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Abstract—Efficient procedures for time-stepping Galerkin methods for approximating smooth solutions of
quasilinear second-order hyperbolic equations are considered. The techniques presented can be used to
analyze approximation procedures for related second-order-in-time quasilinear partial differential equations
which have applications including initial-boundary value problems for VIbratlons (possibly) w1th inertia,
dynamics of rotating fluids. and nonlinear viscoelasticity. The procedure involves the use of a pre-
conditioned iterative method for approximately solving the different linear systems of equations arising at

each time step in a discrete-time Galerkin method. Opumal order L’ spatial errors and almost optimal order
work estimates are obtained for the second-order hyperbolic case.

1. INTRODUCTION

We shall consider, as a model probiem, efficient procedures for time-stepping Galerkin methods for
approximating smooth solutions of quasilinear second-order hyperbolic equations. Equations of
this type are generalized wave equations and are used as model equations for many different types
of vibrational problems. We consider the problem of approximating the smooth solution u = u(x, t)

which satisfies

2
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{a) Lu)—'t'z‘—v 1GX, Uijvip= juX.i, k), X<a,ico,
(b) u(x,0)=ugx), x€Q,
(L.1)
£~ auu NY .. fa) = N
) _t\-*‘;u)“v()\-‘)s AT,

p:] _ -
(d) alx, u) a—'j =g(x,t), xEINLEJ,

where () is a bounded domain in R? d =3, with boundary 3(}, v is the outward unit normal to
a0, J=(0, T}, and ¢, q, f, uy, v, and g are prescribed. We shall first present a Crank-Nicolson-
Galerkin approximation to (1.1) which produces a different linear system of equations to be
solved at each time step. Procedures of this type have been analyzed in[1-4]. Our modification
of the basic pTOCf:uurt: will consist of usmg a pféCOnuxLlOﬁEU iterative pTOCcuurc for omy
approximating the solution of these linear equations at each time step. The use of a pre-
conditioning matrix eliminates the need to refactor a new matrix at each time step, while the
iterative procedure is used to stabilize the resulting algorithm. Using this modification, we
obtain the same order error estimates as for the base scheme with greatly reduced com-
putational complexity. We obtain very nearly optimal possible work estimates for our pro-
cedure.

The techniques presented here can also be used to analyze approximation procedures for

initial-boundary value problems for equations of the form

-V [d(x,Vu)Vu + b(x.Vu)V%—‘:] =f(x,t.u,Vu), x€N, te€l, (1.2)

with appropriate initial and boundary conditions. Equations of this type have been used as
models in nonlinear viscoelasticity and hydrodynamics. Existence, uniqueness, and stability of
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equations of this type have been studied by Dafermos, Greenberg, MacCamy, Mizel. Showalter
and others[5-9]. The coefficient 4 can be allowed to degenerate to zero in (1.2).
We can also treat approximations of solutions of equations of the form

c(x) %— v [a'(x, Vu)Vu+ b(x, V)V % +e(x, Vv (;;l;] = f(x, t,u. Vu),

xe,tel, (1.3)

with appropriate initial and boundary conditions. Equations of this type have been used as
classical vibration models[10,8278] and in the dynamics of rotating fluids[11, 12]. The
coefficients d or b can be allowed to degenerate to zero in (1.3).

Efficient time-stepping procedures of the type presented here have been used by the author
and others, for pseudoparabolic equations in [13], for parabolic equations in [14. 15], and for
systems of equations used to model miscible displacement in porous media in [16-18].

In Section 2 we introduce finite element spaces, present the hypotheses on (1.1) and its
solution u, discuss an elliptic projection of u, and present various Crank-Nicolson-Galerkin
methods for (1.1)<(1.3). In Section 3 we present our preconditioned modification of the base
method and discuss the effect of the iterative stabilization on a single time step. We obtain
global error estimates for both the base scheme and the iterative modification in Section 4.
Section 5 contains a brief description of estimates of the computational complexity of the
methods presented in the paper.

