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NUMERICAL SOLUTION OF $OBOLEV PARTIAL
DIFFERENTIAL EQUATIONS*

RICHARD E. EWING-

Abstract. Finite difference techniques can be applied to the numerical solution of the initial-
boundary value problem in S for the semilinear Sobolev or pseudo-parabolic equation

(xiUt "-b b u q ru

where ai, bi, q and are functions of space and time variables, q is a boundedly differentiable function
of u, and S is an open, connected domain in [R". Under suitable smoothness conditions, the solution of
a Crank-Nicolson type of difference equation is shown to converge to u in the discrete L2-norm with
an O((Ax) + (At)2) discretization error.

The numerical problem is reduced to the inversion of a certain matrix at each time level. For the
problem with constant coefficients in a two- or three-dimensional cube, a two-level iteration scheme
with a Picard-type outer iteration and an alternating direction inner iteration is presented. For more
general operators and more general regions in N" for arbitrary n the same two-level scheme with a

successive overrelaxation inner iteration is discussed.

1. Introduction. The purpose of this paper is to consider the numerical
solution of certain partial differential equations with one time derivative appearing
in the highest order terms. Equations of this type arise in many areas of mathe-
matics and physics. They are used to study consolidation of clay [25], heat con-
duction 2], homogeneous fluid flow in fissured material 13, shear in second
order fluids 3], 18] and other physical models. In connection with nonsteady
flow of second order fluids, Ting I26] considers the initial-boundary value problem
for the equation

(1.1) pV 1/2aG + CVx., 0 <= x <= h, >= O,

with constant coefficients. For a discussion of several physical applications of the
nonlinear problem, see I16.

In a Hilbert space setting, this type of equation is of the form

(1.2) u’(t) + Bu’(t) + Au(t) O, > O,

where A and B are various operators. Yosida used the equation (1.2) with B flA
in his proof of the generation theorem for semigroups of operators [28]. The

equation (1.2) with B flA has also been used to approximate certain parabolic
equations backward in time I13], [231. In I241, Showalter and Ting discuss the
initial-boundary value problem of the type (1.2) using Hilbert space techniques.
Davis [6] and Showalter [21], [22] have also considered various mathematical
aspects of equations of this type. Ford [14] has considered some numerical aspects
of this type of problem.
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346 RICHARD E. EWING

In this paper we consider linear and semilinear initial-boundary value
problems in S (0, T] of the form

(a)
k=l Xk ak(x, t)u, + bk(X

(1.3)

(b)

(c)

where S

t)-u]}--qu=rut +h,

(xl,..’,x,)eS, O<t<_T,

u(x ,’.’, Xm, 0) f(x ,’", Xm), (X ,’’’, Xm) S,

U(X Xm t) g(X Xm t) (X X,,) e cS O< <= T,

is an open connected subset of Nm and t3S is the boundary of S. We later
describe smoothness assumptions and bounds on u and the coefficients above.
Standard problems of this type have ai > 0, bi > 0 and r > 0. The backward
time problems are given by ai > 0, bi < 0 and r > 0. The results of this paper
hold for both time cases; however, as we shall see, most of the restrictions on At
can be dropped when b > 0.

We note that if we limit the number of time levels in the difference equation
approximations to two, the time derivative in the highest order terms necessitates
the use of implicit numerical schemes. Thus due to the increased rate of con-
vergence over standard implicit schemes, we use the m-dimensional analogue of
the Crank-Nicolson difference equation [5] to replace the differential problem.

In 2 we establish some special notation and present basic assumptions
needed throughout the paper. In 3 we derive eigenvalue estimates for the prob-
lems to be studied in 4 and 5 for fairly general domains and use these to obtain
stability. Using the stability analysis and eigenvalue estimates, we derive con-
vergence of the Crank-Nicolson difference schemes for the linear problems of
type (1.3) in 4 and for semilinear problems in 5. Finally in 6, we discuss the
algebraic problems for the Crank-Nicolson schemes of the previous sections. We
reduce the problem of convergence to the inversion of a matrix at each time
level. In order to treat the nonlinear difference equations of 5, we present a pair
of two-level iteration schemes. The first method, using an alternating direction
inner iteration, applies to equations in a rectangular box with constant co-
efficients for m 2 or m 3 and requires calculations of the order

(1.4) O((Ax) log (Ax)- 1)

at each step. The second method, using a successive overrelaxation inner iteration,
applies to more general equations in more general regions for arbitrary rn and
require calculations of the order

(.5) O((Ax)-m+ )
at each step.

