
I
I
I
I

ALTERNATI NG- IRECTION GALER(IN NETHODS

I FOR PARABOLIC, HYPERBOLIC AND

SOBOLEV PARTIAL DIFFERENTIAL EQLATIONS

!
I

Richard E. Ewing
Mobil Research and Development Corporation

Field Research Laboratory
P. 0. Box 900

'a s, Texas 75221

I

S, srvev :f some -ecent resj!'s n "he use of alternating-direction finite

element rnethods for linear and nonlinear partial differential eauations of
paraoolic, hyperbolic, ana Sobolev type is oresented. These equations have
applications to fljij 4low 1n porous media, thermodynamics, wave propagation,
nonlinear viscoelasticity, and hydrodynamics. The use of alternating-direc-
tion or operator-splitting methods will reduce multidimensional problems to
repeated solution of one-dimensional problems. Thus optimal order work esti-
mates can be obtained in all cases. Other new high-order and computationally
efficient time-stepping procedures are also discussed and used as base
schemes fhr the atternatii--direction variants.
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ALTERNATING-DIRECTION GALERKIN METHODS FOR PARABOLIC,

HYPERBOLIC, AND SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS

I. INTRODUCTION

In this paper, we shall present a survey of some recent results in the

use of alternating-direction Galerkin methods for a variety of partial dif-

ferential equations. We shall discuss methods for time-stepping partial

differential equations of parabolic, hyperbolic, and Sobolev types in two and

three spatial dimensions. The use of alternating-direction or operator-

splitting methods will reduce multidimensional problems to repeated solution

of one-dimensional problems. Thus optimal order work estimates can be

obtained in all alternating-direction methods.

We shall basically consider only Galerkin or finite element alternat-

ing-direction (henceforth called AD) methods in this paper. Similar results

can also be obtained for finite difference versions of our methods. Since

the analysis of our methods will appear elsewhere, we shall only describe the

methods in this manuscript and reference the an3[ysis.

Alternating-direction methods were first used for time-dependent prcb-

lems in the context of reservoir engineering models for fluid flow in porous

media. The methods were developed in order to treat large scale multidimen-

sional problems in a one-dimensional fashion on the small early-generation

computers. Finite difference methods were developed for linear parabolic

problems and analyzed thoroughly by Douglas, Peaceman, Rachford and others

(see [10, 17, 18, 321). Later Douglas and Dupont developed and analyzed a

Laplace-modified Galerkin AD method for parabolic and hyperbolic equations

with certain nonlinearities in 1121. These ideas were extended to stronger

nonlinearities by Dendy in 181 and to unions of rectangular regions by Dendy

and Fairweather in [9). Then in 126, 271 Hayes extended these results to

non-rectangular regions via patch approximations. In 1281 Hayes and Percell

extended these results to nonlinear capacity terms. Finally, in (111,

Douglas discussed the combination of the results of 112, 281 with some of the

iterative stabilization techniques presented in [141 to obtain other effec-

tive AD time-stepping procedures.
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In this paper we shall discuss some recent advances in several differ-

ent directions. First we discuss a tensor product projection of the solution

into our computational subspaces and approximation theory results which

greatly relax the smoothness assumptions required for all the earlier analy-

sis of AD methods. Then we discuss some higher-order multistep time-stepping

procedures which yield second, third, and in special cases fourth order time-

truncation errors for parabolic problems. Previously, only second order

methods with fairly strenuous coefficient constraints were known. We then

extend the AD ideas to various partial differential equations of Sobolev type

which are used in fluid flow in fractured media, thermodynamics, vibrational

problems, nonlinear visocelasticity, and hydrodynamics (see 16, 7, 25, 29,

30, 31, 33, 341). Finally we present some direct methods and iterative

stabilization techniques which yield new, high-order and computational ly

efficient methods.

