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INCOMPLETE ITERATION FOR TIME-STEPPING A GALERKIN
METHOD FOR A QUASILINEAR PARABOLIC PROBLEM*

JIM DOUGLAS, JR.t, TODD DUPONTt AND RICHARD E. EWING#

Abstract. An iterative method is presented and analyzed which is based on using a preconditioned
conjugate gradient iteration for approximately solving the linear equations produced at each time step by an
extrapolated Crank-Nicolson—-Galerkin procedure for time-stepping a quasilinear parabolic problem.
Optimal order convergence rates are obtained for the iterative method which is shown to be (asymptotically)
computationally more efficient than standard second-order-in-time correct methods.

1. Introduction. We shall consider a numerically efficient modification of an
extrapolated Crank-Nicolson—-Galerkin method [6], [14] for approximating the solu-
tion of the quasilinear parabolic problem given by

(1.1a) c(x, u) %?——V c(a(x, u)Vu+b(x, u))=f(x,t, u), (x,)eQ,

where Q =Q X J,J =(0, T], Qisabounded domain in R% d =3, with boundary (), and
b=(bi(x,u)," -+, ba(x, u)); the solution u € C'(Q) is subjected to the initial condition

(1.1b) u(x, 0)=ug(x), x e,

and the Neumann boundary condition
(12) al,u) 4y bl W =g, (50es0x,
14

where » is outward unit normal to 9().

Essentially, our modification of the extrapolated Crank-Nicolson—Galerkin
method consists of using an iterative method based on a preconditioned conjugate
gradient iteration employing a fixed preconditioning matrix to approximately solve the
linear (extrapolation produces linear rather than nonlinear) algebraic equations at each
time step. We preserve the accuracy inherent in the underlying Crank-Nicolson—
Galerkin method, and we obtain very nearly optimal work estimates for the arithmetic
required to produce the solution of a second-order-in-time correct method for (1.1)-
(1.2).

In § 2 we introduce a finite element space, present the hypotheses on (1.1)—(1.2)
and its solution u, discuss an elliptic projection of u, and recall the extrapolated
Crank-Nicolson-Galerkin method. In § 3 we derive our modification of the above
method and analyze the effect of the conjugate gradient iteration on a single time step.
In § 4 we obtain global error estimates for any iterative method satisfying the local
estimates already derived for the conjugate gradient procedure. In § 5 computational
requirements are studied for our basic procedure and a number of variants that fall
under the analysis of § 4.

2. Preliminaries. Let (1, v) = [ uv dx, |u|* = (4, u), and (u, v) = [, uv do-. Also let
H’® = H*(Q) be the Sobolev space of order s over ) and denote by ||u|; the correspond-
ing norm. Let {#,} be a family of finite-dimensional subsapces of H'(Q)) with the
following property:
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There exist an integer r=2 and a constant K, such that, for 1=p=r and
v e H?(Q),
(2.1) inf {lo — x|+ hlle — xll:} = Kollelloh".
xe€Mn
Assume that the family {#,,} also satisfies the following so-called “‘inverse hypotheses:
There exists a constant K, independent of &, such that for all ¢ € 4,
lell: = Koh ™ lel,
lelle==Koh™?g].

We shall make one further restriction on ./, below in (2.10).
Restrict Q) as follows (with S denoting the collection of restrictions):

(2.2)

23) S: 1) The Neumann problem for —A+1 on Q is H>-regular.
. 2) The restricted cone property [1] holds on Q; i.e., 8Q) is Lipschitz.

The following regularity assumptions on a, b, ¢, f and the solution u of (1.1)—(1.2)
are denoted collectively by R:

R: 1) There exist uniform constants cy, ¢*, a4, a*, and K such that, for all
(x,)e Q and g € R,

a) 0<cye=c(x,q)=c*,
b) 0<a,=a(x,q)=a*,

(2.4)
c) |bi(x, q9)|=K;, i=1,---,d,
d) |f(x’ t’ q)ngl'
2) The functions a = a(x, u), b; = b;(x, u), c = c(x, u), and f = f(x, ¢, u) are
continuously differentiable with respect to « and have a uniform bound,
K, for (x,t)e Q and g e R:
2.5) da a_b,H%‘ l ‘ 6a aa | <K,
dul idu au
3) If
(2.6) lele@amx =lle () Dlxllrae, 1=p=0,
and u is the solution of (1.1)-(1.2), there exists a constant K, such that
Ju
lluellzooern + n v +llullLowa)
ot L2(I m-Yy  WotlLey;m?)
2.7 2 s
N N T
ot ey N0t r2gry ot Nty

We note that under the hypotheses of the theorems and corollaries to follow, our
approximations converge uniformly to u; thus (2.4) and (2.5) actually need hold only in
a neighborhood of the solution.

Let At>0, N=T/AteZ, and t“=cAt, ccR Also, let ¢"=¢"(x)=
e(x, t"), 0" 2= (" +¢")/2, and dip" = (0" — ")/ At.

The analysis proceeds, following Wheeler [15] and Rachford [14], via an auxiliary
elliptic problem. Define W € /, to be the unique function which, for ¢ € J, satisfies

2.8) (a(-,u(-,OV[W(,0)-u(-, 0L V)+[W(,0)—-u(-,0x)=0, xen
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Thus W is a weighted H '-projection of , the solution of (1.1)—(1.2). Asin[8],[9], (2.1)
and the restrictions S imply the following result.