2. Preliminaries and notation. We shall require some special notation and
assumptions. Let 11,12, "", lm be a basis of unit coordinate vectors in Nm. TO
set up a finite difference equation, we fix a point (0, 0,.-., 0) and construct a
rectangular lattice whose nodes are x (x l, x2, "", Xm) such that

(2.1) Xk PkAXk, k 1,2, ..., m,D
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 347

where Pk 0, +__ 1, +__2,..., and for each k, Axk is the mesh size in the direction
lk. We define the average mesh size by

(2.2) Ax= Ax
mk=l

Two nodes with coordinates pAx and p’Axk are adjacent if ’= (P p,)2 1.
The set of nodes in S such that all adjacent nodes belong to S U c3S is the interior
of S denoted Sh. All other nodes in S U c3S belong to the boundary of S U c3S
denoted c3Sh. We assume S is connected. Also we must make the somewhat
stringent assumption that c3Sh cS.

We consider the vector

(2.3) (P l, P2, Pm)

and use the notation for any function f,

(2.4a)

(2.4b)

(2.4c)

f f(plAxi p2Ax2, pmAxm),

f,, f(P 1Ax 1, p2Ax2 ,PmAXm, tn)

+1/2)1k,, f(paAxl "’", P- 1Axe_ 1, (P + 1/2)Axk, p+ 1Axe+ l,

PmAXm, tn)
and similarly for f-(1/2)lk,n"

We shall not assume that At equals Axe; however, when we consider S as
a cube we assume AXl Ax2 Axm. The standard Landau order notation
will be used. Iff is a function of several variables,

(2.5) f e Ca

(2.6a)

implies that all partial derivatives off of order not greater than fl are continuous.
Now we present a list of basic difference formulas we shall use. The proofs

of these formulas follow from Taylor’s theorem.

c
(a,),,+ li2 f,,

[(a,)<+(,/2)<,,,+ l/2(f<+h<,,, f,,,,)
(a,)<-l/z,,<,.+ 1/2(,,, f-,.)]l(itx<)2 + O((Ax)2),

a< C f C"

(2.6b) f,,+ ,/, (L,,+, + L,,)/2 + O((At)z), f e C2

We shall use standard difference notations [9, pp. 2-4] as well as the notation

(2.7) (A:[a,, +,/2Axf.]), (Ax<[(a,), +li2AxLJL.
k=l
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348 RICHARD E. EWING

We now make some smoothness assumptions and define some bounds for
our problem. For the problem under consideration, we assume:

(i) there exists a unique solution u C in , the closure of S,
(ii) ak and bk are three times boundedly differentiable in the kth space

variable and in t, and q and r are boundedly differentiable in all space
variables and in t,

(2.8) (iii) the coefficients satisfy the bounds,
(a) 0 < A, <= a(x, t) <= A* for k 1, 2, ..., m,
(b) 0 < R, <__ r(x, t) <__ R*,
(c) B, _< bk(X, t) <= B* for k 1, 2, ..., m,
(d) Q, q(x, t) <= Q*,
where B, and Q, may be negative and B* and Q* are nonnegative.

3. Stability from eigenvalue estimates. We first consider eigenvalue estimates
for a difference equation used to solve differential equations of the type (1.3) where
S is a cube, a a(x,..., x,,t), b bk(x,..., Xm,t) for k 1,2,..., m,
q q(x,..., x,,, t) and r r(xa,..., x,,, t). We shall generalize S later. We
make the assumptions described in (2.8).

Using the notation of (2.7), consider the Crank-Nicolson difference equation

(Axa,+ 1/2Axw,+ x]) (Ax[a,+ 1/2A,w,])
At 2

(Ax[bn+l/2AxWn+l])+

(3.1a) (Ax[b. + 1/2AxWn)ot q=,.+ 1/2(Wa,n+ -- Wot,n) r=,.+ 1/2(Wot,n+ Wa,n)
2 2 At

(3.1b)

(3.c)

(x, x,O e &,
(x, ..., x) e &,
(x ..., x,,) e c&.

