ALTERNAT ING-DIRECTION GALERKIN METHQOODS
FOR PARABOLIC, HYPERBOLIC AND
SOBOLEV PARTIAL OIFFERENTIAL EQUATIONS

Richard E. Ewing
Mobi | Research and Development Corporation
Field Research Laboratory
P. 0. Box 900
~al'as, Texas 79221

J:S"EC-
—t————————

A survev >f some recent resul*s in *he use cf aiternating-direction fiaite
alement me*thods for linear and nontinear partial differential eguations of
paraoclic, hyperbolic, and Sobolev type is oresented. These equations have
applications to fluid “low "7 porcus media, thermodynamics, wave propagaticn,
nonlinear viscoelasticitv, and nydrodynamics. The use of alternating-direc-
+tion or operator-splitting methods will reduce multidimensional problems to
repeated solution of one-~dimensional problems. Thus optimal order work esti-
mates can be cbtained in all cases. 7Other new high-order and computationally
efficient time-stepping procecures are also discussed and used as base
schemes fxr *he al*a2rnating-direction variants.




ALTERNATING-DIRECTION GALERKIN METHODS FOR PARABOLIC,

HYPERBOLIC, AND SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS

I+« INTRODUCTION

In this paper, we shall present a survey of some recent results in the
use of alternating-direction Galerkin methods for a variety of partial dif-
ferential equations. We shall discuss methods for time-stepping partial
differential equations of parabolic, hypertolic, and Sotolev types in two and
three spatial dimensions. The use of alternating~direction or operator-
splitting methods will reduce multidimensional problems to repeated solution
of one-dimensiona! problems. Thus optimal order work estimates can be
obtained in all alternating-direction methods.

We shall basically consider only Galerkin or finite element alternat-
ing-direction (henceforth called AD) methods in this paper. Similar results
can alsc be obtained for finite difference versicons of our methods. Since
the analysis of our methocds will appear elsewhere, we shall only describe the
methods in this manuscript and reference the analysis.

Alternating-direction methods were first used for time-dependent prcb-
lems in the context of reservoir engineering mocdeis for fluid flow in porous
media. The methods were developed in orcder to freat large scale multidimen-
sional problems in a one-dimensional fashion on the small early-generation
computers. Finite difference methods were developed for {inear parabolic
problems and analyzed thoroughly by Douglas, Peaceman, Rachford and others
(see (10, 17, 18, 32]). Later Douglas and Dupont developed and analyzed a
Laplace-modified Galerkin AD method for parabolic and hyperbolic equations
with certain nonlinearities in [12]. These ideas were extended to stronger
nonlinearities by Dendy in [8]) and to unions of rectangular regions by Dendy
and Fairweather in [9). Then in (26, 27] Hayes extended these results *o
non~rectanguiar regions via patch approximations. In [28]) Hayes and Percel!
extended these results to nonlinear capacity terms. Finally, in [11],
Douglas discussed the combination of the results ot (12, 28] with some of the
iterative statilization techniques presented in {14] to obtain other effec-

tive AD *ime-stepping procedures.
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In this paper we shall discuss some recent advances in several differ-
ent directions. First we discuss a tensor product projection of the solution
into our computational subspaces and approximation theory results which
greatly relax the smoothness assumptions required for all the earlier analy-
sis of AD methods. Then we discuss some higher-order multistep time-stepping
procedures which yield second, third, and in special cases fourth order time-
truncation errors for parabolic problems. Previously, only second order
methods with fairly strenuous coefficient constraints were known. We then \
extend the AD ideas to various partial differential equations of Sobolev type
which are used in fluid flow in fractured media, thermodynamics, vibrational
problems, nonlinear visocelasticity, and hydrodynamics (see [6, 7, 25, 29,
30, 31, 33, 341). Finally we present some direct methods and iterative
stabilizaticn techniques which yield new, high-order and computationally
efficient methods.

