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A Coupled Nonlinear Hyperbolic-Parabolic System* 

J. R. CANNON 

AND 

RICHARD E. EWING 

.% boundary initial value problem for a quasi-linear hyperbolic system in 
one space variable is coupled to a boundary initial value problem for a quasi- 
linear parabolic equation in two space variables. The coupling occurs through 
one of the boundary conditions for the hyperbolic system and the source term in 
the parabolic equation. Such a coupling can arise in the consideration of gas 
flowing in a porous medium and out of that medium via a pipe. A local existence 
and uniqueness theorem is demonstrated. The proof involves the method of 
characteristics, Bernstein’s estimates for parabolic partial differential equations, 
and the contracting mapping theorem. 

1. INTRODUCTION 

For subsonic %uid Aow in a pipe, it is standard practice to use a one- 
dimensional version of Euler’s equations of motion which includes the friction 
between the fluid and the pipe. By a change of dependent variables this system 
can be reduced to a standard hyperbolic system [6]. For fluid flow in a porous 
medium, it is standard practice to use quasi-linear parabolic partial differential 
equations for the density of the fluid that are derived via Darcy’s law [I, 51. 
Since pipes are employed to remove fluids from porous media, it seems natural 
to couple the two models into one system. The standard practice for modelling 
the removal of fluid from a porous media involves a sink term in the parabolic 
partial differential equation. Since the sink term is a volumetric flow rate per 
unit area which equals a linear velocity, it is clear that the fluid velocity at the 
end of the pipe in the porous medium can be regarded as a volumetric flow rate 
per unit area and thus is used as part of the sink term in the parabolic partial 
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666 CANNON AND EWING 

differential equation. The coupling is closed by requiring that the density of the 
fluid at the end of the pipe in the porous medium be equal to the density of the 
fluid in the porous medium at the point which represents the location of that end 
of the pipe. 

The preceding considerations motivate the study of the mathematical problem 
of determining real-valued functions p = p(z, t), q = q(x, t), and w = W(X, t) 
such that the triple (p, q, w) satisfies 

F + h(% t, P, 9) g = R,(z, tv P, 49 

fg + A,(% 4 P, 4) g = R&Y t, P, Q)! 

q(1, t) = G(c ~(1, t)), 

P(% 0) = PC@), 

Q(? 0) = 40(4, 

L(w) = S(x, 4 p(O, 0, 40 th 

B(w) = 0, 

w(.v, 0) = cp(x), 

p(0, t) = ix6 40 a 40, t)), 

O<x<l, 

O<z<l, 

O<x<l, 

O<z<l, 

(x,~)EQT, 

(.? t) E ST 3 

NEQ, 

O<t<TT, 
(l.la) 

O<t<T, 
(l.lb) 

O<t<T, 
(I.lc) 

(l.ld) 

(l.le) 

(l.lf) 

u*w 

(l.lh) 

O<t<T, 
(I .li) 

where .v = (xi , .x2) E R2, Q is an domain in R2 which contains the origin, 

0, = S x (0 -C t < T}, ST = LX2 x (0 < t < T), aQ is the boundary of Q, 
L is a parabolic partial differential operator, B denotes a boundary operator, and 
A, , A, , R, , R, Y G, p, , q. , v, S, and 5 are known functions of their respective 
arguments. It is clear that Q represents the porous medium, (0 < z < l} 
represents the pipe, and .z = 0 represents the end of the pipe in the porous 
medium at a point which is taken to be the origin of the coordinate system for the 
porous medium. 

In what follows, we shall treat two cases of L and B: 

Case 1: Linear. 

B(W) = % ajj(x, t) g cos(n, xi), 
i,j=l "J 
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where for any 5 E W of unit length 

jil aij(x, f, EiEj 3 l.’ > O 

and n is the outer normal to Sr . 

Case 2: Quasi-linear. 

L(W) G $ - i ajj(X, t, W) & + 6(5X, t, ZC, ZL',), 
i,i=l 2 ', 

B(W) Z f ajj(Xy t, W) g cos(n, Xi , ), 
i.61 3 

(1.3) 

(1.4) 

where for any [ E R” of unit length 

and w, denotes the gradient of w with respect to .t”i and .r3 . We shall make 
the detailed assumptions upon all coefficients and data as needed below. 

Our basic aim is to demonstrate that for T sufficiently small there exists a 
unique solution of (1.1). Actually we shall carry the analysis for two types of 
solutions. One type will be called a weak solution and consists essentially of a 
generalized solution of the hyperbolic part of (1.1) and a classical solution of the 
parabolic part of (I .l). The other type of solution is the usual classical one. 
In the nest section we formulate the notion of weak solution through a reformula- 
tion of the hyperbolic part of (I. 1) . m t o integral equations via the characteristics of 
the hyperbolic equations (1.1 a) and (1 .lb). We also formulate a mapping “K. 
A fixed point of ,N will yield whichever type of solution that the data smoothness 
will allow. Sections 3, 4, and 5 deal with the preservation of function classes 
under the mapping M. In particular, Section 3 deals with a priori estimates of the 
characteristics which are used in Section 4 to obtain the necessary a priori 
estimates for the solutions of the hyperbolic part of (1.1). We study the a priori 

estimates of the parabolic cases in Section 5. In Section 6, the results of Sections 3. 
4, and 5 are brought together and the preservation of some function classes under 
the mapping J&! is demonstrated. The remainder of Section 6 is devoted to 
demonstrating that ,&! is continuous and a contraction. The paper is concluded 
with a statement summarizing the analysis and results. 