2. PRELIMINARIES AND DESCRIPTION OF GALERKIN METHODS

Let (¢, 4) = Jo e dx, [ = (&, ¥), (@, ¥) = [sn @@ ds, and [o[* = (¢, ¢). Let WH(Q) be the
Sobolev space on ) with norm
/s
L’(Q)) ’

with the usual modification for s ==. When s =2, let [|¢flwt = |¢flax =¥l If VF =(F,, Fy),
write |[VF]l..x in place of (|Fiflx+|Faw0)". Let H*(3Q) denote the corresponding Sobolev
space on €} with norm [ s+o0y = [#ls (with {6 = [¢lo).
Let {.#,} be a family of finite-dimensional subspaces of H'({}) with the following property:
For p = 2or p = =, there exist an integer r = 2 and a constant K, such that, for 1 =g < r and
v e WA,

%y

ox“

Jothws = ( 3

lal=k

inf {10 = el + 1l = = Koo, @

We also assume that the family {.#,} satisfies the following so-called “inverse hypotheses”: if
b € My,

(@) ¢ L=en = Koh™ |4,
2.2)

(b) ¢l = Koh ™[yl

Restrict ) as follows (with (S) denoting the collection of restrictions):
(1) The Neumann problem for —A+ I on ) is H’-regular.
(S)
(2) Q) is Lipschitz.
Assume the following regularity for c, a, 4, b, ¢, f and u:
(Q) 1. There exist uniform constants such that

(a) O<a*sa(x,u)sa*sK,,

(b) 0=a,=a(x,Vu)y=a*=K,,
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< b(x,Vu)=K;, (2.3)

2. The functions a = a(x, u), @ = d(x, 41, ¢»), b = b(x, q, §2), b = b(x, g1, g2}, € = e(x, gy, g2),
and f = f(x, t, u) are continuously differentiable with respect to u (respectively Vu) and have a

J\Ry 3y ) Al QO LAY Udbic

umform bound, K, satisfying (for i = 1,2)

aa 9d Iab
"9gil [ag;|’
(2.4)
2 25
18G;1" 10Ul 16u"1 186G
Define
”l/l“ W,9((a, b): X) = " ”l//(‘, t)"x“ W,%(a. b l=p,g=x. 2.5)
Let u, the solution of (1.1) satisfy the following regularity assumptions:
R:
el =, 1 )‘*’" " ”6 I =K,
iz mn N 0t g o
ou a
u — =K, (2.6a~c)
" rxu:uy N oth=g. my | Lo m 2
3 3 a4u
a—l: é‘% ;"—4 = Kz.
at N2y ot lpg.y 1o ll2g 1y

Similar regularity assumptions must be satisfied by the solutions of (1.2) and (1.3) but we shall

not make these expiicit here.
As in [19], we shall introduce an auxiliary elliptic problem to aid in our analysis. Define W in
M. tn he tha nnione functinon which far s &I T cntlcﬁns

R WU US LI UM UL LWLV GV WLLIVEL, UL ¢ D (U, 4 jy 0&usuS

(a()VW, V) + (W, ) =(a()Vu, Vx) + (4, x), x € M. 2.7

Then as in [1, 19, 20] we obtain the following lemma.

LEmma 2.1
There exists a constant K; = Ki((), a,, Ko, K, K2) such that for 2<=g=r, n=u—- W, and

s=0orl,

(@) Inlle=u. 5o = Ksh®*ull 1=y 5o,
o
ar’

au
q-s . fhed
< Ksh {||“||L2<J:H )'*’" 3t

(2.8)

L3 HY , L3 m)}'

wyy
S PRI Hat L% H)

o

We also make the assumption on {4} and u that there exists a constant K, such that

Wl o+ 9 Wl o+ [ 29 2%

< K
[NET PR TN P

ing.

_——
o
o
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Sufficient conditions for (2.9) to hold can be found in [14, 19]. Also as in [1, 14, 20] we can
obtain the following lemma.

Lemma 2.2
There exists a constant Ks = Ks({), ax. Ky, K. K5) such that

FwW
at’

W
at?

=K. (2.10)

L*J:HY

L*J:HY

We shall consider discrete-time Galerkin approximations. Let At >0, N = T/At €Z, and
t = gAt, 0 €R. Also let " = ¢"(x) = ¥(x, t"), and

. (,,n*l _ ljl"
(a) dldl - At ’
(2.1
n_¢n+l_2l/,n+d,n—l
(b) dlzw - (At)2 .

