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Abstract. In this paper, we present the Multiscale Finite Element Method

(MsFEM) for problems on rough heterogeneous surfaces. We consider the dif-
fusion equation on oscillatory surfaces. Our objective is to represent small-scale

features of the solution via multiscale basis functions described on a coarse grid.

This problem arises in many applications where processes occur on surfaces or
thin layers. We present a unified multiscale finite element framework that en-

tails the use of transformations that map the reference surface to the deformed

surface. The main ingredients of MsFEM are (1) the construction of multi-
scale basis functions and (2) a global coupling of these basis functions. For

the construction of multiscale basis functions, our approach uses the trans-

formation of the reference surface to a deformed surface. On the deformed
surface, multiscale basis functions are defined where reduced (1D) problems

are solved along the edges of coarse-grid blocks to calculate nodal multiscale
basis functions. Furthermore, these basis functions are transformed back to

the reference configuration. We discuss the use of appropriate transformation

operators that improve the accuracy of the method. The method has an op-
timal convergence if the transformed surface is smooth and the image of the

coarse partition in the reference configuration forms a quasiuniform partition.

In this paper, we consider such transformations based on harmonic coordi-
nates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math.,

LX(2007),pp. 675–723]) and discuss gridding issues in the reference configu-

ration. Numerical results are presented where we compare the MsFEM when
two types of deformations are used for multiscale basis construction. The first

deformation employs local information and the second deformation employs

a global information. Our numerical results show that one can improve the
accuracy of the simulations when a global information is used.

1. Introduction

Complex processes on rough surfaces occur in many applications. These include
surface processes, such as diffusion on a rough terrains, or volume processes in
geometrically complicated 3D thin regions. In addition, complex processes on rough
surfaces can happen when the dominant heterogeneities form a complex geometrical
shapes. For example, if we consider the diffusion process in a heterogeneous media
(i.e., coefficients representing conductivity are highly variable), then the diffusion in
high-conductivity regions is a dominant factor that determines the outcome of these
processes. One can write the diffusion equation restricted to the high conductivity
region and approximate the resulting model by a diffusion equation on a rough
surface. In summary, the small scales inherent to applications of diffusion problems
on surfaces are caused by the presence of

• highly oscillatory geometrical properties
• highly oscillatory conductivity coefficients
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Because of high spatial resolutions of these rough surfaces, the detailed simula-
tions of complex processes can be prohibitively expensive. For this reason, some
type of coarsening or upscaling is needed (see [3, 39]). In these approaches, oscil-
latory geometric properties are represented on a coarse grid by local shape. These
local shape functions are further coupled to solve the underlying problem on a
coarse grid with a reduced computational cost. In this paper, we propose a new
class of MsFEMs where the underlying fine-scale equations are solved on a hetero-
geneous surface directly. In particular, we consider the problem of approximating
the solution of the equation

e:ellipte:ellipt (1) −div
S
(κ∇

S
u) = f in Γ and u = g on ∂Γ,

where ∇
S

and div
S

denote the surface gradient and the surface divergence, respec-
tively.

In this paper, we construct Multiscale Finite Element Methods (MsFEMs) to
approximate equation (1). We note that, MsFEMs are suited to obtain inexpen-
sive approximations of problems with underlying complicated multiscale structures.
MsFEMs consist of two major ingredients: (1) small number of multiscale basis
functions and (2) a global numerical formulation which couples these multiscale
basis functions. Multiscale basis functions are designed to capture the effects on
the solution caused by small scale parameters such as small scale geometrical vari-
ations of the domain where the problem is posed. In general, important small scale
features of the solution need to be incorporated into these localized basis functions
which contain information about the scales which are smaller (as well as larger) than
the local numerical scale defined by the basis functions. In this paper, we study
MsFEM approximation of multiscale elliptic problems on oscillatory surfaces.