LEMMA 1. For some p satisfying 2=p=r, let ueL*(J;H") and du/dte
L2(J : H?™Y). Under the assumption R, there exists a constant K3, dependenton Q, ay, a*,
Ky, K1, and K, such thatifn=u—Wands=0or 1,

a) |Inllr=u.e= Ksh”*|lullr=u;m»),

» [

2.9)
u

at

= K| Jull 2 e +

ot L2, ) L2, H")}

We now make the assumption on {4} and u that there exists a constant K, such
that

W]
@10) [ Whmgam IV Wlemgam +| o =K.

t iLrg,r=)

L2 ;L)
Given R and ||au/d¢|.1.u% = K>, a sufficient condition for (2.10) to hold is easily
derivable from (2.9) and the following analogue of (2.1):
Assume that there exist an integer r =2 and a constant K> Osuch thatfor2=p=r
whend=1or2 andfor3=p=r whend =3,
inf {lo —xl+Alle —xlh+ A (e —xle=+ IV(@ = =)}

(2.11) , ,
=Klell,h",  ¢eH"(Q).

The hypothesis (2.7) together with (2.9) and (2.11) imply that
a) |nllz=ui== Ch* “?|ull Loy a2,

b) ||V"7||L°°(J;L°°)§ Ch*” (d/z)"u”L""(J;m)a

(2.12)
u
T I R
atll =g, L°°) el otll L=, 1?2
ou
d) “v =Ch*" ‘d/”{uu o }
otllLig,L= leoar It m3)

The relations in (2.12), together with (2.7) and the assumption that ou/dte L'(J; H),
imply that the terms in (2.10) are bounded. We can also adapt the proofs of correspond-
ing results in [4], [9] to obtain the following lemma.

LEMMA 2. There exists a constant Ks depending on Ko, K1, and K, such that

EX%
or

EXLY%
o’

*W|
at*

(2.13) =K.

L'U:HY)

L®(J:HY L?(J:L?)

Let uy: [0, T]> ) be the approximate solution of (1.1)-(1.2) determined by
(using the notation c¢(u) = c(x, u(x, t)), etc.)

(2.14) (C(uh) ,x)+(a(uh)Vuh+b(uh),Vx)—(f(uh), )+{g x), xeMu, tel,

with u, (-, 0) —uo small in a sense to be specified later. It can be shown [15] (in fact it
follows from the results in § 4) that

(215) ||u - uhIILw(J;L2)+ hllu - uhlle(J Hl) = C(u)h'
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provided u satisfies (2.7). A standard Crank-Nicolson-Galerkin approximation to the
solution of (2.14) would result in a time discretization error of the order (Af)?, but it
would require the solution of a nonlinear system of algebraic equations at each time
step. Rachford [14] has analyzed the following variant of the Crank-Nicolson—-Galerkin

scheme. Let U:{0=to, t1, -+, tn = T}-> My, satisfy
a) (c(EU™ dU" x)+(a(EUMVU" >+ b(EU"), Vx)
(2.16) =(f¢"" EU™, x)+(g(t"* %), x),  xeMy, 0<n<N,

b) (a(uo)V[uo— UL, Vx)=0,  x €My,

where EU"=3U"—-3U""'. With this definition of EU", we see that information is
required at two preceding time levels to advance in time. Thus a starting procedure is
needed to define U' which will retain the overall accuracy of the method. Such a
starting procedure will be discussed in § 3. We note that the method given by (2.16)
requires the solution of exactly one linear system of algebraic equations at each time
step; however the matrices generated by the linear equations of (2.16) are usually
different for each time step. We shall consider a modification of (2.16) which will
require the solution of equations associated with one common matrix at all time levels.
(Our process actually provides a generalization of and new error estimates for (2.16).)

3. Approximate solution of the linear equations by iteration. In this section we
shall present the linear equations to be treated and an iterative method for approximat-
ing their solution. We also define a predictor-corrector-corrector starting procedure.

The conjugate gradient procedure presented here provides only one example of
the possible modifications of (2.16) that fall under the convergence analysis given in the
next section. Any method that provides the norm reduction defined in this section will
preserve the results of § 4. Several modifications of the iterative methods presented
here are discussed in § 5.

Let {¢;}12, be a basis for ., and denote the solution of (2.16) by

M
3.1) U™ = ~§'1 i

Let

c) B™(8)=(bi"(8))

(32) +1/2 U
@ F ) =ren=((Am%E 3 ore).0)),
=1
e) G™(0)=(G(6))=((g(t"'"?), o)),
f) Co=((copp ) and Ao=((aoVe, Vo)),
fori=1,---,Mandj=1, .-, M. Here ao and co can be chosen in a very arbitrary

way. A good choice might be ag = a(x, uo(x)) and co = c(x, uo(x))or if an average value
u is more or less known, evaluate a and ¢ at .
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We can write (2.16a) in the form

63) L'OE-=(cro+5an©) e -
— —AA™(@)€" + B (@) +F"(§) + G (©)].

We shall not solve (3.3) exactly; instead, we shall (in this section; see also § 5) use a
predetermined number of preconditioned conjugate gradient [2], [3], [7], [10] itera-
tions to advance the solution one time step. The preconditioning matrix will be chosen
to be independent of n, and consequently an appropriate ‘‘fast Poisson” solution
technique, such as nested dissection [11] can be applied to obtain the solution of the
linear equations arising below in (3.7¢c).