Rearranging (3.1a), we have

(3.2)

r,.+ a/2w=,.+ (Ax[a.+ 1/2Axwn+ l)a
At + 2

q=,.+ 1/2Wot,n+ (A,,[b.+ /2Aw.+ 1])

r=,,+ /2w=,, (A,,[a,+ q=,.+ /zw,. (A,,[b.+ 1/2AxWn])a
At 2

Trying separation of variables, we consider a solution of the form

(3.3)

By direct substitution we see that

p.+, [r=,. + ,/20 -(k[a. + ,/2k.4,])=]/At [q=,.+ ,/2’= (Ax[b.+ ,/2AxO])]/2
(3.4) [r=,,+ ,/20 -(A[a, + /2AxO])=]/At + [%,,+ ,/2 (Ax[b./ ,/2Ax0])]/2
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 349

Then for each n we have the eigenvalue problem

(3.5a) A,dp(, 2(1 v)
At(1 + v)

(3.5b)

where

(3.6a)

(3.6b)

Bn(n), (x1, Xm) e Sh,

dp (") O, (x ..., x,) e aSh,

(A,49(")) (q,+ 1/2(/)(n))a (A[b,+ /2A4)(")]),
(B,qS(")) (r,+ i/2((n))a (A[a,+ i/2Ax(n)J)a.

We can see [27] that the matrices A, and B, are symmetric.
If N is the number of nodes in Sh, we define the inner product on

N

(3.7) (x, y) (Ax) xy

and the induced norm

N 1/2
2Ilxl2 (mx)rn E Xo

This norm is the discrete analogue of the integral L2-norm and will be called the
discrete L2-norm. By direct calculation and as in [8, p. 515] we see that

(B,y, y) (r,,+ 1/2Y, Y) (A,[a,+ 1/2Axy], y)

(3.9)
(r.+ 1/2Y, Y) -at- E ((ak).+ 1/2(xkY, (xkY),

k=l

where

(3.1 O) (5,y (y + y)/Ax

Thus, due to (2.8) (iii) (a, b), we see that the matrix B, is positive definite over the
real vector space NN. Since B, is symmetric and positive definite, we can define a
new inner product on Nu for each n by

(3.11) (x, Y)n. (B,x, y),

with the corresponding norm given by

(3.12) x (B,x, X) 1/2

It is shown in [4, pp. 37-41] that there exists a complete set of eigenvectors
of (3.5) for each n 1, 2,-.., which are orthogonal with respect to the inner
product (3.11). We can now use a variational attack based on the Courant mini-
max principle [4] to obtain upper and lower bounds on the eigenvalues of (3.5).
We shall state the following theorem when B, and Q, are negative. Similar but
less restrictive theorems hold for other signs of B, and Q,.

THEOREM 3.1. Let 2(1") be the least eigenvalue of the eigenvalue problem (3.5)
for a fixed n and 2 the greatest eigenvalue. We have the following bounds whichD
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350 RICHARD E. EWING

are uniform in n.

If [Q,[ _>_ (R,IB, I/A,),

(3.13)
If ]Q,I < (R,IB,]/A,),

If Q* >= R,IB*[/A,,

If Q* < R,]B*[/A,,

Proof. First we note that as in (3.9),

(.14a)

and

(3.14b)

")_> Q,/R,.

2(") >= B,/A,.
) <= O*/R,.
),) <__ B*/A,.

(A,dp, 4)) (q,+ ,/2dP, 4)) + ((bk),+ 1/2(m,(,
k=l

Therefore for b 4: 0, we see that (A,c, c)l(B,d?, ) is bounded below by

k=l

since Q, and B, are both negative. We note here that since the bounds (2.8) hold
for all t, the bound (3.15) holds for all n. Thus we can obtain uniform bounds on
the eigenvalues by considering the eigenvalue problem

(3.16a) Q, B, PA R, A, A
k=l =1

(3.16b) =0 if(xx,...,x)eOSh.

Therefore, by the Courant minimax principle and a special case of the minimax
theorem [17, p. 181], we know that

(3.17) 2]") min ti),
i= 1,...,N

where t) are the eigenvalues of (3.16). Consider the following rearrangement of
(3.16a)"

(3.t8) 2 R-Q,
k= A, B,

Since we are working on a cube, Axk Ax for k 1, 2, ..., m, we can let the
range from to some M for k 1, 2, ..., m.

Standard arguments [9], [11] yield

4 PkAX(3.19) (Ax)------- sin2

Solving for p, we obtain

(3.20) p
[Q, + B,(4/(Ax)2) sin2 (rCpkAX/2)

k=l

[ ]"R, / A,(4/(Ax)2) sin2(xpkAX/2)
k=l
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 351

Next we note that if we consider the function

Q, + B,x
(3.21) f(x)

R, + A,x’
then f’(x) >= 0 if

(3.22) (R,B, A,Q,) >= O,

Since B, < 0 and Q, < 0, this amounts to

(3.23) IQ,I >- (R,IB, I/A,).
If (3.23) is satisfied, then f(x) is either increasing or a constant function of x which
is nonnegative as chosen. We note that no use is made of the size of the eigenvalues
and thus there is no restriction on the size of the cube S. We now see that

