182)

o(at.),and we note that, since p

<K(Atp):2(Fm + 2fro-1 +F-z) +K(llc[lr(u))hz

"- L:(tm_:,t;H)"

We are now in the position of (4.33)-(4.36) with R O((A6):2), F, as above, a factor
of (A6)-2 on G,,, and a factor of (A6):2 on/o and/1. We can apply Lemma 2.5 to
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 59

see that

k -1 k-1

(Atp)-2 2 IIP.-P,.IIAt E F,Atp
--=2 =:2

(4.184)
k-1

K(llcllHOh= +K E [l,,l[Atp /K([III--=H3(A6)4,
m=0

and so A6*is bounded by the same estimate.
To complete our estimate, we must bound the new terms A13 through A17. By

(4.8), we have

(4.185)

k-1

A 13 <K E (h2r q_ I]rn[[2 _[_ Ilpm pmll2am)Atp
m=0

<-_ K([IcllL(Oh 2r t_ A4 + (Atp)A *6
Using (4.142), we also see that, for 0 <= rn <= k- 1,

h-=llX7. i1= __< Kh-2(h 2r _[_

<-- Kh 2r-2 ..[.. K (h 2r--2 ..[_ h 2s--4 _[.. h-2(Atc )2) _1_ Kh-2AtpA,
(4.186)

A’ <-Kh +g 2 II(’IIA6+K(A6)4<--K(h +ha-+(zt)),

h-=llX7nm = K(h2-2 + h2-4 + h-2(At))__< e

for h sufficiently small, since Ate o(h). Thus A 15 is bounded by A 14, which we handle
below. For A 16, we have

A 16
<K(llcllL()h + gllff_ll + KIIP- Pk-lllat_,2

(4.187)
-< K(h 2r + [[Srk_ ill2 / A6A6,),

where I1-_11= can be bounded by the same technique as A9 and A 10 in (4.103) through
(4.105). A17 is handled similarly.

To bound A14, we require an a priori estimate of dtVr/,,, which we obtain as
follows. We recall the pressure equation (4.6) at time level t,,, subtract it at t,,-1, and
divide by Atp to obtain

1
(a(C*)Vd,r/.,_, Vo) ([a * * Vo)A6(Cm-1)-a(Cm)]Vrlm-1,

(4.188)

+([a(c.,)-a(C*)]Vdt.,_l, V)

+ ({[a (c..,) a(C*.,)]-[a(c.,_l)-a(C*.,_l )]}Vm-1, V(49)

+ ({[a (C*.,)y(C*.,)- a(c.,)y(c.,)]

-[a(C*.,_I)T(C*rn-1 )-a(Cm-1)’y(cm-1)}Vd, Vqg)

+ (a (C* )V[(P., ,) (P.-I ._I)], 1

1
+ ([a (C*)-a(C*m--1 )IV(Pro-l-Pro-I), Vqg)

Alp’
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60 R. E. EWING AND T. F. RUSSELL

We choose dt’rlm_ as test function, multiply by Atp, and sum from 1 to k- 1 to
obtain

k-1

(4.189) Y, IId,n.-lll.. tp=DI+D2+D3+D4+Ds+D6.
m=l

We estimate D1 through D6 in turn.
First, we see that

k-1

m=l

(4.190)

k-1

+K E
k -1 k-1

2 Ate,+gAtpA*6 E Ildd.,-ll.ato /e E
m=l m=l

and we need a bound for E k-1
.= I[ddm-l[At,. By (4.108), we know that

1
d,’ -(r,a+ r.a)

\AtpJ m=rhE

(4.191)
rt

k -1 k-1 1-2

Z Ildtffm-xll2Atp<=Koh-2 Z [Idtff,-ll2Ate<=goh-2Z Ildtff"ll2Atc
m=l m=l n=0

<=Kh-2(h 2r + h2-2 + (Ate)2)

for h sufficiently small. Then

(4.192)

k-1

m=l

k-1

+ eA’ + e E Ildtrl,-lll.,At..