Denote by

M

the approximation to U™, the solution of (2.16). We shall discuss a starting procedure
for obtaining V° and V' later. We now find """ (and thus V"*') using a pre-
conditioned conjugate gradient iteration. Let our preconditioner be defined by

At
(35) Lo= Co+—2~A0.
We shall use different initial guesses for £"" — ¢” for n =1 and for n > 1. We shall use
linear extrapolation for n = 1 and quadratic extrapolation for n > 1 (defined explicitly in
(3.6a)). Specifically, we initialize our iteration as follows:

n+1

n=1l:xo=x3=7v'-v°
a)

(3.6) nz2:xo=x5" =29" =3y " 14y 2
' b) n=1:go=q5"" =so=s5"" = L"(y)xo+AtA"(y)y" — At[B"(v)
+F'()+G" (],
Then, using the initialization x,, qo and s, from (3.6),fork =1, 2, - - -, v — 1, where the

number of iterations » will be chosen later independently of #, set

—(Lo Qo qic)e

a) Xp+1 =Xk +arsSk, Wwhere ag =(s L7 ()50).
ks Y)Sk)e

3.7 b) qi+1=qi+aul" (y)sk,

— L—l .
¢) Sk+1=Lo q+1+Bisk, where B = (—Og‘p‘ﬂ
(LO‘ 9k, qk)e

where (-, -). is the Euclidean inner product.

Finally set
(3.8) Y=y
We define """ to be the solution of (3.3) with £” replaced by y"; i.e., let 7" *" satisfy
3.9) L*"(y)F" ' =y") = —AtA"(y)y" + A[B" (y)+ F"(y)+ G"(v)].

It is well known [2], [3], [7], [10] that there exists a constant p <1 such that
a) [IL'(»)' (v =¥l =plIL* () *(7* 27" + ),

(3.10) ) L
b) IL"()2 (3™ =y M =plIL" (v)*F" " =3y " +3y" = y" D).,

B
v
»
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where the subscript ¢ indicates the Euclidean norm of the vector. Given ¢, and ao in

(3.2f) there exist ¢ and ¢, such that, for n =0,
xTL"(y)x
(3.11) 0<¢p=—F—"—"=¢;, O0#xeRY,
X Lox

where the constants ¢, and ¢; are independent of 4 and depend only on the bounds for
the coeflicients in (2.4a) and (2.4b). Let

1= (go/1)""?
1+ (o/v1)"*

Then [2], [3], [7], [10] p <2Q". If « >0 and

Q=

1
(3.12) vZalog Ait/log o
then
(3.13) p <2(Ar)”.
Note that
- M
(3.14) Vil= ¥ it
i=1
satisfies
rn+1 _ Vn _
(c(EV") v ,X) +Ga(EVHV(V™ 4+ VY 4+ b(EV™), Vx)

(3.15)
=(f"2 EVY), )+ (gt ), x),  x €M

The following norms play an important role in our analysis:
a) lleli-=(c(EV"e, ¢),
b) llellz-=(Ga(EV")Ve, Vo).

By (2.4), ||-||l.~ is equivalent to ||-|| and |||~ is equivalent to |V-|| for each n. Thus
|- iZ#+ |- |2~ is equivalent to ||+ ||} for each n.

For future reference, we note that (3.10), the choice of v given by (3.12) witha =1,
and the triangle inequality yield the inequalities

a) |V2= V2 +(ADA V= Va1 = Cy A8 Ve + (A1)3|8% V |la1},
b) " ‘—/n+1 _ Vn+1"cn + (AI)I/ZHV"H _ V"+1"an
=C A8V |on +(AD )83V an}l, nZ2,

(3.16)

(3.17)

where
a) V" =V""1-vy"
(3.18) b) 82V =V " 2vr+ VTl
¢) 8Vr=v"_3y"43ynioyr

The convergence results of § 4 depend only on the norm reduction (3.10) which
yields analogues of (3.17) for various choices of p and not on the particular iterative
method used to achieve those norm reductions.
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We shall now define a starting procedure which also uses the preconditioned
conjugate gradient iteration. For V° we shall interpolate u, into /, to obtain Juo. Then
for some constant K¢ which depends upon ||uol,, we have

(3.19) 1V = WO =|lTuo— uol| + luo— WO = Keh".

We note here that for Corollary 1 and Corollary 3 of § 4, in order to obtain the
optimal order convergence through the predictor-corrector-corrector method to find
V! to be described below, we must have the estimate

(3.20) V=W, = Keh"+(Ar)%

The method of computing V° to satisfy (3.20) would necessarily be more complicated
than that described above. For example, if one is willing to factor one additional matrix,
a V'’ satisfying (3.20) could be obtained by solving the equations generated by equation
(2.8) at the initial time.

For V', we shall obtain an approximate solution of the following predictor-
corrector-corrector Crank-Nicolson—-Galerkin method by using the same pre-
conditioned conjugate gradient iterative method as before. We first describe the exact
equations for the Crank-Nicolson-Galerkin method. Let U*, the prediction for U, be
the unique solution of

U*-U°
At
=@ ), )+ (FE"2 U, ), x My
With U*'/2=(U*+ U°)/2, let U** be the unique solution of
U**-u°
At
=" V), )+ (f(" 2, UM ), x),  x €M
With U**'/2 = (U**+ U°®)/2, let U" be the unique solution of

1_'y;0
(cw = Lt )+ (SaWs 9w + U + b1, %)

=(g(t""V?), )+ (F" 2, U2, x),  x €M

Instead of solving (3.21)-(3.23) exactly, we shall approximate their solution by
employing a preconditioned conjugate gradient method using the same preconditioning
matrix Lo defined in (3.5). If we iterate v times, where v is given by (3.12) with & = 1 for
the approximate solutions of (3.21)-(3.23), we obtain optimal order H ! bounds. To
obtain optimal order L* bounds, we choose » as in (3.12) with a =3/2 for the
approximations of the correctors (3.22) and (3.23). The following lemma can be proved
using the arguments of § 4.