2. A I\'EAKER FOR~UULATION OF (1.1) 

Since (1 .I) arises from physical considerations, it is natural to assume that the 
Xi and Ri , i = I, 2, are smooth bounded functions that are defined on or 
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((z,t,p,q):O~z~1,O~t~T,-c~<p<co,-co<q<co}.Also,itis 
natural to assume that there exists a constant S > 0 such that in Br , 

A,<--6<0<6<h,. (2-l) 

For a classical smooth solution (p, 4, w) of (1. I), we can define the characteristics 

[2, 3, 101 
zi = zt(7; z, t), max(O, tJ < 7 < t, i = 1,2, (2.4 

as solutions of the initial value problems 

dzJdr = hj(zj , 7, p(zi , T), q(zi , T)), max(O, ti) < 7 < t, i = 1, 2, (2.3a) 

z;(t) = z, i = 1,2, (2.3b) 

where 
ti = rqz, t), i = 1,2, (2.4) 

denotes the unique time at which the characteristic zi assumes the value 
z = i - 1. Here, we have extended the functions p and Q to negative T  via the 
initial conditions p, and q,, . Given the boundedness of the hi , we can take T 
sufficiently small that no more than one of ti and t, is positive for any (z, t) such 
that 0 < z < 1 and 0 < t < T. In other words, we can restrict T so that we 
have at most one bounce of a characteristic to handle. 

Integrating (1 .la) and (1.1 b) along their respective characteristics [2, 3, lo], 
we see that for 0 < t < T any classical solution (p, q, w) of (1.1) must satisfy 

(H) the hyperbolic part of (1.1): 

P(Z, 9 = ~o(zdO; z> t)) + \” R ( 1 Z1 ( 7; Z, t), T> p(zl(T; Z, t), T), q(%(T; Z, f), 7)) dT, 
‘0 (2.5a) 

dz, 9 = 4oMO; z, 9) + (R ( ( 2 Z, 7; Z, t)> 7, p(z&; Z, t)v T), q(+; Z, t), 7)) 4 
(2.5b) 

or (2.5b) and 

P(Z, t) = &l(Z, 4, !#A h(z, t)), 40, t,(z, t))> 

+ Lz t) 

(2.6) 
&(ZI(T; Z, t), 7, p(zl(T; Z, t), ‘-), q(+; Z, t), 7)) dT, 

1 * 

where q(0, t,(z, t)) is computed by replacing z and t in (2.5b) by 0 and t,(z, t), 
respectively, or (2.5a) and 

dz, t> = G(h(z, 4, ~(1, t,(z, t))) 
rt (2.7) 

+ Jt*~z.t) 
R&h; Z, t), 7, p(%(T; Z, t>, T), q(Z&; Z, t), 7)) dT, 
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where ~(1, t,(z, t)) is computed from (2.5a) via the replacement of x and t by 

1 and t,(z, t), respectively; and 

(P) the parabolic part of ( I .1) : 

L(w) = SC% t, P(O, t), do, 0 (.? 4 65 0, 1 

B(w) = 0, (“Y, t) E ST ) (2.8) 

w(x, 0) = p(x), XEQ. 

DEFINITION. A weak solution of (1.1) is any triple of functions ( p, q, w) such 
that p and Q are continuous for 0 < s < 1 and 0 2; t :;I T, u’ is a classical 
solution of(P) the parabolic part of (1.1) that is described by (2.8) where L and B 
are discussed in (1.2) and (1.4), and p and Q satisfy (H) the hyperbolic part of (1. I ) 

that is described by (2Sa), (2.5b), (2.6), and (2.7). 
As indicated above, our solution technique involves the contracting mapping 

theorem. Actually, the mapping involved here is easy to define. M’e take ~(0, t) 
in (2.6) and replace it by a function z’ = z’(t). After solving the hyperbolic part 
of (1.1) for p and Q, we substitute ~(0, t) and q(0, t) into (l.lf) and solve the 
parabolic part of (1.1) for ZL’. The mapping A! is obtained by setting 

w(0, t) == A%(t). (2.9) 

Before we can demonstrate that A’ is a contraction for T sufficiently small, it 
is necessary to obtain a few estimates. 

3. A PRIORI ESTIMATES ON THE SOLUTIONS OF THE 
CHARACTERISTIC EQUATIONS 

We first recall a lemma from the theory of ordinary differential equations. 

LEMMA 3.1 [8]. Let y  and Y be two functions sutisf~in.g 

y’ = f(.t-, y), is--al s;;‘, 

J(U) = a, 

Y’ == F(x, Y), la--al <h, 

Y(u) == p. 

Then, for j N - a 1 < h, 

(3.la) 

(3.lb) 

(3.lc) 

(3.ld) 

I Y(4 -v(x)I < exp{W[l 0~ -B I + SUP If-F II, (3.2) 

where h is a positive constant and M is the maximum of the uniform Li’schitz 
constants on .f and F. 
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We begin with the assumption that p =I p(z, t) and 4 = q(z, t) are uniformly 
Lipschitz continuous in z and t with Lipschitz constant K > 1. Also we assume 
that their first derivatives are uniformly Holder continuous with Holder constant 
R > 1 and with an exponent L~I, 0 < a < 1, which will be determined by the 
parabolic part of (1.1). Next, we assume that h, and X, possess Lipschitz con- 
tinuous first partial derivatives in 8, (and we let C denote a positive constant 
which bounds them in absolute value), all of their first derivatives, and the 
Lipschitz constants of their first derivatives. We can suppose that C > 1. 