By (4.191), the discrete Gronwall lemma will handle the third term.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 61

(4.193)

Next, we write

(4.194)

k-1

m=l

k-1 k-1

m=l m=l

k-1

m=l

To bound A3, we set

and by an argument of the form of (4.65)-(4.66), we have

(4.195)

Then
k-1

D3 E ([ax(cm c.._,) az(C * VdtT"lm-1)Cm-1)]Vm-1,
m=l

k-1

Y. ([(al-az)d,c..-a + a2(dt(c -C*)m-1)]Vm-1, Vdtrl-l)Atp,
m=l

k-1

m=l

(4.196)
k-1

+g Y ([[dtm-llI-Jr-[[dtm_lll)l[Vm_l[[g[ldt,rlm_X[IAtp
m=l

k-1 k-1
<- K(llcll,(u)h /K E II&ll=at,, + K(llffll(w) E IldtCm-xllatp

k-1

m=l

and we recall that e in (4.163) was chosen suciently small so that the fourth term
hides in A. The argument (4.191) shows that the fourth term may be converted from
a sum on m to a sum on n.

Next, D4 is bounded in the same way as D3, using a bound for IVdc. To handle
Ds, we see that

k-1

m=l

k-1 k-1

(4.197) NK(Atp)-2 E [[P-Pll]at+e E IIVdtn-lll2atp
m=0 m=l

k-1

A+e E Ildm-lllatp.
m=l
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62 R. E. EWING AND T. F. RUSSELL

This is where the norm reduction p, O(Atp) leading to the estimate of A6* is essential.
Finally, D6 is handled by the analysis of Vx, since 11’(P,._1-/5,._1)11: is one of the
terms used to bound 11Tr/,._lll:.

Combining the estimates of D1 through D6, we have shown that

k-1

(4.198) AI4<=Kh :r +K Y [[dtm_ll[2Lllm_lll2Atp+KA4+eAl+A +A13.
m=l

(4.199)

Assembling (4.173) and the subsequent modifications and estimates, we have

l--1

+K (IICI[H2(H1), IIllH2(H1), Ilp[lH=(H))(tc ): /g (l[ffllH=(H1))(atp):].
With the time step choice

we obtain

l-1

(4.200) Y Illdt"l[12mt + g(h 2r
/ h 2s-2

/ (Arc)2,

which yields the desired result as in Theorem 4.3.
It remains to check the induction hypotheses. The argument for (4.21) is easier,

because (4.184) allows us to replace (4.42) by

(4.201) [[Pk-Pkl[]k<--_KAtp(h :r +h2S-2)+K(Atp)5,
so that (4.43) becomes

IIVPkI[ <- 2K+ gh-2(h 2r + h2s-2 +(Atc)2)
(4.202)

_<4K52
for h sufficiently small, requiring that Ate =o(h). We verify (4.108) as in Theorem
4.3, and (4.142) is immediate. With (4.108) in hand, we can check (4.141) by an
argument of the form of (4.109). To check (4.143), we follow the argument (4.188)
through (4.198) which bounded A4, summing from m 1 to k and dropping the
multiplier e. From (4.198), we obtain

k k

m=l m=l
(4.203)

/g Y Ilff.,ll=at /g Y IId,’.,_lllZat / A6* + A13,
m=0 m=l

where A: and A13 are now summed through m k. Since we now have (4.108) at
the advanced time level, we can obtain (4.191) summed through m k. Then (4.108),
(4.142), and (4.191) handle the summations in (4.203). Finally, we can bound A6*
and A13 by the arguments (4.179) through (4.185), yielding a term of the form
m;o II:ztp which is estimated using (4.142). Thus (4.143) is verified and the proof

is complete.
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 63

We remark that if linear extrapolation is not used in the initial guess for the
pressure iteration, we obtain (4.184)with time truncation term gllo/otlll(At.),
and this suffices for the rest of the argument. Thus we may use the last pressure as
an initial guess for this theorem.

The time truncation error O(Atp) might suggest the use of a first-order method,
instead of linear extrapolation, to evaluate the pressure arguments of the concentration
coefficients. A glance at (4.154) shows that this will not work, since dt(EVffn) will be
replaced by zero and dt(Vff’-EV/n) by dtVff ’, which is bounded but is not of order
Atp. Linear extrapolation gives order Atp, and higher-order extrapolation does no
better.

We now consider the possible benefits of refactoring the matrices L" and
every O((Atc)-1/2) and O((Atp)-x/2) time steps, respectively. As noted in [6], [13], if
L" is so factored and used as an updated preconditioner, we achieve the norm reduction
O((Atc) x/2) with one iteration and O(Atc) with two. Similar statements hold for A,.
We obtain the following corollary.