LEMMA 3. Assume S, R, (2.1),(2.2), and (2.10) to hold. Let v be given by (3.12) for

= 1. Then, there exist positive constants C, and 7 such that, if At=r,

a) [V -Wi=sCh',
b) [IV'= Wi +(@An"d (V- WO)|= Cl(A)* + ™,

where C, depends on ay, a*, cy, c*, Ko, - - -, Ks, and ||ug|,.

(c(UO) ,X) +(%a(U°)V(U*+ U°)+b(U°, VX)

(3.21)

(C(U*I/Z) . >+<%a(U*l/2)V(U**+U0)+b(U*1/2), VX)

(3.22)

(3.23)

(3.24)
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4. A priori error estimates. In this section we develop a priori bounds for the error
V" —u" for the procedures defined in § 3. The first result, Theorem 1, states that
optimal order H" estimates can be obtained for r =3 (piecewise quadratics or better) if
the iterative process reduces the error in the solution of the algebraic problem by a
factor proportional to At (p = O(At)) at each time step. The second result, Corollary 1,
points out that with additional smoothness restrictions on du/dt, the choice p = O(At) is
also sufficient to obtain optimal order L? estimates for r =2. If At = O(h"?), then the
optimal order rate also applies in H ' for r = 2. The third result, Corollary 2, says that, if
r =3 and At = Ch?, then, to obtain optimal order H' bounds, the error at each time step
need only be reduced by a fixed (sufficiently small) factor that is independent of Ar and
h. The next result, Corollary 3, extends this result to optimal order L? bounds for r =2
with additional smoothness on du/dt. Theorem 2 shows that for p = O((A)Y?), we can
weaken the regularity assumptions used on u in Corollary 3 and still achieve optimal
order L? bounds for r =3.

THEOREM 1. Let S and R and the restrictions on {#,} of § 2 hold. Let V" satisfy
(3.17) and (3.24). Then there exist constants T and Cs, where Cs is dependent on the
constants in R, Ko, K3, K4, Ks and Cs, such that, if r=3, At=1, and At= hd/s,

4.1) sup lu— Vi = C{(At)*+h™ 1.
o

Proof. Letting {" = V" — W", we see that
(c(EV") dd", x)+(a(EV")VL™ 2, Vy)

=—([c(EV")—cu("*)]dW", x)— (c(u(t"“m ))[d,W” _%tt_t_]’ X)

+[a@E )W) —a(EVHIVIW™2], Vy)
— ("), x)+ [buE" )= b(EV™)], Vx)
+[ " BV =T ()], x)

Vn+1 _ Vn+1
At

We shall obtain estimates in the H'-norm by using x =¢""'—¢" = Atd{" as a test
function. Clearly

(4.2)

+(c(EV") , )() +%(a(EV")V(V"+1 — V"N Vy), xeMy.

(c(EV") dz{n, {n+1_£n)+(a(EVn)V{n+l/2’ V({n+1_£n))

(43) n n n
= Al "2+ e~ Nl o

We use the assumptions in R of § 2 to obtain estimates for the first two terms on the
right hand side of (4.2). Thus,

At|[c(EV™) = c(Bu")+ c(Eu™)—c(u(t""/?)] dW", d¢™)|

+ At

(C(u(tn+l/2))|:dtnn+dtun_2_l:(tn+1/2)], d:{")

(4.4) _ . e "
= Co AP+ + "I+ " TP + e ™ 1P}

+&5 AtlldL 2+ C (A1) o,
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where

(4.5) o= j (

From (2.7), 21:;11 o, <C. We note that C, depends on ¢*, K; and the bound K, for
|l W/at|| L=y, ~). The fourth and sixth terms on the right hand side of (4.2) can be treated
similarly. We shall now estimate the last two terms on the right of (4.2) using (3.17). We
first note that from (2.13), we have

a) [|8°W,=C(Ar),

2
) ds =01,n +0'2,n.

2 18%u
+|==(,s
2(09)

Su
?(', s)

(4.6)

t"+l

*wW
by le'wrlh=ca [ |ERe,s

[

l ds.
1

The constants appearing here will then sum in the proper fashion to achieve the desired
results of the theorem. Since different starting procedures were used in the conjugate
gradient iteration to obtain V? and V™ for m =3, we shall estimate each case
separately. From (3.17) we see that for n =1,

Vvi-v?
At

=V = V2elldd e + 11V = Vs = a2

= C A8 V| + (A0 8% V7 |aHldd e
+CAN*{|8> Vet + A0 V218V laHIElar + 11 o}

= C{Af[lldd ler +lldi o]+ (AD? + (AN [N +11¢ Hl + 11T
AAdld er +(ADV20NE N1

= &5 A{lld |2 +[1d 2o+ CUAD* + Aelll2IE + 11 IR+ N1 IRy

From (3.17) we obtain the estimate for n =2 in a similar manner. For n =2,

(cEv? £2=0') 43 @BV YTV - V), Ve~ )

(4.7)

n+1 _ Vn+l
At
4.8)  =esA{ldL 2+l -1+ dg -2t + C (AN 050+ Tan]
+Cs A" R+ IR+ LR+

1 n+ n+ n
|(cEvm =)+ @EVIV(V = T, V(- )

where
'n+l asw
SR LIt
4.9) rac,
0) o= [Er o) as
‘nAZ at

The third term on the right side of (4.2) can be split in the following manner:
a2V W (")~ a(EVIVW" 2], Vy)

- (a(u(t"+1/2))[V W) —v Wn+1/2], Vx)

+(YW™ 2 la(u(t™*?) - a(EV™)IVx)

=A,,+As,.

