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THE APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS
BACKWARD IN TIME BY SOBOLEV EQUATIONS*

RICHARD E. EWING"

Abstract. For any nonnegative, self-adjoint operator A, which does not depend on time, the
backward solution to the parabolic equation, u’(t) Au(t), >= O, in a cylinder can be approximated
by the solution to the Sobolev equation, u’(t)= -(I + flA)-lAu(t). The solution to the backward
Sobolev equation can be more readily computed than the solution to the adjoint of the parabolic
equation. In a Hilbert space setting, if the norm of the solution is assumed to be bounded by a positive
constant E at the base 0 of the cylinder and the data error at T is less than a prescribed > 0,
then the norm of the difference in the solutions is O([-log (e/E)]-1). This logarithmic continuity is
essentially the best that can be obtained for this approximation.

The above result can be generalized to operators A which are sectorial with semiangle n/4 and
such that -A generates a contraction semigroup of operators. Simple numerical results for the heat
equation in a rectangle illustrate the approximation results.

1. Introduction. Consider the region of the plane given by 0 _< x -< n and
0 _< =< 1. Suppose the solution u(x, t) to the heat equation, Uxx ut, in the above
region is known approximately for all x when 1. The object of this paper is to
discuss in a Hilbert space setting the numerical approximation and continuous
dependence on data of solutions for < to a fairly general class of equations
containing the heat equation.

The problem

(1.1a) u,x=ut for0<x <n, 0< < 1,

(1.1b) 0=u(0, t)=u(rt, t) for0< < 1,

(1.1 c) u(x, 1) Z(x) for 0 < x < re,

is unstable and not well-posed in the sense ofHadamard 10]. However, continuous
dependence ofthe solution on the data can often be brought about by the additional
requirement of a prescribed global bound upon the class of solutions considered
[11]. Therefore, we add the restriction

(1.2) lu(x,O)l < E for0<x<Tt,

where E is some known positive constant.
Since the heat operator cannot be time-inverted to obtain a well-posed

problem (irreversibility), we would like to find an operator "near" the heat
operator in some sense for which the backward problem is well-posed. We then
compare the solution of the backward problem for the perturbed operator with
the desired solution of the original problem (1.1)-(1.2).

Many people have considered this type of problem. Among these are Cannon,
Douglas, John, Latt6s and Lions, Lavrentiev, Miller, Payne, Pucci, Showalter,
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284 RICHARD E. EWING

Buzbee and Carasso, and others [2], [3], [4], [5], [6], [7], [11], [13], [14], [15], [16],
[17], [18], [19], [20], [223.

We now consider the differential equation on a Hilbert space,

(1.3) u’(t) Au(t), >= O,

where A is a self-adjoint operator that is not dependent on and is nonnegative,
which means the numerical range of A is contained in the right half of the complex
plane. The method of quasi-rOversibilitk introduced by Latt6s and Lions [13]
replaces A in (1.3) by a function of the operator, f(A) A (A2, with spectrum
bounded above and then solves the backward problem for the new operator.
Using the final value for this new backward problem as initial data for the original
operator, they obtained an approximation which converged to the data in their
control theory problem.

Using the quasi-reversibilit6 idea, Miller [17] employs the requirement of
H61der continuity to determine constraints on f(A). He then shows that an f(A)
satisfying these constraints can be found which results in a H61der degree ofapproxi-
mation. This method leads to rational functions of the operator for which the
numerical computations require complex arithmetic and several complicated
inversions of the operator at each time step. The purpose of this paper is to consider
a perturbation ofthe operator A which allows much easier numerical computations
and still retains logarithmic continuity.

Consider the "pseudoparabolic" [21] or Sobolev equation

(1.4) v’(t) + flAv’(t) Av(t)

with/ > 0. Since A is nonnegative and/3 > 0, we see that I + flA is invertible and
we obtain the equation

(1.5) v’(t) -(I + flA)-lAv(t).
Thus, in the quasi-r6versibilit6 setting we are choosing

(1.6) f(A) (I + A)- 1A

The idea of approximating (1.3) by (1.5) is due to Yosida. He uses this idea in his
proof of the generation theorem for semigroups of operators [23]. We see that the
Sobolev equation (1.4) satisfies the requirement of a bounded spectrum. Also,
numerical techniques do not require complex arithmetic. For some numerical
methods see [8] and Part II of the author’s Ph.D. thesis [7a].