COROLLARY 4.7. If we refactor L every O((Atc)-x/2) time steps, then we obtain
the results of Theorem 4.1 and Corollary 4.2 with a fixed number of pressure iterations
per time step, and with two concentration iterations per step. If Atc= O(h2), then we
obtain the result of Corollary 4.4 with one concentration iteration per time step. If we
refactor A,, every O((Atp)-1/2) time steps, then we obtain the result of Theorem 4.6 with
a fixed number of concentration iterations and two pressure iterations per time step.

Next, we consider the alternative of extrapolating the Darcy velocity u, instead
of its pressure argument, in the concentration equation (3.17a). We replace (3.17a) by

(+X-Cnx) +x)Vt+x
Ate

+(b(EU"
(4.204)

-(EU’+x" VC’, X)+(g(t’+x, c’n), X), X

where

EU"+1= u(C*o, VPo),
(4.205)

EU/ 1+ u(C* VP.) Cm-lu( * VP,_ ),
I

where v E {1, 2,. ., ]} is chosen so that

(4.206) n+l= t., + VAto

ifm =0,

ifm_->l,

We obtain the following corollary.
COROLLARY 4.8. ff (3.17a) is replaced by (4.204), then all previous error estimates

still hold.
The proof uses mostly the satne ideas already presented. Details of the arguments

can be found in [22].
Since the physical problem modeled by our coupled system is three-dimensional,

it is of interest to see how the results are altered if d 3. The error estimates for each
of the theorems and corollaries hold for d 3. Dimensionality was used only in those
parts of the arguments involving inverse inequalities and imbedding properties. The
assumptions in (I) relating L- and L2-norms must lose h -3/2 instead of h -x, and c
will have to lie in W(H3) in order to bound the W-norm of the elliptic projection
c’. Each of the theorems must require Ate "-o(h 3/2) instead of o(h) in order to verify
various induction assumptions, such as (4.21).
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64 R. E. EWING AND T. F. RUSSELL

Finally, we consider the application of our analysis to a single quasilinear parabolic
equation of the form

(c) b-8--V (b(x, c)Vc)+ u(x, c) "Vc =f(x, t, c), x f, J,

(1.2’) (d) b(x,c)V-=g(x,t,c), xsOf, tJ,
On

(e) c (x, O) Co(X), x

We can modify our numerical scheme (3.17) by eliminating the pressure equation and
all dependence of the concentration equation on the pressure, and by using a uniform
time step At. With the resulting scheme, we can argue as in Theorem 4.3 to obtain
the following theorem.

TIEOREM 4.9. Suppose that (R3), as applied to c, holds, that At o(h), and that
we achieve norm reductions of the form

(4.207)
p O((At)/), n 1,

p<=6<1/5, n =2,

with 6 independent of n. Then, for h sufficiently small,

sup I[C" c"[I <- g9(h -b zt),
(4.208)

sup Ilc" -c"[la -<_ g9(h r-1 at- At).

Proof. Since u no longer depends on p, the term T10 in (4.70) does not appear.
Thus the form of u is never used, and the term h2[log hl in the case r s 2 is gone.
We still need At o(h) at several places in the argument.

We note that by arguing as in Theorem 4.1, we can reduce the regularity on
to c/t L2(Hr-) and eliminate the mesh restriction At o(h), at the cost of assuming
H3-regularity of l-I and a norm reduction p O(h). Details of this type of analysis
together with analysis of a Crank-Nicolson version of (4.208) which yields L2 error
estimates of O(h + (At)2) under weaker initial conditions can be found in [12].

5. Computational considerations. In this section we obtain some estimates for
the work involved in our preconditioned conjugate gradient (PCG) method. We will
see that the operation counts are optimal or nearly optimal.