(4.10)
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We shall use summation by parts in time to treat A; ,. We see that

n+l/2)V[ W(tn+1/2) _ Wn+l/2]

_a(tn-—l/Z)V[W(tn—~1/2)__ Wn—l/Z ,
+|(a(u( )W (%) - W, v
@ HVIW T - W, V)

-t a(@ V) —au (" ?)
L A’([ At

=

] VW (2= w2, V{")

n=2

(4.11)

-1

5 Ar(a(u(:"'m))v

n=2

[W(tn+l/2)_ Wn+l/2__{W(tn—l/2)_ Wn—l/Z}]
At

")
+ClI R+ B0+
112 4 e e w12
= Ce{le o+ @' +ar T IR +C S asalleB gl IR
n=1 n=2

We note that Cs depends on a*, K, K4, and Ks. We next sum by parts to estimate A, ,,
from (4.10).

n+1/2)) _ a(EVn)]V Wn+1/2

~[au@*?)—a(EV"HIVW" 2, V")
+|(a () —a(EVHIVW?2, v
+|(a( ) —a(EVIHIVWE2 )

(4.12) B B _ _
= CAIC IR+ + e 722+ + I P+ P+l 2P+l 2 + (A1)

n+1/2)) _ a(EVn)][V Wn+1/2_vwn-1/2]’

o+ | T
207 " ne

Wn—1/2[a(u(tn+1/2)) _a(EVn)
—{a(u(@" V*)—a(EV"?

We then bound the next to the last term on the right of (4.12) as follows:

(4.13) ") —a(EVIIVWT2-Y W),

-1
=C T [l"fi+ln"IF +@0%0s.0

where

t"+l

=] o5

l ds.
Loo
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Note that Zn 105, =2K, by (2.10). Next define

a) aj.(x)= I E(x, Ou(t" )+ (1-0)u(t"""?) de,
(4.14) ° )
b) ahn(x)= L a—:f(x, OEV" +(1-6)EV"™") do.

We can now treat the last term on the right of (4.12) in the following manner:

W2 (u(" V) - a (e V%) ~{a(EV") - a(EV" !

[af {u(@™™?) —u(" V) —ab {ESV" Y,

-1

o , , u(t"+1/2)—u tn—1/2
n§2 ({VW 1/2[‘11," '—a2,n]|: At ( )

ah Lu( " —u(" "V~ Eu" +Eu"“+Ean"‘1—E3{"‘1]}, V{")

] Ar+Vwnl/2
(4.15)

-1 -1
=CAr ¥ {l¢" IR +lm" 1P+l + &5 Ae L a1

+C Atl|d O + Cs(Ar)*.

Clearly bounds for the fifth term on the right of (4.2) can be obtained as above. By
choosing e5<1/32 and At <(20Cs)"", and combining the above bounds, we see that

220F g 3 Al - el

4.16) g%\l{ o+ CUL R+ + Adld P+ CAllE P+l 1P

+C Z (At+03,, +05,n)”§n”:{

n=1
+ C{lnllz=w.n +ldmlTzo.cn+ A%,
Note that
@.17) ™=l =2 Av(dd", ¢ + (A dg P = & Adldg "I+ C Adlg"P
Sum this inequality from n = 1 to the upper limits / — 3,/ — 2, and / — 1; then multiply the
resulting inequalities by C;+3 and add them to (4.16), after choosing € so that

(4.18) 3e(Crt3) T Mg =g 3 gl

Thus,

T g e ot MG+ P+ P =306 P

-1 . . 1 B ~
+ él [ PEE Ilin}ézll{'llfu—wC7{]I{’ P+
(4.19) "
+C{ICIE+1IP + Adld P+ € gl (At+ 03, +0s)I

+ C{Inlz=u.n +ldmllz20.n+ (AN,
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We shall now use ideas of Douglas [5] and Rachford [14] to establish comparability
between ||¢"||2~ and ||¢"||2»-1 to obtain telescoping sums on the left side of (4.19). Note
that

" 2n =Nl 2m-1+ (@a(EV™) — a(EV"HIVL", V™)

— n 2'1_1 _‘?ﬂ n__ en—1 a_a n__ n—1 n n

(4.20) =g+ ([ 22 BE - e+ B W e, v
= zn-1+ CYI8E" Mo+ 162"l + AL IR

Thus, as in [13],

-1
e = et
(4.21) -1 -1
= ¥ (" el e+ C F 8g" e +l6g" o+ Anlie"

Next, if ue L°(J; H") and (Ju/dt)e L*(J; H™™"), then (2.9), (3.24), (4.19), and (4.21)
imply that

-1
I+l P+ 21 + A L lldg "I
"=
-1

-1
4.22) =G L Attos,toslfi+Cu ¥ (18" e +l6r" el i

n=

+C{h* 2+ (A0},

We note, for example, that C1, depends upon a*, c¢*, K;, K3, and bounds on

u u ou
WillL=u.r= VW| o0 = — puihad i
" t”L J;L™) ” IL (G L™) atz L°°(J;H')’ 3t3 L2(J;L2)’ 3t3 Ll(J;Hl)’
ul
lelle=;mn, and |— .
ot L2(J;H™ 1Y)

In order to apply the discrete Gronwall lemma to (4.22), we wish to show that there
exists C13>0 such that

-2
(4.23) z—:() ”8{””L°°< Cis.
The predictor-corrector-corrector starting method yields
(4.24) I8¢z < Cia.