We now state the problem considered in this paper.
Problem. Suppose u(t) is an unknown solution of

(1.7a) u’(t) Au(t),

(1.7b) ]u(1)- Zll < e,

(1.7c) ]u(0)

where ) is a given "data" vector in a Hilbert space H, e > 0 is a known small
number, E is a known positive constant, and A is any nonnegative, self-adjoint
operator which does not depend on t. H incorporates the side boundary conditions
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APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS 285

and has norm II" II. We want to approximate u(t) with v(t), a solution of the ap-
proximate problem

(1.8a) v’(t) -(I + flA) -Av(t), >_ O,

(1.8b) v(1) Z.

We shall show that for each > O, we can choose a fl in (1.8) such that

(1.9) ]u(t) v(t)[[ O([-log (e/E)]-1).
In 3, we consider generalizations of the results obtained in 2 using dif-

ferent techniques. We describe the notion of an operator being sectorial. Then, for
any operator A which is sectorial with semiangle zt/4 and such that -A generates
a contraction semigroup of operators, we obtain the same type of logarithmic
continuity as in (1.9) for the problem related to (1.7). Finally, in 4, we describe
some simple numerical results for the heat equation in the problem (1.1).

2. Continuous dependence on data. It is well known [9], 13], 17] that solutions
to (1.7a) have the representation

(2.1) u(t) e-tauo, >= O, uo H,

where e -tA, the strongly continuous contraction semigroup generated by -A, is
easily defined in terms of the spectral representation of A. Now we recall a well-
known result which stabilizes the problem (1.7).

THEOREM 2.1 (Stability estimate) [1]. If u(t) is a solution ofequation (1.7), then
log u(t)]] is a convexfunction oft. Consequently, if

(2.2a) u(1)ll < ,
(2.2b) [[u(0)[[ =< E,

then

(2.3) u(t) <= e,tE- forO <= <= 1.

This stability estimate clearly gives a backward uniqueness result for (1.7).
This uniqueness result implies that for 1, e-1A is a 1-1 operator. Thus the
kernel of e- A consists only of the zero vector. An easy computation shows that the
kernel of e- A is the orthogonal complement of the range of the adjoint, (e-A)*.
However, in our discussion, A is self-adjoint and since (e-A)* e -(A*) [9], we
have that (e-A), e-A. Thus since the zero vector is the orthogonal complement
of the range of e-A, we have the range of e-A is dense in H. Therefore, given any
data vector ) in H and > 0, we can write for some Uo in the domain of A,

(2.4a) Z e-AUo +

with

(2.4b) 011 < .
Thus we can write any data vector 2: in the form (2.4) and be compatible with (1.7b).
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286 RICHARD E. EWING

Since 7. is the exact data for (1.8a), the exact solution for 0 __< =< of (1.8) is
given by

v(t) e t)(I + flA) a

(2.5) e(1-t)(I+A)-IA(e-AUo
e(1 t)(l + flA) 1A- ALIO

where the strongly continuous semigroup e(1-t)(I+#A)-IA is defined in terms of its
spectral representation.

THEOREM 2.2. Let u be a solution of(1.7) and let v be given by (2.5). Ifwe choose
fl 1/log (E/e), we obtain for each > O,

(2.6)

4(1 t)E
[lu(t)- v(t)l[ =< t2 log (E/e)

+ E(1-t)g

O([- log (e/E)]- 1).

Proof. We compare u(t) and v(t)in the norm. From (2.1), (2.4), and (2.5), we
have

(2.7)
U(t)- V(t) e-tAUo e(1-t)(I+IA)-IA-AUo + e(1-O(l+lA)-At[

<= e -tA e(1-t)(I+A)-IA-A uo + lie(-t)(I+IA)-tA ll
Thus defining

(2.8a) B(t) e-tA e(1 -t)(l + flA) -1A A

and

(2.8b) C(t) e(1-t)(I+A)-A,

it follows from (1.7) and (2.7) that

(2.9) [[u(t)- v(t) <= B(t) IE + C(t)lle.