tet & "e & tounded dcmain in Rd, 2 & d & 2, with boundary 3n, and let
J = (3,Tl. We shall consider partial differential eguations for ¢ = u(x,t)

of the form

3L Ju - Ju
a) elx,u) S5+ (xu) 3 - T e alx,u) Tu * b(x,u) v 5
It~
(1.1
s
L3 u
+ 3ix,u) v =, = ftl<,t,u) , xeid, tel,
at”
b) ulx,t) =0 , x€du, teld,
c) ulx,0) = uo(x) , XEua,
for various choices of a, 5, ¢, @, and g« ¢ @ > 0 and g > §, we must also !
specity an adgitional initial condition of the form L
!
(1el) LU0 = v s XEuie
f# 2 o v 2 5 =7 00 (1. atove, *he equation is of parabolic type. This
sur .. nciudes racent [oin* wor< by Jim Bramole and the author (3, 4] on
proclers ¢ t-is *,re, 1f e > and c oz 3 0, the problems are of
hyserzolic tere, 1f e > 2 and ei*rer b > 0 or > 0, the problems are of




Sobolev type. Joint work with Linda Hayes [22, 23] on probtems of this type
will be discussed. ‘

In Section 2 we shall present some preliminaries and notation. We then
illustrate the basic ideas of AD methods for various cases with constant
coefficients in Section 3. In Section 4 we shall discuss higher-order direct
methods which use the ideas of (8, 12, 26, 27, 28]. 1In Section 5 we discuss
iterative stabilization ideas which use the ideas of [13, 14, 19, 20, 24].

We also discuss certain computational aspects of these methods.




11. PRELIMINARIES AND NOTATION

5
Let (u,v) = [ wuvdx and #ul® = (u,u). Let the norm on the Sobolev
Y]

space WK’D(Q) be denoted by hul, o with the second index being suppressed if
)

p = 2. Assume that 39 is Lipschitz continuous. Assume that the coefficients

<

and solutions are smooth; we refer to the various papers referenced for more

precisely defined constraints.
o

For h from a sequence of small positive numbers, let {Mh(O,i]} be a

family of finite-dimensional subspaces of w]’m([O,ll) which vanish at x = 0

and x = 1 and which satisfy:

for some integer r > 2 and some constant Ko ard any

sewdS (1w T e,

inf h 32 NI )

=y + N - % n ! - ni - [

oin hexi LA SERMPUNE thm]

XEMh[O,”
(2.1
<K ol hq
o T3

for 1 & g <sr + 1,
An example of a family of subspaces satisfying (2.1) is the continuous
subspace of piecewise polynomials of degree at most r on each subinterval of

length h of a uniform partition of 10,1].

<

We next define one-dimensional projection operators Px' Py, and P _:




Next, let IG denote The unit cube in Rd and define a sequence cf sub-

spaces on 13 oy

2 o o}
(0,11 x Mh (0,1]).

5
We henceforth assume that 2 = 13 (er 1, in R%). See [9, 27] for technigues

to extend these results to more general regions. We then define the three-

dimensional tenscr product pro,ecticn Z = PXPyP’u in Mh' MHote that the one-

dimensional operators commute and thus can be faken in any order. Using

(1.1.b), we can then obtain a very important orthogonality result.

Lemma 2.1: If d =2 or 4 = 3, respectively,
2 2
a) | (PP u-uj o x) = 0 XEM L
IXdy X vy Py M ’ h Loz
(2.4)
A3 b
0) (== (PPP u-u}, =2—x) =0 xeM !
‘3x3ydz Y x vy z 77 3xdyaz ’ ’ htizJe
We next define some other projections into M . If a2(x,u), 2(x,.), an:

L, 8NC W Te *he

o a

g(x,u) are bounded celow by positive constants, let wa' W

weighted elliptic projections satisfying:

a) (a2l ¥ (W, - u), ¥x] =0 ,REM,,
(2.5) b) (b(x,u) ¥ (wb -u), V) =0 ,XEM,
) (gix,u) v (Wg -u), W) =0 » XEM, .

