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Day 1 - January 25

8:45 a.m. - 9 a.m Welcome
9 a.m. - 9:30 a.m Svetozar Margenov, Bulgarian Academy of  Sciences

Robust Multilevel Methods for Strongly Heterogeneous Problems
9:30 a.m. - 10 a.m. Ludmil Zikatanov, Pennsylvania State University

Numerical Approximation of  Asymptotically Disappearing Solutions of  
Maxwell’s Equations

10 a.m. - 10:30 a.m. Zhangxing Chen, University of  Calgary
Numerical Simulation of  Unconventional Oil and Gas Reservoirs

10:30 a.m. - 11 a.m. Break
11 a.m. - 11:30 a.m. Hristo Kojouharov, University of  Texas at Arlington

Dynamically Consistent Numerical Schemes for Microbial Population Models
11:30 a.m. - noon Pencho Petrushev, University of  South Carolina

Gaussian Bounds for the Heat Kernel on the Interval, Ball, and Simplex
noon - 12:20 p.m. Victor Ginting, University of  Wyoming

On the Application of  the Continuous Galerkin Finite Element Method for 
Solving Multiphase Flow Problems

12:20 p.m. - 2 p.m. Lunch Break
2 p.m. - 2:30 p.m. Mary Wheeler, University of  Texas at Austin

Coupling Flow and Mechanics in Porous Media
2:30 p.m. - 3 p.m. Junping Wang, National Science Foundation

Weak Galerkin Finite Element Methods for PDEs
3 p.m. - 3:30 p.m. Peter Minev, University of  Alberta

A Direction Splitting Algorithm for Flow Problems in Complex/Moving 
Geometries

3:30 p.m. - 4 p.m. Break
4 p.m. - 4:30 p.m. Yuri Kuznetsov, University of  Houston

Discretizations with Piece-Wise Constant Fluxes for Diffusion Equations
4:30 p.m. - 5 p.m. Ilya Mishev, Exxon Mobil Corporation

Mixed Multiscale Finite Volume Methods for Reservoir Simulation
5 p.m. - 5:20 p.m. Tzanio Kolev, Lawrence Livermore National Laboratory

High-Order Curvilinear Finite Elements for Lagrangian Hydrodynamics
5:20 p.m. - 5:40 p.m. Veselin Dobrev, Lawrence Livermore National Laboratory

High-Order Curvilinear ALE Hydrodynamics
6:30 p.m. - 9 p.m. Dinner
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Day 2 - January 26

9 a.m. - 9:30 a.m Panayot Vassilevski, Lawrence Livermore National Laboratory
Improving Conservation Properties of  First-Order System Least Squares 
Finite-Element Methods

9:30 a.m. - 10 a.m Leszek Demkowicz, University of  Texas at Austin
A Tutorial on Discontinuous Petrov Galerkin Method (DPG) with Optimal 
Test Functions

10 a.m. - 10:20 a.m. Stanimire Tomov, University of  Tennessee
Numerical Linear Algebra for Emerging Architectures: Challenges and 
Approaches
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Problems Involving Fractional Order Differential Operators

11:50 a.m. - noon Closing

Organizing Committee

Wolfgang Bangerth
Andrea Bonito
Ron DeVore
Yalchin Efendiev
Jean-Luc Guermond
Joseph Pasciak
Guergana Petrova
Bojan Popov

Acknowlegements

Department of  Mathematics
College of  Science
Insititute for Applied Mathematics and Computational Science
Institute for Scientific Computation