We shall consider Crank-Nicolson—-Galerkin methods for our base time-stepping procedure
for each of the equations. Let U: {t,, ..., ty}>#, be an approximation to the solution of (1.1).
Assuming that U* are known for k < n, determine U"*! by

n+t n—1
(cd?U™, X)+(a(U")V(—U——;—U—>,VX>=(f(t", U™, )+t ), x € My (2.12)

Similarly, we define our approximation to the solution of (1.2) by
n+1 n—1 n+l _ n-1
(a2v", 0+ (avume(EE) wy) + (b umvy Eor P vy
=(f@", U VU, x)+{g(t"), x), xE My, (2.13)

and our approximation to the solution of (1.3) by

n+! n-1 . n+i _ prn-l
(cd?U™ y) + (awww(%), VX) + (b(VU")V -UWQ—, VX)

+(e(VUVAIU Vx) =(f(t", U, VU™, x) +{g(t"), x)» xE M (2.14)

3. ITERATIVE PROCEDURES

In this section, we shall present the linear equations arising from (2.12)~(2.14). We note that
in each case, the coefficient matrices change with each time step. In order to avoid factorization
of different matrices at each time step for the solution of the linear equations, we shall discuss
an iterative method for approximating their solution. The analysis presented here will extend
the analysis of {13, 14] to the eqns (1.1)-(1.3).

Let {u}M, be a basis for 4, Let U™ from (2.12) be written as

M
Um= 2. £ 3.1)

We then see that using (3.1), (2.12) can be written as

2
[c+&E ar@ e -er=cie- e

_@Ay
2 2

ATENE + EN + (A F"(£)= R(§)

(3.2)



On efficient time-stepping methods for nonlinear partial differential equations b

where
(@) C=(cp, i)
(b) A"(&)= ((a(i §,",L,)V,L,-, V,L,-)), and (33)

© Fe@=((f(rn 3 erm).m) + e, ).

I=1

Similarly, (2.13) can be written as

[c+C8F ar@+Y B -en- [c-&B@]e-e

SO pnexe + £+ QOO G4

and (2.14) can be written as

[c+ e+ CL a0+ 3 o] @t - 0= c+ Evo-5 B @] @ - e

(At)zA MO+ Y HANREME  (3S)

where B" and E" are defined as in (3.3.b) with the coefficient a replaced by b and e
respectively and F" is defined in an analogous manner to F".

Note that since the matrices A", B" and E" change with time, straightforward solution of
(3.2), (3.4) or (3.5) would involve the factorization of new matrices at each time step. Instead of
solving (3.2) exactly, we shall approximate the solution by using an iterative procedure which
has been preconditioned by

+ % AYH). (3.6)

Similarly, for (3.4) and (3.5) we shall precondition with

+ B o+ 2 prig)

and

(At)

=C+E%¢)+—=~ A°(§)+ £ BYe),

respectively. The preconditioning process eliminates the need for factoring new matrices at
each time step, while the iterative procedure stabilizes the resulting problem. The stabilization
process requires iteration only until a predetermined norm reduction is achieved.

Let the approximation of U” from (2.12) produced by only approximately solving (3.2) using
the preconditioner (3.6) be denoted by

M

vm= 2 Y 3.7)

A starting procedure for determining V° and V' will be discussed later. Assuming that these
quantities are known, we shall determine y"*', n = 1, using a preconditioned iterative method to
approximate ¢"*! from (3.2). As an initial guess for £"*'— ¢" for n =2, we shall use quadratic
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extrapolation. Specifically, we shall use
Xo=2y"=3y" "+ 42 (3.8)

as the initialization for the iterative procedure for y"*'— y". Since we use ¥", y" ' and y"? in
the coefficient matrices to determine y"*', the errors in the approximate solution will ac-
cumulate.

In order to estimate the cumulative error, we first consider the single step error. Define 3"
to satisfy

2
LYy} 3™t =y = [C+(—42t—)- A"(y)] ("' -y =R(y), n=1, (3.9

from (3.2). For all of the analysis to follow, we can use any preconditioned iterative method
which yields norm reductions of the form

1L = ™Dl < pll L ()37 = 39" + 39" =y )l (3.10)

where 0<p; <1 and the subscript indicates the Euclidean norm of the vector. A particularly
efficient iterative procedure for obtaining (3.10) is the preconditioned conjugate gradient method
presented in [13, 14, 24, 25, 26].

Let

@ llel? = (ce, ¢)
® ol = (3 a9, Vo) a1
a 2 ’

©) llells =llelle + Atlelan,

/

be special norms and semi-norms. Note that |- [,» are uniformly equivalent to |[V-|. Then

letting
_ M
v = ; Fitkir (3.12)

we see that V"*! satisfies

Vn-H_ v+ Vn—l Vn+l+ Vn«l
() (s () 7y)

=(f(t", U"), x) +&(t"), x), x € M. (3.13)
We also see that, using (3.11), (3.10) can be written as

lvest = vl < pille* Vol nz2, (3.14)
where

P1
1"‘p|

(b) a‘pn = qpn-o-l "qD",
(©) 8" =¢ "' -2¢" + ",
(d) 53(an(pn+l_3(pn +3(pn—l_(Pn‘2.

