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Numerical approximation of the solution of the Cauchy problem for the 
linear parabolic partial differential equation is considered. The problem: 

(P(4udz - dx)u = PWt , 0 < x <l,O<t<T;u(O,t)=fi(t),O<t<T; 
~(1, t) = fi(t), 0 < r < T; p(0) u+(O, t) = g(t), 0 < to < t < T, is ill-posed in 
the sense of Hadamard. Complex variable and Dirichlet series techniques are 
used to establish Holder continuous dependence of the solution upon the data 
under the additional assumption of a known uniform bound for 1 u(x, t)[ when 
0 Q J < 1 and 0 < t < T. Numerical results are obtained for the problem 
where the data fi , fi and g are known only approximately. 

1. INTRODUCTION 

Consider the numerical approximation of the solution u = u(x, t) of the 
problem 

(a) ~(p(x)~)--(x)u=p(x)~, O<x<l, O<t<T, 

(b) 40, 4 =f&), O<t<T, 
(1.1) 

cc> 419 t> = f&>, O<t<T, 

(4 P(O) g (0, t) = g(t) O<&<t<T, 

where the data fi , fi , and g are known only approximately as f :, f z, and g* 
such that 

(4 llfi -f i+ IIw < e. f 

fb) llfi -f 2*llro,TI < l 0 , (1.2) 
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with co > 0 and where for any function h = h(t) 

The Cauchy problem (1 .l) is not well-posed in the sense of Hadamard [5, 7, 10, 
15-17, 231 since the solution does not depend continuously upon the data. We 
shall show that under some reasonable additiona assumptions, when the 
solution exists, it depends continuously upon the data-f1 , fi , andg. We make the 
following assumptions: 

1. fi , fi , g, p, 4, and p are such that a classical solution u to (1 .I) exists. 

2. There exists a positive constant M > 0 such that 

SUP I +, t>l < M. 
O~XSl 
o<t<r 

(1.3) 

3. The functions p, p’, 4 and p are uniformly Holder continuous in 
0 < x < 1 and satisfy 

(a) 0 <p, <P(x) <p*, 

(b) 0 < P* < P(X) 6 P*, 

(c) 0 < 4* < 4(x) < 4** 

(4 I$(4 <P’*. 

(We shall denote these constants collectively as 9.) 

4. fi and f2 are continuously differentiable and a constant Kl > 0 exists 
such that 

llf,.lro.rl + ~lf;llro,n + llfi 1ho.~I + lifi’ /I~~,TI + Ijg I~,,TI < K . (1.5) 

The study of ill-posed problems with approximate data often divides naturally 
into two tasks: firstly, establishment of a priori stability estimates which assure 
continuous dependence on data with the prescribed bound, and secondly, 
development of adequate computational methods. This paper addresses both 
tasks. 

Carlo Pucci studied the Cauchy problem for a linear parabolic partial dif- 
ferential equation in [23]. Under the additional assumption of positivity of the 
solutions, he demonstrated the continuous dependence of the solution upon the 
bounds for the soIution and its first derivatives at a certain portion of the 
boundary. He obtained no estimate of the degree of the continuous dependence. 
In 1161, Ginsberg considered the Cauchy problem for the heat equation, U,, = 
U, , and obtained Holder continuous dependence upon the data. He produced a 
numerical treatment where g(t) = 0. In [5], C annon presented estimates for 
Holder continuity for the heat equation and with (1 .I .c) replaced by U(X, 0) = 0, 
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0 < x < 1. He then reduced the problem of numerical approximation to that 
of mathematical programming techniques for solving Volterra integral equations 
of the first kind. In [7], Cannon and Douglas considered the Cauchy problem for 
the heat equation with the data specified on a curve x = s(t) and a known initial 
condition. Holder continuous dependence was derived and applications to the 
Inverse Stefan Problem were given. In [lo], C annon and the author presented a 
direct numerical method for the Cauchy problem for the heat equation in which 
a Taylor series expansion for the data is numerically approximated. 