Participants

Wael AbuShammala, Texas A&M University
Guy Almes, Texas A&M University
Manal Alotibi, Texas A&M University
Rashi Arora, Texas A&M University at Qatar
Wolfgang Bangerth, Texas A&M University
Andrea Bonito, Texas A&M University
Jim Bramble, Texas A&M University
Margaret Bramble, Texas A&M University
Markus Buerg, Texas A&M University
Daniel Castanon, Texas A&M University
Zhangxing Chen, University of  Calgary
Ulrich Colao, University of  Kinshasa
Prabir Daripa, Texas A&M University
Kristy Delvo-Vela, Texas A&M University
Leszek Demkowicz, University of  Texas at Austin
Denis Devaud, École Polytechnique Fédérale de Lausanne
Veselin Dobrev, Lawrence Livermore National Laboratory
Sourav Dutta, Texas A&M University
Yalchin Efendiev, Texas A&M University
Rita Ewing, Texas A&M University
Shubin Fu, Texas A&M University
Stephen Fulling, Texas A&M University
Arezou Ghesmati, Texas A&M University

Numerical Methods for PDEs: In Occassion of  Raytcho Lazarov’s 70th Birthday



Robust Multilevel Methods for Strongly Heterogeneous Problems
Svetozar Margenov, Bulgarian Academy of  Sciences

The first part of  the talk is devoted to construction and analysis of  hierarchical basis algebraic 
multilevel iteration (AMLI) methods in the case of  coefficient jumps which are aligned with 
the interfaces of  the initial mesh. The condition number estimates are uniform with respect 
to both mesh and/or coefficient anisotropy, the coefficient jumps, as well as the size of  the 
discrete problem. The computational complexity is proportional to the number of  degrees of  
freedom.

Robust multilevel methods for high-frequency and high-contrast problems are presented in 
the second part. Some advantages of  the nonlinear AMLI methods including the case of  
element-by-element approximation of  the Schur compliment are discussed.

The numerical tests demonstrate: (i) robustness of  the convergence estimates, and (ii) recent 
scalability results beyond some assumptions of  the rigorous theory.

An Analysis of  Finite Element Approximation to the Eigenvalues of  Problems Involving 
Fractional Order Differential Operators
Joseph Pasciak, Texas A&M University

Co-Authors: Bangti Jin and Raytcho Lazarov, Texas A&M University

In this talk, we consider an eigenvalue problem coming from a boundary value problem 
involving fractional derivatives. Specifically, we consider the Caputo and Riemann-Liouville 
fractional differential operators and associated boundary conditions. These boundary value 
problems will be investigated from a variational point of  view. We are interested in the case 
when the differential operator is of  order α with α ∈ (1, 2). These derivatives lead to non-
symmetric boundary value problems. The Riemann-Liouville case is somewhat simpler as the 
underlying variational problem is coercive on a natural subspace of  Hα/2(0, 1) even though its 
solutions are less regular. The variational formulation of  the Caputo derivative case is more 
interesting as it leads to a variational problem involving different test and trial spaces. In this 
case, one is required to prove variational stability on the discrete level as well.

In both cases, the analysis of  the eigenvalue problem involves the derivation of  “so-called” 
shift theorems which demonstrate that the solution of  the variational problem and its adjoint 
are more regular, i.e., are in Hα/2+γ(0, 1) with γ > 0. The regularity pickup enables one to prove 
that the norm of  the solution minus that of  the finite element approximation converges with 
γ dependent rates. This, in turn, can be used to deduce eigenvalue/eigenvector convergence 
rates. Finally, the results of  numerical experiments illustrating the theory will be presented.
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Multiscale Domain Decomposition Methods for Porous Media Flow Coupled with 
Geomechanics
Ivan Yotov, University of  Pittsburgh

We consider numerical modeling of  the system of  poroelasticity, which describes fluid flow 
in deformable porous media. The focus is on locally mass conservative flow discretizations 
that provide efficient and accurate multiscale approximations on rough grids and for highly 
heterogeneous media. We employ a multiscale mortar finite element method, where the 
equations in the coarse elements (or subdomains) are discretized on a fine grid scale, while 
continuity of  normal velocity and stress between coarse elements is imposed via a mortar 
finite element space on a coarse grid scale. With an appropriate choice of  polynomial degree 
of  the mortar space, optimal order convergence is obtained for the method on the fine scale. 
The algebraic system is reduced via a non-overlapping domain decomposition to a coarse 
scale mortar interface problem that is solved efficiently using a multiscale flux basis.