Let ' !e a bounded d(main in Rd, 2 w d L ,ith bcundary 3 , and let

J = WLTi. We shall consider partial differential equations for u u(x,t)

of the form
+ X' + bc,_ V L

a) e(x,u) --- u) * •a(<,u) Vu tb(x,u)

, (1.1)

+ ;(xu) V J f(x,t,u) , xE.2, tE j,

b ) u(x,t) = 0 , xE31 , tEJ,

c) u(x,0) = u (x) , x F,,

for various choices of a, t, c, e, and g. I e > 0 and a > 0, we must also

spe:ifv an a t i ina initial conditioan of t'he form

(1 .2) .. *, ) = V ) , p ,I
.. atovs, e equation is of parabol K tpe. This

Sur,,I. "cIdes recent Jo>' worK ny Jim Bramnle and the author !3, 41 on

Drocler ,  s te. If e > " in( c I C, the problems are of

i ,:er:i: If e > D and ei+ er L )r j > 0, the problems are of

,I
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Sobolev type. Joint work with Linda Hayes [22, 231 on problems of this type

will be discussed.

In Section 2 we shall present some preliminaries and notation. We then

illustrate the basic ideas of AD methods for various cases with constant

coefficients in Section 3. In Section 4 we shall discuss higher-order direct

methods which use the ideas of 18, 12, 26, 27, 281. In Section 5 we discuss

iterative stabilization ideas which use the ideas of [13, 14, 19, 20, 24].

We also discuss certain computational aspects of these methods.



I1. DRELIMINARIES AND NOTATION

I?
Let (u,v) = f uvdx and Ilull 2 (u,u). Let the norm on the Sobolev

space wk P(Q) be denoted by ullu , with the second index being suppressed if

p = 2. Assume that 3%1 is Lipschitz continuous. Assume that the coefficients

and solutions are smooth; we refer to the various papers referenced for more

precisely defined constraints.

0
For n from a sequence of small positive numbers, let {M h[0,11 be a

family of finite-dimensional subspaces of WI'([0,11) which vanish at x = 0

and x = 1 and which satisfy:

For some integer r > 2 and some constant K and any

q0

inf II-x 1  
+ hI - I + h if - [l w + hlt - Xl ]0 - 0 1j

XEMh[ 0 , 1l

(2.1)
2 

K 011 hq
o q

for 1 . q ( r + 1.

An example of a fari lv of subspaces satisfying (2.1) is the continuous

subspace of piecewise polynomials of degree at most r on each subinterval of

length h of a uniform partition of [0,11.

We next define one-dimensional projection operators Px P y' and P :

€[C i1 cv

1, xox x =

0

a u l'-X x 0hE [0,1 ,

b) J" u X dy = 0 , xEM [0,11,-I °
. )) J" y ) -- x d y = 0 , EM h  [0 , [1

I1
T 7) j ,)' - P z U U ) 3 Z X d z 0 , C ,a h [C , T I .
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Next, let I denote the unit cube in R and define a sequence of sub-

spaces on 13 by

00 0
(2.3) M h  = [13] Mh [0,1) x Mh [0,1] x Mh (0,11.

We henceforth assume tnat 2 = 3 (or 1, in R2). See [9, 271 for techniques

to extend these results to more general regions. We then define the three-

dimensional tensor product projection 7 = P P P u in M . Note that the one-
x yz h

dimensional operators commute and tnus can be taken in any order. Usinc

(1.1.b), we can then obtain a very important orthogonality result.

Lemma 2.1: If d = 2 or = 3, respectively,

a) P
1--(P P T a u T = ,>cl KV x yh

(2.4)

b) ( P u - U _, h  ,
x~yz x y zx y z L [

We next define some other projections into M ,. If a(x,z), :(x,.), .n-

g(x,u) are bounded below by positive constants, let W, W,, anJ 4 :e t e

weighted elliptic projections satisfying:

a) (a(x,u) V (Wa  - U), v%) = 0 , X:Mh o

(2.5) b) (b(x,u) V (Wb  - u), VX) = 0 , XFMh,

c) (g(x,u) V (WB - u), VX) = 0 , XEM h '

Then, using the super-close approximation properties of the Galerkin solution

in W1,2and Lemma 3.1 of [161, we obtain the following important res.It:

Lemma 2.2: For Z = P xPyPzu and W a, W , and W defined in (2.5) we

have for some K > 0,
o
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r+l
(2.6) 1W a - ZnI + uWb  Z 1I + liWg - ZII 1 K 0 llhr+ I h

Proof: (see [31).