Then, using the super-close approximation properties of the Galerkin solution

2
in w"“ and Lemma 3.1 of [16], we obfain the following important res.lt:

o~

and wg defined in (2.5), we

Lemma 2.2: For Z = PxPyPZu and Wa, Wb,

have for some Ko >0,




129

- r+1
(2.6) IIWa - L"l + uwb ZII] + llwg - ZII] < KO IlullH_l h .

Proof: (see [3]).
For k >0, let N=T/k € Z and 1% = ok, ce R. Also let o" = " (x) =

‘ ¢(x,Tn). Define the following backward difference operators:

a) & =9¢ -9

by %" = o - 20" 4+ "2
(2.7)
) 63¢n - ¢n _ 3¢n-l + 3¢n-2 _ d>n-3
d) 6" = 0" - 40" 4 5e™2 1 4e™3 4 ™Y,




Il DESCRIPTION OF THE METHODS -~ CONSTANT COEFFICIENTS

In this section we shall describe various methods for efficiently YTime-
stepping the Galerkin spatial procedures for various forms of (1.1) with
constant coefficients. We first consider the parabolic case of (1.1) where

e b zg =0 andc and a are positive constants:

c %%-~ adu=1f (x,Tu.
For this case, we first present several multistep methods which will form our
base schemes. Next, we shall introduce terms which allow us to use AD ideas

in space.
For various special choices of parameters, we define the following

class of backward differentiation, multistep, discrete time methods. Let

. . k
U:{fo, ses, TN} > Mh be an approximate sclution of (1.1). Assume that U are

known for k & n. Given a desired global time-truncation error of order k“,

w=1,2,3, 4, we choose parameters ui(u), i =1,2, 3, and B(n) and an

extrapolation operator £(u) for f(x,t,u) to define a method for determining

n+1

u which satisfies
K o(esu™ T, W) ¢ s (anu™!, vy)
(3.1) =< (e fa, 80" 4o, s s ay 60", X)
+8 (¢ (™ B o ™Y, W ) XM,
Choices of 1nhe paramefers and extrapolation operator for w = 1, s+, 4 are

given in Table 1. By extrapolating the values of Uk in the nonlinear term f,

1

. . n+l. .
we have produced a linear operator equation for U in terms of previous

known values of Uk, k € n. See [5, 21] for a detailed analysis of the sta-
bility and accuracy of these methods. We note that the case for u = 2 is not
the second-order Crank~Nicolson method which has a characteristic bounce.

Instead, all the methods presented here are dissipative and s*rongly stable.

Ao
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+ .
We next consider AD variants of (3.1). Let U""! satisfy

2.2 2 2
-1 n+1 n+1 kg™ a 9 n+1 3
K0 (e8U™ 7, x) + 8 (aWU™ T, vx) + = [(3;37 D (W UM, o x)
2 2 2 2
n+1 3 ] n+1i 3
* (3xaz D Gw U ? 3x3z X) * (ayaz 0 G U ’ dyaz X)]
2,3 3 3 3
k"B a 3 n+1 0
(3.2) tT2 (3gy3z 0 W U 355737 )
=k (e fay UM+ e, U+ oy 8U™2), )
i 2 3
+ +
+B(f (fn]:E(U) Un])' X) :XEMh »
where the operator D(u)Un+I makes the additional terms "small" enough so as
not to increase the order ot the errors already present in the
. . . n+1 n+1
approximations. For example, for y = 1 or u = 2, the choice D(u)U = §U
+
will yield convergent schemes. For p = 3, we shall use p(3)u" ' 62Un+].
For the case u = 4, the choice D(A)Un+l = 63Un+] would make the perturbation
terms smal! enough fcr proper truncation error analysis, but will cause the

method to be unstable. Instead, we shall choose

(3.3) 04y = 2 ™ - cs;' s2y"
with
sp= (1 +ky [55+ %; + 2]
(3.4) + iy [Bijy * aijz ¥ azjz] + 0y’ 3§%;33)
= (1 + ky %;)(! + Ky %;)(' + Ky %;] .