Numerical Approximation of  Asymptotically Disappearing Solutions of  Maxwell’s 
Equations
Ludmil Zikatanov, Pennsylvania State University

This work is on the numerical approximation of  incoming solutions to Maxwell’s equations 
with maximally dissipative boundary condisions, whose energy decays exponentially with 
time. We use the standard Nedelec-Raviart-Thomas elements and a Crank-Nicholson scheme 
to approximate such solutions. We prove that with divergence free initial conditions, the fully 
discrete approximation to the electric field is weakly divergence-free for all time. We show 
numerically that the finite-element solution approximates well the asymptotically disappearing 
solutions constructed analytically when the mesh size becomes small. This is a joint work with 
James Adler (Tufts University) and Vesselin Petkov (University of  Bordeaux 1).
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Numerical Simulation of  Unconventional Oil and Gas Reservoirs
Zhangxing Chen, University of  Calgary

Mathematical models have widely been used to predict, understand, and optimize complex 
physical processes in modeling and simulation of  multiphase fluid flow in petroleum 
reservoirs. These models are important for understanding the fate and transport of  chemical 
species and heat. With this understanding the models are then applied to the needs of  the 
petroleum industry to design enhanced oil and gas recovery strategies.

While mathematical modeling and computer simulation have been successful in their 
application to the recovery of  conventional oil and gas, there still exist a lot of  challenges 
in their application to unconventional oil and gas modeling. As conventional oil and gas 
reserves dwindle and oil prices rise, the recovery of  unconventional oil and gas (such as heavy 
oil, oil sands, tight gas, and shale gas) is now the center stage. For example, enhanced heavy 
oil recovery technologies are an intensive research area in the petroleum industry, and have 
recently generated a battery of  recovery methods, such as cyclic steam stimulation (CSS), 
steam assisted gravity drainage (SAGD), vapor extraction (VAPEX), in situ combustion 
(ISC), hybrid steam-solvent processes, and other emerging recovery processes, and horizontal 
well and hydraulic fracturing technologies have been very successful in the production of  
tight and shale reservoirs. This presentation will give an overview on challenges encountered 
in modeling and simulation of  these recovery processes: insufficient physics/chemistry in 
current models, multi-scale phenomena, phase behavior, geomechanics, assisted history 
matching with closed-loop optimization, transport of  solvents, wellbore modeling, and 
four-phase flow. It will also present some case studies for the applications of  these recovery 
processes to real heavy oilfields and shale gas reservoirs.

Numerical Linear Algebra for Emerging Architectures: Challenges and Approaches
Stanimire Tomov, University of  Tennessee

Numerical PDEs and their application in a wide range of  science and engineering 
applications depend on the availability of  high-performance linear algebra libraries; these 
applications will not perform well unless linear algebra libraries perform well. In the past, 
high-performance numerical library developers have taken for granted that each successive 
generation of  microprocessors would make their old software run substantially faster. The 
emergence of  the multicore and heterogeneous processor designs have brought this “free 
ride” to an end. Existing numerical libraries built on the old model are unable to effectively 
exploit these new architectures without radical modification. In this talk I will describe some 
of  the current challenges and approaches in addressing this critical and highly disruptive 
situation in the area of  dense linear algebra. Examples will be given with new algorithms, 
extending the LAPACK and ScaLAPACK libraries to efficiently support heterogeneous 
systems of  multicore CPUs, GPUs, and/or coprocessors.
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A Tutorial on Discontinuous Petrov Galerkin Method (DPG) with Optimal Test 
Functions
Leszek Demkowicz, University of  Texas at Austin

Co-Author: Jay Gopalaksrichan, Portland State University

We will give a short tutorial on the DPG method emphasizing the main points and illustrating 
them with numerical examples. Here is a few of  them:

1.	 The DPG method is a minimum-residual method with the residual evaluated in a dual 
norm.

2.	 The method can be interpreted as a Petrov-Galerkin method with optimal test functions 
(realizing the sup in the inf-sup condition).