For k > 0, let N T/k E Z and t ak, aeIP. Also let n (x)

O(x,tnJ. Define the following backward difference operators:

n n n-I
a) 60 0

b) 6 2 0n P ¢n _2(,n-I + ,n-2

(2.7)
c) 6 3 n = in n- + 3 n-2 - n-3

d) 4 0n = cn 4 n-I + &Dn-2 - 40n-3 + ,n-4

1

• -



Ill. DESCRIPTION OF THE METHODS - CONSTANT COEFFICIENTS

In this section we shall describe various methods for efficiently time-

stepping the Galerkin spatial procedures for various forms of (1.1) with

constant coefficients. We first consider the parabolic case of (1.1) where

e E b 2 g E 0 and c and a are positive constants:

c a u= f (x,t,u).

For this case, we first present several multistep methods which will form our

base schemes. Next, we shall introduce terms which allow us to use AD ideas

in space.

For various special choices of parameters, we define the following

class of backward differentiation, multistep, discrete time methods. Let

U:{t, "'." t~1 - Mh be an approximate solution of (1.1). Assume that Uk are
0, N h

known for k 4 n. Given a desired global time-truncation error of order k

= , 2, 3, 4, we choose parameters t (p), i = 1, 2, 3, and B6() and an

extrapolation operator EC() for f(x,t,u) to define a method for determining

Un+ l which satisfies

(c 6 u n+ ,  aU n + , V),

k1  cUx (aV , j

(3.1) = k - (c [ 6
Un + 2 6 Un- ] + C3 6 Un-2' X

+ 0 (f (tn+l, E () Un+ ) I EMh

Choices of ine parameters and extrapolation operator for w = 1, ..., 4 are

kgiven in Table 1. By extrapolating the values of U in the nonlinear term f,

we have produced a linear operator equation for U n+in terms of previous

known values of U , k < n. See [5, 211 for a detailed analysis of the sta-

bility and accuracy of these methods. We note that the case for w = 2 is not

the second-order Crank-Nicolson method which has a characteristic bounce.

Instead, all the methods presented here are dissipative and strongly stable.

4
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We next consider AD variants of (3.1). Let Un + 1 satisfy

k- 1 (c6Un+l, ) + 8 (avUn+l. V) + k l2 a2  [+a D ( 2) n1 2 )
kc axay D x)y

2 un+ a 2  X ) 2 un+ a 2

+ (--i- D (p) Dn~ W)+0(n

k2133a3 _)3 un+i a 3
(3.2) + 2 {axayaz D ) u axayaz x)

c

-k (c [C11 6U n + U  n -  3 6Un- 2]' x

+ 8 (f (tn+, E () Un+l , , X Mh

where the operator D(OU +  makes the additional terms "small" enough so as

not to increase the order of the errors already present in the

approximations. For example, for p = 1 or P = 2, the choice D(i)U = 6U

will yield convergent schemes. For = 3, we shall use D(3)U n + 1 = 6 2Un+l.
Fo=h cs 4, tecoeD4)n+1 63Un+1

For the case = the choice D(4)U = 6 U would make the perturbation

terms small enough for proper truncation error analysis, but will cause the

method to be unstable. Instead, we shall choose

(3.3) D(4) = 62 Un+l - cS-1 6
2un

Y

with

Sy = (I + ky [ a I a +

22 a2 + 2 + 2 ] 3 3

(34+ a~ axa a az axayaz
(34 y xy+ - az + k~y3 l; y

(I + ky ax)(I + ky -- ) (l + ky 'z).

-1
Since cS is comparable to the identity operator, this choice of D(4) actsY

3 n+llike 63U n
, and y is chosen sufficiently large to make the method stable.



The additional terms in (3.2) al low the operator to factor in a manner

exactly as in (3.4) into a sequence of one-dimensional operators. Since the

methods presented in (3.2) involve up to five time levels, special start-up

procedures must be discussed. Higher-order start-up procedures for the

methods described in (3.1) have been presented and analyzed in 141; however,

the procedures have not been shown to be effective for AD methods. Start-up

procedures for cases w = 1, 2, 3 will appear in [31, but no procedure has

been analyzed for the case 4 = 4 at this time. The AD methods of (3.2) yield

the same order convergence rates as the multistep methods of (3.1) but yield

optimal order work estimates as well.