From the mean value theorem, it follows that 

I h(z*, 7, AZ*, T), &*, ~1) - hi@, , 7, P(Z* , 4, q(+ > 411 < 3CK I z* - z* I, 
i = 1,2, (3.3) 

and that a similar estimate holds for the 7 variable. Consequently, we employ 
3CK as the Lipschitz constant indicated in Lemma 3.1. Recalling (2.4), we let 

tI’) = t&G’), t), j= 1,2, (3.4) 

denote the times that the characteristics zi , i = 1, 2, emanating from the points 
(z(j), t) strike the boundary z = i - 1. 

LEMMA 3.2. For max{O, tj’), tj’)} < 7 < t < T, 

I 45 z (l), t) - x~(T; z(%), t)l < exp(3CKt) 1 z(l) - z@) /. (3.5) 

Proof. The result follows from an elementary application of Lemma 3.1 and 
is therefore omitted. 

Considering Eqs. (2.3a) and (2.3b), we obtain by integration 

z(j) = (i - 1) + Jtij, X&(T; z(j), t), T, p(q(~; z(j), t), T), q&(~; z(j), t), T)) d7, 

j= 1,2, i= 1,2. (3.6) 

Subtracting j = 2 of (3.6) from j = 1, we obtain 

where the choice of sign and argument for the second term depends upon the 
tf’,j = 1,2. Solving for the second term on the right-hand side of (3.7), recalling 
(2.1) and using (3.3) and Lemma 3.2, we see that the following result is valid. 

LEMMA 3.3. For i = 1, 2, 

) ti(#, t) - ti(S), t)l < S-I(1 + 3CKt exp(3CKt)) . [ z(l) - zt2) 1. (3.8) 

Integrating along the characteristics emanating from (z, t(l)) and (z, tt2’), 
we employ an argument similar to that of (3.6) and (3.7) and an application of 
Gronwall’s lemma to obtain the following estimate. 
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I,EhlNA 3.4. For 0 :Z.; t”’ -:-I T, j == 1, 2, and 

max(0, f{‘), tia’) :;< T 5; min(t”‘, t(“), 

,zi(T; z, t”‘) - q(r; z, t(*‘)i -T C exp(3CKT) 1 t’” - t”) , (3.9) 

where we hare used ty) to denote the time that the characteristic zj emanating from 
(z. Pi’) strikes the boundarzl z := i - 1. 

.In argument similar to those of the two preceding results yields our last 
Lipschitz estimate. 

LEM~IA 3.5. For 0 .s; t”’ < T,j = 1, 2, 

1 ti(z, P’) - ti(z, P)[ < S-rC(1 + 3CKT exp(3CKT)) . [ t(r) - t’“) j. (3.10) 

II’e now consider estimates of the first derivatives of the zi with respect to 
2 and t. Differentiating (2.3a) and (2.3b), we obtain 

and 

The solutions of these equations are represented by 

and 
&. i3z. -’ = --hj(Z, t, p(z, t), q(.v, t)) 2 ) a az 

(3.12) 

(3.13) 

(3.14) 

where the functions in the integral of (3.13) are evaluated along the ith charac- 
teristic emanating from (z, t). Recalling (3.6) and removing the index (j) from it, 
it follows from Leibnitz’s rule that 

2 := {hj(i - 1. fj , p(i - 1, ti), q(i - I, ti)))-’ 

(3.15) 

: (hi(i -- I. tj , p(i - 1, ti), q(i - 1, fi))]m’ ’ I- 2 (fi: 5. [)I 
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4 = {A& - 1, t< ) p(i - 1, t,), q(i - 1, tJ)>-’ . /&(a, t, p(a, r), 4(a, t)) 

(3.16) 

= -{A& - 1, ti ) p@ - 1, &), q(i - 1, Q)]-r$ (&; a, t), 

where the integrands in (3.15) and (3.16) are evaluated along the ith charac- 
teristic emanating from (a, t). Since C bounds hi and its derivatives and K denotes 
the Lipschitz constant for p and q, it follows from simple estimations of (3.13), 
(3.14), (3.15), and (3.16) that for 0 < z ,( 1 and max(O, ti) < T < t < T, 

I ! 
2 < exp{3CKt}, i= 1,2, (3.17a) 

ax. 
I I 
-2 at < C exp{3CKt), i= 1,2, (3.17b) 

I I 
2 < 6-l exp{3CKt}, i= 1,2, (3.17c) 

I I 
$- < S--T exp{3CKt}, i= 1,2. (3.17d) 

Utilizing the representations, bounds, and preceding lemmas, the following 
estimates can be derived from a liberal use of the Mean Value Theorem and the 
triangle inequality. 

LEMMA 3.6. Let 0 < t(j) < T < 1 and 0 <z(j) < 1, ~j = 1, 2. For 
max(O, tj’), tj”) < T < t < T, 

2 (T; z(l), t) - 2 (T; z(2), t) < Cl 1 2’1) - 29 (a, i= 1,2, 

s (T; z(l), t) - 2 (T; z(2), t) 1 < Cl 1 z(1) - 232) p, i=l,2, 

for max(fi”, ti2’) < 7 ,< min(P, tc2)), 

I 
2 (T; z, t’l’) - 2 (T; z, 29) ) < Cl 1 t’2’ - t’2’ p, i= 1,2, 

2 (T; z, t(l)) - 2 (T; z, P) 1 < Cl 1 t’” - t’2’ p, i=l,3, 

(3.18a) 

(3.18b) 

(3.19a) 

(3.19b) 
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and 

2 (z(l), t(l)) _ 2 (x(21, t(2)) 1 < Cl{1 z(l) - zt2) /'I 

where the restriction 

T < (3KC)-’ 

has been employed to simplijj 

c, = 3ooc4q I + I&]. 

+ 1 t(l) _ t(2) ill, 

i- 1.2, (3.20a) 

It (11 _ f’“’ l’)y 

i -:: 1, 2, (3.20h) 

(3.21) 

(3.22) 

Remark. For arguments similar to the ones indicated but omitted above. see 

[2, 3, IO]. 