(3.24) min /i) >__ f(0)= Q,/R,.
1,2,...,N

If (3.23) does not hold, then f(x) is a strictly decreasing function of x and we have

(3.25) min /(0>__ lim f(x)= B,/A,.
i= 1,-",N x

Thus by (3.17), we see that for all n,

(3.26a) if IO,I _-> (R,IB,I/A,), then 2")>_ Q,/R,,
and

(3.26b) if 1(2,1 < (R,IB, I/A,), then 2]")>__ B,/A,.
The upper bounds in (3.13) follow similarly and the theorem is proved. We remark
that if A, could be zero, we would, have the standard parabolic equation and we
could not obtain the upper bounds on 2).

We note there are various cases for different signs and magnitudes of B, and
Q,. The above theorem is the worst case, whereas the least restrictive case is when
B, > 0 and Q, > 0. Clearly, only the lower bounds on the eigenvalues will be
affected. Instead of the bound (3.15), for the new choice of B, and Q,, we see that
(A,, )/(Budp, ) is bounded below by

(3.27) Q, IlqSll / B, IIx>ll e*ll>ll + A* IIx>ll
=1 k=l

The analysis follows as before and we obtain the following result.
COROLLARY 3.2. If B, > 0 and Q, > O, the uniform lower bounds on the

eigenvalues of (3.5) are replaced by

(3.28a) if Q, >= R*B,/A*, then 2x") >= Q,/R* > O,

and

(3.28b) if Q, < R*B,/A*, then ;t]") >- B,/A* > O.

Now we consider a generalization of the region S. Instead of a cube, we
assume S to be as described in 2. Let f be the least cube containing the latticeD
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352 RICHARD E. EWING

nodes in S and on cS, and Of be its boundary. It is well known [20, p. 204] that
any matrix corresponding to the operators

(3.29)

Q*-B* Z A2, Q,-B, 2 A2, R*-A* 2 A2,
k=l k=l k=l

and
k=l

as applied to any lattice region, regardless of the ordering of the points, is sym-
metric. Similarly, by direct substitution as in (3.9) we can see that the matrices
corresponding to

(3.30) Q*-B* Z AZk and Q,-B, Z AxZk
k=l k=l

are positive definite regardless of the ordering of the points. Thus we can order
the points in Sh first and then order the other points in f. The resulting matrices
for the eigenvalue problem (3.16) will still be positive definite and symmetric as
required. We can then obtain bounds for the eigenvalues in f as outlined above.
Then applying a theorem concerning domination of eigenvalues 20, p. 164]
successively on the lattice nodes in f but not in S, we shall retain the same uniform
bounds on the eigenvalues for S as for f.

We shall next define the stability of (3.1) with respect to the sequence of
norms given in (3.12). First we note that (3.2) is actually of the form

(3.31) (C,)w,,+ (D,)w,,
where

(3.32a) (C,) r,,+ 1/2 (A:,[a.+ 1/2Ax ]) +At 2

and

(3.32b) (D,) r,,+ 1/2 (AEa.+ 1/2A:, ])

%,,,+ 1/2 (Ax[b,,+ 1/2Ax 3)

%,,,+ 1/2 (Ax[b.+ 1/2Ax ])
At 2

and C, can be shown to be invertible with certain restrictions on At. As in [9,
p. 42], equation (3.1) will be defined to be stable with respect to the sequence of
norms given in (3.12) provided

(3.33) C-10,II, =< (1 / ,,,At), n 0, 1,...,

for all sufficiently small At, where 7 is a positive constant independent of At
and n.

it is well known that for the eigenvalue problem for (3.31) with eigenvalues
given by (3.4), since

(3.34) IIC21Dnll. =< max Iv",l,
1,2,...,N

where N is the number of nodes in Sh, then (3.33) will be satisfied with 7 inde-
pendent of At and n if we can get uniform, in n, estimates of the formD
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 353

(3.35) max Iv"’l + ZXt
i= l,...,N

for all sufficiently small At. Theorem 3.1 yields the estimate

(3.36)
2(1 v)

-A1 -<_
At(1 + v) -<- A2,

where v is given by (3.4) and

(3.37a) A1 IB, I/A,
(3.37b) A
(3.37c) A2 B*/A,
(3.37d) A2 Q*/R,

if IQ,I < (R,IB, I/A,),
if I,l (R,IB, I/A,),
if Q* < (R,B*/A,),
if O* ->_ (R,B*/A,),

when B, < 0 and Q, < 0. We first consider the properties of (1 v)/(1 + v).
From properties of (1 v)/(1 + v), as in Part II of [12, one can easily see

that for

(3.38) At < 2(1 e)/A1

for some e > 0, where A1 is given in (3.37), we have

(3.39) -1 <v=< +TAt
where , is independent of At and n. Also, we see that for the least restrictive case,
where B, > 0 and Q, > 0, from Corollary 3.2, we have A > 0 as a lower bound
for (3.36). The resulting restriction on v from (3.36) is just

