A Coupled Non-Linear Hyperbolic-Sobolev System (*).

Ricuarp E. EWING (Rochester, Michigan, U.8S.A.)

Summary. —~ 4 boundary-initial value problem for a quasilinear hyperbolic system in one space
variable is coupled to a boundary-initial value problem for a quasilinear equation of Sobolev
type in two space variables of the form Mu(x, t) + L) u(x, t) = f(x, ¢, wlx, t)) where M and
L(t) are second order elliptic spacial operators. The coupling occurs through one of the
boundary conditions for the hyperbolic system and the source term in the equation of Sobolev
type. Such a cowpling can arise in the consideration of oil flowing in a fissured medium and
out of that medium via a pipe. Barenblatt, Zheltov, and Kochina [2] have modeled flow in
a fissured mediwm via o special case of the above equation. A local existence and uniqueness
theorem is demonsirated. The proof inwolves the method of characteristics, some applications
of results of R. Showalter and the contraction mapping theorem.

1. - Imtroduction.

To model subsonic flow in a pipe, it is standard practice to use a one-dimensional
version of Euler’s equations of motion which includes the friction between the fluid
and the pipe. This system can be reduced to a standard hyperbolic system via a
change of variables [7]. In [2], BARENBLATT, ZHELTOV and KocHINA have modeled
fluid flow in fissured rocks by an equation of Sobolev type. Since fluids are extracted
from fissured rocks through pipes, we shall combine these models into one system.
By consideration as a volumetric flow rate per unit area, the fluid velocity at the
end of the pipe is used as part of the sink term in the non-linear partial differential
equation of Sobolev type. The sink term is used to model the removal of fluids
from the fissured medinm. The coupling is completed by requiring that the density
of the fluid in the pipe at its end be equal to the density of the fluid in the fissured
medium at the end of the pipe. The density of the fluid in the medium is related in
a non-linear fashion to the pressure which is modeled by the equation of Sobolev
type[2]. In [3], Cannvon and the author have discussed a similar coupled system
involving flow in a porous medium modeled by a parabolic equation instead of flow
in the fissured medium. See [3] for some similar results.

The preceding congiderations motivate the study of the mathematical problem
of determining real-valued functions p = p(2,1), ¢ = ¢(z,t) and w = w(x, t) such

(*) Entrata in Redazione il 28 luglio 1976.
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that the ftriple (p, ¢, w) satisfies

0 0

a) 5%)"]‘/’{1(2775717’Q)£:R1(z7t’p19)y 0<e<l, 0<ILT,
0
B 2t 1ot 0 0 S = Ry 10,0, 0<z<1, 0<i<T,
¢) ¢(1,8) =G4 p ), 0<t<T,
d) p(#, 0) = (z)a 0<z<l,
(1.1)

€) q(z, 0) = qo(2) , 0<e<l,
f) 8w = f(z, t, p(0, t), ¢(0, 1), w(z, 1)) , re, o0<i<T,
9) Bw)=0, reo, 0<i<T,
h) w(@, 0) = p(a), ve®,
i) p(0, %) = {(t, q(0, 1), w(0, 1)) , 0<i<T,

where o = (»,, ) e R?, Q is a domain in R? which contains the origin, 00 is the
boundary of £, 8(¢) is a time-dependent partial differential operator of Sobolev
type to be discussed below, B denotes a boundary operator, and 1, 2,, R:, R,,
Gy Do, ¢, @, f, and { are known functions of their respective arguments. In our ap-
plication £ represents the fissured medium, {0 <2< 1} represents the pipe and
& == 0 represents the end of the pipe in the fissured medium at a point which is taken
to be the origin of the coordinate system for the fissured medium.

We shall now describe the operators S(f) and B. To generalize the model used
by [2] we shall consider the operator

ow

(1.2) S(t)MJEM—a?

(, 1) + L) w(w, 1)

where M and, for each t[0, T'|, L({) are elliptic differential operators of order 2
which satisfy restrictions to be specified in section 2. We note that in [2] L(?) was
a constant times the negative of the Laplacian operator and M was the identity
operator minus a constant times the Laplacian operator.

We consider a «no-flow » condition at the boundary of £2[2] which means that
the conormal derivatives on 92 which are determined by the operator M [1, p. 146,
2, 11, p. 263] are set equal to zero on 8£2.