Next, we consider other partial differential equations by making dif-

ferent choices of coefficients in (1.1). If a > 0, e > 0, and c = b = g z 0,

we have an equation of hyperbolic type:

a2u
e--- V • (a (x,u) Vu) = f (x,t,u)

at

AD methods of the form with d = 2

k-2 (e62 Un+ l , () + (a V Un , V.) + A (V 62 Un+l ,  X

(3.5)
22 32

+ Xe2k2 (.- 62 Un+l, a = (f (tn, un), .i, XEM,
e axay 2xa h J

have been presented and analyzed in [8, 121. The Laplace-modified ideas were

presented and analyzed for both parabolic and hyperbolic equations in (121

and yield second order time-truncation estimates. Extensions to higher

dimensions are straightforward as pointed out in [8]. However, since only

the weighted elliptic projection (2.5.a) was used in the analysis, more

smoothness on u was required than if Z = P P P u and Lemmas 2.1 and 2.2 hadxyz

been used.

Next we discuss results for equations of Sobolev type which will appear

in [231. We first consider the case with a > 0, b > 0 and c > 0 with e Z g

0 in (1.1):

(a V u + b V = f (x,t,u)at a-t•(aVu+
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Equations of this form are studied in [19, 341. Since equations of Sobolev

type have a time derivative in the highest-order terms, they are in general

inherently more stable than corresponding parabolic equations. However, the

time derivatives in the highest-order terms also make the perturbation terms

needed for AD variants much larger. Therefore three time levels will be

I required for O(k) accuracy and four levels for O(k2 ) accuracy in this case.

One method which has time-truncation errors of order k is:

k- I (c (Un 1 - U n-), X) + (a V Un , V X)

I + k- 1 (b V (Un+ l - on-i), v x)

b b2 a. 2  2 n+1 a 2  a 2  -2 un+1 a2

2 2 2 2 2
(3.6) + 7b [ax 62 n+ a3a )n(i + [(( u az 62U

+ 3 a 2 n+l a 2 ) + b 3 a 3 2 n+l a3

ayzayaz kc 2axayaz 'axayaz x

( f ( t n  Un), )() , )LEM h  "

By replacing 6
2 Un+l by 63U n+ l everywhere in the above equation, we obtain a

Imethod which yields error estimates of the form

(3.7) max IIU n KI (k2 + h 
r + }

t 
n

I for some positive constant KI, using spaces with approximation properties

given by (2.1). See [231 for analysis and computational discussion.

3 Finally we consider second-order Sobolev equations obtained by choosing

e > 0, c = 0, a ) 0, b > 0, and g ) 0 in (1.1):

I2 a 2 u  au 2u)

at 2 • (a V u + b Vat + g V at f (x,t,u)

Equations of this type arise in hydrodynamics and applications of viscoelas-

I ticity 16, 7, 25, 29, 30, 31, 33, 341 and numerical approximations have been

A



134

studied analytically in 120!. If g > 0, a method with four time levels is

needed to obtain time-truncation errors of O(k). This method is given by

k-2 (e62 Un+!i '. + (a V U n , VX) + k- 1 (b V (Un+l - Un- ), v 

+ k- 2 (g 7 
6 2 un+l . X) + 2 a2  63 n+ ;2

k2 e La~y axay

(3.8) + a2  n+1 a2  a2  3n+ a2(38)+ - 6 u+! - X) +  X 3 f - )]
'axaz aya un 3 yaz

(5 a3za

+ (kb + g)3 ( a 63 un+I a 3
k2e2 axayaz axayaz

= (f (tn, un), , X-Mh

Note that if g 0 and b > 0, the 63U n+ 1 terms in (3.8) can be replaced by

62U n+  terms to obtain a three level method which yields error estimates of

the form

(3.9) max u n 1 9 KI {k2 + h r + 1

t n

for some constant K 1  For details and analysis, see [23.'

AJ
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I
IV. DIRECT METHODSI

Now that the basic AD ideas have been presented in the constant

I coefficient case in R3 we shall discuss methods for treating the nonlinear

coefficients in (1 1) in R. Extensions to R should be obvious. We shall

first consider methods which we term direct methods which have been derived

from the Laplace-modified ideas presented in [121 and used extensively in 18,

11, 12, 15, 27, 281.