Related types or problems have also been considered in the control theory 
literature [19, 21, 241. Coupling results like those of Seidman, MacCamy and 
Mizel [19, 21, 241 on well-posedness of boundary controllability with results 
like those of the author, Showalter, and Miller [13, 20,251 on well-posedness of 
the backward heat equation, one could obtain continuous dependence results 
(without estimates of the degree of continuity) for problems related to (1 .l) 
with (1 .l .c) replaced by 

P(l) g UP4 =&da O<t,<t<T. (l-6) 

A numerical approximation of this different problem utilizing the backward 
heat equation approximation would be much more difficult than the method 
presented here ([13,20]). Slight variations of the methods developed here could 
also directly treat the problem with 1.1.~) replaced by (1.6). 

In Section 2, we use the linearity of the partial differential operator to split 
the problem (1 .l) into two simpler problems. We then state the continuous 
dependence results which are known for one of these simpler problems and 
present some preliminary estimates for the rest of the paper. In Section 3, we 
use complex variable and Dirichlet series techniques to show the continuous 
dependence upon data properties of the second of the problems defined in 
Section 2. In Section 4, we obtain an asymptotic estimate for the degree of 
continuity for the results of Section 3. We obtain Holder continuous dependence 
upon the data. Finally, in Section 5, we discuss numerical procedures in our 
approximations. We again use linearity to split our problem. The first part is 
then treated by standard finite difference or finite element techniques. Linear 
programming methods are then used to obtain both a priori and a posteriori 
error estimates for the second part. 

2. PRELIMINARIES 

From the linearity of our parabolic operator we see that the solution u of 
(1.1) and (1.3) can be written as 

u=w+z (2.1) 
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where w satisfies 

(b) 

(4 

(4 

and x satisfies 

(b) 

(4 

(4 

(e) 

with 

z(0, t) = 0, 

z(1, t) = 0, 

4x, 0) = u(x, O), 

P(O) g (0, t) = G(t), 

O<x<l, Oct<T, 

O<t<T, 

O<t<T, 

O<x<l, 

O<x<l, O<t<T, 

O<t,<T, 

O<t<T, 

O<x<l, 

O<t,<t<T, 

(2.2) 

(2.3) 

G(t) = g(t) - ~(0) g (0, t>. (2.4) 

Elemantary potential theoretic representations [15] and maximum principle 
arguments [15, 181 show that there exists a positive constant Kz = K,(T, 23) 
such that for 0 < x < 1 and 0 < t, ,< t ,( T 

Thus, since w and awlax depend continuously upon the data, it suffices to con- 
sider the dependence of z upon the data. Also from (2.4) and (2.5.b), we see that 
if 

II G Ilrt,,n = rl> (2.6) 

then 

77 < Ilk? Il~o.r1 + P*mfi llro,r1 + lIf;llkl.rl + llh llh.rl + !ifi’!irmJ (2.7) 

is a measure of our data jr , ji , and g. 
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We next consider the Sturm-Liouville problem which is associated with our 
differential operator. Let A, and via be the eigenvalues and corresponding 
normalized eigenfunctions for the Sturm-Liouville problem 

(a> (P&d’ - en + PIP, = 0, O<x<l, 
(2.8) 

(b) TJnP) = 4) = 0. 

From our assumption (1.4) and as in [6,22] we obtain the following estimates on 
our eigenvalues and eigenfunctions: 

A,* = (p*)y(p*n2n2 + 4*) d &a < (p*)-’ c,*n2nz + 4*1 

=A,“, 

(c) I p(0) 9Jh(O)l B (P’*&Y2 + P~1’2(hLP* + 4*1 

d (p’*x;y2 + pT+y(hn*P* + q”) = pLzn , 

(4 / &(x)1 < p~1(p’*bJ1’2 + 2P*1P;1’2(haP* + 47 

< p;yp'*x,*)1'2 + 2p;lp;l’“(x;p* + q*) = pan , 

O<X<l. (2.9) 