We consider the case d 2. We note that the analysis will permit the use of
distinct mesh parameters hc and hp for the two equations. Assume that hc and hp are
chosen so as to balance the corresponding error terms; in practice, since p is smoother
than c, this will usually mean that hp > ho Assume also that At and Atp are chosen,
as in the theorems, to balance their error terms. Then Theorem 4.1 yields an L2 error
estimate of the form

(5.1) Ex= O(hrc + Ate)= O(M-r/2 +N- ),

whereM dim d//h O(h ;-2) and Nc T/Atc O((Atc)-l). We correspondingly define

M and Np for the pressure.
We now examine the work W required to achieve this estimate. By (3.13) and

(4.3), we know that a fixed number of PCG iterations per pressure time step and
O(logNc) iterations per concentration step are needed to stabilize the procedure.
Assume that the work necessary to factor the preconditioners L0 and Ao is O(Mc/
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TIME-STEPPING METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS 65

and O(M3p/2), respectively; the nested dissection process of George [16] can achieve
this in the case of a rectangular mesh on a rectangle, and the work of Hotiman, Martin
and Rose [17] shows that it cannot be improved. Given the factorizations, the work
required for the backsolves in each PCG iteration is O(Me log Me) and O(Mp log Mp),
respectively. Then the total work estimate is

/-3/2W1 O(M3/2 +N(M logM)(logN)+,,,p +Np(Mp logMp))
(5.2)

O(Mr/:z)/l (log Me)2),
where we have assumed that M >Mp, N > Np, and N O(Mc/:z ). An optimal work
estimate would be the number of parameters in the solution, or

(5.3) W O(MNc +MpNp) O(MN) O(M+r/:z ),

so we see that our estimate is nearly optimal.
This is a large improvement over the estimate for the standard backward

difference-Galerkin procedure, which has the form

Ws O(N(M3/2 +Mc log M) + Np(M3p/2 + Mp log Mp))
(5.4)

O(M(cr/2)+(3/2 ),

is dominated by the work of refactorization, and is far from optimal. For example, if
r 2 and the errors are balanced, the PCG procedure obtains L2 error O(h :z)c with
work O(h-4l log hl), while the standard method requires 0(h-25).

In Theorem 4.3, we can stabilize the procedure in the case b b(x, c) with a
fixed number of iterations for each equation. This replaces (log M) by logM in
(5.2). In Theorem 4.6, at least asymptotically, the pressure work dominates, having
the form

W6 0(Np(Mp log Mp log Np).

For practical values of the mesh parameters, this domination may not take place, and
it is not clear which of Theorems 4.1 and 4.6 provides the better work estimate for
the case b b (x, c, Vp).

In certain cases, we may improve the work estimates still further. If the elements
being used are such that the matrices L and Ao are comparable with their diagonals
DO and Do, or with band matrices M and Mo with bandwidths independent of h, we
may use DO and Do, or M and Mo, as preconditioners instead of L and Ao. The
work required for a backsolve in a PCG iteration is then O(M) instead of O(M log M).
This will eliminate one power of the logarithm in each of the preceding work estimates.
In particular, we obtain optimal estimates in Theorem 4.3.

The procedure outlined in Corollary 4.7 may also be helpful. If we refactor every
(Atc)-l/2 Nc/2 time steps in the concentration equation, the factorizations will require
work of order O(M/EN/2 O(Mac/2+/4 )- O(M+/2 ), which (5.3) already contains.
Then the backsolve will again be O(M log M), but a fixed number of PCG iterations
will suffice, and one power of the logarithm in (5.2) will be eliminated. Similarly, we
can refactor the pressure matrix every (Atp)-i/2,,prl/2 steps in Theorem 4.6, erasing
a logarithm in (5.5).

It should be emphasized that the iteration counts supported by our theorems are
pessimistic in practice. Rather than iterating a predetermined number of times in a
computer program, one can monitor the norm reduction actually produced at each
step of the iteration. Thus the process can be stopped when a sufficient norm reduction
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66 R. E. EWING AND T. F. RUSSELL

is achieved. Additional stopping criteria can be built into the monitoring process. A
discussion of such criteria for related problems appears in [6].

Finally, we briefly consider the case d 3. It is conjectured that optimal factoriz-
ation and backsolve estimates are O(M2) and 0(M4/3), respectively, for a space of
dimension M. An optimal estimate for the work in our problem is

(5.6) W O(McNc + MflVp) O(MI+r/3 ),

since Nc =O((At)-l)=O(h-r)=O(M/3). The work required by our method in
Theorem 4.1 would be

Wl O(M2c if- NcM4c]3 log Nc q- M2p + NpM4p/3
O(M(c4/3)+(r/3) log M),

with similar estimates for the other results. A standard method would need

(5.8)
Ws O(N(M +vt4/3 + Np(Mp +... p ))

O(Mc+/3 ),

a much larger work requirement.
All of these observations can be applied appropriately to the single quasilinear

parabolic equation outlined in Theorem 4.9.
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