(a) pi=

Rl

(3.15)

We next discuss a starting procedure for obtaining V?, V! and V2 We shall follow the ideas
of [3] in determining V° and V. Let V®= W(0); i.e. project u, into .#,. This will require the
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factorization of one additional matrix to solve the elliptic problem (2.7). Then approximate
u(x, At) by

(A1)? 8u
2 ot

u* = u(x, 0)+ At % (x,0)+ (x,0).

Project u* into ;. The derivative (8%u/dt?) is evaluated using the differential equations. The
solution of the second elliptic problem can be approximated using the factored matrix used to
determine V°. We can thus obtain the estimate

WV = WY +I9(V - W' +]ld(V - W = C{R" + (A1) (3.16)

Once we have V°and V' satisfying (3.16), V2 can be determined using the same preconditioned
iterative procedure as above by initializing the iterative procedure by X, = y' — ¥°. For details of a
starting procedure using the iterative procedure, see [14].

4. A PRIORI ERROR ESTIMATES
In this section we develop a priori bounds for the errors U” —u" and V" —u" for the
procedures defined in (2.12) and (3.13) respectively. Similar results yielding optimal order
H'-estimates can be obtained using similar techniques for the procedures defined in (2.13) and
(2.14) and their iterative counterparts. Theorem 4.1 yields optimal order L*-estimates for the
procedure satisfying (2.12) and (3.16) under restrictions given in (4.18). Under the slightly
stronger mesh-ratio restriction

At < C*h, 4.1)

we obtain optimal order L2-estimates for the iterative procedure satisfying (3.13) and (3.16) in
Theorem 4.2.

THEOREM 4.1

Let S, Q, R, and the restrictions on {,} of Section 2 hold. Let U" satisfy (2.12) and (3.16).
Then there exist constants 7, hy, and Kq= K¢(K;;i=0,...,5) such that if r>(df2), At<r,
h < hg, and At < h¥4,

sup {lu - Ull+ hllu— Ui} = Keh” + (At)?}. 4.2

Proof
Let n" = u"— W" and " = U" — W". From (1.1), (2.7) and (2.12), we see that

(cd?g 0+ (W ESE vy) = (e[ 25 - 2w | x) +

n+1 n-1
+ (atnyww - aunv W 0)) 1 g Un - fnan 0, et @3)

We shall let y = {"*'— "1 = At(d,¢" + di"™") in (4.3). Using this test function and (3.11), the
left hand side of (4.3) becomes

n _ n—1 n+1 n—1
(c 52 aviar + ) + (awnvEFE v - o)

=[ldig"1? - a2 +%{ll£"”ll§~ =g Wt 4.4

In order to obtain telescoping sums when (4.4) is summed on n, we must shift the indices in two
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8
of the terms above. Note that
3 = l1g" 32+ ([a(U™) = a(U™ 3]V, 90

_”{n 1”2" 2+<a_a [5§n—1+5{n—2+6Wn-l+5Wn—’]V{n 1 Vg" I)
4.5)

= (¢ W2+ CUSE™ =+ 188" =+ Aedlg™ 50

We shall henceforth use C as a generic constant in our analysis. For the first term on the right

of (4.3), we obtain
42 W"] Ad L + dg™ *))}

2 (o5#-
<C 3, P +lagrlHar+ Can' @6)
We next bound the second and fourth terms on the right of (4.3) as follows
z (" + (", U™ = f(t", u™), At(dL" + di{"7H)
3 b+l + gy @
We split the third term on the right side of (4.3) as follows
3 (atunw (we -2 o - aqumir 5 vy )|
+ T, Vx)!. (4.8

In order to treat the terms in (4.8), we shall sum by parts in time

-1

VI + 0 -+ g"")])l

ey
< 2 ([a(u") —a(u" OV (W" —KI;’—W:) v+ {"“))'
g o[ o )]
(a7 (352w), 90"+ )|

(a(ul—l)v (% 52wl—l>,v(§l + {l—l))’ +
{-1

< {3 lerlear +ary]
n=1

2 {1+ 1+ 1B+ 1.