3. CONTINUOUS DEPENDENCE OF x AND &/&x UPON THE DATA 

The assumed smoothness of z from (2.3) a 11 ows us to use the eigenvalues and 
eigenfunctions from (2.8) z into the formal series representation 

Z(X, t) = t a, exp~--Xn~~9-4x) 
W=l 

(3.1) 

where 

48 = 
I 

,’ P(X) +5 0) %(X) ax, n = 1, 2,..., (3.2) 

are the Fourier coefficients of X(X, 0). Since the eigenfunctions are normalized, 
from (1.3) and Schwarz’s inequality, we have 

(3.3) 
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The bounds in (2.9) and (3.3) show that the series representation for B converges 
absolutely and uniformly and its partial derivative with respect to x can be 
obtained by differentiating term by term. We see that this yields 

r+(t) x p(0) g (0, t) = f an exp{-Lt) 94O)P(O) 
n=1 

(3.4) 

where 

cn z= %Fi&YPW~ n = 1, 2,.... (3.5) 

From (2.3.e) and (2.6), we see that 

Let 5 = t + z7. Clearly, F(4) is an analytic function in the complex domain 
Re 5 > t, . Moreover, there exists a positive constant Ka = J&(9, M) such that 
for all 5 with Re 5 > t, , 

Using logarithmic convexity arguments as in 15-121, we can show there exists a 
computable constant ol = a(to , T, 7*), 0 < ol < 1, and a positive constant 
K4 = K,(g, M) such that for all 5 satisfying 

(a) Re 4 E r : z [at,, + &T, it,, + $T] 
(3-g) 

(b) / Im 5 j :< 27*, 

A straightforward application of a lemma of Binmore [2, 41 yields, for t* E Y 
from (3.8), 

(3.10) 

where 

(3.11) 
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and T* = 7*(g) is chosen to exceed every 

7, = ; An - 1” + t 
1 

A;1 
I 
) n = 1, 2,.... 

j=n+1 

(3.12) 

We note that the above choice of T* is possible since (2.9.a) implies that 7, 
is a decreasing sequence after at most a few terms. 

Applying Gronwall’s lemma as in [l 1, 121, we can obtain positive computable 
constants I& = I&(@ and K, = K?(9) such that 

I &m 2 P *lb2 exp(-(K,n2 + &)I7 n = 1, 2,.... (3.13) 

Then using (1.4), (3.4), (3.5), (3.10), (3.11) and (3.13) we have for 71 = 1,2 ,..., 

< p*1p*1/2 exp{U* + K6n2 + 41 WL.) Kd. 

Finally, we use (3.14) to bound the a,, n = 1,2 ,..., N, and (3.3) to bound a, 
for n > N. Then, using (2.9), we obtain, for 0 < x < 1 and t, < t < T, 

(b) / E (x, t) 1 < +K4p;1p*1’z 2 CL~~&L) exp&(t* - t> -I- K$ i- KT> 
n=1 

+ p*~Fvi 
n=N+l 

(3.15) 

We see that (3.15) is in the form 

where lim,,, AiN = cc and limN,, BIN = 0, i = 1,2. We thus have shown 
the following theorem. 
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THEOREM 1. I f  assumptions l-4 hold, then for each N > 0, there exist con- 
stants A,, and Bi, , i = 1,2, such that lim,,, A,,” =:= 00 and lim,,, BiN = 0 
and there exists a constant 01, 0 < cy < 1, such that for 0 < x < 1 and t,, < t 

< T 

b-4 I 4x> t)l < AM” + 4, , 
(3.17) 

(b) / g (x, t> ) 6 &wrl” + &w . 

We see that for 0 < x < 1 and t, < t < T, our theorem implies that 

l)J 1 x(x, t)j = $-!$I j g (x, t) i = 0, (3.18) 

and x and ax/ax, and thus u and &/ax, from (2.1) and (2.5), depend continuously 
upon the data. In the next section, we shall determine the rate of convergence 
in (3.18). 