Again, we first consider parabolic equations with e =b 0 in
(1.1):

au
(4.0) c (x,u) - - V * (a (x,u) V u) = f (x,t,u)

The basic idea of direct methods is to replace the variable coefficients at

the top time levels by a constant, or sequence of constants, which is "close"

to the true coefficient. Then the error made by this replacement is multi-

plied by a "small" term obtained by extrapolations from previous time levels.

Once constant coefficient values are obtained at the advanced time levels the

AD procedures described in Section 3 can be applied.

Since many important problems have different-sized diffusion components

in different directions, we shall not use only Laplace-modified methods but

shall allow a direction-oriented modification. We then modify (3.1) as

follows. Let co, al, and a2 be fixed, let

a) : = c (x, E (p) Un+l) -

(4.1) b) a+ ax (x, E u ,n+1 - ac) (x, E(i.) nl) - a2

~n+lc) a 2  =a y(x, E (4)U l)  -a 2

where a and a are the components of the vector a and let Un+ l satisfy

x y

I
1 ta
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k-  (c (E (L ) Un+ 1) 6 Un+1 , x) + {(ax (E (X) Un+la x n+ -

+ (a (E(Iw) Un+ l]  a ' ay

y ay U Tx

kaa a
+ 12 2 D (0 Un  a 2

c L D(Y ) ax3y

(4.2)

= k - [K F (p) U
n+ I + c I  6 U, + 2  6 Un- 1 , >]

n- 4 Cn+l a n+ , _ + +1 +a G (LA) Un + , a-

T(a G U Txi-> + _y (a ~ C U , X)

+ (f (t n + l , E (LA) Un +  I, X Mh

The choices of ai(), i = 1, 2, 3, 3,'P) and E(P) are given in Table 1 for

L = 1, 2, 3. Choices of D(w), F(LA) and G(LA) are given in Table 2 for methods

with time-truncation errors of order kLP for Ii = 1, 2, and 3. As an example,

the case L = I, can be written in the form

1 n+1 a un+1 , a n+l
k (c 6 U , x) + (a 1 ax x + (a2 ay T Xy >)

ka a2  2 2n+1 a2

C 'xa y 6 axay X

(4.3)
= k-1 ([c (Un) - co] 6 Un ] - ([a (Un) - a1 ] un, >2

a a([ a,]n I U

([a (Un) - a2 _ Un, I X) + (f ( 1, n), , xM
y 21a 3  y h

This equation has only constant coefficients at the advanced time level The

operator for the advanced time level can thus be factored easily into a prod-

uct of two one-dimensional operators. We note that the first-order method

is similar to that discussed in II1, 26, 27). The first second-order method

from Table 2 is similar to the direct method discussed in (281, which has a

Crank-Nicolson base scheme, but this method is strongly stable. Both of the

aforementioned methods required constraints of the form
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I
3 un+l c E u2 n+1

a) c (x, E (2) U ] c < c (x, E(2 )

(4.4)

b) a (x, E (2) U
n ) n a

Although this is a very mild constraint on a it is a fairly restrictive two-

sided constraint on c and is noted in Table 2. Certain patch approximation

techniques presented in [26, 27, 2b help to make this constraint localized

and thus less restrictive. Another second-order method which has only one-

sided constraints but requires an extra matrix inversion at each time step is

also presented in Table 2 and has been analyzed by Bramble and the author.

If c is a positive constant, we have presented two third-order direct

methods. The first has two-sided constraints on aI and a2 while the second

obtains one-sided constraints at greater computational expense as before.

Analysis and details will appear elsewhere. Note that the operator SY

appearing in Table 2 is given in (3.4).

In the analysis of all the methods presented by (4.2) and Table 2, the

use of backward differentiation multistep base methods and the projection Z =

P P P u instead of the usual weighted elliptic projection allows very weakxyz

mesh-ratio conditions of the form:

a) hr 4 k , for d = 2

(4.5)
d

b) c1  k o h2 for d = 3

The use of this projection also requires only the same smoothness for the AD

variants as for the base schemes. Use of only the elliptic projection

requires more smoothness in time than the results presented here (see [31).