Now we consider the roles that B(t) and C(t) play in our problem. We note
that IB(t) just measures the amount by which the Sobolev operator differs from
the parabolic operator. It is clear that as fl ---, 0, IB(t)ll --+ 0 in some sense. As in
the author’s thesis, one can show that liB(t) is at most O() with the bound

4(1 t)
(2.10) B(t) =< 2 ft.

C(t) III 1 measures the effect of the backward Sobolev equation on the error
term g, in the data. We can easily obtain the bound

(2.11) C(t) < e(1-’)/a.

As --, 0, the bound el-’)/a grows very rapidly. Thus we must balance the two
terms against each other to obtain a best estimate. If we could solve for the bound
for liB(t) in closed form in terms of fl as we did for C(t)l[, we could obtain the best
/3 in closed form. At present, we can only approximate/3.
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APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS 287

The best choice of fl for the second bound is given by

(2.12) fl 1/log

With this choice of fl, it follows from (2.9), (2.10), and (2.11) that for any > O,

(2.13) u(t) v(t) <= 4(1 t)E
2 log (E/e,)

+ E(1 -t)e‘t 0([- log (/E)]- 1).

Remark. The choice (2.12) is not the best possible choice of fl since it gives the
second term significantly better continuity properties than the first. In regard to
this problem, we conducted a simple numerical experiment on the computer for
the heat equation (1.1). If we take

(2.14) Z e- sin x,

we know a priori the exact solution to the backward heat equation. Using these
data and then perturbing it we considered the differences in the Fourier series
representations ofu(t) and v(t) as we varied e. The literature tells us we cannot expect
usable results all the way back to the time 0. For 0.5, we obtained numeri-
cally

lu(.5) v(.5) =< (.130)[log (lfi;)]- 1.113.

Thus even with this very simple problem, where an essentially best possible
was used, we don’t get significantly better than logarithmic continuity.

3. Generalizations. We recall that all the results in 2 hold for any non-
negative self-adjoint operator A which does not depend on t. The techniques that
were used depended heavily on the self-adjointness of A. We now extend these
results to more general operators.

First we assume that -A generates a strongly continuous contraction semi-
group of operators on the complex Hilbert space H. We shall add another restric-
tion later and shall need the following theorem.

THEOREM 3.1 [23]. The operator -A is the generator of a contraction semi-
group if and only if- A is closed, densely defined, each 2 > 0 is in the resolvent set

of A, and
(3.1) ]1(2 q- A)-III-< 1/2 for all 2 > O.

COROLLARY 3.2 [23]. If the operator -A is the generator of a contraction

semigroup, then for every > O, the operator Jt (I + A)- is a contraction, or

(3.2) Jail <- for every > O.
From the identity

(3.3) JA (1//3)(1 Jt)= AJt,
we clearly see that A commutes with Ja. Then from (3.2) and (3.3) we see that JaA
is a bounded linear operator:

II,,/aAII- II(1/)(I Ja)ll
(3.4) =< (1//3)(1 + IIJell)

=< 2//3.
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288 RICHARD E. EWING

Due to (3.4) we can define the group of linear operators by

(3.5) T(t) exp (-tJA),
where we use the power series to define the exponential function. Yosida showed
[23] that for each > O, >= O, Te(t) is a contraction and that the strong limit

(3.6) T(t)x s-lim Tt(t)x, x H,
B--,O

exists and is the semigroup generated by A. Yosida also showed that for x D(A),
the domain of A, then x D((d/dt)T(t)), x D((d/dt)Try(t)),

d
(3.7a)

dt
T(t)x A T(t)x T(t)Ax, >= O,

and

d
(3.7b)

dt T(t)x JAT(t)x T(t)JAx, >= O.

From (3.7b) we see that for any ,/ > 0,

(3.8) T(s)Ta(t) Ta(t)T(s), s, > O.