4. AN ASYMPTOTIC ESTIMATE AS 7 + 0 

An ill-posed problem in the sense of Hadamard is computationally feasible 
only if the dependence of the solution upon the data is either Holder (O($), 
Cl < p < 1) or logarithmic, (O(log l/~)-8, 0 < /3 < 1). In this section, we shall 
obtain estimates that show that for our problem, the solution depends Holder 
continuously upon the data. 

Since (2.9) shows that A,, < A,, and BIN < B,, in (3.15) and (3.16), it 
suffices to consider A,, and B,, . We first consider A,, . From (3.15) we see 
that we must estimate H&J, given in (3.11). We note that if h, > 2h, , we 
have 

(4.1) 

From elementary calculations one can show that there exist positive constants 
K, = Ks(S) and Kg = Kg(~) so that for 

h > N, = (I&n2 + K,)1/2. (4.2) 

then (4.1) holds. Next, we estimate 

kQ 
n 
cos ($ $) = exp 1 f log cos 3 +I 

li=N, h! 
(4.3) 
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by noting that 

1ogcos++~ rr’2(An’Ad tan ,f d[ > _ 4 ($) 
k 0 

(4.4) 

and using (2.9.a) to obtain 

fi cos + 2 3 exp{--KIon2 - K,,} 
k=N, k 

where K,, = K,,(.G@ and K,, = K,,(g). At this point we must make an addi- 
tional assumption upon the eigenvalues of our Sturm-Liouville problem. Let 

d = i;f(X,+, - X,) (4.6) 

and assume that d > 0. Then, noting that 

z cos (t *) Jjjr cos (+ $) > /min (cos : v, cos F &)lh, 
?a 

(4.7) 

we can finish the estimate for H(X,). We thus obtain K,, = K,,(g) and Krs = 
I&(B) such that 

(4.8) 

Then elementary estimates yield the existence of I& = I&(9, d) and I& = 
&,(z?B, d) such that 

. W4 f expK4n2 + W. (4.9) 

Finally, from (3.15) and (3.16) we see that 

4~ < A2iv d exPWIoN2 + KIJ (4.10) 

where KrB = I&(9, to, T, M, d) and Kr, = Kr,(g, to , T, M, d). 
We next see from (2.9), (3.15) and (3.16), that 

4, < B2~ G exp{-KIsN2 + KIJ (4.11) 

where K18 = K&93, to, M) and K,, = K19(9, to, M). Combining (3.16), 
(4.10) and (4.11), we have 

(4 I 4x, t>l < expWIoN2 + K17) 7” + exp{--KIsN2 + Kd, 
(4.12) 

(b) 1 g (~3 t> 1 < expKoN2 + K17) 7” + exp{--K18N2 + K,,). 

409/71/I-12 
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Setting 

(4.13) 

to balance the effect of the two terms in the bound in (4.12), we see that by 
picking N such that 

(4.14) 

we obtain, for 0 < x < 1, t,, < t < T, 

(b) j g (x, t) 1 < Know, 

where 0 < Y < 1. We can thus establish the following result by combining 
(2.5) (2.7) and (4.15). 

THEOREM 2. If  our assumptions l-4 hold and if there exists a minimum positive 
separation between the eigenvakes of the Sturm-Liouville problem (2.8), then the 

norm of the so&ion of (1 .l) defined by 

sup I 4x, t)l + sup 
OSZQI 
t&G’ t&ST 

(4.16) 

depends Holder continuously upon the uniform norm of the data given by 
(2.6) and (2.7). 

5. NUMERICAL PROCEDURES 

In this section we consider the problem of numerically approximating (1.1) 
subject to the restriction (1.2). The restriction (1.2) comes from the fact that 
data measurement is, in general, accurate only to within some measurement 
tolerance co . From the linearity of the operator, we note that the solution w of 
(2.2) can be written as 

w = WI + wg . (5.1) 
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Here wr satisfies 

(4 Lw, G g (p(x) 2) - q(x) WI - p(x) 2 = 0, 

(b) w,(O, 4 =fi -ff 7 

(4 WlU, 0 =f2 -fL 

(4 4x, 0) = 0, 

O<s<l, O<t<T, 

O<t<T, (5.2) 

0 < t 5s T, 

O<x<l, 

and w2 satisfies 

(4 Lw, = 0, O<x<l, O<t<T, 

(b) 40, t> = f;“, O<t<T, 

(4 %(L t) =f& O<t<T, 

(d) w&, 0) = 0, O<x<l. 