Similarly, we see that
+{"ND)

VI + M -

(57w o)

=1 n+1 n—1
(tatun - a(umw {

n=2

=



On efficient time-stepping methods for nonlinear partial differential equations

S n+l n—1
+ 12_12 ([a(u")— a(U")_{a(un—l)__ a(U"_l)}]VK——;L’V({n + {n—l)>’
"‘ T+ W (4.10)
+ ([a(u"‘)—a(U’-’)]vﬁz_W_,V({: +{H))|

(tatw) - aiv 252 v+ 20)

+

-

(e

2o+l P+ P+l e+ 0]

Combining (4.3}~(4.10), we see that after summing (4.3) on n for n=1to n=1-1, we use
Lemma 2.1 to obtain

a1z + 5 0+

-1
=C 2 185" o-{ldg™ e + 0" err 418 o2
(4.11)

=1
+C 2 flddne+187em+ 16712 At

+ Cfllg' e + 1812+ CULNz0 + 1 W2+ e + B + (A1)

In order to bound the terms multiplied by C; on the right side of (4.11) and to introduce an L*
term on the left hand side of (4.11), we note that

ez =112 = 2At(cdid™, £+ (AtYdign 2 < 2Atld 2|12 + Atz (4.12)

Sum this inequality from n =1 to the upper limits / —1 and / —2; then multiply the resulting
inequalities by C; + (1/4), add them to (4.11) and use (3.16) to obtain

ldig 1% + }1 Nz + 1o+ NN = CHR* + A

-1
+ Z} 162"~ =l W2 + g7 12w + " |202) (4.13)

=1
+ 3 Alldg -+ 1 + 127D,

In order to apply the discrete Gronwall lemma to (4.13), we wish to show that there exists a
constant C, >0 such that

-2
go I627|.= = Co. (4.14)

The given starting procedure yields
182%c= = C. (4.15)

We shall use an induction argument as in [13, 14, 21] to yield (4.14) with the summation starting
at n = 1. For / =2, the inequality (4.13) and the estimate (3.16) imply that

12 = CUId LN+ 1130 + 1050 + B2 + (A1)} = CLR> +(an)'). (4.16)

CAMWA Vol. 6. No. 1—B
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Then we have by (2.2.a), (4.15) and (4.16),

”5{'||Lx + ||8{°]|L= < CAtHd,{‘”ch D Oy = CAth™ PR + (At} + Ca. 4.17)
Then if
r> % (4.18a)
and
At < h¥4, (4.18b)

we see that for At and h sufficiently small, (4.14) is satisfied with [ = 3. Assume the following
induction hypothesis:

k
Z [8¢"|=<Co for 1=k=l-2. (4.19)
We can now apply the discrete Gronwall lemma to (4.13) and obtain for I </ <N,
1P+ VLR +dd' P < Cr* + (a0, (4.20)
Note that from (2.2.a) and (4.20),
I= = -
_5‘_ IISZ"II,»<2 Atlld | Koh™ 4P < Z AtKoh™ P C{h* + (A1)}
< TKoCh™¥2{h* + (A1), (4.21)

Then if (4.18) is satisfied and At and h are sufficiently small, our induction argument is

completeﬂ Then since (4.21) i hoids for i=!{ <N, usmg (4.21), (2. 8) and the mdnglc mt:quamy,
we obtain the desired resuit (4.2).

Wa chall vt nhtar
We shall next obtain the same order asymp

for the approximation V defined in Section 3. We shall see in Section 5 that the work estimates
for the approximation V are far superior to those for the approximation U analyzed above.

¢ error estimates as derived in Theorem 4.1

1dlLs as Ul e i

THEOREM 4.2

Let S, Q, R, and the restrictions on {#,} of Section 2 hold. Let

(3.14) where
{28[1+" K"C*]} At
2c, ’

Then there exist constants 7, hy and K5 = K{(C* K,, i = ., 5) such that if r>(df2), At =,
h < hy, and At <min {h¥*, C*h},
sup {|lu — V| + hllu — V|;} = K+Ah" + (A1)} (4.22)
'n
Proof

Let Z" = V" - W" and 5" be as above. From (1.1), (2.7) and (3.13), we see that

(cd?Z", x)+(a<v">v§"—”—1—£—' V)= (c[”—d w"1 X))

n+1 n-1
"y Wi+ W

tlaemvwe — acvmv X EW o N fran vy fn amy. )
\ AN 7 AN 4 2 ’ /‘/ A AE s J A TP A
Zm-l__Z'H-l 1 -
(e B ) a3 Wz = 2.V, xedy (4.23)
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We note that except for the last two terms on the right of (4.23), equation (4.23) corresponds exactly
with (4.3). We must thus only show how the last two terms on the right of (4.23) are bounded. From
(4.1), (3.11) and (3.14) we see that