We shall use an induction argument as in [14] to yield (4.23) with the summation
starting at n = 1. For [ =2, the inequality (4.22) and the estimate (3.24) imply that

Atl|d P = Co AL + Cro(Ka+ K + Crafh> 72+ (A1)*}

4.25
(4.25) =Cis{(An)*+h* 2.
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If
a) h=(2Cy5)7",
(4.26) b) At=h??
¢) rz3z=3d+1,
then
(4.27) Atl|ld P =h

Assume the following induction hypothesis:
k
(4.28) At Y |ldg"P=h® forlsk=1-2.
n=1

If we use the inverse hypothesis (2.2c) assumed satisfied by ., (4.28) and the fact that
N At =T, we see that

-2 n 172 -2 a2 1/2
L llo¢"li== (-2 X llo¢"li)

1/2 —ar2 ' ysom2)
=NV Kah (S 137
(4.29) s 2
=80T K80 (A 3 1de" )
n=1

=T"?K,.

Then, with C13=T"*K,, we apply the discrete Gronwall lemma in (4.22) to obtain

-1
(4.30) I +A % Nldg"IP = Ciel(An*+ A7)
where
(4.31) Ci6=C1s exp{CoT + C1o[Ks+Ks]+2C11 T"*Ko}.

Then with (4.26a) replaced by h =(2C16)"Y¢ we see that our induction argument is
completed. Since (4.30) holds for each [ from [/ =1 to [ = N, we have

(4.32) sup |V — Wl = CiA(At)* + R}
e

Then for ueL™(J;H'), (2.9) and the triangle inequality yield the desired
result (4.1). O
Note that if du/at € L*(J; H") and if V° and V' are determined such that

4.33) Vo= Wh+ V= W+ A d (VO - WO = C(Ar) > + R},

then by using (2.9), #>" 2 can be replaced by £*" in the above proof. In this case it suffices
to assume that r =2 =3d.

COROLLARY 1. Let all the hypotheses of Theorem 1 except the assumption on r be
satisfied. Assume thatr =2, (4.33) is satisfied, and (du/dt) € L*(J; H"). Then there exist
constants v and Cig such that if At=71and At= h¥3, then

sup {lu = VI+hlu—V}= Cis{(A)*+h".
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The constant Cig has the same dependencies as Cs with the addition of a bound on
9w/ dtl| =i er7y-

Next, we show that a further restriction on Af can reduce the number of iterations
for n =2 from (3.12) to a number independent of Az. Assume that

(4.34) At = Cioh?.

We note that (4.34) is really no restriction if ./, is a space of piecewise cubic (or higher
order) polynomials (r =4) since the optimal choice of At is O(h"?) for such choices of
My If the quadratic extrapolation given by (3.6b) is used to initialize the iteration for
n =2, then (2.2a), (3.10), (3.17), and (3.18) imply that

Vn+1 _ Vn‘i—l {n)

(cmyn YV e

+_;_(a (Evn)V(Vn+l - Vn+l)’ V({n+1 _ {n))

=V = VY nlldd Mlen + IV = VI Y anlldid M lam At
= C1p{l8> V" |len + (A1) 218> V"l HIdL e + (AN ?|did " |an}

a*Ko(An'?\? " . "
D) {887 e +6° W e Hdd e
%

a*KoC19
Cx

435 = Clp(l +

2
= Clp( 1+ ) {"‘Sl’dgnuﬂ' +C Ato'G.n} At"dlgn”c"

a*K0C19)2
C

=_<—AtC1p<1 +
E3

c* n n— n— n
—{ldd" e +2ldd" et + " en-Hldd " e
*

+C (AN’ o6 pnlldd" e

where ¢, = j’::rzl 0> W/ar3(-, s)|| ds. Iterate sufficiently many times such that

* * -1
(4.36) p< { g &1 (1 44 K"C”)} =K,
Cy Cy
where
(437) P=p1 =2Q".

Then for some 7>0,

n+l Vn+1

n+l__ ¢n }_ n n+l__ yrn+l n+l__ ¢n
=) 45 @BV - P, Ve - g)

\(C(EV")
(4.38)

9 o AE .
S C(80)'Tan+( 82+ 35) A"+ Tl s+ g™ 22,
N-—

Inequality (4.38) will replace inequality (4.8). Note that Lemma 2 yields Zn=11 O4n=
3Ks. We recall from (3.10) that the general form of (3.17) is

(439) ”‘-/n+1__ Vn+1”c~+(At)l/2“‘_/"+l— ‘/n+1uu'l
= Cip{l8° V[l + (A0 8° V" [}, nZ2.

We have thus shown the following corollary.
COROLLARY 2. Let S and R and the restrictions on {My} of § 2 hold. Let V° and V!
satisfy (3.24) and V2 satisfy (3.17a). For n =2, assume that (4.39) is satisfied with p
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satisfying (4.36). Let r =3 and At = Cioh’. Then, there exist constants T and Cyq such
that if At=7and At=h?>,

(4.40) sup lu — V|1 = Crof(Ar)*+ A"}
.

C>o has the same dependencies as Cs.