(5.3) 

At this point we make the somewhat restrictive assumption upon the data 
measurements f: and f $, that 

(5.4) 

From (5.2), (1.2) and (5.4), we use the same arguments as were employed to 
derive (2.5) to obtain the existence of a constant K,, such that for 0 ,< x < 1 
and 0 < to < t < T, 

(a) I Wl(X, 41 G Kal~O 9 
(5.5) 

@I / 2 (x> t) ( e &co . 

Standard finite difference or finite element techniques [1, 3, 14, 26] will yield a 
numerical approximation w*(x, t) which is sufficiently accurate that we have for 
O<x<l andO<t,<t<Tand.+>O 

(4 I %(X, 4 - w*cx, t>l e El , 
(5.6) 

(b) j 2 (xv t) - $$ (x, t) 1 < ~1. 
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Next we consider the numerical approximation of z from (2.3) under the 
assumption of approximate data. Let x1 satisfy 

(4 Lz, = 0, O<x<l, O<t<T, 

6) z,(O, t) = Zl(l, t) = 0, 0 < t < I’, 

(5.7) 

(4 p(O) 2 (0, t) = g*(t) - P(O) q; (at)7 O<t,,<t,<T. 

Recall that from (1.3) and (2.3.d), for 0 < x < 1, 

Also note that from (2.3.e), (5.5), (5.6), and (5.7), for 0 < t,, < t < T, 

Then, from (5.9) and Theorem 2, we have the existence of computable constants 
a = a(&, T, T *, M) and &a = K22(t0, T, T*, ikl, 9, K,,) such that, for 
O<x,<l and to<t<T, 

We now pick N > 0 such that the tails of the series for z(x, t), (a~/&) (x, t), 
and p(O) (WW (0, t) are small simultaneously. If we let 

4 = m4-h , p2, , ~2~1, 72 = 1, 2,..., (5.11) 

from (2.9) and choose iV > 0 such that for some ~a > 0 

p*1/2Ml exp(-h,,t,} 1, < Ed , 
n=N+l 

(5.12) 
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then we have for t, < t < T, 

(4 O<X<l, 
n=N+l 

(b) 0 < x < 1, (5.13) 

We note that integral estimates for the sum in (5.12) could be used in practice to 
aid in the choice of N. Also, in practice, es would probably be chosen as 

(4 Es = ‘0 from (1.2), or 

@I ~3 = Kzz~ from (5.9), or (5.14) 

(4 c3 = K23c2a from (5.10). 

We next use available methods [I, 14, 26] to numerically approximate the 
eigenvalues and eigenfunctions of our operator. For n = 1,2,..., N, cp >0, 
and Ed > 0, determine QIn(q t), Qzn(x, t), and Q&t) such that for 0 < x < 1 
and t, < t < T, 

(4 I Q&G t> - exp(-Ltl P)&)I < ~N~P*~/~]-~, 

(b) I Q2&, 4 - expi--/\,Q 6&4 < •4[N~p*1'21-1, (5.15) 

(Presumably es could be much smaller than Ed with comparable work.) 
We shall use a linear programming problem to determine A$ , n = 1,2,..., N, 

which approximate the a,, n = 1,2,..., N from (3.1) and (3.2) well. We shall 
then define our numerical approximations to z and &Z/&V from (2.3) by 

(4 $(x, t) = 5 A;Qln(x, t), 
FL=1 

(5.16) 

(b) $f (~9 t> = jl A;Q&> t>, 
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for 0 ,(x < 1 and t, < t < T. Combining (5.10), (5.13) (5.15), and (5.16), 
we obtain 

< I 46 4 - 4x, 41 + / 
n=N+l 

+ ) il 4Iexp{-M 944 - Q&, 41/ 

Similarly, we obtain 

(5.18) 

Therefore, in order to get good numerical approximation of z and ax/ax, and 
thus u and au/ax, we must find a set of AZ , n = 1,2,..., N, which approximate 
the corresponding Q, well. 