Since cs;] is comparable to the identity operator, this choice of D(4) acts

+
like 63Un 1, and y is chosen sufficiently large to make the method stable.
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The additiona!l terms in (3.2) allow the operator to factor in a manner
exactly as in (3.4) into a sequence of one-dimensicnal operators. Since the
methods presented in (3.2) invoive up to five time levels, special start-up
procedures must be discussed. Higher-order start-up procedures for the
methods described in (3.1) have been presented and analyzed in [4]; however,
the procedures have not been shown to be effective for AD methods. Start-up
procedures for cases p = 1, 2, 3 will appear in (3], but no procedure has
been analyzed for the case u = 4 at this time. The AD methods of (3.2) yield
the same order convergence rates as the multistep methods of (3.1) tut yield
optimal order work estimates as well.

Next, we consider other partial differential equaticns by making dif-
ferent choices of coefficients in (1.1). ifa>0, e>0, andc = bzg:z0,

we have an equation of hyperbolic type:

e X8 9. (3 (x,u) VW) o= f (x,t,0) -

AD methods of the form with d = 2

k2 (es® U™, )+ (a v U", Ta) +a (© & U™, 9y
(3.5)
22 .2 2
ATk 9 2 . n+l 3 n
+ 5 (5my 8V sy ) = (U, s ey,

have been presented and analyzed in (8, 12]. The Laplace-modified ideas were
presented and analyzed for both parabolic and hyperbolic equations in [12]
and yield second order time-truncation estimates. Extensions to higher
dimensions are straightforward as pointed out in [8]. However, since only
the weighted elliptic projection (2.5.a) was used in the analysis, more
smoothness on u was required than if Z = PxPszu and Lemmas 2.1 and 2.2 had
been used.

Next we discuss results for equations of Sobolev type which will appear
in [23]. We first consider the case with a > 0, b >0 and c >0 with e z g =

0 in (1.1):

[-%)]

u qu

c==-9Y+(aVu+b¥V 3?) = f (x,t,u) .

(%]
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Equations of this form are studied in {19, 34]1. Since equations of Sobolev
type have a time derivative in the highest-order terms, they are in general
inhereﬁfly more stable than corresponding parabolic equations. However, the
time derivatives in the highest-order terms also make the perturbation ferms

needed for AD variants much larger. Therefore three time levels will be

required for O(k) accuracy and four levels for O(kz) accuracy in this case.

One method which has time-truncation errors of order k is:

K e (W -0, ) (e, Y x)

n+1 n-‘)

+ Kk (bv(u - U , ¥ x)

) 2, n+l ]
C~ PR v e ) B 2 (avaz 87 V7 s Trayez W

(f (Tnv Un)l X) R xEMh .

+
2Un ! by 63Un+] everywhere in the above equation, we obtain a

method which yields error estimates of the form

By replacing §

r+i

(3.7) max 1UM1 < K, (K2 + ATy

n 1
1-

for some positive constant K‘, using spaces with approximation properties

given by (2.1). See [23] for analysis and computational discussion.

Finally we consider second-order Sobolev equations obtained by chcosing

e>0,c=0,a»0,b>0, and g >0 in (1.1):

e ¥ _v¢. (aVu+bV 2, gV 3—2] = f (x,t,u)
LI 4 .
342 at afZ

Equations of this type arise in hydrodynamics and applications of viscoelas-

ticity (6, 7, 25, 29, 30, 31, 33, 34] and numerical approximations have been
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studied analytically in f20l. If g > 0, a method with four time levels is

needed to obtain time-truncation errors of O(k). This method is given by

- 1 \ - -
K2 (e U™, )+ (a v, vg + kT (b w (0™ Y, vy
2 2 2
-2 2+l (kb + Q) ) 3 041 37
+k T (gvst U, v+ 2o [(Bxay STV Ty x)
2 2 2 2
3 3 n+l 3 3 3 n+l d )
(3.8) gz 8 U g 1) (gogp 00 U™ 5i5g ]
N (kb + 9)3 ( 33 63 Un+1 33,_ o)
2 2 axdydz ’ 3x3yaz M
k%e
= (¢ (", "), x) s XMy

Note that if g = 0 and b > 0, the GSUM1 terms in (3.8) can be reptaced by

+
62Un ! terms to obtain a three level method which yields error estimates of h
the form
(3.9)  max "y <k, (K2 + TNy
0

for some constant K'. For detaiis and analysis, see [23].