We shall congider the problem deseribed in (1.1f), (1.1 ¢) and (1.2) in terms of
a generalized problem involving vector-valued functions w(f) which map ¢<[0, T
to various Banach spaces of functions on . This reformulation will be described
in detail in section 2. In this formulation, the boundary condition (1.1g¢) is a
«natural » or « variational» condition which arises from restriction of the notion
of a solution to certain types of Banach spaces [1, p. 146, 4, 11, p. 263].
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The basic aim of this paper is to demonstrate that for 7 sufficiently small there
exists a unique solution of (1.1). In section 2 we give a weaker formulation of the
Sobolev part of (1.1) and define the notion of a strong solution to this part. In sec-
tion 3 we give a definition of weak solution of (1.1) using the strong solution of the
Sobolev part and a reformulation of the hyperbolic part of (1.1) into integral equa-
tions via the characteristics of the hyperbolic equations (1.1a) and (1.19). In sec-
tion 3 we also formulate a mapping B. A fixed point of T will yield a weak solu-
tion of (1.1). We develop a priori estimates in sections 4, 5, and 6 which allow
preservation of the funetion classes under the mapping G. We obtain a priori
estimates on the characteristics in section 4, on the solutions of the hyperbolic part
in section 5, and on the solutions of the Sobolev part in section 6. In section 7 we
use the results of sections 4, 5, and 6 to demonstrate the preservation of function
classes, continuity, and contraction properties of the mapping G. The statement of
the main result of the paper is given at the end of section 7.

2. — A weaker formulation of the Sobolev part.

We shall adopt some notation and results of [10]. The space of continuous linear
operators from the normed linear space X to the normed linear space Y will be
denoted by L(X, Y). Let W be a reflexive and separable Banach space with norm |w}y,
let W’ be its dual, and let {f,v> be the W'—W duality, i.e. the value of feW’
on veW.

The Sobolev space H*(£2) = H* is the Hilbert space of (equivalence classes of)
real-valued functions in L2(£2) = H, all of whose distributional derivatives through
order k belong to H. The inner product and norm are given, respectively, by

2.1) (u, V) — E{fD“uD% dw: [o] < k}
2

and |4, = V/(4, u),. Let W be a dense subset of H such that the injection We>H
is continuous. For our application we shall choose W= H! Then for some C,,
we have

(2.2) 00} < Ci ool

Let 7>0 and I, =[0,7]. Let m(-,-) and, for each {e Iy, I({;-,-) be con-
tinuous bilinear forms on W. These forms define the operator At e L{W, W') and
the family of operators L(¢)e L(W, W') by the identities
(2.3) {Mou, Y = m(u, v), u,veW,
and

(2.4) KL, vy =1t u,v), u,veW, tely.
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Let M and L(t) denote the respective restrictions of AG and £(f) to H. These restric-
tions are unbounded operators on H with respective domains given by

(2.5) D(M) = {ue W: m(u, v) = (Mu, v)z, vEW}
and for each tel,,
(2.6) D(LE) = {we W:U(t; u, v) = (Lit)u,0)x, veW} .

Assume that we are given a funection f: I, X W —> W'.

DEFINITION. — A function w: I, — W is a weak solution of
(2.7) Mow'(8) 4 L) w(t) = f(t, w(t), w(0)=¢),

if it is continuously differentiable on I, and (2.7) is satisfied (in W’) on I,.

DEFINITION. — A strong solufion of (2.7) is a weak solution for which each term
of the equation is in H on I;. Thus, in H,

( a) Muw'(t) + Lt)w(t) = f(t, wt)), telp,
2.8)
D) w(0)=gp.

‘We note that (2.8) is the equation in terms of vector valued functions which cor-
responds to (1.1 f) with the Sobolev operator defined as in (1.2) and the dependency
on p(0, t) and ¢(0, ) temporarily suppressed. We shall specify some strong coercivity
agsumptions in seetion 6 on m(-,-) and I(¢;-,+) which will insure that M and L(?)
are second-order ellipfic operators[1]. If we choose W = H?, then the regularity
theory for elliptic operators[1] will give that

a) D(M) = {ueH?: m(u,v)= (Mu,v)y, ve H}

(2.9)
b) D(L(t)) = {we H?: 1(t; u, v) = (L(t)u, v)z, ve HY} .

If 002 is smooth enough for the divergence theorem to apply, the condition
in (2.9) yields the « variational » or «natural » boundary condition [1, 4, 11] which
was described in section 1. Thus the boundary condition (1.1 g) is built into our
choice of W in this case.

We shall now consider the weaker formulation of the Sobolev part of (1.1)
described above. We shall denote by (S) the Sobolev part of (1.1):

2.10) a) Muw'(t) 4+ Lt)w(t) = f(t, p(0, 1), ¢(0, ), w(t)) in H, tely,
' b) w(0)=g.
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For further examples of the Sobolev equations, the concepts and terminology de-
fined in this section, and references to their applications, see [10,11,12]. We note
here that the definitions of weak and strong solutions in this section differ from the
corresponding definitions in [10,11]. C* solutions are obtained here under stronger
assumptions than are made to obtain absolutely continuous solutions in [10, 11].