Using the ideas described above, we can also define AD methods for

nonlinear Sobolev equations and wave equations. For example let e = g = 0

and a, b, and c be uniformly bounded from below by positive constants in

(1.1):

c (x,u) - V ( (a (x,u) V u + b (x,u) V au = f (x,t,u)

at a
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We can then consider, for L, 1,2,

k c (E W U n4 ) 6 Un  ) + a {(a (E (P) Un+ 1) I Un+' 
ax ax

+a(E a,, I n+l Iay U 3+ Y T ;y

+ k-
1 1(b 'E (p) ) U n+1

+ (b (E (P) n ) U 1  6 U 1+ ' X)

b + k B al)(b 2 + k B a 2 ) )2 2nl a2

kc 0oD (1) U

(4.6)

k-1 (rcn( F) F jn+ 1 6 1 n xi
nl a (-U×c ) n + b_ 6 ],xn

' = F+ b O -
I dX I x a

+ k- I  ;n + l b F un+ + Un U 1)

n+1 3 un+1 a -,+I I G (, ) Un+1 }

(+4 U 7- ax (P) a, ~ (~

+B f n+1 ,n U ,,,
+ B (f (t n +  E (w4) Un  ) x) hxEMh

where b×,b, bi, b2 , b,, and b2 are analogous to the corresponding coeffi-

cients for a (see (4.1)) and F, D, G, and E are from Table 2 as before. We

note that the base scheme used for time-stepping the Sobolev equation here is

a backward differentiation multistep method and is different from that used

for similar equations in Section 3. Corresponding direct methods could be

definea from the methods of Section 3. Analysis of (4.6) will appear in

1221.

In a similar manner, direct methods could be used to obtain efficient

AD methods for hyperbolic and second-order Sobolev equations where e(x,u) is

nonlinear in (1.1). Techniques like those used in 1201 are required.

Detailed descriptions and analysis of these methods will appear elsewhere.
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V. ITERATIVE METHODS

In this section we discuss iterative stabilization methods for treating

the nonlinearities in the coefficients as an alternative to direct methods.

We shall use the ideas developed in (14, 191 and later used for multistep

methods in 15, 21). The basic idea for the base scheme is to factor the

matrix arising from the linear algebra problem at one time-step, say the

initial time-step. We then use this factored matrix as a preconditioner in a

preconditioned conjugate gradient iterative procedure to keep from factoring

a new matrix at each time step. This factored matrix is comparable to the

matrix which should be inverted at each time level. Thus we can extrapolate

from past values to obtain the proper accuracy and only iterate sufficiently

often to stabilize the process. For many problems this requires only two to

four iterations per time step. If the coefficients begin to change consider-

aDly, one should refactor to obtain a more comparable preconditioner periodi-

cally. For discussion of these computational complexities and work esti-

mates, see 111, 14, 19, 20, 241.

The use of iterative stabilization in conjunction with AD methods was

first presented in [11 . The factored operator S from (3.4) was used as ay

preconditioner in a first-ordar time method. However, since the base method

did not include AD perturbation terms as in (3.2), a mesh-ratio restriction

of the form

(5.1) k 4 K h2  ,for d = 2,

is required in [111 in order that the preconditioner be comparable to the

linear operator which should be solved at each time step. Since we include

an AD perturbation term in our base scheme, we ottain comparability with the

preconditioner with no mesh-ratio restrictions. The only mesh-ratio restric-

tions required by the methods presented here are the weak conditions given by

(4.5).

The base scheme for the methods to be presented in this section for

parabolic problems from (4.0) is



k-  (c (x, E (f Un+ ) 6 Un+ , X

x 3 xun+1

(n× Ix @ Un n+ ) I, 3-

+ (a (x, E ( I) Un+ a u n+l
aay

(5.2)

k Ba 1 a 2  _ ( n+1

3Xoy 'xyC

K 1 (c (x, E (iA ,nI L 1 U n  + 6 U n-I] X

, n+ l XEMh

where a,, a,, and c are as in (4.1) and a.,, a, , 11 E(w) and D(P) are as in

Table 1. We shall next define cur iTerative stabi l ization schemes.