(3.40) Iv} <

for any choice of At > 0. Therefore, with the restriction (3.38) for the worst case,
when B, < 0 and Q, < 0, and no restriction for the best case, (3.39) and (3.40)
show (3.35) and thus (3.33) is satisfied. Thus (3.31) is stable with respect to the
sequence of norms given in (3.12).

4. Convergence for linear equations. Consider the linear initial-boundary
value problem

=
+ b u qu- ru,

u(x x, O) f(x x), (x Xm) S,

(4.1a)

(4.1b)

(4.1c)

with

U(X1, Xm, t) g(x x,,, t), (xl,’..,Xm) ecS, O<t<= T,

a a(x, x,,, t), b bk(Xl,... Xm, t),

q q(Xl, Xm, t), r r(xl, Xm, t)

satisfying (2.8) and S as defined in 2. Assume u satisfies (2.8). We now shall use
the results of 3 to prove L2 convergence of the solution of the Crank-Nicolson
difference equation (3.2) to the solution u of (4.1).D
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354 RICHARD E. EWING

Using (2.6), (2.7) and (2.8) we see that

(Ax[a,+ 1/2Axu,+ 1]), (Ax[a,+ 1/2Axun])
At 2

(A,[b. + i/2Axu])+

(4.2) (A[b, + 1/2AU,++ 2 q," +

r,,+ 1/2(b/e,n+ Ue,n)
At +

where ,,, is O((Ax) + (At)2). Then we let w be a solution to the Crank-Nicolson
difference equation (3.1). Due to (4.2), (3.1) as defined is consistent.

Let
(4.3) z,, u,, w,,.
By subtracting (3.1) from (4.2), we have the linear difference system

(4.4a) (C,z,+ ) (D,z,) + a,,, x e Sh,

(4.4b) z,,o O, x e Sh,

(4.4c) z,,+ 0, x, e 0Sh,
where C, and D, are given by (3.22).

Stability has been proved in 3. From (3.9), it is easily seen that

(4.5) I{xl12 _-< R, a/2l{xll
for all n. The existence of a constant fl such that

(4.6) Ilxll.+ (1 +
for all At < T follows from the smoothness of ak, k m and r.

Finally, due to the analysis of Douglas [9, pp. 41-44], all we need to do to
prove the convergence of our approximation in [[. 2 is to show that

(4.7) (At)- ’l] C- a,]], O((At))

for some s > 0. First we must show that C, is actually invertible. If not, there
exists a 4 e NN, 4 va 0, such that C,4 0. Then from (3.6) and (3.32) we see that

(4.8) A,cD (2/At)B,c

and -2 is an eigenvalue of (4.8)contradicting the restriction (3.38).
Now as in [14] we would like to consider a lemma which gives us a formula

for ]]AII, where A is any N x N matrix. First note that the spectral radius of A,
p(A), is just p(A) maxi ]2i1 where 2 are the eigenvalues of A.

LEMMA 4.1. Let A and B be N x N matrices with B symmetric and positive
definite. Define the norm ]]xllB (Bx, x) 1/2 where (.,.)is the discrete L2 inner
product from (3.7). It follows that

(4.9) IIA[I/ (p(B-1ATBA))I/2,

where A T is the transpose of A.
We shall now use Lemma 4.1 to estimate [[C- la,[12,. By definition

(4.10)D
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 355

Since B.C is not necessarily symmetric, it would be hard to determine
B.C 1112. However, since C. is symmetric, C- is symmetric,

and C[B,C[ is seen to be symmetric. Therefore, since the spectral radius of a
matrix is a lower bound for any norm of the matrix [19, p. 13], we have that

(4.12)

Using separation of variables o estimate [IC B.I]., since C. B./t + ./2, we
see that

(4.13) B, XC,O (B,/At + A,/2)O.

Rearranging, we arrive at the eigenvalue problem

(4.14)

Theorem 3.1 gives the inequality from (3.36)

2 2
(4.15) -A < < A2At

or

(4.16) 0 <
l/At + A2/2 <= 2 <_

l/At- A1/2
for the case where B, < 0 and Q, < 0. Choosing At to satisfy (3.38) we see that

At
(4.17) 0 < A =<
and 2 O(At). Thus we see that

(4.18) IIC-’B.II. O(At).