IVv. DIRECT METHODS

Now that the basic AD ideas have been presented in the constant
coefficient case in R3 we shall discuss methods for treating the nonlinear

coefficients in (1 1) in R2. Extensions to R3 should be obvious. We shall
first consider methods which we term direct methods which have been cerived
from the Laplace-modified ideas presented in [12] and used extensively in [8,
1, 12, 15, 27, 28].

Again, we first consider parabolic equations with e = b=g =0 in
(1.1):
(4.0) ¢ (x,u) %% =V e (a ,u Vw2 f () .
The basic idea of direct methods is to replace the variable coefficients at
the top time levels by a constant, or sequence of constants, which is "close"
to the true coefficient. Then the error made by this replacement is multi-
plied by a "small" term obtained by extrapolations from previous time levels.
Once constant coefficient values are obtained at the advanced time levels the
AD procedures described in Section 3 can be applied.

Since many important problems have different-sized diffusion components
in different directions, we shall not use only Laplace~modified methods but
shall allow a direction-oriented modification. We then modify (3.1) as

fol lows. Let Cor 3y» and a, be fixed, let

2

a e (ke ™) - ¢

(4.1) o 3T =a (% E a0 ) -
~n+1 _ > n+1

) a, = a, (x, E() U ) = a,

+
where a, and ay are the components of the vector a and let Un 1 satisfy
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- + +1 +1 3
e (B o u™) s o™, )+ st(al (B o o™ o™ Ay
X ¢x ax
n+ly 9 n+l 3
+ (a (EGw) U )ayu ‘SyX)
z , 7
+kBa!az(a“ o U™ 2
< \3xay O ' Txay X
(4.2)
R R A I FRY
~n+1 3 n+l 3 ~n+1 3 n+l 3
+8(a, 356 U ,g;x] +B(a2 3 © (W) U ,a—yx]
se (¢ (", e ™, ) , xeM
The choices of a,(w), i =1, 2, 3, 3{w) and E(y) are given in Table 1 for

w=1,2, 3. Choices of D(u), F(u) and G(u) are given in Table 2 for methods

with time-truncation errors of order k" for w=1, 2, and 3. As an example,

the case u = 1, can be written in the form

-1 +1 9 n+l 3 3 n+l a
k [co s u" , x) + (a] % U v x) + (az 57 U ’ 3? x)
ka,a 2 2
172 3 n+1 3
* 5 (8x3y §u ? 3xay x)
(4.3)
_ o=t n n n 3_ n 3_
=k (e (U - e ] s U, w) - ([a (U7 - 8] 0" 32 W)
- ([a, (W) = 2] 320" 50 + (¢ (47, 0", ) e
y 21 3y nayX ’ s X » XEW e
This equation has only constant coefficients at the advanced time level The

operator for the advanced time level can thus be factored easily into a prod-
uct of two one-dimensional operators. We note that *the first-order method

is simitar to tha* discussed in [11, 26, 27}. The first second-order method
from Table 2 is similar to the direct method discussed in (28], which has a
Crank-Nicolson base scheme, but this method is strongly stable. Both of the

aforementioned methods required constraints of the form




n+1J ﬂ+])

) 2c(xE@u" ) ce <2c(x E@ U

S

(4.4)

n+1) < a

b) a (x, E (2) U o

Although this is a very mild constraint on 3, it is a fairly restrictive two-
sided constraint on co and is noted in Table 2. Certain patch approximation

techniques presented in [26, 27, 26] help to make this constraint localized
and thus less restrictive. Another second-order method which has only one-
sided constraints but requires an extra matrix inversion at each time step is
also presented in Table 2 and has been analyzed by Bramble and the author.

If ¢ is a positive constant, we have presented two third-order direct

methods. The first has two-sided constraints on a] and a2 while the second

obtains one-sided constraints at greater computational expense as before.