3. — A weaker formulation of the hyperbolic part.

Since (1.1) arises from physical considerations, it is natural to assume that the A,
and R, are smooth bounded functions that are defined on

Qr={(2,%,p,9): 0<2<1, 0<t<T, — co< p< 00, — 00< ¢ << 00} .

It is also natural to agsume that there exists a constant 6 > 0 such that, uniformly
in @,

(3.1) A<l — <0< << 4y,
If a classical smooth solution (p, q, w) of (1.1) exists, we can define the characteristics
{(3.2) z,=2,4{7;2,1), max(0,{)<r<t, 1=1,2

a8 solutions of the initial value problems

dz, :
a) — = A2, T, p(2;, T), 42, T max (0, ,)<t<t, ¢=1,2
(3.3) ar ( s Ty P21, T)y 450, )): (0, 1) s s
by z,(t)==2, i=1,2.

Here we define
(3.4) =1t 1), i=1,2

to be the unique time at which the characteristic 2z, assumes the value 2z = i —1,
From the bounds on 1, in (3.1), we can take T sufficiently small that if ¢ or {, is
positive, the characteristic emanating from (0, ¢) or (1, t,) using 2, or respectively 1,
does not strike the opposite boundary for positive ¢. In other words, we can restrict 7'
so that we have at most one bounce of a characteristic to consider.

Tf we integrate (1.1a) and (1.1b) along their respective characteristics as in [5, 6, 9],
we see that for 0 <t< 7, any classical golution of (1.1) must satisfy (H) the hyperbolic
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part of (1.1):

a) pe,t)= po(‘zl((); 2 t)) +fR1 (21(73 2, 8), 7, p(z1(75 2, 1), T)’ Q(zl(f§ 2, 1), T)) dr
(3.5) °

7

b) qlz, 1) = 90(22(05 Z, t)) +J‘R2 (22(75 2, 1), 7, p(ZZ(":? 2, t), T)’ Q(zz(f; 2, 1), T)) dr

0

or (3.5b) and

(3.6) Dz, 1) = L[z, 1), 4(0, 1z, 1), w(0, ta(2, 1))
"PJ‘RI(ZI(T; 8 1), T, P(ra(T; 2, 1), 7), 9(31(75 2, 1), T)) dr

t1(z, £)

where (0, ?,(2, t)) is computed by replacing z and ¢ in (3.5b) by 0 and ¢,(z, t) respec-
tively, or (3.5a) and

B1) gl t) = &z, 1), p(1, b(z 1))

‘I”fRz (22(75 2, 1), T, p(2(7; 2, 1), 7), Q(ZZ(Ti % 1), T)) dr

tolz, t)

where p(1,%,(2, t)) is computed from (3.5a) by the replacement of z and ¢ by 1 and
t,(z, t) respectively.

DEFINITION. — A weak solution of (1.1) is any triple of functions (p, g, w) such
that p and ¢ are continuous for 0<z<1 and 0<t<T and satisfy (H) the hyper-
bolic part of (1.1), which is described by (3.5a), (3.5b), (3.6) and (3.7), and w is a
strong solution of (8) the Sobolev part of (1.1) described by (2.10).

We shall now describe the mapping which will furnigsh our solution via an ap-
plication of the contraction mapping theorem. We take w(0,?) in (3.6) and replace
it by a function v = v(f). After solving the hyperbolic part of (1.1) for p and g,
we substitute p(0, ) and ¢(0, #) into (1.1f) and solve the Sobolev part of (1.1) for w.
The mapping © is obtained by setting

(3.8) w(0, 1) = Bo(t) .

In order to demonstrate that G is a contraction for T sufficiently small, we need to
obtain some a priori estimates.
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4. — A priori estimates on the solutions of the characteristie equations.

We shall use a lemma from the theory of ordinary differential equations.

LrmmA 4.1[8]. — Let y and Y be two functions satisfying

a) ¥ =fay), |z—al<h,
b) y(a) =,

4.1)
¢) Y =F@Y), |r—a|<h,
d) Y(a)=4§.

Then, for | —a|<h,
(4.2) | Y () —y(@)| <exp {Phj[ |« — | + sup [f—F|],

where & is a positive constant and P is the maximum of the uniform Lipschitz con-
stants on f and 7.

We agssume that p = p(2, 1) and q = ¢(#,?) are uniformly Lipschitz continuous
in z and t with Lipschitz constant K >1. Let 0>1 denote a constant which
bounds 4;, ¢ =1, 2 and all their first derivatives in absolute value. We then make
a simple application of the mean value theorem to obtain

(4-3) Mz‘(Z*7 T, p(z*y T)y Q(Z*a T)) — /11(2*7 T, p(z*, T)a Q(z*y T))|<30Kfz*"‘z*l H
i=1,2.