4. A PRIORI ESTIMATES FOR THE SOLUTION OF THE 

HYPERBOLIC PART OF (1.1) 

Recall from Section 2 that the hyperbolic part of (1.1) consists of the integral 
equations (2.5a), (2.5b), (2.6), and (2.7) which involve the solutions .z<(T; Z, t), 
i = 1, 2, of the characteristic equations (2.3a) and (2.3b). Consequently, the 
results of Section 3 will be used heavily in the estimates that are derived below 
for p = p(z, t) and 4 = &, t). B e f  ore we begin the discussion of the estimates, 
it is necessary to state some assumptions upon the data functions R, , R, , 5, G, p, . 
and q0 . 

We assume that R, and R, possess Lipschitz continuous first derivatives in 
&- . Next, we assume that 5 = c(t, Q, w) possesses Lipschitz continuous first 
derivatives on {(t, q, w): 0 < t < T, - 00 < q < x, - rc, < w < cc> and that 

G = G(t, p) possesses Lipschitz continuous derivatives on ((t, p): 0 < t < T, 
-,x: < p < m}. With respect to the initial conditions p. and q,, , we assume that 
they possess a Lipschitz continuous derivative for 0 < x < 1. It is economical 
to assume that C used in Section 3 also provides here a bound in absolute value 
for all of the above functions, all of their first derivatives, and for all of the 
Lipschitz constants. Since our stated purpose is to obtain a solution of (1.1) 
which involves at least continuous p and q, it is necessary that our data satisfy 
the compatibility conditions. 

P,(O) = WA !70(0), P(O)), 

c,(l) = WA P&N. 

(4.la) 

(4.lh) 
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All of the estimates in this section are aimed at showing that the mapping J%’ 

defined in Section 2 by (2.9) will preserve the function classes that contain the 
solution of (1.1). As is Section 3, we shall assume that p = p(z, t) and Q =I 4(x, t) 
are uniformly Lipschitz continuous in z and t with Lipschitz constant K and 
that they possess Holder continuous first partial derivatives with Holder constant 
Rand with an exponent a. In obtaining the mapping, we replaced ~(0, t) in (2.6) 
by a function v  = v(t). We shall assume that, for 0 < t < T, z’ possesses a 
bounded first derivative which is Holder continuous with exponent (Y. We shall 
let C;, P’, and P denote, respectively, the bound in absolute value for z’, the 
Lipschitz constant for V, and the Holder constant for the derivative of z:. 

The estimates obtained below may seem strange in that we obtain an estimate 
for the Lipschitz constant for p and 4 after having assumed one. The reader 
should bear in mind that the mapping k’ of Section 2 requires that we solve an 
auxiliary hyperbolic system. This requires a mapping of its own (see, for 
example, [2, 3, lo]). Consequently, our estimates must reflect the preservation of 
the necessary function classes through that mapping as well. 

An easy estimation of (2.5a), (2.5b), (2.6), and (2.7) provides us with our 

first estimate. 

L~~ivu4.1. ForO<z<l andO,(t<T, 

I p(-% t)l < (1 + t)C, (4.2a) 

I cd& a < (1 + w. (4.2b) 

Next, we see from (3.17) and the restriction (3.21), 3CKt < 1, that 

c, = 3s-Q2 (4.3) 

can be used as a uniform Lipschitz constant for zi and ti . Without loss of 
generality we can assume that Cs > 1. 

In order to estimate the Lipschitz constants for p and q from (2.5a), (2.5b), 

(2.6), and (2.7), we must consider three basic cases for characteristics z(,j’, 
j = 1, 2, emanating, respectively, from (z(l), t(i)) and (D, t(s)). 

Case I. We assume that neither characteristic $), j = 1, 2, hits a lateral 
boundary before hitting the base t = 0. 

Case II. We assume that both characteristics z(,jr, j = 1, 2, hit the same 
lateral boundary prior to t = 0. 

Case III. We assume that only one of the characteristics z?‘, j = 1, 2, hits a 
lateral boundary while the other hits the base t = 0. 

In all, there are 5 cases to be considered, but it is no loss of generality to 
restrict our attention to the lateral boundary z = 0 and the behavior of zp’, 

j = 1, 2. In fact, the analysis for the boundary z = 1 follows the same pattern 
with the omission of the effect of the function v  = v(t). 
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For Case I, we obtain the following resuh. 

LEMMA 4.2. When neither characteristic hits the lateral boundary prior to t =: 0 
and when 0 < t(j) < t, 0 < z’i’ -< 1, j = I, 2, 

I Pb Cl’, t’“) - p(z (*‘, t(*‘)l < C2(2C + JCKt){j z(l) - z(‘)l 1 T  i f’l’ - f(*) I>, 

(4.4a) 

I cl@ ‘I’, t’“) - q(#‘, t’“‘)1 < C,(2C + 3CKf){I &I’ - d”’ ] + I t’l’ - t”’ i). 

(4.4b) 

Proof. It suffices to consider zr and (2Sa) since a similar argument will hold 
for zp and (2.5b). Substituting (z(j), to’), j := I, 2! into (2.5a) and differencing 
them we obtain 

P@ (l', t(l)) - p($2', t(a) 

-= p&1(0; 2 (I’, t”‘)) - po(zl(O; TP’, t”‘)) 

J 

-min(f(‘).t(*)) 
t OW4~; 2 (I’, t’“), 7, p(z1(7; 2’1’. t’“), T), q(zJ7; z(l), t”‘), 7)) 

~ &dT ; Q’*), t’*‘), T, $&(T; .z’*‘, t”‘), T), q(.zl(T; 9, t’“‘), T))} dr 

(4.5) 

Employing the mean value theorem, Lemmas 3.2, and 3.4, we see that 

I P(Z U', f'l') - p(z'2', t’2’)j 

::; {C$ + 3CKC2 min(to’, t(*))){ 1 z(l) - z(2’l + I f’l’ - t’2’1) + c I t”’ - t’2’1 

(4.6) 
from which (4.4a) follows. 