Since we cannot measure z or &/ax directly (even approximately), we cannot 
use the last terms in (5.17) or (5.18) in a linear programming problem to estimate 
the size of the terms directly. We can measurep(0) (&/ax) (0, t) (approximately), 
so we will define our linear programming problem in terms of this measurement. 
Note that, from (5.15.c), 

. 

jl A,*Q&) (5.19) 

is our numerical approximation for this term while 

g*(t) - P(O) g (09 t) (5.20) 

is the approximation we measure (or compute from measurements in the case of 
(aw*/ax) (0, t)). Therefore (5.19) and (5.20) should be close to each other. 
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Suppose that there exists a set of AZ, 1 A$ 1 < p*li*M, n = 1,2,..., N, such 
that for t* E Y from (3.8) 

g*ct*j -P(O) g CO? t*) - -ila:Q,,(t*) ( < Ul . (5.21) 

Then from (3.4), (5.7.~) we obtain the following estimate. 

/ ngl a, exp{--X,t*} &(0)$(O) - ncr A,* expt--X&*3 &(O)P(O) ) 

< Ip(0) g (0, t*) - P(O) 2 (0, t*> / 

+ j s*@*) - P(O) g to, t”) - gl A:Q&*) / (5.22) 

Then, if we define A$ = 0, TZ >, N + 1, we can use (4.9) and the techniques of 
Section 3 to obtain computable constants W, Kt4, and Kz5 (now depending upon 
2M where the corresponding constants in the earlier sections depended upon M) 
such that 0 < w < 1 and for 71 = 1,2,..., N 

I a, - A,* I < exp{l(,,n* + K2& (p*K2,~2” + c5 + d”. (5.23) 

Next we note from (2.9) and (5.15) that for n = I,2 ,..., N, 

(4 I Ql&, t>l B plla + %NMP*~/~I-~ = G , 

(b) I On&, 41 < P*A,, + WMP*~‘*I-~ = 4 . 
(5.24) 

Finally combining (5.17), (5.18), (5.23), and (5.24) we obtain the following 
4 posteriori estimates, 

LEMMA 1. Ij AZ , I AX I < (p*)lf2 M, n = 1, 2,..., N, satisfy (5.21), then 
for 0 f x < 1 and to < t < T, 

(4 I 4% t) - $(x, t)l < K23~2a + ~3 + ~4 + &S, 

tb) 1 g ('9 t, - $x,t) j < K23E2a + Es + c4 + 02% 

(5.25) 
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where we dejine 

By improving the data measurements and by numerically approximating 

waj aw,lax, h, v,np and vn more accurately, it follows theoretically that ei , 
i = 1, 2,..., 5 can be made arbitrarily small. We shall now show that there exists 
a set of AZ, n = l,..., N, such that aI from (5.21) is bounded in terms of 
El ,..., -55’ 

Consider 

G(A) = j g*(t*) - 140) g (0, t*> - 2 &Qe,,(f*) j 3 (5.27) 
?b=l 

where A = (A, ,..., A,) and 1 A, / < (p*)li2 M, n = 1, 2 ,..., N. Since G(A) 
is a continuous function defined on a compact set, it follows that G(A) assumes 
its minimum for some A* in the set. 