Also from (3.7b) if x e D(A), then Ta(t)x e D(A) and we see that from (3.6) and (3.8),
we have for s, > 0,

(3.9)

Now from (3.6),

T(s)Ta(t)x s-lim T(s)Ta(t)x s-lim Ta(t)T(s)x.
0 0

(3.10) s-lim T(s)x T(s)x.
0’-* 0

Then since Te(t) is continuous and thus closed,

(3.11) s-lim Ta(t)T(s)x Ta(t) s-lim T(s)x Tt(t)T(s)x.
0 0

Thus combining (3.9) and (3.11) we see that for x e D(A), s, > 0,

(3.12) T(s) Tt(t)x Tt(t)T(s)x.
Now we need to consider some additional terminology. An unbounded

operator A on H is called sectorial with semiangle 0 if the numerical range of A,
{(Ax, x)’x D(A)} ,is contained in the sector {z "larg (z)] =< 0}. We recall the follow-
ing theorem.

THEOREM 3.3 [12]. If- A generates a contraction semigroup T and A is sec-
torial with semiangle O, where 0 <= 0 < rc/2, then T is a holomorphic semigroup. For
each > 0 and x H, T(t)x D(A) and AT(t) is a bounded linear operator on H
with IIAT(t)]] <- M1/t, where M is a positive constant. The identity T(t) T(t/m)
holds for > 0 and m >= t, and we also have

(3.13) A’T(t) <= Mm/tm,
where M,, are a sequence ofpositive constants.
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APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS 289

Note. The last inequality in Theorem 3.1 is crucial in obtaining the last
results above.

Showalter [22] introduces a collection of semigroups which he calls Q-R
semigroups generated by -(A JA)and denoted by

(3.14) E(t) exp (-t(A JA)),
and proves the following theorem.

THEOREM 3.4 [22]. Let -A generate a contraction semigroup and define the
Q-R semigroups, E, by (3.14). Then the Q-R semigroups are each contractions if
and only ifA is sectorial with semiangle /4. In this case we have lim_o E(t)x x
for each x H, uniformly on bounded intervals, and thefollowing estimates holdfor
anyt >__0"

(3.15a) E(t)x x <= Ax JAx [, x D(A),

(3.15b) Ea(t)x xl _-< t./llA2xl, x D(A2).
We can now state the main theorem of this section.
THEOREM 3.5. Let -A generate a contraction semigroup and let A be sectorial

with semiangle zt/4. Let u be an unknown solution to

(3.16a) u’(t) Au(t), >= O,

(3.16b) lu(1)- 7.1<
(3.16c) u(0) < E,

where 7. e- Auo + q and IIq/II < e. Let

(3.17) v(t) e

be a solution to

(3.18a) v’(t) JAv(t),
(3.18b) v(1)

where Ja (I + flA)-. For the choice

(3.19) /3 Z/log (E/e),

(3.20) Ilu(t)- v(OII-- O([-log(e/E)]-1)

holdsfor each > 0, where the constant depends on and is displayed below in (3.30).
Proof. In defining his Q-R semigroups, instead of the notation in (3.9),

Showalter [22] defines

(3.21) E(t) =_ T(t)T(-t), >__ 0, > 0,

where T(t) and T(t) are defined in (3.6) and (3.5). In this form, (3.15b) becomes, for

(3.22) lim T(1)T(-1)x x, x D(A).
/-0

Since by Theorem 3.1, -A is densely defined, the range of T(1) e- A is dense in
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290 RICHARD E. EWING

H and the requirement that

(3.23a)

where

(3.23b)

is not a restriction.

)(. e- AUo +

in (3.28), we obtain for each > 0,

(3.30) u(t)- v(t) <= 2(1 t)MzE
2 log (E/e)

+ E(1-% O([-log (e/E)]- 1).

4. Numerical results. In this section we present some results of numerical
comparison of the Fourier sine series representations of the solutions to the heat
equation in a rectangle (1.1) and the corresponding Sobolev equation approxima-
tion. We also considered the Crank-Nicolson method and got very comparable
numerical results, but these results are not presented here.