3.	 The optimal test functions are computed on the fly by inverting approximately) the Riesz 
operator corresponding to the test space.

4.	 With broken test spaces and localizable norms, the inversion is done elementwise, i.e. the 
optimal test functions are computed within the element routine. This is more expensive 
then for standard FE method but it is compatible with the standard FE technology.

5.	 The main price paid for the localization is the presence of  additional unknowns: traces 
and fluxes. Compared with standard conforming FE methods or hybridizable DG 
methods, the number of  (non-local) unknowns doubles and it is of  the same range as for 
DG methods. Contrary to DG methods based on numerical flux, in the DPG method, 
the flux enters as additional unknown.

6.	 The method can be interpreted as a preconditioned least squares method. The stiffness 
matrix is hermitian and positive-definite but its condition number is the same as for 
standard FEs.

7.	 The formulation based on a first order system is very natural but not necessary. You 
can wish with the second order equation if  you wish. The key point is to break the test 
functions.

8.	 There is nothing exotic about the ultra-weak variational formulation behind the DPG 
method. If  the operator is well posed in the L^2 sense (the operator is L^2 bounded 
below), the ultra-weak variational formulation is also well posed with the corresponding 
inf-sup constant being of  the same order.

9.	 With the use of  optimal test functions, the issues of  approximability and stability are 
fully separated. This is illustrated by using hp-adaptivity.

10.	 The method is especially suited for singular perturbation problems, e.g., convection-
dominated diffusion, high wave number wave propagation, elasticity for thin-walled 
structures, etc. For problems of  this type, one can systematically design a test norm to 
accomplish robustness, i.e., a stability uniform in the perturbation parameter.

11.	 If  you have a hybrid FE code, converting it to a DPG code is very easy.
12.	 The methodology extends to nonlinear problems. We will show examples for 

compressible NS equations.

Dynamically Consistent Numerical Schemes for Microbial Population Models
Hristo Kojouharov, University of  Texas at Arlington

Several different mathematical models of  complex biological systems involving microbial 
populations are briefly discussed. In addition, a finite-difference approach is presented 
for solving the corresponding systems of  differential equations. It is based on a nonlocal 
modeling of  the nonlinear right-hand side functions and a nonstandard discretization of  the 
time-derivative. Positive and elementary-stable nonstandard (PESN) finite difference methods 
are also formulated and analyzed based on extensions of  the nonstandard discretization rules. 
A series of  numerical results are presented to demonstrate the performance of  the proposed 
numerical methods.
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Gaussian Bounds for the Heat Kernel on the Interval, Ball, and Simplex
Pencho Petrushev, University of  South Carolina

We establish Gaussian upper and lower bounds for the heat kernel associated with the 
Jacobi operator and polynomials on the interval. Gaussian bounds are also proved for the 
heat kernels associated with orthogonal polynomials and respective operators on the ball 
and simplex with weights. The general machinery of  Dirichlet spaces is utilized in this 
development, where the local Poincare inequality plays a crucial role. These results are used 
for the construction of  localized frames, which in turn provide a tool for decomposition of  
weighted Besov and Triebel-Lizorkin spaces in the settings of  interest.

Improving Conservation Properties of  First-Order System Least Squares Finite-Element 
Methods
Panayot Vassilevski, Lawrence Livermore National Laboratory

The first-order system least-squares (FOSLS) finite element method for solving partial 
differential equations has many advantages, including the construction of  symmetric positive 
definite algebraic linear systems that can be solved efficiently with multilevel iterative solvers. 
However, one drawback of  the method is the potential lack of  conservation of  certain 
properties. One such property is conservation of  mass. In this talk we describe a strategy 
for achieving mass conservation for a FOSLS system by changing the minimization process 
to that of  a constrained minimization problem. If  the space of  corresponding Lagrange 
multipliers contains the piecewise constants, then local mass conservation is achieved similarly 
to the standard mixed finite element method. To make the strategy more robust and not add 
too much computational overhead to solving the resulting saddle-point system an overlapping 
Schwarz process is applied which we illustrate with numerical tests.