For Case II, we see from (2.6) that the difference inp(,#, t(l)) and p(zP, t(2)) 

would involve a difference in the 5 terms, an integral of the form similar to that 
of the first integral on the right side of (4.9, and two integrals similar to the 
form of the second integral on the right of (4.5) with one of them involving the 
limits t,(z(l), t(l)) and t,(d*), t(“)). An application of the mean value theorem and 
repeated use of the Lemmas 3.2 through 3.5 yields the following result. 

LEMMA 4.3. When both characteristics hit a lateral boundary prim to t ; 0 
and when 0 < z(j) .%I 1, 0 < t(j) < t, j = 1, 2, 

I Pb w, t"') _ p(zf2’, t(2))/ 

< CC*(SC + 5CKt + r,-> . (1 z(l) - z’“)/ + I t”’ - t(2))), (4.7a) 

I & U', t'l') _ q(z’2’, t’“‘)j 

5; CC.,{X + 5CKt) . (1 S’ - z(“/ + I t”’ - t’“‘]}. (4.7b) 
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Consider now Case III. We know from the theory of ordinary differential 
equations [8] that there is a unique characteristic zr with characteristic direction 
X, passing through the origin. Uniqueness also assures us that this characteristic 
does not intersect ~~(7; z(i), t(l)) or ~~(7; z(s), t(s)). From the Jordan Curve 
Theorem and elementary considerations we see that this characteristic must 
intersect the line segment connecting (z (l), t(l)) and (S), tt2)) at a point which 
we denote as (z*, t*). We may thus denote this characteristic by x1(7; z*, t*). 
Assuming without loss of generality that .z~(T; z (l), t(l)) is the characteristic that 
hits z = 0 prior to t = 0, we may apply the triangle inequality to obtain 

j p(x”‘, t(l)) - p(x’2’, P’)l 

G I P(X (I), Cl’) - p(x*, t*)l + 1 p(z*, t*) - p(z’“‘, P’)l, (4.8) 

which is simply an application of the result of Case 2 followed by an application 
of the result of Case 1. Combining the two cases results in the following estimates 
which hold for all cases. 

LEMMA 4.4. For Cases I, II, a&III, 0 < z(j) < 1 and0 < t(i) < t, j = 1,2, 

I Pb U), t’l’) - p(#‘, t’2’)j 

< CC,[7C + 8CKt + V] - [I x(l) - d2) [ + j t(l) - P)/], (4.9a) 

1 q(x’l’, t”‘) - q(zP’, t’2’)l 

< CC,[7C + 8CKt] - [I x(l) - xc2)1 + / t’l’ - tt2)l]. (4.9b) 

In order to obtain a priori estimates for the preservation of the H6lder classes 
of the derivatives ofp and q under the mapping, we must consider the same three 
cases for the differentiated expressions in (2.5a), (2.5b), (2.6) and (2.7). The 
same type of application of the mean value theorem and the Lemmas 3.2 through 
3.6 yields the following result which we state without proof. 

LEMMA 4.5. FOY 0 < z(j) < 1 and 0 < t(i) < t, j = 1, 2, 

g (#), t(l)) - 2 (,@), t(2)) 1 < &{I x(l) - ,$a [a + 1 t’l’ - p Ia}, 

U), t’l’) _ a4 (#), t(2) 
ax )I 

< C,{l x(l) - x(2) p + 1 t”’ - t(2) [a}, 

g(x Cl), t’l’) - 2 
at (29, t(2)) 1 < C,(l 241) - z(2) p + 1 t(l) - t(2) p>, 

Z(x (11, t(l)) _ 2 ( 
at z(2), t(2)) ) < C,{l x(l) - 29 1” + j t(l) - t(2) I”}, 

(4.10a) 

(4.10b) 

(4.1Oc) 

(4.10d) 
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where 

and 

c, = 2OoOs-3cWV(2K + lJ)(Rt + f), (4. I I ) 

c, = 50006-3C3K3(C + V)(Izf + F-). (4.12) 

Remark. Note that for the derivatives of p and q to be continuous, we must 
specify that the data satisfy the compatibility conditions. 

- &2(0? 03 PO(O), 90(O)) %‘(W + g- (07 40(O), 940)) a’(O) (4.13) 

+ MO, 0, P,(O), s,(O)) P,‘(O) - R,(Ov 0, P,(O)> so(W == 0. 

where o’(O) is evaluated through (I. 1 f) at x -= 0, t = 0, and 

g (0, P&N + $ (0, p,(l)) {R,(l, 0, P,(l), s,(l)) - &(l. 0, P,,(I)> s,(l)) po’(l)l 

Ml, 0, P,(l), q”(l)) q,‘(l) - R,(l, 0, PC,(~), qu(l))l- == 0. (4.14) 

5. A PRIORI ESTIMATES FOR THE SOLUTION OF THE 

PARABOLIC PART OF (1.1) 

\5’e begin our discussion with Case I of Section 1 where L and B are, respec- 
tively, the linear parabolic operator and linear boundary operator which are given 
by (I .2). For this case, we can assume that 

s = S(x, f, p(0, t), q(0, t), zc(.\.. f)) (5.1) 

which represents a mild generalization of the formulation in (I. I). In addition, 
we assume that the function S = S(x, t, p, q, w) is defined on {(x, t, p, q, w): 
(x,~)E&-~~<p<co--<q<<,-cc<w<~~j=&~R~,that 
it possesses continuous first partial derivatives with respect to t, p, and q, that it 
possesses continuous fourth partial derivatives with respect to x and w, and that S 
and its aforementioned derivatives are bounded in absolute value by the positive 
constant M. Mkh respect to the data aij = a,(x, t), i,j :: 1, 2, bi = bi(.v, t), 
i == 1, 2, we assume that they possess four continuous partial derivatives with 
respect to x and t in gr and that the functions and their derivatives are bounded 
in absolute value by M. 