Then by Lemma 4.1, since C-1 is symmetric,

(4.19)

or

(4.20)

Lemma 4.1 also implies that

(4.21)

Note that

(4.22)

liB; lln p(B 1) liB/1{12.

(B,x, x)
(x,x) (x,x)

(rn+ 112X x) -- E=I (a,+ 1]2(xkX (xkX) >= R,D
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356 RICHARD E. EWING

for x :/: 0. Then by the minimax principle [17, p. 181], the minimum eigenvalue
of B, is bounded below by R,. Thus since the eigenvalues of B21 are reciprocals
of those of B,, we have the result

(4.23) IB-1 <= R2 .
Thus combining (4.12), (4.18), (4.20) and (4.23) we have

2
2

(4.24)
C BnC; < IIC B [[B

O((At):).

Finally, we see that by the Schwarz inequality, (4.2), and (4.24),

[C- lo’nll2n (Cff IBnCff 1o"n, O’n)

(4.25) < C21BnC; 2 Io’nl
L(At)Z((Ax)2 + (At)2)2.

Thus,

(4.26) At--IC-lo’,1, O((Ax)2 + (At)2).

From (4.26), the analysis of Douglas [9, pp. 41-44] shows that

(4.27) IIz, ll, O((Ax)2 + (At)),
and we have convergence in the I1" 2 of order O((Ax)2 + (At)2). We summarize
this result in the following theorem.

THEOREU 4.2. If B, < 0 and Q, < 0, under the restrictions on u, ak, bk, h,
q and r indicated in (2.8), and with the restriction on At in (3.38), then the solution

of (3.1) converges to the solution of (4.1) in I1" 112. The rate of convergence is

o((Ax) + (At)2).
COROLLARY 4.3. If B, > 0 and Q, > 0 the above result holds with no re-

striction on At > O.
Similar results hold for other choices of B, and Q,.
We have shown convergence in the discrete L2-norm. If multilinear inter-

polation is applied to the solution, the error in the integral L2-norm,

(fsf; 1/2

(4.28) IlullL= U2 dt dx

is also O((Ax)2 + (At)z) (see [7]).

5. Convergence for semilinear equations. Consider the semilinear initial-
boundary value problem given by (4.1) with qu replaced by q, where

q q(xl, Xm, u, t).

For this case we need the added assumption that q is boundedly differentiable with
respect to u for all (x,..., Xm, t) in S x (0, T], -oe < u < oe. We thus assume
there are 0, and 0* satisfying

(5.1) Q, <= tgq/t?u <= Q*.D
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 357

As before, we shall have a consistent approximation if we define the Crank-
Nicolson difference approximation to be

(/Xx[b.+ //xW.+(Ax[a,+ 1/2AxWn+ 1])e (Ax[a,+ 1/2AxWn])e +At 2

(A,[b,+ x/zAW,]), w,,+ + w,,
(5.2a) + 2

q x,
2

t,+ /2

r=,.+1 W,n] Xa e Sh,
At

(5.2b) W=,o f, x= Sh,

(5.2C) W=,,+ g,,,+ 1, x= CSh.
After a standard linearization using the mean value theorem, we see that the
error equation for the semilinear case is of the same form as that studied in 4.
Just as before, we obtain the following theorem.

TnEOREM 5.1. If B, < 0 and , < O, under the restrictions on u, ak, bk, h,
q and r indicated in (2.8), the added restriction that q has a bounded derivative with
respect to u for (xl ,"", x,, t) S (0, T] and < u < o, and the restriction
on At in (3.38), then the solution of the Crank-Nicolson difference approximation
(5.2) converges to the solution u of (4.1), as modified, in the discrete L2-norm with
discretization error of the form O((Ax) + (At)z).

COROLLARY 5.2. If B, > 0 and , > O, the above result holds with no re-
striction on At > O.

Similar results hold for other choices of B, and Q,. Also, as in the previous
section, the above results can be extended to convergence in the integral Lz-
norm (4.28) by multilinear interpolation [7].

6. Algebraic problem. Our original problem was to find a numerical approxi-
mation v of the solution u to a problem like (4.1). We must now solve the algebraic
problem by showing how to determine a numerical approximation v, of the
solution w, of (5.2).

The method of solving the algebraic problem for (5.2) will be to reduce the
problem to the inversion of a certain matrix at each time level. Thus we will fix
a At and consider a separate problem at each time level. If B, < 0 and Q, < 0,
we have an eigenvalue problem which will force restrictions on the fixed At to be
described later.