We present a unified framework for MsFEMs that depends on general coordinate
transformation which deforms the reference surface and is used to compute mul-
tiscale basis functions. This is motivated by the work of Owhadi and Zhang and
suits well to the framework of problems on rough surfaces; see [42]. In this frame-
work, we introduce a mapping of the rough surface, where the problem is posed, to
another surface which is possibly smoother (and it presents less roughness than the
original surface or no roughness at all). Using these coordinate transformations,
one can define boundary conditions for multiscale basis functions. In particular,
boundary conditions for multiscale functions are constructed as the solution of the
reduced problem along the boundaries of the coarse element on the deformed sur-
face. These are nodal basis functions and, once their values at the vertices are
defined, the reduced one-dimensional problem along the edge is well posed. Other
standard constructions of appropriate boundary conditions can be also used on
the deformed surface. Furthermore, these boundary conditions are mapped back
to the reference surface which gives the boundary conditions for multiscale basis
functions in the reference configuration. Once boundary conditions are computed,
multiscale basis functions are defined as the solution of local problems in each coarse
region. If boundary conditions are chosen properly, MsFEM converges independent
of small scale (i.e., there are no resonance errors). In this sense, the correct choice
of boundary condition is dictated on the deformed surface. The correct choice of
boundary conditions depends mainly on two aspects: 1) the resulting equation after
the change of coordinates and 2) the coarse grid employed in the deformed surface.
Thus, our goal is to achieve a smooth deformed surface and a regular partition on
deformed surface in order to guarantee that MsFEM converges independent of small
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scales. In this paper, we discuss these issues and show that appropriate domain
transformation can help to reduce the error substantially.

In a previous work [3], the authors designed multiscale solution techniques using
Heterogeneous Multiscale Method (HMM). In this construction, local problems
in representative volume are solved to construct a coarse-grid approximation of
the solution. Though MsFEM and HMM share many similarities, there are some
differences (see [25] for details). In particular, the approaches designed here are
intended for problems without scale separation. We also plan to use the proposed
methods to construct efficient solvers for problems with both small scales and high
contrast ([20, 21, 22]). As we have shown in [20, 21, 22], multiscale basis functions
such as those constructed here are crucial for efficient solvers. We would also like
to mention that there are investigations where the domain has oscillations near (or
along the) boundaries (see [39]). In these approaches, multiscale basis functions are
constructed for coarse elements near the boundaries where the oscillation is present.

We present numerical results. In our numerical tests, we consider various rough
surfaces that are obtained by perturbing a planar surface, a sphere and a torus.
These surfaces are perturbed by quasi-periodic functions. As we noted earlier, these
perturbations do not result to periodic problems that can be solved using a period
as a representative element. We present in detail two main coordinate transforma-
tion choices. Our first choice is the identity which results to boundary conditions
constructed by solving a reduced problem on the boundary. More precisely, the
boundary condition solves a local one-dimensional problem along the rough edges
of the boundary of coarse regions. Our second choice is the use of harmonic-like
coordinates. The new coordinates are constructed using the solution of a (vector)
Laplace-Beltrami equation. In this case, the boundary conditions are constructed
by solving reduced problems along the edges in the new coordinates. We show
that the second choice provides much better accuracy compared to the first ap-
proach. This fact is known for planar problems if the coarse grid in the original (or
transformed) domain is chosen properly; see [42]. For planar problems, when the
coarse grid in the transformed domain satisfies requirements that guarantee good
approximation in finite element methods, we observe a standard convergence for
MsFEM in the original domain. In general, one has to select oscillatory coarse grids
in the reference configuration that are obtained from a regular coarse grid in the
deformed configuration. The computational construction of such adequate grids is
more involved for the cases where the transform surface is not a planar surface. We
discuss these issues. We also briefly discuss how one can enrich coarse spaces as an
alternative approach to avoid the construction of complicated grids.

The paper is organized as follows. In the next section, we describe diffusion on
rough surfaces and introduce some preliminary notations. In Section 3, we discuss
the general framework for MsFEM. Section 4 is devoted to the construction of
coarse spaces that are used in MsFEM. Finally, we present numerical results in
Section 5.

2. Description of problems on rough surfaces
s:diff_geom

Let Γ be an orientable compact smooth d-dimensional manifold embedded in
Rd+1 with boundary. Let ν : Γ→ Rd+1 be the unit normal given by the orientation.
Our goal is to construct numerical approximations of the elliptic equation

eq:EllipticPDEeq:EllipticPDE (2) −div
S
(κ∇

S
u) = f in Γ and u = g on ∂Γ,
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where ∇
S

and div
S

denote the surface gradient and the surface divergence, respec-
tively, and ∆

S
denotes the Laplace-Beltrami operator. These differential operators

can be equivalently defined by either using function extensions to an ambient neigh-
borhood of Γ and Euclidean differential calculus in the neighborhood [29, 44, 14]
or through local parametrization [15]. In the latter case, if X : Ω → Γ is a local
parametrization and u a scalar function defined on Γ, then ∇

S
u = DXG−1∇û,

where G = DX∗DX, û = u ◦X and DX is the derivative of X. The quantity
∇

S
u is independent of the parametrization.
The second fundamental form is ∇

S
ν. This symmetric tensor has the eigenvector

ν with zero eigenvalue. The remaining eigenvalues are the principal curvatures. In
local coordinates this curvature tensor is given by G−1B, where bij =< ν, ∂ijX >
and ∂ij denotes second derivatives.