From (1.3) and the assumption that T(X) is bounded in absolute value by M, 
a direct application of the maximum principle for parabolic partial differential 
equations [4, 7,9, 1 l] yields the following estimate. 

409!58'3-16 
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LEMMA 5.1. For (x, t) E & , 

I w(x, Ql < (1 + t)M. (5.2) 

It is important to note at this point that the bound r? for v  can be chosen to be 
M(1 + Tl) for some fixed T, . 

Under the assumption that the initial data v(x) possesses fourth order con- 
tinuous partial derivatives that are bounded in absolute value by M, and that the 
solution w is sufficiently smooth, the Method of Bernstein, which involves only 

x derivatives of (1. If) [7, 91, can be applied directly to demonstrate the following 
result. 

LEMMA 5.2. For (x, t) E&’ = {(x, t): xl2 + x22 < r2, 0 < t < T), where r 
is a positive number such that &’ C QT , there exists a positive constant M, which 
depends only upon M, T, and v; i.e., Ml = M,(M, T, v), such that 

i,j = 1,2, (5.3b) 

From the parabolic equation (l.lf), we can estimate awlat in &’ via (5.3). 
Hence we see that the following is valid. 

LEMMA 5.3. For (x, t) E&‘, there exists a positive constant M, which depends 
only on Ml , M, V, and T, i.e., M2 = M,(M, T, v), such that 

iwwx, 41 G M, . (5.4) 

It is important to note at this point that the Lipschitz constant Vfkr w = w(t) 
can be set equal to M2 which is independent of the Lipschitz constant K of the 
functions p and q which will be determined in Section 6. 

By differentiating Eq. (l.lf) with respect to the space variables we can use 
(5.3) to estimate all of the mixed partial derivatives of w which involve one 
differentiation with respect to t. Finally, differentiating Eq. (1. If) with respect to 
t, we see that we can obtain the following estimate for a”w/at2 in &‘. 

LEMMA 5.4. For (x, t) E&‘, there exists a constant M3 which depends only 
upon M, T, v  and K, i.e., M3 = M,(M, T, v, K), such that 

I(a2wjatyx, t)l < M3 . (5.5) 
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It is important also to note at this point that, for this case the Hiilder constant I”I 
for v = v(t) can be set equal to M3 and 01 = 1. Note also that M3 is independent 
of Z? which denotes the assumed Hiilder constant for p and q and which will also be 
determined in Section 6. 

Turning now to Case 2 of Section I, we recall that (I. If), (1.1 g), (I. 1 h) become 

l3W 
- -i :I aij(x, t, 2~) & + b(x, t, ~7 w.r) = S(X, t+ P(O, t), q(O, t))t 

at 

(.? q E 07 , (56a) 

jgl ajj(X, t, W) g COS(ll, Xj) = 0, (S, I) E ST, (5.6b) 

W(.Y 0) = qJ,(x), s t l-2. (5.6~) 

where we assume that Sz is bounded and that it possesses a smooth boundary iiQ. 
Let 52, , i = 1,2, be bounded domains with smooth boundaries such that 

mc&8,cQ, (5.7) 

and that the distance 
d(ilL+ , &$) > I. (5.8) 

We split (5.6) into two problems. First let s denote the solution of 

$-$i$ = S(x, 1, q(O, t), P(0, a, (x, t) EL+ x (0, T], (5.9a) 

it% 0 
n = , (s, t) E a2, ‘\ (0, T], (5.9b) 

s(x, 0) = 0, .Y E f2* , (5.9c) 

where we can assume with no loss of generality that S vanishes smoothly near 
EQ, . Next we define the function r in 0 via 

r-w-s. 

Substituting r + s into (5.6) and using (5.9), we obtain 

(5.10) 

-g - jf, ajj(.v, t, r + s) & + b(x, t, r -t s. r,, A s,.) 

’ Oy 

(s, t) E s, , (5.llb) 

r(x, 0) = q(x), XEQ. (5. I 1 c) 
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dij(x, t, y, = Uij(X, t, Y + S)y (5.12a) 

Qx, t, y, ys) = b(.q t, y + s, yt + $2) + c __ - i$l aij(x* t* y + ') & P 
i=l axi" 

4(X, t, Y) = i Ujj(X, t, Y + S) g cos(n, Xi), 
i.i=l I 

we obtain the second problem 

t - it1 4jtx, t, y, & + &XT tv ye Yk-) = 0, (-& t) E QT , 

itl dij(x, t, y) E cos(n, &yi) + #(X, t, Y) = 0, (x1 t) E ST, 

y(x, 0) = v(x), XEQ. 