A similar estimate holds for the v variable. Recalling (3.4), we let
(4.4) ti'j) =1, 1) j=1,2

denote the times that the characteristics z,, i =1, 2, emanating from the points
(29, 1), strike the boundary 2= ¢—1. We then obtain from Lemma 4.1 and (4.3)
the following lemma.

LEMMA 4.2. — For max{0, #V, t <r<t< T,

(4.5) 2:(T; 2D, §) —2:(7; 22, 1)| <exp {3CKi} [V — 22|,

By integrating (3.3) along the characteristics we obtain

¢
(4.6) 2= (i—1) —I—J‘li(zi(r; 29, 1), T, p(2i(7; 29, 1), 7), q(2.(T; &2, 1), r)) dr

t i=1,2,i=1,2.

22 -~ dnnali di Matematica
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Subtracting j==2 of (4.6) from j=1, we obtain

1 max(t{V, 1{2)
(4.7) N = f (A0 — 2 dr + f Adr,

max(t{V, 1{2) min(t®, 12

where the choice of the sign and argument for the second term depends upon the 7,
j=1,2. Solving for the second term on the right hand side of (4.7), recalling (3.1)
and using (4.3) and Lemma 4.2, we obtain the following result.

Lemma 4.3, — For i=1, 2,
(4.8) [t:(20, 1) —1,(2®@, 1)] < 62(1 4+ 3CKt exp {30K1}) 2D — 2],

Integrating along the characteristics emanating from (z,1%) and (2, ¢®) and
using the techniques of the last proof coupled with Gronwall’s Lemma we obtain
the following result.

LEMMA 4.4. - For 0<t9< T, j=1,2, and max (0, £V, {®) < v <min (1, 1¥),
(4.9) [2:(75 2, ¥0) — 2,(7; 2, #®)| < C exp {BCK T}t — 12|

where 1) here denotes the time that the characteristic z, emanating from (z, #9)
strikes the boundary 2 =1¢—1.

An argument similar to those of the two preceding results yields our last estimate.
Lemma 4.5, For 0<t<T, j=1,2,

(4.10) [t:(2, 10) — 1,(2, 12)] < 62 O(1 -+ BCKT exp {3OKT}) [tV — 1] .

We note that if we restrict

(4.11) T<(3CK)™*,

we can simplify our previous results.
Lemma 4.6, — For 1 =1,2, 0<t?<T, j=1, 2,

@) [t 1) — 1,(22), 1)] < 46120 — 4|
(4.12)
B)  [talz, 1) — 1,(z, 1)) < 4CE-1E0 — 9] |

Finally, noting the results of Lemma 4.2, Lemma 4.4 and Lemma 4.6 we see
that with the restriction given in (4.11)

(4.13) O, = 4061
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can be used as a uniform Lipschitz constant for z; and ;. Without loss of generality
we can assume that C,>1.

5. — A priori estimates for the solution of the hyperbolic part of (1.1).

Since the hyperbolic part of (1.1) consists of integral equations which involve
the characteristic equations (2.3), we shall need the estimates of seefion 4 in the
estimates derived below for p = p(z,?) and ¢ = ¢(z, ). We first state the assump-
tions we shall make on the data functions E,, R,,, @, p, and g¢,.

We assume that R,, R,, and their first derivatives are bounded in absolute
value by O in @,. We assume that { = {(¢, ¢, w), @ = G(t, p), and their first de-
rivatives are bounded in absolute value by € in {(, ¢, w): te Iy, — co< g < oo,
—oo<w <co} and {(¢, p): tely, —oco<p<<oo} respectively. Next we assume that
Do = Po(2), ¢o = ¢o(2), and their first derivatives are bounded in absolute value by
C on 0 <z<1. Finally, in order to obtain continuous functions p and ¢ we must
satisfy the following compatibility conditions upon the data:

a) P(0) = C(Oy QO(O)’ (P(O)) ’

(5.1)
b) (1) = G(0, Do) -

The estimates from this section will be used to show that the mapping described
in gection 3 will retain certain function classes. As in section 4, we shall assume
that p = p(z, ¢) and ¢ == g(z, t) are uniformly Lipschitz continuous in 2 and ¢ with
Lipschitz constant K >1. In the mapping, we replace w(0,?) in (3.6) by a func-
tion » = o(#). We shall assume that » is Lipschitz continuous with constant ¥V >1
and that the absolute value of v is bounded above by C.