We first present the linear equations arising from (5.2) for the case

L = 3 and note tnat there is no direct AD factorization possible for these

equations. This motivates the introduction of a fixed preconditioner for

whicn the linear equations do have an AD factorization.

2
We define two orderings on the nodes in [ =0,112. The first is a

global ordering which assigns one of the numbers 1, 2, .', M to each node in

Q. The second is a tensor product ordering of the M nodes. Grid lines of

the form x = x., 0 ' x • 1, are numbered 1, 2, ... , M while grid lines of
j j x

the form y = y., 0 ( y. r I are numbered 1, 2, ... , M . With each node i, we
J J Y

associate an x-grid line and a y-grid line. The tensor product index of the

node i is the pair (m(i), n(i)), where m(i) is the index of the x-grid line

and n(i) is the index of the y-grid line. We then denote the tensor product

basis as

(5.3) B. (x) MM (x) n(i) (YY)=M (x) n (y) i M

M M
where I(D (X),x and fn ( are bases for the one-dimensional

spaces Mh 10,11 for x or y in [0,11, respectively.

_I• . . .. _ i -- - . . ... . . . - .h
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Let Up from (5.2) be written as

M M

M x y
(5.4) u p = I B. (x) = E E 0 (x) 1P ( y)

i--= m=1 n=1 mn m n

Using (5.4), (5.2) with w = 3 can be written as

Ln+l {n+1 - n} Cn () 2 n+ + k ) + n

j=1 1
(5.5)

E Fn (C)

where the matrices and vectors in (5.5) are defined by

a) n n + k An +2 n

b) Cn = ((c (E (3) Un+l ) B Bi) ,

c) An = a ((a (E (3) Un+l -L BiB

+ (a (E (3) Un+ l  B B

(5.6)

d) Gn 12a1a2 a2 2
= c 0 (aTay jaxay B]

e Fn An+1 6n+1 +
e () = - A n + 8((f (t n + , E (3) U n+ I B)J

f) Fn (6) = Gn [n - n+ ]  ,

for i, j = 1, 2, ... , M.

Instead of solving (5.5) exactly, we shall approximate its solution by

using an iterative procedure which has been preconditioned by L0 the matrix

(5.6.a) with c, ax, and ay replaced by co, al, and a2, respectively. Since

the matrix L has constant coefficients, we can use the tensor product

property of the basis to factor L into the product



(5.7) L (C + k A jo + P,
x x " y

where

a) c = c (× , .

b) A = al -1' ' () , ! x) j

c) C /(c 12 (y)
y n

-(/2
d) A (3 a, c 0- (y), ' (Y)j

for i, = , -- , M, and m, n = 1, , M . Thus inverting L corresponds

to solvin two cne-dim.ensicnal problems successively.

The preconditioning arocess eliminates the need for factoring new

matrices at each time stop and reduces the problem to successive solution of

one-di-ensional problems, while the iterative procedure stabilizes the

resulting pro le.. The stabilization process requires iteration only until a

predetermired norm roduction is achieved.

Denote bv

MC M
M x 

y

(5.8) V s 
= e. B (>' = 2 s  (x) n '

( y )
'

I= m=1 n=1

the approximation to U produced by only approximatefy solving (5.5) using

L0 . Assume sufficiently accurate starting values have been obtained (see

(3,41). Assuming V , --. , Vn have been determined, we shall determine the M-

dimensional vector n + 1 (and thus V n +  from (5.8)) using a preconditioned

iterative method to approximate ,n+1 from (5.5). As an initial guess for

n+1 n
n, - F, , we shall extrapolate from previously determined values. Specifi-

cally, for the method under consideration having time-truncation error O(k 3,

we shall use as an initialization for our iterative procedure



l[q 3

I
(5.q) x0 (fn+1 - n) 64  an+1

Since we are using previously determined 8 in the matrix problem (5.5) to

determine n+ J, our errors accumulate.