(5.12b) 

(5.12~) 

(5.13a) 

(5.13b) 

(5.13c) 

We recall, for example, from [9, pp. 4754921 that if there exist positive constants 
v, p, p-Li , i = 0 ,..., 4, such that 

v % ti” < f rijj(x, t, y, t&j < CL i 5i2v 

i=l i, j=l i=l 

___- 

(5.14a) 

(5.14b) 

a 2$ a24 aB* aa-,, a$ 
- (xv t, y), - a6 aTax, 2 27% ' ilt'iit G pp (5.14d) 

(I El2 + / ~In)1’2(l +iIP,“) + I :I + I$[ GP(l +@), (5*14e) 

I 9 a%,, aqj a2z 
ay2 '57%' ayax, '&ST Gpy I (5.14f) 

-y&G t, y, p) < PO i Pi2 + bq2 + p2 , 
i=l 

(5-W 

-q&x, t, r) < /*3" + pa 

for (x, t) E Sr , (5.14h) 
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and if 

the function &i,,/&, are Hijlder continuous in the variables s 
with exponent 8, ~I,!J/&, are Holder continuous in x and t with 
exponents /3 and /3/2, respectively, and 8(r, t, Y,  p) is Holder 

(5.15a) 

continuous in x with exponent /3, 

and 

the initial datum p)(x) satisfies the compatibility condition 
(5.15b) 

fl a,j(X, 0, v(X)) g (X) COS(ll, xi) = 0 

then (5.13) possesses a classical solution Y  whose partial derivative with respect 
to t is Holder continuous with exponent /I/2 in &. Moreover the Holder 
constant of &/at depends only upon the constants v, CL, pi , i = O,..., 4, and the 
bounds upon the datum d(x) and its derivatives. Since the Bernstein estimates of 
Lemmas 5.1,5.2,5.3, and 5.4 hold for s in D, x [0, T], it follows from elementar! 
calculations that if aij , i = 1, 2, and b satisfy (5.14) and (5.15) then there exist 
constants V, TV*, pi , i = 0 ,..., 4, which are independent of Ii such that the func- 
tions di, , g, and (6 satisfy (5.14) and (5.15). Combining the above result with the 

results of Lemmas 5.1 to 5.4 when applied to s, we obtain the following result. 

LEMMA 5.5 (Quasi-linear Case). For (x, t) E&‘, there exist positive constants 
M, and MS which are independent of K such that 

I w(x, 41 < ncr, (5.16a) 

I(WWx, t)l < -% I (5.16b) 

and there exists a positive constant M, which depends upon K, but not I?, and a 
constant (Y, 0 < cx < I, such that for (x, P)), (x, tt2)) E &‘, 

(5.17) 

Finally, it is important to note that for the quasi-linear case of (1. If), the bound i; 
of v  can be chosen to be M4 and the Lipschitz constant I’ of v  = v(t) can be selected 
as M, tikile the Hiilder constant P of v  = v(t) can be selected as MB . The choice qf 
c1 for v  = v(t) is that of Lemma 5.5. 

6. CONTINUITY OF THE MAPPING (2.9) AND ITS 
PRESERVATION OF FUNCTION SPACES 

We begin our considerations with the hyperbolic part of the mapping .A!. The 
first restriction on the time T occurred when we desired to limit our attention 
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to the case of one bounce only off of a lateral boundary. This restriction amounted 
to 

T < C-‘. (6.1) 

From a desire to simplify some of the constants, we restricted T via 

T < (3CK)-l. (6.2) 

Since Lemma 4.1 gurantees a uniform bound on the p and the 4, we turn our 
consideration to the Lipschitz constants for p and q. From Lemmas 5.3 and 5.5 
we see that V can be regarded as a constant independent of K. For preservation 
of the Lipschitz class for p and q we must select a K such that, for T suitably 
restricted, 

lC2C, + V + 8C=C,KT < K. (6.3) 

We must keep in mind that the value of C, displayed in (4.3) resulted from the 
restriction (6.2). We can handle both simultaneously by setting 

K = 7C”C, + V + 1 (6.4) 

and observing that this substituted into (6.3) leads to the restriction 

T < (56C4Cz2 + 8C2C,V + 8CzC,)-l (6.5) 

while the substitution of (6.4) into (6.2) leads to the restriction 

T < (21C3C, + 3CV + 3C)-1 (6.6) 

with is automatically satisfied when T is restricted as in (6.5). Consequently 
under this restriction for T, the Lipschitz class of p and q is preserved when 
K is chosen as that in (6.4). Turning now to the preservation of the Holder 
classes of the first partial derivatives of p and q, we observe from Lemma 5.4 
and 5.5 that the preservation of the Holder constant I? amounts to the selection 
of R so that a suitable restriction of T yields 

C,Ii+T + C, < I?, (6.7) 

where C, and C, can be seen to depend only upon C, C, , V, P, and 6. Selecting 

I&c,+1 (6.8) 

and restricting T to satisfy 

T -==I {C,(C, + 1%‘, (6.9) 

we ensure that the Holder classes of the first partial derivatives of p and q are 
preserved under the mapping A’, provided that 01 is selected from either 
Lemma 5.4 or Lemma 5.5 depending upon which parabolic operator is used. 
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As the choice of C and V could be made independently of K, the Lipschitz 
class of =u = w(t) is preserved under the mapping..&‘. Following the determination 
of K by (6.4) it follows from Lemmas 5.4 and 5.5 that for the choice of I7 and CY 
indicated by those results, we see that the Holder class of dv/dt is preserved under 
the mapping. Thus the mapping &’ takes a compact and convex subset of the 
Banach space of continuous functions on [0, T] with the uniform norm topology 
into itself. All that remains to achieve existence is to demonstrate that the 
mapping J# is continuous. 