In the estimates below we obtain an estimate for the Lipschitz constant for p
and ¢ after having assumed the one above. This is because the mapping of section 3
requires the golution of an auxiliary hyperbolic system which has a mapping of its
own [5, 6,9]. Thus, our estimates must reflect the retention of the various function
classes through that mapping as well.

From (3.5)-(3.7) we easily obtain the first estimate.

LeEMMA B5.1. — For 0<#2<1 and tel,,

a) |p@t)|<1-+80
b) ezt <@ +1)C.

(5.2)

In order to estimate the Lipschitz constants for p and ¢ from (3.5)-(3.7) we must
consider three basic cases for characteristics 2, j=1,2 emanating respectively
from (29, 1Y) and (2%, 1®).
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Case I: Neither characteristic 2, j=1,2, hits a lateral boundary be-
fore hitting the base ¢ = 0.

Case II: Both characteristies 2%

Y’y §=1,2, hit the same lateral boundary
prior to t=0.

Case III: Only one of the characteristics 7, j=1,2, hits a lateral
boundary while the other hits the base ¢ = 0.

With no loss of generality, we restrict our consideration to the lateral boundary
2z=0 and the bebavior of #), j==1,2. The analysis for the boundary z=1 is
gimilar except for the omission of the effect of the function v = v(f).

For Case I, we obtain the following estimate.

LEMMA 5.2. — When neither characteristic hits the lateral boundary prior to
t=0 and when 0<t?<¢<T, 02«1, j=1,2,

a) [P, 1) — p(e®, 1) < 0420 -- 3CKN){|e® — 2] 4 [#10 — ]}
5.4
&4 B) |g(a®, 1) — g(e®, )] < Cy(2€ + BCKE){|2® — 2| 4 [0 — ]} ,

ProoF. — It suffices to consider z, and (3.5a) since a similar argument will hold
for 2, and (3.5b). Substituting (22, 1), j=1, 2 in (3.5a) and subtracting, we obtain

(5.3)  p(a, 1) —p(e, 19) = py (03 22, 1) — py (03 22, 1))

min(tm, t(Z’)

Bl 2, 1), 7 plar 20, 19), 1), gl 4, 10), 7))
0

— Rl(zl(f; 29, 19), 7, pey(T; 29, 19), 7, q(e,(T; 22, 1), -;))}df
ma,x(t(l)’t(m)
+ f Ridv.

min(t(l),tm))
Then from the mean value theorem and the results of section 4, we obtain

(5.6)  |p(e®, t0) — p(a@, t2)| <
< {0, 0 + 30K 0, min (0, 1) }{|eM — 2] 4~ [t — @[} 4 OfD — 2]

from which (5.4) follows.

For Case II, from (3.6) we see that the difference in p(z®, V) and p(2®, @) will
involve a difference in the [ terms, which will introduce the Lipschitz constant V
and several integrals similar to the ones treated above. An application of the mean
value theorem and use of Lemma 3.6 yields the following estimate.
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LEMMA 5.3. — When both characteristies hit a lateral boundary prior to =10
and when 0<z9<1, 0<iP<, j=1,2,
a) ip(z(l), 0y — p(2®, 1) < 002{50 + 5CKt + V}{!z(l) _2(2)| =+ o _t(z)l} ,

(5.7)
b) |q(z®, tV) — q(e®, t(z))l < 002{50 + 50Kt}{[z<1)—z(2’| + ft‘l’—t(2’|} .

Finally we consider Case III. From the theory of ordinary differential equa-
tions [8], we know there is a unique characteristic 2, with characteristic direction 4,
passing through the origin. Uniqueness also prevents intersections of this charac-
teristic with 2,(7; 20, tV) and z(7; 2, #?). Then using the Jordan Curve Theorem
we can split this case up into a combination of the two cases described above.
Combining the cases above we obtain the following result which holds for all cases.

LeMmA 5.4. — For Cases I, IT, and ITI, 0<2?<1, and 0<IP<, j=1,2,

@) Ip(zu)’ V) — p(®), t(z))l < 002{70 -+ 8CKt -+ V}{!z(l) _ z(z)| -+ |t‘1)— t(z)l}’
(5.8)
b) (e, 1) — g(2?, 1) < O0{TC - SCOKt}{|e® — 22| 4 [t —1@|}.

6. — A priori estimates for the solution of the Sobolev part of (1.1).

We shall list for future reference some basic assumptions we shall make on the
Sobolev part (S) from (2.10).

(I) m(-,-) and I(¢;-,-) are uniformly strongly coercive over W. Thus there
are constants k, and %, such that

a) |m(u,u)] >k, |ul}, for ueW,
(6.1)
b) |Ut; u, u)| >k |uli, for ueW,tel,.