First we describe the numerical method for choosing the parameter fl in (1.4).
We know from the literature that it would be overly optimistic to expect very good
numerical results all the way back to 0. Thus we built in the requirement that
the choice of fl would be best for results at .5, half the way back. We noted that
for .5 we can obtain the bound

(4.1) Ilu(t)- v(t) < (1 e-St)E +

Setting

(3.29) fl 2/log (E/e)

Consider u(t) and v(t). From (3.5), (3.6), (3.16), (3.17), and (3.18) we have

u(t)- v(t)ll e-ratio e(1-t)JaA(e-auo +
(3.24)

<= T(t)Uo e-(A-SA)T(t)UoI +
Using the fact that

(3.25) e -(A-JtA) E(1) T(1)T(- 1)

from (3.14) and (3.21), we have from (3.8),

u(t) v(t) <- Y(t)Uo T(1)T(- 1)T(t)uo + e(1-t)StAlp

(3.26) IIT(t)Uo- T(1- t)T(-1 + t)T(t)Uoll +
T(t)Uo E(1 t)T(t)Uo + Ile(1-t)Jamd/

Theorem 3.3 implies that -A generates a holomorphic semigroup. Hence,
uo D(A) implies uo D(A2). Then from (3.4), (3.7), and (3.15b), we have for > 0,

(3.27) ]]u(t)- v(t)]] =< (1 t)fl]]A2T(t)Uo]] +
Now from (3.13) of Theorem 3.3, we have for > 0,

(3.28) [[u(t)- v(t)[[ _<_ (1
2 t)MzEfl + e2(l_t)/Bg.
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APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS 291

To minimize this bound, we differentiated, set the result equal to zero, and used
an interval halving method on the computer to obtain an approximation for the
required ft. Table gives an idea of the optimal choice of fl for different data errors
with E 1. Using the choices of fl found in Table we obtained the result in (2.15).

TABLE

Data error

10 -2 0.196
10 -3 0.113
10 -4 0.080
10- 0.061
10 -6 0.049
10 -7 0.041

Now we describe a few experiments consisting of various perturbations of the
fundamental mode of sine curves for which the exact solution of the heat equation
is known a priori. We first perturbed the fundamental mode with .01 sin 2x and then
.01 sin 3x in Figs. and 2 for 0.5. Then in Fig. 3 we perturbed the sine curve

True soln.- x sin x + .01 sin 2x
Sobolev 0.5
Heat

-I

FIG.
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292 RICHARD E. EWING

True soln.
Sobolev
Heat

x= sinx+.01sin3x
0.5

rr/a

Fio. 2

with a uniform error of ,01 (expanded in the first ten terms of this Fourier series)
and considered the results at .5. In each case 100 intervals were used in the
x-direction and 10 intervals in the y-direction, Simpson’s rule was used for the
numerical integration. Truncation in the Fourier series always occurred after
20 terms. In each of the figures all solutions have zero boundary data on x 0
and x ft. "True solution" means the exact solution u of the heat equation with
u(x, 1) sin x, "Sobolev" refers to the solution w of the Sobolev equation Wxx

wt flwxxt with w(x, 1) sin x + perturbation, and "Heat" refers to the solu-
tion z of the heat equation (which was obtained by setting/3 0 in the above equa-
tion) with z(x, 1) sin x + perturbation. The severe problems with the backward
numerical computations on the heat equation are apparent.
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True soln. x sin x +
Sobolev 0.5
Heat 0.01

I.TXlO14 4.4 1014, .5,4XI014 4.4X1014 1.7’1014

-2
-3.axo4 -5.zxo4rr/,-5.zxo4.. -3.zx4

0
X

FIG. 3

REFERENCES
[1] S. AGMOY AND L. NmENBERG, Properties of solutions of ordinary differential equations in Banach

spaces, Comm. Pure Appl. Math., 16 (1963), pp. 121-239.
[2] B. BUZBEE AYD A. CARASSO, On the numerical computation of parabolic problems for preceding

times, Tech. Rep. 229, Dept. of Math. and Stat., Univ. of New Mexico, Albuquerque, 1971.
[3] J. R. CANYON, Backward continuation in time by numerical means ofthe solution ofthe heat equation

in a rectangle, M.A. thesis, Rice University, Houston, Tex., 1960.
[4] , Some numerical results for the continuation of the solution of the heat equation backwards

in time, Numerical Solution of Nonlinear Differential Equations, D. Greenspan, ed., John
Wiley, 1966, pp. 21-54.