To obtain a weak formulation of equation (1), we use Sobolev spaces on surfaces.
Let H l(Γ) be the square integrable functions in L2(Γ) with weak tangential deriva-
tives up to order l in L2(Γ). The Sobolev norms are defined in the usual way and
H l

0(Γ) is the completion of Cl0(Γ) with the H l-norm. We recall that, in order for
the definition of H l(Γ) to make sense, it is necessary that Γ is Ck,α with k+α ≥ 1
and l ≤ k+α if k+α is a natural number and with strict inequality otherwise. For
details the reader is referred to [4, 45].

After multiplying both sides of equation (1) by a smooth test function v vanishing
on ∂Γ and integrating by parts, we obtain the weak form of (2) which is to find
u ∈ H1(Γ) with u = g on ∂Γ and such that

e:weak_forme:weak_form (3)

∫
Γ

∇
S
v · κ∇

S
u =

∫
Γ

fv for all v ∈ H1
0 (Γ).

Usual existence and regularity results hold for this problem; see [4] p.104.
Our goal is to approximate equation (3) using multiscale basis functions. We

want to construct multiscale basis functions that represent the roughness of the
surface in the sense that these basis capture the effect of the roughness of the
surface on the solution of (3). Before discussing further about the basis functions,
we take a time to describe the idea of roughness of a surface. Intuitively, we can
characterize the geometric “roughness” of a surface in terms of its curvature. To
make compatible the multiscale idea of an ε-rough coefficient (whose features are
of scale ε) with the geometric idea of an ε-rough surface, we say that a surface Γ is

ε-rough in a given region if for the points p in this region the quantity Area(Γ)
|∇

S
ν(p)|2 is

bounded from below by ε. The smaller the ε the rougher the surface and vice-versa.

For example, in Figure 1 we show the roughness, i.e., the quantity Area(Γ)
|∇

S
ν(p)|2 , on a

surface with regions of distinctive geometric scales.
In this paper, we also assume that the conductivity coefficient κ does not affect

the local behavior of the solution in the sense that multiscale basis functions con-
structed for the Laplace-Beltrami operator, are also effective for equation (3). The
general case of constructing efficient numerical methods in the presence of (possible
uncorrelated) oscillations in the geometry and the media properties is a topic of
future research.

3. Multiscale Finite Element Methods on Surfaces

3.1. Finite element for surfaces. Before describing the MsFEM approximation
on surfaces, we briefly describe a classical (fine scale) finite element approximation
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Figure 1. Oscillating surface constructed by blending together
five different distinctive periodic roughnesses. The central region
is flat and each corner of the square generates a local region of dif-
ferent roughnesses. In color we see the measure of the ε-roughness.
The values of ε vary from 0 (red) to 0.0002 (blue). The smaller
epsilon indicates the more roughness, whereas the larger epsilon
indicates more smoothness. f:epsroughness

of elliptic problems on surfaces. This method was first proposed for the Laplace-
Beltrami equation in [18].

We assume that the surface Γ can be approximated by polyhedral triangulations
where we can define finite element spaces to approximate the continuous spaces.
More precisely, we work on polyhedral surfaces. Let h > 0. A pair (Γh, T h) is a
polyhedral surface if Γh ⊂ Rd+1 and Th is a finite family of closed, non degenerate,
d-cells in Rd+1 (or simplices) such that the intersection of two cells in the family is
either empty or a (d− k)-dimensional sub-cell of both cells.

We denote the fine-grid cells (triangles or quadrilaterals for two dimensional

surfaces) by Kh
i , i = 1, ..., Nf

t , the edges by ehi , i = 1, ..., Nf
e , and vertex points by

phi , i = 1, ..., Nf
p .

Equation (3) can be discretized using low-order continuous parametric finite

elements following [18]. Let K̂ ⊂ Rd be the master cell. Given a d-cell Kh in

Rd+1, let F hK : K̂ → Kh be an injective affine-linear (bilinear) map such that the

vertices of K̂ are mapped onto the vertices of Kh. A C0-finite element space on
the polyhedral surface Γh can then be defined as follows:

eq:def:Vheq:def:Vh (4) Vh(Γh) = {Φ ∈ C0(Γh) : Φ ◦ FKh ∈ P(K̂) for all Kh ∈ T h},

where P(K̂) is the space of linear (bilinear) functions on K̂.