(IT) For each pair u, v €W, the function ¢ — I{t; , v) is continuous, so there
is a congtant K, with

(6.2) [t; w, o)l < K, |%|w|vlw, w,vEW, tely.

(III) For each tel,, D(L(f)) = D(L) for a fixed D(L). M is «stronger » than
L{t) for each te Ir; i.e., D(M)C D(L). Also, there is a constant K, such that

(6.3) | L)y < Ko Muw)y .

(IV) There are constants K,, K, K, and K; such that for f: I x R2x W — W',
we have

(6.4) V(ta p(0, %), ¢(0, t), w(t)) IH< Kz|w(t),H7



342 RicHaRD E. Ewine: A coupled non-linear hyperbolic-Sobolev system

and
a) [f(t, p(0, 1), q(0,1), w) —f(t, p(0, 1), ¢(0,1), v)lx <Kyt — 0|,

(6.3) by If(t, 210, 1), 9(0, %), w) —1(t, po(0, 1), 40, 8), )| < Eylpi(0, 1) — pa(0, )] ,
o) If(t, p(0, 1), ¢:(0,1), w) —1(t, p(0, 1), §u(0, 1), w)|n < Ks|g:(0, ) — gx(0, 7)] .

Also f: I x R*X W — W' is continuous.
Then if we choose W= H', under the above assumptions, we have the following
result due to Showalter.

THEOREM 6.1. [10]. — If ¢ € D(M), there exists a unique strong scolution of (8)
which has an integral representation given by

t
(6.6) w(t) = G(t, 0)p -+ [ 611, ) M= 1(s5, p(0, 5), 4(0, 5),10(s)) ds .
0

In the statement above, G(i, s) is the linear propagator [4, 10]. We note that since
the integrand in (6.6) is continuous (see section 7), we can use the Riemann in-
tegral in (6.6) to obtain a (! solution instead of the Bochner integral which yields
an absolutely continuous solution as in [10].

Since we are working with supremum norms for the hyperbolic part and we
wish to put our results together via a mapping, we must obtain estimates for the
Sobolev part in terms of the supremum or L®-norm. We need L* bounds on w'(?),
where w(t) is the solution of (S), to use as Lipschitz constants for the mapping G.
From the Sobolev Lemma [4] we know that each w'(f) € H2({2) = H? (has a unique
representative which) is an absolutely continuous function on £, and we have an
estimate of the form

{6.7) [20"(0)| o) < Hg|0'(0)| g2y

after identifying each such w with this representative. We must then obtain H?2-norm
estimates on our results.

From Assumption (I) (6.1) and elliptic operator theory [1] we know there exists
a constant K, such that for each te I,

(6.8) |00 (1) g < Ty | 0" (2) s -

Thus from above we shall obtain estimates on |w'(t)|,« from bounds on |Mw'(t)|x.
We first differentiate | Mw(?)|% with respect to ¢, use the Schwarz Inequality and
the triangle inequality on (2.8a) to obtain

i

(6.9) & Bl = 2300 0), Mw(v).
< 2| Mw' ()] a| Mw(t)|a
< 2

(IL@w®)|s + |fl) | Mw(t)]x -
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Using the fact that W <> H (is norm-imbedded) coupled with (2.5), (6.1) and the
Schwarz inequality, we obtain for some K,

(6.10) [w(t) 5 < slw(t)|5
< Kk, m(w(t), w(t))]

= K I | (Muw(t), w(1)) g

8%Ym

< Hgk,, | Hw()|glw(t)|y -

8 Vm
Then combining (6.4) with (6.10) we obtain
(6.11) I(t, p(0, 1), 9(0, ), w(t)) |r < Ko K s I | Muo(®) s -
Next by combining (6.3), (6.9) and (6.11), we have
(6.12) & B < 20K, + K Jy k) M)
EK%]M’W(t)I%,

where (6.12) defines K,. Then by Gronwall’s Lemma, if ¢ € D(M), we have that
for some positive constant K,

(6.13) | Mw(t)|g < | Mw(0)|zexp {E,T} = K.
We can now use (2.10a), (6.3), (6.11), (6.13) and the triangle inequality to obtain
(6.14) | Mw' (0)] < | L) w(®) | + [f(E, 2(0, ), 2(0, 1), w(t)) |u
< (K, + K, K k') | Mw(t)|x
< (B4 KK k') Ky = Ky
Finally, combining (6.7), (6.8) and (6.14), we have
(6.15) (10" (8)] ooy < Ko Ky Ky = K5 .
Since this constant K, is independent of #, we have

(6.16) sup |w' ()] < Ki .

oL

We have just proved the following lemma.
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LeMMA 6.1. — There exists a positive constant K,, which is independent of the
Lipschitz constant K of the functions p and ¢ to be determined in section 7 such that

|
(6.17) sup sup l%%(w, t)nglz.