[5] J. R. CANYOrq AND K. MILLER, Someproblems in numerical analytic continuation, SIAM J. Numer.
Anal., 2 (1965), pp. 87-97.

[6] J. R. CANYON AND J. DOUGLAS, JR., The approximation of harmonic and parabolic functions on

half-spaces from interior data, Numerical Analysis of Partial Differential Equations Sym-
posium at ispra (Varese), July 3-11, 1967, Edizoni Cremonese Roma (1968), pp. 195-230.

[7] R. E. EWNG, The approximation of the solution to Laplace’s equation in a bounded subset of half-
spacefrom interior data, M.A. thesis, Univ. of Texas at Austin, 1972.

[7a] The numerical approximation of certain parabolic equations backward in time via Sobolev
equations, Ph.D. thesis, Univ. of Texas at Austin, 1974.

[8] W. H. FORD, Numerical solution of pseudo-parabolic partial differential equations, Ph.D. thesis,
Univ, of Illinois at Urbana-Champaign, 1972.

[9] J. A. GOLDSa’EN, Semigroups of operators and abstract Cauchy problems, Dept. of Math. Publ.,
Tulane University, New Orleans, La., 1970.

D
ow

nl
oa

de
d 

11
/0

9/
15

 to
 1

65
.9

1.
11

2.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



294 RICHARD E. EWING

[10] J. HADAMARD, Lectures on the Cauchy problem in Linear Partial Differential Equations, Yale
University Press, New Haven, Conn., 1923.

I11] F. JOHN, Continuous dependence on data for solutions ofpartial differential equations with a pre-
scribed bound, Comm. Pure Appl. Math., 13 (1960), pp. 551-585.

[12] T. KATO, Perturbation Theoryfor Linear Operators, Die Grundlehren der Mathematischen Wissen-

schaften in Einzeldarstellungen, 132, Springer-Verlag, Berlin, 1966.
[13] R. LATTES AND J. LIONS, MOtode de Quasi-Reversibilit et Applications, Dunod, Paris, 1967.
[14] M. M. LAVRENTIEV, On the Cauchy problemfor the Laplace equation, Izv. Akad. Nauk SSSR, Set.

Mat., 120 (1956), pp. 819-842.
[15"] K. MILLER, Three circle theorems in partial differential equations and applications to improperly

posed problems, Arch. Rational Mech. Anal., 16 (1964), pp. 126-154.
[16-J--, Eigenfunction expansion methods for problems with overspecified data, Ann. Scuola

Norm. Sup. Pisa, 19 (1965), pp. 397-405.
[17] --, Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed

problems, Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Lecture
Notes in Mathematics, 316, Springer-Verlag, Berlin, 1973, pp. 161-176.

[18] L. E. PAYNE, Bounds in the Cauchyproblemfor the Laplace equation, Arch. Rational Mech. Anal., 5
(1960), pp. 34-45.

[19] --., Some general remarks on improperly-posed problems for partial differential equations,
Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Lecture Notes in
Mathematics, 316, SpringeroVerlag, Berlin, 1973, pp. 1-30.

[20] C. PuccI, Sui problemi di Cauchy non "ben posti," Rend. Acad. Naz. Lincei, 18 (1955), pp.
473-477.

[21] R. E. SHOWALTER AND T. W. TING, Pseudoparabolic partial differential equations, this Journal,
(1970), pp. 1-26.

[22] R. E. SHOWALTER, Thefinal-value problem for evolution equations, Math. Anal. Appl., 47 (1974).
[23] K. YOSIDA, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften in Einzel-

darstellungen, 123, Springer-Verlag, Berlin, 1965.

D
ow

nl
oa

de
d 

11
/0

9/
15

 to
 1

65
.9

1.
11

2.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