This talk is based on the report: J.H. Adler, P.S. Vassilevski, Improving conservation for first-
order system least squares finite-element methods. Lawrence Livermore National Laboratory 
Technical Report LLNL-PROC-579552, September 6, 2012.

This work was performed under the auspices of  the U.S. Department of  Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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High-Order Curvilinear ALE Hydrodynamics
Veselin Dobrev, Lawrence Livermore National Laboratory

Co-Authors: Robert Anderson, Tzanio Kolev, and Robert Rieben, Lawrence Livermore 
National Laboratory

The Arbitrary Lagrangian-Eulerian (ALE) framework forms the basis of  many large-scale 
multi-material shock hydrodynamics codes. Current ALE discretization approaches consist of  
a Lagrange phase, where the hydrodynamics equations are solved on a moving mesh, followed 
by a three-part “advection phase’’ involving mesh optimization, field remap and multi-material 
zone treatment. While current ALE methods have been successful at extending the capability 
of  pure Lagrangian methods, they also introduce numerical problems of  their own including 
a lack of  total energy conservation and artificial breakup of  material interfaces. In this talk we 
will discuss the application of  the curvilinear technology to the “advection phase’’ in order to 
develop new and more robust high-order ALE algorithms, while preserving the accuracy of  
the high-order Lagrange step. We will present some approaches for high-order extensions to 
classical mesh optimization algorithms, such as harmonic and equipotential smoothing, as well 
as the use of  global mesh optimization methods. We will also discuss possible approaches to 
define conservative and monotonic high-order field remap and conclude the talk with some 
preliminary numerical results.

This work was performed under the auspices of  the U.S. Department of  Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344.

On the Application of  the Continuous Galerkin Finite Element Method for Solving 
Multiphase Flow Problems
Victor Ginting, University of  Wyoming

One major drawback that prevents the use of  the standard continuous Galerkin finite 
element method in solving conservation problems is its lack of  a locally conservative flux. We 
present a simple post-processing for the continuous Galerkin finite element method resulting 
in a locally conservative flux. The post-processing requires an auxiliary fully Neumann 
problem to be solved independently on each finite element. Its performance is demonstrated 
through numerical examples of  multi-phase flow in subsurface formation with triangular and 
quadrilateral elements along. This is a joint work with Lawrence Bush of  the University of  
Wyoming.

Numerical Methods for PDEs: In Occassion of  Raytcho Lazarov’s 70th Birthday



Coupling Flow and Mechanics in Porous Media
Mary Wheeler, University of  Texas at Austin

No abstract available.

High-Order Curvilinear Finite Elements for Lagrangian Hydrodynamics
Tzanio Kolev, Lawrence Livermore National Laboratory

Co-Authors: Veselin Dobrev and Robert Rieben, Lawrence Livermore National Laboratory

The discretization of  the Euler equations of  gas dynamics in a moving Lagrangian frame 
is at the heart of  many multi-physics simulation algorithms. In this talk, we present a 
general framework for high-order Lagrangian discretizations of  the compressible shock 
hydrodynamics equations using curvilinear finite elements. This method is derived through a 
variational formulation of  the momentum and energy conservation equations using high-
order continuous finite elements for the velocity and position, and a high-order discontinuous 
basis for the internal energy field. The use of  high-order position description enables 
curvilinear zone geometries allowing for better approximation of  the mesh curvature which 
develops naturally with the flow. The semi-discrete equations involve velocity and energy 
mass matrices which are constant in time due to the notion of  strong mass conservation. 
We also introduce the concept of  generalized corner force matrices, which together with the 
strong mass conservation principle, imply the exact total energy conservation on a semi-
discrete level. The fully-discrete equations are obtained by the application of  a Runge Kutta-
like energy conserving time stepping scheme. We review the implementation of  these ideas in 
our research codes, and present a number of  2D, 3D and axisymmetric computational results 
demonstrating the benefits of  the high-order approach for Lagrangian computations.