COROLLARY 3. Let all the hypotheses of Corollary 2 be satisfied except the
assumption on r. Assume that r =2 and that (4.33) is satisfied. If ou/at € L*(J; H"), then
there exist constants T and Cy; such that, if At= Cioh®, At=r1and At=h??,

(4.41) sup {llu = V|+hllu = Vii}= Ca{(a0)*+ 17},

We shall now use Corollary 2 to obtain an optimal order L-estimate with the
smoothness assumptions on du/dt of Theorem 1 if At = C;oh?. Let

(4.42) loll-s=sup{ | ewaxilut =1},

THEOREM 2. Let S and R and the restrictions on My, of § 2 hold. Assume that the
Neumann problem for —A+1on Q is H>-regular. Letr =3 and At =< Cyoh>. Let V° and
1% satisfy (3.24), v? satisfy (3.17a),and V"' forn =2 satisfy (3.17b) with At replaced
by (At)2. Then there exist constants T and Css such that, if At=rand At=h®>,

(4.43) sup {lu — VIl + hllu = VI:} = Co{(80)* + 7).

C»» has the same dependencies as Cyo or Cs.

Proof. To obtain an L*-estimate, we use the test function y = """ +¢" =2¢ nt1/2
instead of y = ¢""' —¢" in (4.2). The bounds for most of the terms follow more easily
than in the proof of Theorem 1 without using summation by parts in time. The definition
(4.42) is used in the bound for the third term on the left hand side of (4.4). After
multiplying by At, we have

(4.44)
n n+ n n+ At n n
IAK(c(BV™)din", 20" )| = Clldm"|lalle™ s A== le™ 2+ C Adlldin ™|

Then, as noted in [8], since the Neumann problem is H >-regular, for each ¢ [0, T,

o

C>3 has the same dependencies as K3. We now note that from the proof of Corollary 2
we obtain the estimate

u

(4.45) ldn-1= W™y S Cash'{ -1+ |

(4.46) At e P = ClAn +h> 2,
n=0

which, with the assumption that At = C19h2, yields

lf I6¢™P = C{(Ar)® + Ath*> 2}
n=0

(4.47)
=C{(At)’ +h*Y.
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We use (2.2a), (4.47) and » from (3.12) with a = 1/2 (a norm reduction of O((Ar)"/?)),
to see that for n =2,
n+l Vn+l

At ’

:gz At[(c(EV”) ("“+{”>

1 _
+§(a(Evn)V(Vn+l_ Vn+1), V({n+1+{n))]}

-1
=C L (A0 8V I+ @087 VIIHIE" T + "+ A0+

Ko(At)l/2

(4.48) =C lil (At)”z( 1+ ){||33§"||
) o n=2 h

Ko(An)'"?

+ (@0 (1472020l i)

-1

=C ¥ (A Hlsc"+lec" I +l8g™ 7+ (A0 o, "I+ ")
-1 -1

=C L AP+ +C@nt+C X e

-1
=C ¥ AP+ CHAn® + A7),

The rest of the proof follows in a manner similar to that of Theorem 1. We note in
particular that (4.23) holdsfor /=1, - - -, N without a further induction argument since
the hypotheses of Corollary 2 are assumed for this theorem. Thus, a norm-comparabil-
ity argument for ||+ ||~ similar to that in (4.20) and (4.21) will follow.

5. Computational considerations. In this section we reconsider the preconditioned
conjugate gradient (PCG) method of § 3. It is computationally wasteful to iterate
exactly v times each time step if » is determined using the pessimistic bound (3.12) and
the results of § 4. In this section we present some additional criteria which are very easy
to apply and which can terminate the iteration in fewer than » steps. Next, to illustrate
the effect of using incomplete iteration in terms of computational work, we give some
rough operation counts for the linearized Crank—Nicolson procedure (3.3) and the PCG
method. In one case, one can obtain work estimates for the PCG method which are of
optimal order in the sense that the number of operations is proportional to the number
of unknowns that define the solution. In another case we modify the basic process by
changing the preconditioning matrix each (Ar)""? time steps; this gives a norm
reduction of O(\/Xt) with one iteration and O(At) with two.

For p € H' let

(5.1) el =llellz = llelle-+ Adlle ]2

If we let Vi*! correspond to the vector x; of (3.7), then, from (3.11),
(5.2) Yo=[IVE™ = V" I/ (Lo qus qi)e = 1.

Since the denominator in (5.2) is computed during the course of the PCG procedure, we
can easily estimate the size of the error ||V ™' — V"*!||, and, by comparing (Lg"qo, qo).
and (Lo lqk, qr)e, We can observe the actual factor by which the norm is reduced. We can

use these two quantities to stop the iteration if either is sufficiently small.
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Suppose that
(5.3) vt =P = .

(If the iteration is stopped at the kth step, then (5.3) follows if ;1 (Lo 1qk, qi)e =p). Then
the left hand side of (4.8) can be bounded by

(5.4) eld¢ (P Ar+ClIE I+ R Ar + Cu (A,
Thus, if at each time step either a norm reduction factor of O(A¢) is achieved or if
(5.5) w(A) 2= C(R* 2+ (A0)Y A,

then the hypotheses of Theorem 1 are satisfied. Hence in the program one could set a
parameter k = O((h* 2+ (A1)*)(At)*) and stop iterating if

(5.6) (Lo qrs qi)e = k.

Similarly, a parameter p; = O(At) could be defined and the iteration could be
halted if

(5.7 (Lo ' qu qi)e/ (Lo qos q0)e =p1i-

With this additional test, a modification of Theorem 1 holds with the same error bounds.