6 YALCHIN EFENDIEV, JUAN GALVIS, AND M. S. PAULETTI

The discrete version of (3) is: find uh ∈ V(Γh) such that

weak-fineweak-fine (5) ah(uh, vh) = fh(vh), for all vh ∈ V(Γh),

where

eq:def:aeq:def:a (6) ah(u, v) =

∫
Γh

∇
S
v · κ∇

S
u =

∑
Kh

∫
Kh

∇
S
v · κ∇

S
u for all u, v ∈ V(Γh)

and

fh(v) =

∫
Γh

f̃v =
∑
Kh

∫
Kh

f̃v for all v ∈ V(Γh),

with f̃ being some projection of f from Γ to Γh. A simple application of the usual
Hilbert space method shows existence and uniqueness of the discrete problem. The
problem above is equivalent to the solution of a linear system

eq:fine-systemeq:fine-system (7) Ahu = bh,

where the matrix Ah = [ahij ] and the vector bh = [bhj ] are defined by

eq:def:fine-matrixeq:def:fine-matrix (8) uTAhv = ah(u, v)

and vT bh = fh(v), respectively. Here and from now on, we will use the same
notation for finite element functions and their vectors of coordinates in the usual
basis of the space of C0-finite element functions.

The formulation (7) (or (5)) is our fine-scale (fine-grid) formulation and we as-
sume that this fine resolution is smaller than the length scales associated with
surface oscillations, i.e., h < ε. Essentially, we are assuming that, at the fine
resolution, we can describe all coefficients and geometrical oscillations accurately.
We mention that it is typically prohibitively expensive to compute approximations
of solutions at these fine resolutions. This is especially true for applications that
require solving (7) many times for different right-hand sides.

It is also important to mention [18] that the usual error estimates |u − uh|k ≤
ch2−k with k = 0, 1, hold in the regime where h resolves the surface; roughly speak-
ing, h resolves the surface when h2 . 1/|∇

S
ν| (see [18]).

3.2. Coarse-grid definitions. In order to simplify the presentation, we consider
only the case of (two-dimensional) surfaces. All the methods and results of this
paper can be easily extended to curves in the plane or space and also to open sets
in Rd+1. As before, we are given a fine-grid triangulation (and recall that we denote

the fine-grid cells by Kh
i , i = 1, ..., Nf

t , the edges by ehi , i = 1, ..., Nf
e , and vertex

points by phi , i = 1, ..., Nf
p ). Here and below, we consider the triangulation elements

as closed sets (relatively to the surface).
In this section, we assume that a coarse triangulation is given. More precisely, we

assume that we can use an agglomeration algorithm to obtain coarse-grid elements,
coarse edges and coarse vertices that satisfy the usual requirements of admissible
triangulations. We require a coarse-grid partition where

• each coarse-grid element KH
I is a simply connected domain and it is a

union of fine-grid elements, i.e., KH
I =

⋃
i∈Si,t

Kh
i , where Si,e is a subset of

{1, ..., Nf
t }, I = 1, ..., N c

t

• each coarse edge is a simply connected union of fine-grid edges, i.e., eHI =⋃
i∈Si,e

ehi , where Si,e is a subset of {1, ..., Nf
e }, I = 1, ..., N c

e

• each coarse vertex pHI corresponds to some fine vertex
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Figure 2. Illustration of a multiscale basis function defined over
an oscillatory surface. The graph shows the basis function plotted
on top of the surface in the direction of its normal vector. ill_basis_one

• the following relations between coarse elements, coarse edges and coarse
vertices hold
(1) the intersection of two different coarse-grid elements is either empty,

a coarse vertex or a whole edge
(2) the boundary of each coarse-grid element is a union of coarse edges
(3) the intersection of two different coarse edges is either empty or a coarse

vertex
(4) the boundary of each coarse edge is the union of coarse vertices.

For each coarse vertex, pHI , we denote by ωI the coarse-grid neighborhood of pHI
that is defined by

eq:def:omegaieq:def:omegai (9) ωI =
⋃
{KH

J ∈ PH ; pHI ∈ KJ}.

See Figure 4 for an illustrative example.
The coarse discretization size H may be too coarse, in the sense that a polyhedral

surface with representative size H, say ΓH , does not describe accurately all the
oscillations of the geometry and variations of the coefficients that occur at scale ε.
We use MsFEM methods that use inexpensive global formulations and still capture
fine grid effects accurately.

3.3. Global coupling of MsFEM on surfaces. We construct multiscale basis
functions for each coarse node yI . We denote the basis functions for the node pHI ,
χI , and assume that the basis functions are supported in ωI . As in standard finite
element methods, once multiscale basis functions are constructed (see Figures 2
and 3 for the illustration), we seek u0 =

∑
I cIχI , the Galerkin projection into the

coarse subspace

V0 = span{χI}.
More precisely, we seek u0 ∈ V0 such that

coarse2coarse2 (10) ah(u0, v) = fh(v), for all v ∈ V0.