LEMMA 2. 

inf 
A=(A,,...,A,) G(A) < 43~2' + ~3 + ~5. (5.28) 

IA,l<(p*)‘hif, n=l 2 , v..., N 

Proof. From (5.10) 

G(A) d 12 (03 t*) - g (0, t*> 1 + 1 n $+1 a, exp{--h,t*} t&(O)p(O) 1 

+ 1 gl a,[expt--h,t*) ~440) ~(0) - Q&*>l j 

< K23E2a + E3 + % + ( n=l 5 [ an - An1 Qm@*) / - (5.29) 

Since the set of Fourier coefficients a = (ur ,..., uN) from (3.1)-(3.3) satisfy 
j a, 1 < (p*)l/2 M, 71 = 1, 2 ,...) IV, and are thus candidates for A, it follows that 
by setting a = A, 

G(a) < K23~2" + ~3 + ~5. (5.30) 
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Since 

inf 
A=(A,,...,A,) G(A) < G(a), 

~d,,lc&*)‘~~M, n=l 2 8 ,..., N 

(5.31) 

the result (5.28) follows from (5.30). 
Applying the results of Lemmas 1 and 2 with (2.1), (5.5), (5.6) and (5.21) we 

obtain the following a priori estimate. 

THEOREM 3. There exist numerical upproximations w*(x, t), (ih*/i%x) (x, t), 
Qln(x, t), undQ,,(x, t) and a set A:, A,” ,..., A;G , 1 AX 1 < (p*)l12 M, n = 1,2 ,..., 
N, such that for 0 < x < 1 and t, < t < T, 

(4 / 6 9 - w*b t> - gl AZQln(~s t) 1 

(5.32) 

where 

Sl = Neq@h4N2 + &) [(l + p*) fkZb + c3 + W (5.33) 

and es ,..., 6s are defined above. 
Since we now know that a set A:, A&..., A$ exists which yields (5.32), a 

natural question is how to obtain such a set numerically for use in z$ and 
&z*/&~ . We shall use the method of linear programming to determine such a 
set. Let tj , j = l,..., K be a set of times distributed between t, and T. Consider 
the inequalities 

(a) I A, I < b*Y M, n = 1, 2,. . ., N, 

(b) 1 g*(td - ~(0) $ (O,td - $ &Q&i> 1 G Y, j = 1, 2 ,..., K, 
n=1 

(4 y > 0. (5.34) 

The linear programming problem is the minimization of the linear function 

WC 7) = Y (5.35) 
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subject to the linear inequalities defined by (5.34). The linear programming 
problem (5.34)-(5.35) is equivalent to finding 

inf max IA,I<(P*)‘~~M j=l 2 K g*(4) - P(O) g (0, t,) - 5 AQ3n(tJ> / . (5.36) 
n=1,2,...,N ’ “’ ’ ?L=l 

A large K will bring more information from the data to bear upon the problem 
through (5.34.b) and should thus yield a more accurate set of coefficients. 
However a larger K would mean a correspondingly more complex linear pro- 
gramming problem. K should be chosen to balance the greater accuracy with the 
greater difficulty. Denote the infimum in (5.36) by y,, . Then the continuous 
function 

R(A, ,..., AN) = gja$ g*(4) - PO3 g (0, tl) - 2 AnQw(tj> / (5.37) 
?J=l 

over the compact set X = {A = (A, ,..., A,): 1 A, 1 < (p*)l12 M} assumes its 
minimum value at some point in X. Hence there is an A* = (A?,..., A$) in X 
such that 

y. = R(A,*,..., A;). (5.38) 

Consequently, the linear programming problem defined by (5.34) and (5.35) 
is feasible. Standard techniques for solving linear programming problems are 
available. Suppose that y* and A:*,..., AZ* are a solution to the problem (5.34) 
and (5.35). Then, in conclusion, the following a posteriori estimate of error can 
be given. 

THEOREM 4. Let 

(4 z;*(x, t) = 5 A,**QJx, t), 
n-l (5.39) 

where AZ*, n = 1, 2 ,..., N are obtained from the linear programming problem 
defined by (5.34) and (5.35). Then for w*(x, t) and (aw*/ax (w, t) as de$ned above, 
we have 

(4 I +, t) - w*(x, t) - 4$*(x, t)l 
< K2,5, + 61 + Ki+za + ~3 + ~4 + e,S, , 

(b) / g (x, t) - z (x, 4 - E ix, t) 1 
< K,,Q + ~1 + K239 + -53 + ~4 + 9282, 

where S, is S from (5.26) with u1 replaced by y*. 

(5.40) 
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