For each resultin § 4, there correspond appropriate choices of x and p, such that if
the iteration is terminated whenever (5.6) or (5.7) holds, then the error bounds still
apply. The following table summarizes these choices:

TABLE 1
Result K= p1=
Theorem 1 C(h¥ 2+ (AnY(Ar)? C At
Corollary 1 C(h* +(An*)(Ar)? C At
Corollary 2 C(h* 2+ (An*)(Ar)? Kg(W1/¥0)'?
Corollary 3 C(h? +(An*(An? Ke(¥/o)'"?
Theorem 2 C(h* +(An¥(Aan? can'’?

As an aside we remark that if one chooses parameters « and p; given by the bounds
indicated for Theorem 2 and if the solution is actually so smooth that Corollary 3
applies, then, as & and Af go to zero, the « test will almost always stop the iteration
before the p, test will. (By ‘‘almost always’ we mean that the fraction of the timesteps
stopped using the p; test goes to zero.) This follows from the bounds used in (4.8) and
the conclusions of Corollary 3.

We shall now restrict our attention to spaces of piecewise cubic polynomials over
quasi-regular meshes and give estimates of number of arithmetic operations needed to
compute the extrapolated-Crank-Nicolson and the PCG approximate solutions. The
heuristic arguments presented below can currently be made precise only in cases in
which the meshes have very special structure, such as a uniform mesh on a square.
However, numerical experiments indicate that the assumptions we use appear to be
valid more generally.

Since we are using cubic polynomials as our example, r =4. Restrict ) to be a
domain in the plane (d =2) for the moment. The quasi-regularity of the meshes (all
elements in a given mesh are assumed to be about the same size and shape) implies that

(5.8) M=~h2
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Balancing the 4* and (At)® terms in the L? error bounds leads naturally to
(5.9) At=h?;
hence the number of time steps is
(5.10) N=T/At=M.
We shall assume that the work to factor a matrix with the structure of Ly is
(5.11) FW=M>"?,

In the case of a rectangular mesh on a rectangle this can be achieved by using the nested
dissection process of George [11]; the results of Hoffman, Martin, and Rose [12]
indicate that it cannot be improved. Experimentally, it has been found that minimal
degree orderings (they are not unique) give the same form of work estimate. We shall
also assume that the factors of L, have

(5.12) SW=MInM

nonzero elements. Note that the work to perform one preconditioned conjugate
gradient iteration is O(SW + M) ~=SW.

Combining these results shows that the work to compute the solution of the
linearized-Crank-Nicolson scheme is

(5.13) N(FW +SW)=0(M">"?).

In the context of Theorem 1, Corollary 1 or Theorem 2 we would need NI =
O(|In At|) = O(In M) iterations at each step. Thus the expected work to compute the
PCG approximation in these cases is

(5.14) FW +N = NI * SW = O(M?*(In M)?).

The processes analyzed by Corollaries 2 and 3 only require a fixed number of iterations
per time step; hence in these cases the work is

(5.15) FW +N * NI « SW=0(M?1n M).

Note that N * M = O(M?) parameters are used to define the solution. We see that
the work estimates (5.14) and (5.15) are very close to optimal order since any process
that deals with each parameter at least once must do at least N * M operations of some
type.

We now indicate how the PCG scheme of § 3 can be modified to give an optimal
order work estimate of O(M?) while still achieving the norm reduction necessary for
Corollaries 2 and 3.

Suppose, as is frequently the case, that C, from (3.2f) is comparable with its
diagonal; i.e., assume that there exists 8 >0, independent of A, such that, if Dy=
diag(Cy) and 0 # x € R™, then

(5.16) B~ =(Cox, x)o/(Dox, x). = B.

In the case of Lagrange type cubic elements over a quasi-regular family of meshes this
relation follows from a simple homogeneity argument, but it holds for some other
element types as well. It follows from (2.2a), the fact that At = Ch?, and (2.4) that there
exists é >0, independent of A, such that for 0 # x € R

(5.17) B I=(C"+AtA™)x, x)./(Dox, x). = .
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If the iteration (3.7) uses D, as the preconditioning matrix instead of L, then
(5.17) implies that a fixed number NI (independent of %) of iterations can be used to
reduce the error by the factor Kg needed for Corollaries 2 and 3. Thus the work
required to compute the corresponding approximate solution is O(M?), since each
iteration necessitates only O(M) operations.

Another interesting modification of the basic process in §3 is obtained by
changing L, during the course of the computation. If we take NS to be approximately
N2 and, if after each NS steps we set L, equal to the current L", then it follows that
wo=1-cVAtand Y1=1+ cVAt. For this process we see that the O(A¢) norm reduction
needed for Theorem 1 and Corollary 1 requires only two iterations per time step, while
the O(\/Kt) needed in Theorem 2 can be obtained with one. With the assumptions made
above we see that the work for this process is

(5.18) £%aﬂV+N*MV=OMFMAU
We briefly consider the case of d =3. The best conjectures we know of say that
(5.19) FW=M?*  SW=M">
Since we have r =4, we still use
At=h?
and
M=~h"3

N =T/At=M?3.

Thus, an optimal order process would require O(M>’?) operations and this can be

achieved using the procedure described above that utilizes a diagonal preconditioning
matrix. Even with the weaker smoothness constraints of Theorem 1 or 2 the expected
work is the nearly optimal O(M*’? In M). If we use the basic PCG procedure of § 3 we
see that the work is O(M? In M); this is far superior to the O(M 8/3 operations needed
to carry out the extrapolated-Crank—Nicolson process.
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