Analysis and details will appear elsewhere. Note that the operator SY

appearing in Table 2 is given in (3.4).
In the analysis of all the methods presented by (4.2) and Table 2, the
use of backward differentiation multistep base methods and the prcjection I =

PXP qu instead of the usua! weighted elliptic projection allows very weak

mesh-ratio conditions of the form:

a) h <k , for d

]
[pN}
-

(4.5)

a
b) ¢, <k ch?¥ ,

L]
AN
.

for d

The use of *his projection alsc requires only the same smoothness for the AD
variants as for the Sase schemes. Use of only the elliptic projection

requires more smoothness in time than the results presented here (see [3]).

Using the ideas described above, we can also define AD methods for
non|inear Sobolev equations and wave equations. For example let e = g =0
and 2, b, and ¢ be uniformiy bounded from below by positive constants in

(1.1):

c (x,u) %%“ Ve (@ (x,u) Vu+b(x,uV 23) = f (x,t,u) .

at
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We can then consider, for u = 1,2,

!

LT T AR I T

, x) + B {(ax (E (w u

+1y 3 .l D
Ty = )1

+(ay(E(u)u v, =

ay 3y

-1 n+ly 9 n+l 3

kb (E U ) szs 0T, 22 x)
n+l, 3 n+! 3

+ b £ (w) U — & U , —

(5, (£ G ) 3 5y X1

(b1 + kB a])[bz + kB az) 32 nel 32
¥ kco [axay 0 ? 3x3y x)

(4.6)

- k-] (;: n+ 1 F(w) Un+l + e (11 s Unj' XJ

-1 ,r~n+1 3 n+) 3 n 3 5
[ s 5 S
+ < (b, ayF(u)U +b2a‘ay6d],ayx1
n+l 3 n+l 3 c~n+1 9 n+l 3
+8 {(a; "3z 6w U, 5o x) ¢+ (e, 35 6 WU » 57 1)}
+1 +]
se (f (1", E U, ) ;XM
where bx, by, bI’ bZ’ EI' and 52 are analogous to the corresponding coeffi-

cients for a (see (4.1)) and F, D, G, and £ are from Table 2 as before. We
note that the base scheme used for time-stepping the Sobolev equation here is
a backward differentiation multistep method and is different from that used
tor similar equations in Section 3. Corresponding direct methods could be
definea from the methods of Section 3. Analysis of (4.6) will appear in
{221},

In a similar manner, direct methods could be used to obtain efficient
AD methods for hyperbolic and second-order Sobolev equations where e(x,u) is
nonlinear in (1.1). Techniques like those used in [20] are required.

Detailed descriptions and analysis of these methods will appear elsewhere.
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V. |ITERATIVE METHODS

In this section we discuss iterative stabilization methods for treating
the nonlinearities in the coefficients as an alternative to direct methods.
We shall use the ideas developed in [14, 19] and later used for multistep
methods in [5, 21]. The basic idea for the base scheme is to factor the
matrix arising from the linear algebra problem at cne time-step, say the
initial time-step. We then use this factored matrix as a preconditioner in a
preconditioned conjugate gradient iterative procedure to keep frum factoring
a new matrix at each time step. This factored matrix is comparable to the
matrix which should be inverted at each time level. Thus we can extrapolate
from past values to obtain the proper accuracy and only iterate sufficiently
often to stabilize the process. For many problems this requires only *two to
four iterations per time step. |f the coefficients begin to change consider-
ably, onre should refactor to obtain a more comparable preconditioner periodi-
cally. For discussion of these computational! complexities and work esti-
mates, see [11, 14, 19, 20, 24),

The use of iterative stabilization in conjunction with AD methods was

tirs* presented in [11]. The factored operator SY from (3.4) was used as a

preconditioner in a first-order time method. However, since the base method
did not include AD perturbation terms as in (3.2), a mesh-ratio restriction
of the form
(5.1) k < K he , for d =2,
is required in [11] in order that the preconditioner be comparable to the
linear operator which should be solved at each time step. Since we include
an AD per*urbation term in our base scheme, we oh*ain comparability with the
preconditioner with no mesh-ratio restrictions. The only mesh-ratio restric-
tions required by the methods presented here are the weak conditions given by
(4.5).