0<I<T a6l

Note. We shall note at this point that the Lipschitz constant V for » = v(f) can
be set equal to Ky, and will be independent of the Lipschitz constant K for p and g.

7. — Preservation of function classes and continuity of G.

We shall consider the mapping described by (3.8) and show that if v = v(f) is
in a certain function class, then for ¢ sufficiently small, w = w(0,¢) is in the same
class. We first consider the hyperbolic part of the mapping G. Since Lemma 5.1
gives a uniform bound on p and ¢, we can restrict our attention to the Lipschitz
congtants for p and ¢. If we restriet T as in (4.11) to simplify the form of some
constants, that will incorporate the 7 < C-* restriction that was necessary to
restrict our consideration of one bounce of a characteristic off a lateral boundary
which we assumed in section 3.

We know that V, the Lipschitz constant for v, can be set equal to K, from (6.17)
which is independent of K, the Lipschitz constant for p and ¢. From (5.8) we see
that for preservation of the Lipschitz classes for p and ¢ we must select K such that

for T suitably restricted

(7.1) 70:0, + CC, V4 8C:C,KT< K.
Let
(7.2) K="17020,4+CC, V1.

Substituting (7.2) into (7.1) leads to the restriction

(7.3) T < (560* 0%+ 80°C2V 4 8C*C,)

while the substitution of (7.2) into (4.11) yields

(7.4) T< (210°C, - 3C*C,V 4 30)7 .,

Note that (7.4) is automatically satisfied when (7.3) holds. Thus under the restric-
tion (7.3), the Lipschitz classes for p and ¢ are preserved under the mapping when K
is chosen as in (7.2). Thus the mapping G takes a compact and convex subset of the

Banach space of continuous funetions on [0, 7] with the uniform norm topology
into itself. We now shall show that this mapping is continuous.
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First define

(7.5) Il = iggllf(z, 7)]
and =
(7.6) liell: = sup jo(r)].

RIS

Let (p;, ¢;), j=1,2 denote solutions of the hyperbolic part of (1.1) which cor-
respond respectively to the functions v,, j =1, 2. The techniques of section 4 and
Lemma 4.1 allow us to obtain the following lemma.

Levma 7.1, — For 0<z<1 and max(0,?,)<7<i<T,
(1.7) |78, 8) — 4P(v; 2, 1) < Cexp BCKt} o, — 2ol + e — @}, i=1,2,

where 2’ corresponds to the ¢-th characteristic emanating from (p;, ;) 1=1,2.
Integrating along the characteristics, we use standard estimates as in the proof
of LLemma 4.3 to obtain the next result.

LEMMA 7.2. - For 0<e¢<1 and 0<min({, {®)<t< 7T,

(1.8) [, 1) —tP(2, 1)| <67 [(C 4 2CK)tC exp {3CKt} 4 O]
Hp,— 0.+ lea—ld, i=1,2.

We use Lemma 7.1 and Lemma 7.2 in the estimates of the differences of for-
mulas (3.5)-(3.7) into which we substitute, p;, ¢;, and v;, j=1,2. Tedious but

elementary estimations involving the three cases of section 5 yield the following
estimate.

LEMMA 7.3. - There exists a constant (; which depends only upon C, K, and V
such that for 0<t<T,

(7.9)  |or—po)ls+ [gi— @] : < Cst{| D1 — D : + |2 — @2} + Cllos— sl

Also, if we restrict T to satisfy

(7.10) T < (20;5),
we have
(7.11) le — pz“ ¢ HQ1 — Q2H ¢ <20 ||vs— v, ]| -

We shall now use the representation of the solution of (2.10) given in (6.6) to
estimate the continuous dependence of w upon p and ¢. First we shall derive some
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necessary estimates on the norms of the operators in (6.6). We will need the following
lemma.

LeMMA 74, - Let X, i=1,2, be Banach spaces with respective norms |-|,.
Let Y, be a subset of X, which is a Banach space with norm |-, and assume
ly|:<e¢||y|. when y belongs to ¥, and ¢, are positive constants. Let 4 be a bounded
linear transformation from X, to X, such that A maps Y, to Y,. Then 4 is bounded
from Y, to Y,.