This work was performed under the auspices of  the U.S. Department of  Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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Mixed Multiscale Finite Volume Methods for Reservoir Simulation
Ilya Mishev, Exxon Mobil Corporation

Co-Author: Lijian Jiang

Multiscale finite volume (MsFV) methods have been successfully applied to solving reservoir 
simulation problems with localized high heterogeneity (i.e., separable scales), but the accuracy 
decreases when this is not possible (non-separable scales and long-range features). We develop 
a mixed multiscale finite volume method (MMsFV) on a uniform mesh that can use global 
information in order to improve the accuracy and the robustness of  the multiscale simulations 
of  fluid flows in porous media with non-local features.

Our development starts with the observation that MPFA methods implicitly approximate 
the velocity and therefore any multiscale generalization also has to do the same. MsFV uses 
multiscale approximation of  the pressure and piecewise constant approximation of  the 
velocity. The novelty of  the MMsFV method is the explicit approximation of  the velocity, 
with a new multiscale basis being constructed to approximate the pressure with piecewise 
constants. The velocity basis functions can be calculated with either local information (local 
MMsFV) or global information (global MMsFV). We demonstrate the improved accuracy of  
the global MMsFV compared to the local version on several problems including the SPE 10 
comparative solution problem. The error of  the global MMsFv is usually several times smaller 
than that of  the local method.

Using the same framework and the extra flexibility of  the two approximation spaces, we can 
derive other mixed multiscale finite volume methods including extensions to unstructured 
meshes.

Weak Galerkin Finite Element Methods for PDEs
Junping Wang, National Science Foundation

In this talk, the speaker will introduce a new finite element technique, called Weak Galerkin 
(WG) finite element methods, for partial differential equations. The basic principles of  WG 
will be thoroughly explained, and the method shall be applied to the discretization of  several 
PDEs, including the model second order elliptic equations, Stokes, biharmonic, div-curl, 
and Curl4 problems. It will be seen that the WG method is widely applicable to elliptic-type 
problems, and the WG-FEM enjoys a great flexibility in mesh shape and generation.
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A Direction Splitting Algorithm for Flow Problems in Complex/Moving Geometries
Peter Minev, University of  Alberta

An extension of  the direction splitting method for the incompressible Navier-Stokes 
equations proposed in [1], to flow problems in complex, possibly time dependent geometries 
will be presented. The idea stems from the idea of  the fictitious domain/penalty methods 
for flows in complex geometry. In our case, the velocity boundary conditions on the domain 
boundary are approximated with a second-order of  accuracy while the pressure subproblem 
is harmonically extended in a fictitious domain such that the overall domain of  the problem is 
of  a simple rectangular/parallelepiped shape.

The new technique is still unconditionally stable for the Stokes problem and retains the same 
convergence rate in both, time and space, as the Crank-Nicolson scheme. A key advantage 
of  this approach is that the algorithm has a very impressive parallel performance since it 
requires the solution of  one-dimensional problems only, which can be performed very 
efficiently in parallel by a domain decomposition Schur complement approach. Numerical 
results illustrating the convergence of  the scheme in space and time will be presented. Finally, 
the implementation of  the scheme for particulate flows will be discussed and some validation 
results for such flows will be presented.

Reference:

1.	 J.L. Guermond, P.D. Minev, A new class of  massively parallel direction splitting for the 
incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and 
Engineering, 200 (2011), 2083-2093.

Discretizations with Piece-Wise Constant Fluxes for Diffusion Equations
Yuri Kuznetsov, University of  Houston

In this presentation we discuss a new approach to the discretization of  diffusion equations on 
polygonal/polyhedral meshes. The basic idea is to approximate the solution flux by piece-
wise constant vector-functions which are conforming on the interfaces between mesh cells. 
The error estimate is derived for the solution flux in the case of  special types of  mesh cells. 
Numerical results as well as applications in geosciences are given.
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