The base scheme for the methods to be presented in this section for

parabolic problems from (4.0) is




- +
e (x, o U™ s U™
‘ n+ly 3 n+l 3
8 la {0 B U )5 U, 5
c Rely 3+l 3
+ B (ay (x, £ (uw) U ) 3y U * By X)
(5.2}
2 " 5
+ksa1az(a°h(>}n+1 R
<, axay ~ MY Bxay X
= & (e (%, E (W) Lnﬂ‘va] s U+ )
+ 8 ’(" [XI Tn+1t E (L‘) Un+l}, )\] ’ XEMh ’
where ay, a5, and c, are as in {(4.1) and ay, s, 81, “(u) and O(p) are as in

Table 1. We shall next define cur iterative stavilization schemes.

vWe first present the linear equations arising from (5.2) for the case
u = 3 and note that there is no ZJirect AD factorization possible for these
equations. This motivates the introducticn of a fixed preconditioner for
which the linear equations do have an AD factorization.

; . . 12 . .
we define two orderings on the nodes in @ = [0,117., The first is a

global ordering which assigns one of the numbers 1, 2, ¢«¢, M to each node in

2. The second is a tensor product ordering of the M nodes. Grid lines of

the form x = x., 0 < xj < 1, are numbered 1, 2, e°s, Mx while grid lines of

J
the form y = yJ, 0 <y, €1 are numbered 1, 2, se», My' With each node i, we
associate an x-grid line and a y~grid line. The tensor product index of the
node | is the pair (m(i), n(i)), where m{(i) is the index of the x-grid line

and n(i) is the index of the y-grid line. We then denote the tensor product

basis as
x) = ) = 1< eM
(5.3) Bi (x) = ¢m(i) {x wn(i) (y) = ¢m (x) wn (y) ’ i R
M M
where {o (x)} f and {W (y)} Z are bases for the one-dimensional
m m=1 n n=1
o
spaces Mh [0,1] for x or y in [0,1], respectively.
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Let UP from (5.2) be written as

M
p _ p M p
(5.4) VW= ] €78 0= L Tog 0 )y (y) .

Using (5.4), (5.2) with u = 3 can be written as

n

2 .
ntl "y [ a8 e 4k {F? (&) + £ (£}

L {€

n+1 _gn} = C

(5.5)

m
-n

(g)

where the matrices and vectors in (5.5) are defined by

a U"=c"+xaA"+ k",
0y ¢ = ((c (E 3 ") 5., 8,))

" Sy g B
c) A =38 ((ax (e (3 u ) e BJ, = Bi)

+ (o, (E 3 vt g, 5,

) 9y J’ a9y i
(5.6)
B?a a 2 2
no_ 192 3 3
DG = S [(axay Bj' Ixdy Bi)) ’
o) Fl ey = - A ™ g (¢ (4", £ 3 UMY, 8;)
n n n n+1
) F, ) =6 [g8-¢e ],
for i, j =1, 2, so¢, M.

Instead of solving (5.5) exactly, we shall approximate its solution by

using an iterative procedure which has been preconditioned by L® the matrix

(5.6.2) with c, a s and ay replaced by Cqyr 3y and 25 respectively. Since

the matrix L° has constant coefficients, we can use the tensor product

property of the basis to factor Lo into the product




) A = (8a,c SAS2FANO)

for i,

. . o
, , M(, and m, n = 1, ¢ee M, Thuys inverting L corresponds

~

to solving two one-cimensicnal preoblems successively.

The preconcitioning orocess eliminates the need for factoring new
matrices at each time step and reduces the problem to successive solution of
one-dimensional ~roblems, while the iterative procedure stabilizes the
resulting proolem, The stabilization process requires iteration only until a
predetermired norm reduction is achieved,

senote by
(5-8) v =

»
the approximation to US produced by only approximatefy solving (5.5) using

'
L°. Assume sufficiently accurate starting values have been obtained (see
(3,4]). Assuming VO, cen, v" have been determined, we shall determine the M-

+1 !