The system above, determines the coordinates of u0 with respect to the basis func-
tions. Once ci’s are determined, one can define a fine-scale approximation of the
solution by reconstructing via basis functions, u0 =

∑
i ciχi. To write the matrix

form of (10), we assume that the basis functions are defined on a fine grid and each
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Figure 3. Illustration of some multiscale basis functions. Here
we have included a few of the basis function for the same surface
shown in Figure 2 shows ill_basis_many

basis χI has vector representation ΦI , I = 1, . . . , Nc, where Nc is the number of
basis functions. Given these coarse-scale basis functions, the coarse matrix is given
by

A0 = R0AR
T
0 ,

where A is define in (8) and RT0 = [Φ1, . . . ,ΦNc
]. Here, Φi’s are discrete coarse-

scale basis functions defined on a fine grid (i.e., vectors). The coarse problem (10)
is equivalent to the coarse linear system

A0c0 = f0,

where fh0 = RT0 b and c0 denotes the vector of coordinates of the solution of the
coarse problem (10), u0 ∈ Vh(Γh).

4. Coarse spaces
coarsespaces

In this section, we discuss some coarse spaces constructed to capture the fine-
scale features of the solution. We first introduce a transformation of the original
surface to a modified surface where boundary conditions of basis functions are
constructed and mapped back to the original surface. First, we assume this trans-
formation is given and describe our multiscale methods. Then, we discuss how an
appropriate choice of the transformation can improve the accuracy of the method.
We also describe some procedures that can be used to enrich the coarse spaces in
order to obtain better approximations if needed.

ss:coarse_basis
4.1. Unified definition of coarse basis functions using domain transfor-

mations. We introduce a transformation Fh : Γh → Rd+1 and denote by Γ̃h the
image of the original surface Γh under the transformation Fh; that is,

Γ̃h = Fh(Γh).

We refer to Γ̃h as the transformed (or deformed) surface. We use similar notations
for the images of fine- and coarse-grid elements, edges and vertices associated to

Γh; that is, we use K̃h
i , ẽhi , p̃hi , K̃H

i , ẽHi and p̃Hi . For instance, K̃h
i = Fh(Kh

i ).
Multiscale basis functions satisfy the leading order homogeneous equation in each

KH
i and our goal is to construct boundary conditions to compute these multiscale

basis functions. The boundary conditions are constructed on the deformed surface
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Figure 4. Schematic description of coarse regions. The figure
shows an oscillatory surface constructed over a toroidal region.
The light and dark regions show different coarse blocks. The four
coarse blocks with a common vertex that are colored by red, green,
blue, and black, constitute the support of the basis function χI ,
where pHI is the vertex where the blocks intersect. ill_omega

Figure 5. Illustration of the computation of the boundary condi-
tions in the transformed surface to compute basis functions in the
original surface. fig:construction

Γ̃h. We construct the boundary condition for the I-th coarse node in the following
way. We start with the value at the coarse-grid vertex,

b̃I(p̃
H
J ) = δIJ

and, on each coarse-grid edge, b̃I(·) will be assumed to satisfy

−∆ẽh b̃I = 0, in every edge ẽ.

Here, −∆ẽh is Laplace-Beltrami operator along the edge ẽh. Next, for each vertex
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pHI in the original surface Γh, we define a multiscale basis function by

−div
S
(κ∇

S
χI) = 0 in KH

I ⊂ ωHI
χI = b̃I ◦ (Fh)−1.

eq:basiseq:basis (11)

See Figure 5 for an illustration.We introduce the coarse space

eq:def:coarse-spaceeq:def:coarse-space (12) V F
h

0 = span{χI}.

Remark 1. We would like to remark that the MsFEM formulation allows one to
take advantage of scale separation. In particular, instead of the coarse element KH

in (11), a representative smaller volume can be chosen. See [25] for discussions.

Remark 2. Global information can also be incorporated in the construction of
multiscale basis functions. See for instance [42, 24] where various choices of global
information are proposed. Energy minimizing procedures are considered in [47].

Remark 3. In the case of open domains, that is Γ being an open subset of Rd+1,
it is well known that, with the use of linear boundary conditions, resonance er-
rors appear. This is due to the fact that the fine-scale solution is, in general, not
piecewise linear on the boundary of the coarse-grid elements. In order to overcome
resonance errors, different multiscale techniques can be used to impose the boundary
conditions of the multiscale basis functions. Many other boundary conditions are
introduced and analyzed in the literature. For instance, an oversampling technique
can be employed (see [33, 32]). Another example is the reduced boundary conditions
which are found to be efficient in many porous media applications (see [36]).