Proor. — See [12].
From (6.1a), one can show that A4L-1: W'— W with

(7.12) 1A iy < B -

From [4] and (2.9a) we know that M—*: H —» D(M)c H? Since H <> W' and
H2<> W = H*, the hypotheses of Lemma 7.4 are satisfied and we know that there
exists some constant (, such that

(7.13) [ MEIHL(H,D(M)) <0,.
Using (2.3), (2.4), (6.1), and (6.2) we also see that

(7.14) AL ul < By m(MTILE) u, ST )]

=k, <L), ML) U
=k, Ut u, STEE(@) u)|

ki3

< Kk Ml | AT L@ %y
and we have that, independent of ¢,
(7.15) 1AL oo,y < Kok -

Then since ML(E): W W, M'L{): D(L)cH? - D(M)cH? and H?<>W=H,
we can again apply Lemma 7.4 for each {€I; to obtain that | M~ L()| L(D(5), DUD)
is bounded above with the bounds depending upon ¢. At this point we need the
following additional assumption:

(V) The mapping ¢t — M 1L(?) is continuous in the uniform operator topology
on L(D(L), D(M)).
Then since | M " L(2)] 1(p(z), po) is bounded above for each t&lr, which is a com-
pact set, we see that there exists a constant €, such that, uniformly in ¢,

(7.16) “Jl[_lL(t)HL(D(L),D(M)) <Cj.
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Using (7.16) and defining the linear propagator as in [4, 10] we see that

t
(7.17) 16, 9] 1(p(y,peany) < €XD U05 df‘

<exp 0, T.

We now use the integral representation of the solution given by (6.6) to estimate
the continuous dependence of w upon p and ¢ from the hyperbolic part of (1.1).
Let w,(f) be the solution generated by p;(0,?) and ¢,(0,?) in (6.6). Note that since
D(L) and D(M) are contained in H? by (2.9), we are using the H? norm on them.
Using (6.5), (7.14), (7.16), (7.17) and assumption (III), we obtain

¢
(1.18) |y (f) — wy(t) |2 < UG’(t, 8) M~ (s, pi(0, 8), ¢u(0, s), wy(s)) —
0
—f(s, p2(0, $), 4=(0, ), wy(s))] ds -

< ” G(t7 8) HL(D(L),D(M)) ” M “L(H,D(M)) :

¢
J‘[f(sy 210, 8), 4:(0, ), wl(s)) ~f(8,p2(0, 8), ¢2(0,s), wz(s)) |r ds
0

< (exp 0,10, f {E|pi(0, 5) — pa(0, 8)| + K;]4,(0, 5) — ga(0, 5)| -
° + Kyfi0y(s) — (s} ds
<(exp 0,1) 0| max (K, B} t{lps—pall i+ ls— ] +
+ K, f 04(5) — 10, s |
;
Finally from Gronwall’s Lemma we have that

(7.19)  |wy(f) — wa(?) w2 < Cy max{K,, K,}exp {C; T} exp {K,C,exp (C; T)T}-
pr—pf 4 |0 — ]}
= t{“?h“ﬁz“t + “%”‘ 92“ t} :

We can now apply (6.7) to see that for each te I, we have
(7.20) lwl(t)—wz(t)'Lw(.Q)<K406t{Hp1_—pZHt_I_ ||Q1“_92“t}'

Now due to the definition of the norms [|-||, and ||-|, in (7.5) and (7.6) and the
fact that K,C, is independent of ¢, we have the following result.
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LEMMA 7.5. — Fot te I, there are constants K,C; such that
(7}21) 12010, - ) — wy(0, )| . < K, O, t{“pl - pz“ ¢ HQI— QZ“t} .

Then from (7.11) we obtain the result

LEMMA 7.6. — For tel,
(7.22) Nwi(0, ) — wp(0, - )| < 20K, Cs t][vs — vl + -

Now the restriction (7.10) guarantees that the hyperbolic part of (1.1) is uniquely
solvable for a given ». Theorem 6.1 guarantees that the Sobolev part of (1.1) is
uniquely solvable. Thus the mapping T is well-defined for T’ restricted by (7.10).
The continuity of G follows from Lemma 7.6. Finally by restricting T to satisfy

(7.23) T < (20K,0,),

we see by (7.22) that the mapping is a contraction. An application of the contrac-
tion mapping theorem guarantees a unique fixed point of the mapping which is a
weak solution of (1.1) as defined in section 3.

We thus state the major result of this paper while avoiding a catalog of as-
sumptions upon the data.

TrrOREM. — If T satisfies all of the restrictions (7.3), (7.10), and (7.23), a unique
weak solution of (1.1) exists. It is composed of a weak solution of the hyperbolic
part (H) of (1.1) when w(0, ) in { in (3.6) is replaced by a Lipschitz continuous fune-
tion v = v(¢) and a strong solution of the Sobolev part (S) when Lipschitz continuous
p(0, %) and ¢(0,?) are substituted into f.

Acknowledgement. — 1 would like to thank Professor R. E. SHOWALTER for several
valuable discussions.
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