. . + . .
dimensional vector 8" (and thus V" from (5.8)) using a preconditioned

+
iterative method to approximate gn 1 from (5.5). As an initial guess for

+
En ' &n, we shall extrapolate from previously determined values. Specifi-

cally, for the method under ccnsideration having time-truncation error O(kS],

we shall use as an initialization for our iterative procedure
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(5.9) x_ = (8" - 6"} - 6% o™,

Since we are using previously determined 8' in the matrix problem (5.5) to

. n+1
determine 6 , our errors accumulate.

In order to analyze the cumulative error, we first consider the single

“n+
step error. We define e” ] to satisfy

n+1 {—n+1 _ en} n

(5.10) L 0 = F" () , for n > 3 .

Thus 6n+1 would be the exact solution of (5.5) if the computed values

of ek from previous approximate soiutions of (5.5) using Lo had been used for

k € n. We can use any preconditioned iterative method which yields norm

reductions of the form

n+l]1/2 (—n+l n+1)

(5.11) 1L 8 -8 I

e

n+1)1/2 (_nH n+1 4 n+1)

<o L 8 -8 +6 8 Iy

where o < Ph < 1 and the subscript e denotes the Euclidean norm of the vec-

tor. A specific iterative procedure for obtaining (4.8) is the precondi-
tioned conjugate gradient method analyzed in [1, 2, 13, 14, 19].

Then, letting

N N M
(5.12) vi= § 828, ()= )

. S . . n+1
with 87 defined in (5.10), we see that V

“ht
and V" ] satisfy
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where the last four terms measure the single step error arising from the

iterative stabilization. We must iterate only sufficiently often to control

these terms in the analysis. Since Lo is a sequence of one-dimensional

operators, we can very efficiently update E; if Ln drifts far away from to'

Analysis and details will appear in {3].

Note that in preconditioned iterative methods, only the preconditioner
is inverted. [n this case, that is only a sequence of one-dimensional prob-
lems. |f the basis functions in the one-dimensional problem are linear
(tensor products of linears for the basis for Mh) the matrices to be inverted
are tridiagonal and if the basis functions are quadratic the matrices are

pentadiagonal., Thus if d = 2 or 3 the work estimate is O(MxMy) or O(MxMyMz)’
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respectively. Thus the work is proportional to the total number of unknowns
in the problem and optimal order work estimates are obtained (see (11, 14,
24, 27, 281).

The storage requirements are also very attractive for AD methods.
Since the matrix problem is treated as a series of one~dimensional problems,
only the data corresponding to one grid line are required in core at any
given time. In two dimensions the storage requirements for these AD methods
are comparable to those of a frontal elimination solver, but these methods
require considerably less 1/0. In three dimensions the frontal elimination
solvers require that a plane of data be in core, while these methods only
require one line of data. Clearly all of the above remarks apply to each of
the AD methods presented here, not only to the iterative variants.

The author has applied iterative stabilization methods to problems of
t hyperbolic and Sobolev types in [19, 20]. The extension of these iterative

ideas to AD methods for equations of these types follows from the ideas pre-

sented above for parabolic problems.
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TABLE 1: BACKWARD DIFFERENTIATION MULTISTEP METHODS

+
n B(u) al(u) az(u) 03(“) E(p) Un 1
| | 0 0 0 TUALIF TGS
21 2/3 1/3 0 0 THALPYANT AN
3| 6/11 11 | -2/11 0 THALEP AT
a | 12725 | 23725 | -13/25 325 |yt - st gt

TABLE 2: DIRECT METHODS

Nt 1 n+1 N+ 1 Coefficient
u O(u) U Flu) U G(uiu Constraints
1 sy™! 2! 5 U] one-sided (c_
2 6Un+] 63Un+t GZUn+' two-sided (cO
n+1 2 n+l -1 -1 n 2, n+l et
2 U 8507 ~ke S, 8[c 'L U] §“U one-sided (c_
3| &2t —_ sy two-sided (a_
3fsu™ e s Ty" — czu“+‘~cos"62u” one-sided (a_
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