4.2. Examples of domain deformations.
sss:identity_coord

4.2.1. Identity. When Fh = Id, where Id is the identity operator in Γh, the corre-
sponding coarse space is denoted by V Id0 = span{χI}. When Γh is an open domain
in R2, the space V Id0 coincides with the multiscale space that uses an auxiliary
one-dimensional problem over the edges. See [25].

sss:harmonic_coord
4.2.2. Harmonic coordinates. We follow metric-based upscaling ideas developed in
[42, 43] for open subdomains. We extend some of the ideas in [42, 43] to problems
posed on surfaces. The main idea is to find a domain transformation such that, the
oscillatory problem in current coordinates, transforms into a smoother problem in
the new coordinates. The change of coordinates is given by FhHar : Γ → R3 such
that FhHar is the fine-scale finite element approximation of

(13) −div
S
(κ∇

S
F ) = 0 in Γ

with one of the following boundary conditions: Dirichlet boundary condition

(14) F = Id on ∂Γ,

or Neumann boundary condition

(15) κ∇
S
F · νs = νs on ∂Γ,

where νs denotes the co-normal vector. The corresponding coarse space is denoted

by V
Fh

Har
0 = span{χI}. Figure 6 illustrates the harmonic deformation obtained for

different surfaces.



MULTISCALE FINITE ELEMENT METHODS FOR FLOWS ON ROUGH SURFACES 11

Figure 6. Illustration of harmonic deformations. We show the
original domain (on the left) and its image through the harmonic
deformation (on the right) for different surfaces. By row: square
domain with periodic diffusion coefficient, oscillatory surface over
a hemi-sphere and oscillatory bended pipe. Observe that for the
first two cases, the deformed domains are on a plane, and for the
oscillatory surfaces, the deformed surfaces are “smooth” (without
oscillations); this being a typical property of the proposed har-
monic map. f:har_deformation
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4.3. Discussion on the convergence. To motivate the proposed harmonic coor-
dinates transformation, consider the case when the boundary curve of the surface
lies on a plane. In this case, it is not difficult to show that the image of FhHar will
be the plane region bounded by the curve representing the boundary of the surface.

Using this transformation as a change of variables, one can also show that the
surface equation

− div
S
(κ∇

S
u) = f in Γ

transforms to

−κ : D2û = f̂ in FhHar(Γ).

For example, let us consider the Laplace-Beltrami equation (κ = I) on different
rough surfaces that share the same boundary. In this case, even though FhHar will

be different for the different surfaces, the image Γ̂ = FhHar(Γ) will be the same for all
of them. And, the deformed problem is −∆û = ĝ for each surface. Any roughness
of the surface is reduced to appear only on the boundary condition and/or in the
source term. Then, assuming that 1) the transformed grid is adequate and 2) the
transform boundary condition is smooth, we see that using standard basis on the
deformed domain will give the classical finite element error behavior, and thus our
MsFEM does not suffer of resonance errors in this case.

Remark 4 (Implementation using appropriate grids). It is important to note that,
for implementation purposes, it has to be decided the amount of computational time
and work dedicated to the construction of coarse-grid s. One can construct a grid
in the original surface and then map this grid to the deformed surface. One can
also construct a coarse-grid on the deformed surface and map it back to the original
surface. As suggested by our previous discussions, the latter choice results in no
resonance errors. Unfortunately, constructing grids on deformed surfaces is com-
plicated since, in general, only a polyhedral description of the transformed surface is
available. For this reason, we will present only numerical examples where we con-
struct coarse-grid s only on the original surfaces. This choice does not guarantee the
absence of resonance errors (especially for surfaces with complicated boundaries),
but it is a more practical choice from the computational point of view. This dis-
crepancy will show as resonance error in some simulations that would disappear by
developing a better way to grid the deformed mesh. We mention that, in Section
4.4, we propose an alternative way to reduce resonance errors without constructing
complicated grids that uses local spectral information to enrich the coarse spaces
constructed with standard grids on the original surfaces. This is a topic where we
plan to do further research.

sec:enrichment
4.4. Enrichment using local spectral information for complicated diffu-
sion coefficients. In many cases, e.g., in the presence of high-contrast media
properties, one needs to enrich the space to achieve better approximation of the
solution. These issues have been studied for equations that are described in R2 and
R3. In this section, we discuss how initial coarse space, defined as above, can be
enriched in a systematic way. See [22, 23, 20] and references therein.