\Ve define 
(6.10) 

and 
(6.11) 

Let (pi , qj), j = 1, 2, denote solutions of the hyperbolic part of (1. I j which 
correspond, respectively, to the data zlj , j = 1, 2. Using Lemma 3.1 and the 
elementary techniques of Section 3, we obtain the estimate 

LEMMA 6.1. For 0 < z < 1 and max(O, ti) G r :.. t .- T, 

( z~)(T; z, t) - zjf)(~; z, t)l <, C exp(3CKtJ t{i’ pi - p,, , -i q1- 4:!1t:, 

i :z 1, 2, (6.12) 

where zlj’ corresponds to the ith characteristic determined f y  (p, , qj), j = I, 2. 

Differencing the formulas involving tlj’(z, t) that are obtained by substituting 
the (pj , qj), j = 1,2, into (3.6), we can use the technique of proof of Lemma 3.3 
to obtain the following result. 

LEMMA 6.2. For 0 < z ,< 1 and 0 < min(t{“, ti”) -< t :;I T, 

/ tjqz, t) - tpyz, t)l 

ig S-l[(C + 2CK) tC exp(3CKt) + C] t{li pi - p2 Iit + /I q1 - qZ ,,,).. (6.13) 

In order now to study the continuous dependence of the pj and qj on z’, , 
j = 1, 2, we must use Lemmas 6.1 and 6.2 to assist in estimating the differences 
of the formulas (2.5a), (2.5b), (2.6), and (2.7) into which we substitute pj , q, , 
and ztj . The estimation is elementary and yields the following estimate. 

LEMMA 6.3. There exists a constant C, which depends only upon C, K, and K 
such that for 0 < t < T, 

I/ P1 - P2 /It + II 41 - !72 Ilt G C$(ll Pi - Pe l/t + II 41 - $2 hit) + C I Z$ - 2’:: l,it , 

(6.14) 
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and if T is restricted by 

then 

T < (2C,)-l, (6.15) 

II Pl - Pz Ilt + II 41 - 92 Ilt d 2c IO 01 - v2 /IL * (6.16) 

We complete our consideration of the continuity of the mapping .A by 
estimating the continuous dependence of w upon p and q via the maximum 
principle and applying (6.16). 

Consider the case of the linear parabolic operator and linear boundary operator 
of (1.2) coupled with the S given by (5.1). Letting wj correspond to the data 
(pj P qj), j = l, 2, and setting 7 = wl - w2, we difference the corresponding 
equations (I.lf), (l.lg), and (l.lh) and obtain 

2 

?t - C % 
i.i=l 

g&y + i 612 - g+l = $P1- P2) + g cs,- q2), 
2 . J i==l E 

(xv t)EQT, (6.17a) 

(x9 t) E ST, (6.17b) 

7(x, 0) = 0, XEQ, (6.17~) 

where the functions ASlaw, &Slap, and &!3/aq are evaluated at the usual inter- 
mediate points indicated by the mean value theorem. Constructing a function 
Z+%(X) which is positive and twice continuously differentiable in 52 and which 
satisfies 

$, U,j(a#/aXj) cos(n, Xi) > 0 for X E af-2, (6.18) 

it follows from 1 &S/aw ] < M that for 

E(x, t) = rl(x, t) exp{Jft) (6.19) 

we can apply the usual maximum principle argument [4, 7, 9, 1 I] to show that 
for each E > 0, 

I E@, t)l < 44 + Cst (6.20) 

provided that 

Cs = expWT1 M{ll P, - P, IL + II a - q2 II> + G, (6.21) 

where C, is a positive constant which depends on the bounds of tj and its first 
and second partial derivatives. Taking t = 0 in (6.20) and (6.21) and using (6.19) 
to replace 5 in (6.20), we obtain from (6.16) the following result. 
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LEMMA 6.4. For 0 < t < T, 

111 wl(O, .) - ~~(0, .)iiit < 2CM exp{MT}t /i, v1 - v2 ilit . (6.22) 

For the quasi-linear case of the parabolic part of (1 .l), a similar argument 
yields the following similar result. 

LEMMA 6.5 (Quasi-linear Case), For 0 < t sl T, there exists Q positive 
constant C,, which depends only upon M and the datafor the operator L such that 

1 / wl(O, .) - ?G(O, .)l’It < Clot //I rL’1 - v, ,I’? (6.23) 

Now, the restriction (6.15) is precisely the one which guarantees that the 
hyperbolic part of (1.1) is uniquely solvable for a given v. Consequently, under 
all of the aforementioned restrictions on T, the mapping A? is well defined and 
the continuity of A’ follows from Lemma 6.4 or Lemma 6.5. The Schauder 
fixed point theorem guarantees the existence of a fixed point v  and thus a solution 

of (1 .I). This solution is either weak or classical depending upon whether one 
wishes to carry all of the data and time restrictions necessary to ensure the 
preservation of the Holder classes under the mapping &. To obtain uniqueness 
we need to make one additional restriction upon the time T so that either 

or 

2CM exp{MT}T < 1 

C,,T < 1. 

(6.24) 

(6.25) 

With the appropriate one of these restrictions for the parabolic case considered, 
the mapping A becomes a contraction and the fixed point becomes unique. 

7. SUMMARY OF RESULTS 

The following statement of results contains the sense of the foregoing analysis 
and it avoids a catalog of assumptions upon the data. 

THEOREM. I f  the parabolic part of the nonlinear hyperbolic-parabolic system of 
(1.1) possesses a classical solution when Lipschitz continuous p(0, t) and ~(0, t) are 
substituted into S, then for T suficiently small, but positive, the nonlinear hyper- 
bolic-parabolic system (1.1) possesses a unique weah solution or a unique classical 
solution depending upon whether the hyperbolic part of (1 .l) possesses a unique 
generalized solution or a unique classical solution when ~(0, t) in 4 is replaced by a 
function v  = v(t) which possesses a H&lder continuozlsfirst derivative with respect 
to t. 
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