= Z"+l_Z-n+] n __ n—1
'TL! - ’(C (At)2 ’ At(dt{ dl{ ))

a(vn) n+l _ 7n+l n __ n—1 l
+ (A wzee - 20, Vdg - g A

S'Al‘z Wzt = Zr Nafldig e + i e + Atlldig™lan + i a1}

<211+ LR g ), +pagm e v,
<pi[ 1+ 459 2"" “ et +har
+ildig"lle +1di e + g™ + Clay). 4.24)
We than see that if
27-1
o} 5{28[1+”*§°*C*] } At, 4.25)
then
l—l -
2 %E ld™| + Clany®. (4.26)

n

The rest of the proof follows as in the proof of Theorem 4.1.

Similar techniques can be used to give a priori error estimates for the approximations given
in (2.13) and (2.14) as well as for the corresponding iterative approximations defined in Section
3. Since in the major applications, the coefficients depend upon Vu (the strain), the techniques
presented here will only yield optimal order H'-estimates instead of the optimal order
L*-estimates obtained in Theorems 4.1 and 4.2.

5. COMPUTATIONAL CONSIDERATIONS

In this section we shall consider some rough operation counts to estimate the computational
complexity of the methods presented here. We shall show that the iterative methods presented
in Section 3 allow us to obtain near optimal order work estimates. Therefore, these methods are
very efficient computationally.

First consider d =2 and the second order hyperbolic equation. Let M be the dimension of
My, and N be the number of time steps. George[22] has shown in some special cases that the
procedure of setting up and factoring L" (from (3.9)) requires O(M*?) operations and that the
solution of (3.2), given the factorization, requires (M log M) operations. Hoffman et al.[23]
have shown that such bounds are minimal. Therefore, if we conjecture the validity of the ahove
estimates for our problem and refactor L" and solve (3.2) at each time step, the total amount of
work done is

O(N{M*?+ M log M}) = O(NM*?). (5.1)
We note that the work of factorization dominates the estimates.
Using the preconditioned iterative methods presented in Section 3, one does not have to
refactor at every time step. With d =2 we have

N = (At)—l . h-(rl2) ~ M”‘. (52)

We are willing to refactor periodically, but our goal is to have the total work estimate (5.1)
dominated by the work of solving, O(NM log M). We shall see that for r =3, this goal can be
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achieved. For r =2 (piecewise linear elements). the work of factoring one matrix is already
almost as large as the total work of solving (O(M™* log M) in this case). If we refactor and
update the preconditioning matrix N"* equally spaced times. one can show that the pre-
conditioning matrices are sufficiently comparable to the true matrices that each iteration of the
iterative procedure yields a norm reduction of O((Af)"*). Then for Ar sufficiently small. five
iterations per time step will satisfy the norm reduction requirement of (4.25). Next, for n =3
(piecewise quadratic elements). (5.1) and (5.2) show that the total work is

O(NI/4M3/2 +5NM log M) = O( M(3/|6)‘13/2) + ;M‘]M log M)

and the work of solving dominates the estimate. If r =2, the total work is
O(M(BIZ)*(I/S) + 5M3/2 log M) — O(M“}/S)), (54)

which is still much better than the O(M?) work estimate if the matrices are factored at each
time step.

If r=4, one can refactor and update the preconditioning matrix more frequently
(specifically N'? equally spaced times), obtain a norm reduction of O((AN') with each
iteration and by iterating only three times per time step. still have the work of solving dominate
the work estimate. If r = 4 (piecewise cubics), the total work is

O(M™ +3M?log M) = O(M* log M). 5.5

We thus see that if r=3, then by refactoring and updating the preconditioning matrix
sufficiently often (depending upon r), the total work is of the order O(NM log M). Since the
total number of unknowns in the problem is O(NM), we see that we can obtain almost optimal
order work estimates for r = 3.

For d =3, the work of factoring a matrix is O(M?) while the work of solving the result is
O(M*?). Thus if r =2 the total work of solving again dominates the work of factoring a matrix.
Thus if refactoring is done sufficiently infrequently (depending upon r) the total work of solving
will again dominate the total work estimates.

It is computationally wasteful to iterate sufficiently many times at each time step to achleve
the pessimistic bounds given by (4.25). Instead, one can monitor the norm reduction actually
produced at each step of the iteration and stop iterating when sufficient norm reduction is
achieved. Additional stopping criteria can be imposed in this monitoring process. See [14] for a
discussion of stopping criteria for a related problem.
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