In general, we can consider the basis functions given, as before, by

−div
S
(κ∇

S
χI) = 0 in KH

I ⊂ ωHI
χI = bI on ∂ωHI ,

eq:add-basiseq:add-basis (16)



MULTISCALE FINITE ELEMENT METHODS FOR FLOWS ON ROUGH SURFACES 13

where the boundary conditions bI are determined using procedures that involve the
transformation of the reference surface. Using these multiscale basis functions, we
define a function on the surface (see [22, 23, 20])

κ̃ =
∑
I

κ∇
S
χI · ∇S

χI .

Using κ̃, we define an eigenvalue problem

−div
S
(κ∇

S
ΦI,l) = λlκ̃ΦI,l in KH

I ⊂ ωHI
∇

S
ΦI,l · ν = 0 on ∂ωHI .

(17)

Using dominant eigenvalues (starting with the smallest), we enrich our initial mul-
tiscale space that is spanned by χI with χIΦI,l, l = 1, ..., LI . This leads to a
more accurate approximation of the fine-scale solution. In particular, convergence
is expected as LI increases, where LI is the number of eigenvectors included in the
coarse space. The convergence rate is related to the rate of growth of the eigenvalues
above. This and related approaches are shown to be effective when the coefficient
varies widely and the problem domain is an open subset of Rd. See [22, 23, 20]
and references therein. The results of this procedure and related ones (applied to
equations on surfaces) will be reported elsewhere.

5. Numerical simulations

We implemented MsFEM described in Section 4.1 with two domain transfor-
mations: (1) the no deformation of Section 4.2.1 (we call MsFEM-Id) and (2) the
harmonic transformation of Section 4.2.2 (we call MsFEM-Hr). At the implemen-
tation level, the surface is given by the fine grid; no analytic expression is necessary
and no restrictions as far as of its shape or topology are required. Every aspect
of the method is developed on the (discrete fine) surface itself. The coarse-grid is
formed by an agglomeration of fine cells (see Figure 4 for illustration). The im-
plementation is coded with the help of the Deal.II library [6], and the figures were
generated with Paraview [11].

# basis H H/ε MsFem-Id MsFem-Hr
L2 error H1 error L2 error H1 error

9 0.707 23.6 0.320 0.567 0.332 0.581
25 0.354 11.8 0.081 0.287 0.090 0.299
81 0.177 5.9 0.029 0.179 0.024 0.157
289 0.088 2.9 0.025 0.162 0.006 0.075
1089 0.044 1.5 0.014 0.118 0.002 0.036

Table 1. Relative errors for the approximate solution of equation
(1) on the unit square with a diagonal diffusion tensor κd,d = 6 +
sin(xd

ε )+sin( xd

ε
√

5
)+sin( xd

ε
√

10
)+sin( xd

ε
√

20
)+sin( xd

ε
√

50
) and ε = 0.03,

ε/h = 10.9 and fine problem number of dofs 263169.t:square

For the first simulation, we solve a quasiperiodic coefficient elliptic problem on
a square (special case of a smooth surface). We consider the oscillatory coefficients
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Figure 7. Harmonic deformation (view on a coarser grid) corre-
sponding to the elliptic problem with rough coefficients on the unit
square whose convergence behaviour is shown in Table 1. f:square

given by

e:coef1e:coef1 (18) κd,d = 6 + sin(
xd
ε

) + sin(
xd

ε
√

5
) + sin(

xd

ε
√

10
) + sin(

xd

ε
√

20
) + sin(

xd

ε
√

50
)

and take ε = 0.03. The fine mesh is taken to be a regular Cartesian mesh with the
total degrees of freedom of 263169 (this is about 10 points per ε in each direction).
First, we show some harmonic coordinates in Figure 7 where we show the defor-
mation of a uniform Cartesian grid in the original domain. We present numerical
convergence for varying coarse-mesh size in Table 1. The first column shows the
number of total basis functions used in MsFEM and the third column presents the
ratio between the coarse-mesh size and ε. As in standard MsFEM, we expect to
observe a resonance error when H/ε is close to unity for MsFEM-Id. This can be
observed for both L2 and H1 errors from columns 5 and 6. On the other hand,
when MsFEM-Hr is employed, we see that there is no resonance error (see Columns
7 and 8 in Table 1) and the method has first-order convergence in the H1 norm.
coefficients.