In order to treat the nonlinear algebraic problem we shall use a two-level
iteration scheme. We present two schemes. The first utilizes a Picard-type outer
iteration with an alternating direction inner iteration, while the second replaces
the inner iteration by an overrelaxation scheme. The first converges more rapidly,
but applies to less general problems [27]. See part II of [12] for a more detailed
account of this section.

First, let m 3, let S be a cube in 3 and consider the Crank-Nicolson
difference system (5.2) where ak a and bk b for k 1, 2, 3 with a and b con-
stants. For each fixed n, we consider w,/l -= w a variable. Then for each fixed
time level, we have the problemD
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358 RICHARD E. EWING

(6.1a)

(6.1b)

where

(6.2a) Q(xe, %)

(6.2b) de,,

(Xl, X2, X3) Sh,

(X1, X2, X3) C OSh,

tn+l,

2(r.+ 1]2W)e -- 2Atq.+ 1/2(Xa, We)
2a + bat

2a bat
2a + bat A3we,

2(rn+ 1/2Wn)e
2a + bat

and A3 is the 3-dimensional discrete Laplacian. Clearly d is independent of
w w,+ 1. We need upper and lower bounds for c3Q/cw. Using (2.8) and (5.1) we
obtain

2R, + 2Q,At OQ 2R* + 2Q’At p(6.3) P 2a + bat
< -w <

2a + bat

We thus consider solving the nonlinear algebraic equations (6.1) with the con-
dition (6.3).

The problem (6.1)-(6.3) is now exactly in the form of the problem discussed
by Douglas in [10] and in [11, pp. 59-60]. The outer iteration for the two-level
scheme is a Picard-type iteration [10], [11]. The inner, alternating direction,
iteration and the parameter sequence needed to use it are given in [11]. The
following theorem follows directly from the argument of [10].

THEOREM 6.1. Given p from (6.3), if p > 3z2 (the negative of the least eigen-
value of the Laplace differential operator on S, the unit cube), the solution of the
iteration process defined in [10], [11] converges to the solution of (6.1). The number
of calculations required to reduce the error in the solution by a factor of e is

(6.4) O((AX)- 3 log (Ax)- 1).

Now we want to consider the algebraic problem for more general operators
from (4.1) as modified in {} 5. Replacing the inner iteration by a successive over-
relaxation scheme, we are able to treat these more general operators. From (5.2)
we consider, for S a cube in

(6.5)

(Ax[a,+l/2Axwn+l])e
At 2

(Ax[bn+l/2AxWn+l])e+

(rn+ 1/2Wn+ 1)e
At

+q X
We,n + nt- We

2
t,+ 1/2 .qt_ C(xe, we,,, t,+ 1/2),

where C is independent of w,+ 1. For each n, as above, we let w,+ -= w and con-
sider a separate problem. Fix n and consider

(6.6a) w Q(x,w) xe&,
2

(6.6b) we ge,,+ 1, Xe - Sh’D
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 359

where

(6.7a) Q(x,, w) (r,,+ 1/2w)/At + q,,+ 1/2(Xa, Wa) + Co,n + 1,

(6.7b) C,+ 2

Clearly C is independent of w w/ . Thus from (2.8) and (5.1) we see that

R, t?Q R* Q,(6.8) P + O, < cw < At + P"

As before we consider a two-level iteration. The outer iteration is as before,
while the inner iteration is a successive overrelaxation iteration [15], [273, [29].
The outer iteration is actually of the form

{ IAx[an+ /2Ax] Ax[bn+ l/2Ax] A]w(k+ 1)}(6.9a) At +
2

Q(x, w) Aw + , x S,

(6.9b) wk + 1) g, x e t?Sh,

where a is the residual at the end of the inner iteration. As in [10] it is not neces-
sary that the linear equations be solved exactly.

Consider the convergence of w(k) to w. Let

(6.10) z)= w+l)_ w), k 1,2,....

Using (6.10) and the mean value theorem,

{ IAx[an+ I/2Ax] Ax[bn+ l/2Ax] Alztk’}At +
2

(6.1 la)
Q
--wI,, w,*)z - Az - + - Xa Sh

(6.11 b) zk) O, x e C3Sh.

Separating variables, we have the eigenvalue problem

(6.12a) Etk vFdp, x, e Sh,

(6.12b) ck O, x e CSh,

where

(6.13a)

(6.13b)

(E4), (Ow(X,,W*)4)
[Ax[a,.+__x_/zA,](F4)
k At + Ax[b, + 1/2Ax]

Clearly E and F are symmetric matrices. We can define a consistent ordering and
obtain an N x N matrix representation for F which is diagonally dominantD
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360 RICHARD E. EWING

[30], [32] and positive definite by restricting

(6.14) At < 2A,/[B,[
if B, < 0. No such restriction is necessary if B, >__ 0.