In order to analyze the cumulative error, we first consider the single

step error. We define 8 n +  to satisfy

(5.10) L { n+ 1 - 8n} = Fn (8) for n > 3

Thus 8n+ 1 would be the exact solution of (5.5) if the computed values

of 8k from previous approximate soutions of (5.5) using L had been used for
0

k i n. We can use any preconditioned iterative method which yields norm

reductions of the form

(5.11) :I(Ln+1 ( - 8n + 1 ])1

P n II(L n+1 1 / 2 (8 n+1 - 8 n+1 + 64 8 n+I1 ie

where o < pn < I and the subscript e denotes the Euclidean norm of the vec-

tor. A specific iterative procedure for obtaining (4.8) is the precondi-

tioned conjugate gradient method analyzed in 11, 2, 13, 14, 191.

Then, letting

M M Y -
(5.12) Vs = B. (x) =  1 0 'D (x) 4n (Y)

i=1 m=1 n=1 mn m

with as defined in (5.10), we see that Vn + 1 and Vn+l satisfy

I

I

I



k-1 (c (x, E W Vn+ l  6 V° '1, x

+ a (a (x, E (W) vn+l) a vn+l' D

* 6 (a (x, E () Vn +l) a Vn+l, a
yay -y

2
k S- a1  a 2  ( a 2 0n+I a

+T C', av n  --axY XJ

13)1 I Ic (x, E (0) Vn+ )" 6 Vn + a 6 Vn- I.

(5.13)

+ 3 f (x, tn+ , E (,) Vn+, XI

+ k- 1 (c (x, E (W) Vn+ ) v - vn+, x

(a;) a n1 -,n v 1 , x3

+ 6 (a x, E (,,) Vn+l ) _L (vn+ v -n+lj _L X)

x a 2 a2

k 2 a[1 2a - vn+ ' 2 [.

where the last four terms measure the single step error arising from the

iterative stabilization. We must iterate only sufficiently often to control

these terms in the analysis. Since L is a sequence of one-dimensional

operators, we can very efficiently update L if L drifts far away from L
L n

Analysis and detai Is will appear in [3].

Note that in preconditioned iterative methods, only the preconditioner

is inverted. In this case, that is only a sequence of one-dimensional prob-

lems. If the basis functions in the one-dimensional problem are linear

(tensor products of linears for the basis for M ) the matrices to be inverted
h

are tridiagonal and if the basis functions are quadratic the matrices are

pentadiagonal. Thus if d = 2 or 3 the work estimate is O(M xMy) or O(MxMyMz),

xy xyZ
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respectively. Thus the work is proportional to the total number of unknowns

in the problem and optimal order work estimates are obtained (see 111, 14,

24, 27, 281).

The storage requirements are also very attractive for AD methods.

Since the matrix problem is treated as a series of one-dimensional problems,

only the data corresponding to one grid line are required in core at any

given time. In two dimensions the storage requirements for these AD methods

are comparable to those of a frontal elimination solver, but these methods

require considerably less I/0. In three dimensions the frontal elimination

solvers require that a plane of data be in core, while these methods only

require one line of data. Clearly all of the above remarks apply to each of

the AD methods presented here, not only to the iterative variants.

The author has applied iterative stabilization methods to problems of

hyperbolic and Sobolev types in [19, 201. The extension of these iterative

ideas to AD methods for equations of these types follows from the ideas pre-

sented above fcr parabolic problems.

I
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TABLE 1: BACKWARD DIFFERENTIATION MULTISTEP METHODS

0(p) a I(p) a2 (W) a3 (p) E(W Un + 1

U1 0 0 0 1 n+ l

2 2/3 1/3 0 0 Un+l 62 U n+l

3 6/11 7/11 -2/11 Un+ l  63 U n+

4 12/25 23/25 -13/25 3/25 U n+ - 4 un+1

TABLE 2: DIRECT METHODS

Gn~ )Un+l Coefficient

D(P) U 1  F() G( Constraints

6U n+1 62Un+1 6 Un+ 1  one-sided (c)

Un+ 1  63 Un+1 S2 un+l two-sided (c)

2 6Un+ 1  62 un+l-kc S_16[c ILnUn ]  62 Un+l one-sided (c)
o y n n 0

3 62U n+ 1  6 3 Un+ l two-sided (a

3 6U-C s 62 u n+-c S- 162Un one-sided (a
o y 0 y 0
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