Thus from 4, pp. 37-41], we know that (6.12) has a complete set of eigen-
vectors which are orthogonal with respect to the inner product (FqS, q) as in (3.11),
and we can apply the Courant minimax principle as before. As in part II of 12]
we can get bounds on the eigenvalues of (6.12) by considering the eigenvalue
problem

zXcb Acb x e Sh,(6.15a) IQ AI 2 + 2

k=l

(6.15b) O, x Sh.
As in 3, by rearranging the above eigenvalue problem and applying the

Courant minimax principle and a special case of the minimax theorem [17,
p. 181], we have for a cube

(6.16) max Ivl < IQ AI
i=1 N ([A,/At + B,/2](m 6)rt2 + A)’

where [Q A] is given by

(6.17) IQ- A] max {]Q, A], ]Q* A]}.

Thus from (6.11), (6.12) and (6.16), we see that

(6.18)

[Q A[ztk)ll2 <= ([A,/At + B,/2](m- 6)rt2 + A)

-+ (m- 6)7t2 + A
-1

(() 2 + (- ) 2).

Thus letting

(6.19) p
([A,/At + B,/2](m- 6)rc2 + A)

and requiring sufficient iterations on the inner iteration so that

(6.20) a{) [A,/At + B,/2] (m 1)2 pk+2 < l+p

we see that

(6.21) 2(k) [2 < /9 2(k- 1)[2 -}" Ok"

For convergence, it is necessary that

(6.22) IQ-AI < -+ mrc2 +A.
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SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS 361

One sufficient condition is that

R, A, _,)(6.23) p - + Q, > -- + mzc2

Since R, > 0, this restriction can be met by taking At sufficiently small. We
note that (6.23) will hold with no restriction on At if Q, >__ 0 and B, >__ 0.

Now consider the inner, SOR iteration. Each inner iteration consists of
approximating the solution of an elliptic difference equation of the form (6.9) by
an SOR method. After defining a consistent ordering, as in [30, p. 108], we can
obtain a system of N linear equations in N unknowns where for i, j 1, 2, ..., N
we have a system of the form

N

(6.24) ai,jv + dj O.
j=l

As before, we see that C (ai,j) is positive definite under the restriction

(6.25) At < 2A,/[B,]
with B, < 0 and with no restriction on At if B, __> 0.

Now we define the following iterative scheme for the elements of C. Using
square brackets to distinguish an index of the inner iteration from the outer
iteration we have

(6.26) ,,k + 1] (co 1)vlk]
j=l j=i+l

k_>_0, i= 1,2,...,N,

where vl1 is arbitrary, l, 2,..., N, and where

--ai,j/ai,i,
(6.27) bi4= O,

and

:/: j,

i=j,

Equation (6.26) may be written in the form

(6.29)
[klwhere vkl- (vkl, vtkl2 VN ), f- (fl rE, fN), f is fixed, and L denotes a

linear operator. Here co denotes the relaxation factor. Young 32] defines an
optimal relaxation factor, cob, in terms of the spectral norm/ of B (bi4) from
(6.27). As shown in 32], it is better to overestimate cob. By restricting At as in
(6.25) if necessary, we can obtain, as in I31], a rigorous upper bound for fi and
thus a nontrivial upper bound coo for cob. With this upper bound coo as a re-
laxation factor, the rate of convergence R(Lo will be of the same order as R(Lo).

As in 30], 32], we see that the number of cycles of SOR iteration sweeps
required for each outer iteration is O((Ax)-1). Thus since the number of cal-
culations per sweep is O((Ax)-m), we have the following result.

(6.28) C di/ai,i 1,2, N
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362 RICHARD E. EWING

THEOREM 6.2. By restricting At to satisfy (6.23) and (6.25) when B, < 0 and
Q, < 0 and if (6.20) is satisfied, then the solution of the iteration process defined
by (6.9) and (6.26)-(6.28) converges to the solution of (6.6). The number of cal-
culations required to reduce the error in the solution by a factor of e is

(6.30) O((Ax)-t,, + 1)).
COROLLARY 6.3. The above result holds with no restriction on At if B, > 0

and Q, > O.
Similar results hold for other choices of B, and Q,. We note that since the

SOR iteration procedure does not require a rectangular region as does the
alternating direction method, the region could be generalized to the arbitrary
region described in 2 as in [30].
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