Next, we consider the Laplace-Beltrami equation on a quasi-periodic rough sur-
face that can be described as a graph over the unit square. More precisely, we
consider the graph of f(x1, x2) =

∑3
i
ε
ci

(cos( cix1

ε ) + cos( cix2

ε ))) with (x1, x2) in the

unit square and c = (1,
√

5,
√

10). In Figure 8, we depict the original surface (left
picture) and the illustration of the harmonic deformation for a coarse block shown
with light color on the left plot. In Table 2, we present convergence results for
MsFEM-Id and MsFEM-Hr. As before, the number of multiscale basis functions
are shown on Column 1. We observe that MsFEM-Id has a resonance error and,
in particular, the error does not decrease much as the coarse mesh decreases when
H/ε is close to unity. On the other hand, MsFEM-Hr has better accuracy com-
pared to MsFEM-Id when H/ε is close to unity. As mentioned earlier, the reason
for MsFEM-Hr to exhibit a slow convergence rate at H/ε ≈ 1 is that the coarse
mesh in the deformed configuration, that is obtained from the coarse mesh in the
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Figure 8. Illustration of the surface obtained as quasi-periodic
perturbation of a plane and the harmonic deformation FHar. Bot-
tom left: actual surface where the problem is posed and solved.
Top right: zoom out of a the grayed piece of the surface. Bottom
right: piece of the deformed domain corresponding to the image
by FHar of the grayed piece of surface. Convergence behavior for
the elliptic problem on this surface is shown in Table 2. f:osc_plane

reference configuration by our harmonic map, is not regular and thus we do not
have a standard convergence in the deformed configuration.

# basis H H/ε MsFem-Id MsFem-Hr
L2 error H1 error L2 error H1 error

9 0.707 22.5 0.332 0.580 0.329 0.577
25 0.356 11.3 0.095 0.312 0.091 0.301
81 0.179 5.7 0.036 0.196 0.028 0.170
289 0.090 2.9 0.039 0.195 0.020 0.140
1089 0.062 2.0 0.049 0.221 0.021 0.144
4225 0.053 1.7 0.038 0.195 0.009 0.095
16641 0.031 1.0 0.017 0.129 0.005 0.069

Table 2. Relative errors for the approximate solution of equation
(1) on a surface that oscillates about a square with an identity dif-

fusion tensor. The surface is generated as (x1, x2,
∑3
i
ε
ci

(cos( cix1

ε )+

cos( cix2

ε ))) with (x1, x2) in the unit square, c = (1,
√

5,
√

10) and
ε = 0.005, ε/h = 7.6 and fine problem number of dofs 1050625.t:osc_plane

For the third example, we consider an oscillatory surface that is obtained by per-
turbing a semi-sphere with a quasiperiodic function. This perturbation is obtained
in the following way. First, we select a few points on the sphere (in this case 12
points quasi-equidistributed) and consider the tangent planes through these points.
Over each tangent plane we consider the function ε(cos(x1/ε)+cos(x2/ε)), where x1

and x2 are the local plane coordinates. This function defined on each plane is then
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Figure 9. Illustration of the surface obtained as normal perturba-
tion of a semisphere and the harmonic deformation FHar. Bottom
left: actual surface where the problem is posed and solved. Top
right: zoom out of a the grayed piece of the surface. Bottom right:
piece of the deformed domain corresponding to the image by FHar
of the grayed piece of surface. Convergence behavior for the elliptic
problem on this surface is shown in Table 3. f:half_sphere

# basis H H/ε MsFem-Id MsFem-Hr
L2 error H1 error L2 error H1 error

25 0.947 30.1 0.041 0.192 0.034 0.176
89 0.504 16.0 0.011 0.099 0.009 0.090
337 0.257 8.2 0.004 0.058 0.003 0.049
1313 0.129 4.1 0.003 0.052 0.002 0.036
5185 0.066 2.1 0.005 0.065 0.002 0.042
20609 0.035 1.1 0.008 0.080 0.003 0.045
82177 0.023 0.7 0.004 0.052 0.001 0.030

Table 3. Relative errors for the approximate solution of equation
(1) on an oscillatory surface around a half sphere with an identity
diffusion tensor. Here, ε = 0.005, ε/h = 4.6 and fine problem
number of dofs 1311745t:half_sphere

projected to the sphere and gives the particular plane contribution to the amplitude
of the normal perturbation on the sphere. More precisely, we set a cut-off radius
(in this case 0.7) for all the planes and we blend the contribution of each with a
partition of unity over the sphere. We then solve the Laplace-Beltrami equation
with the right-hand-side f = 1 and homogeneous boundary conditions. In Figure
9, we depict the original oscillatory sphere and a coarse region (left picture) and
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the transformation of this coarse region (right figure). Numerical results are pre-
sented in Table 3. As we observe from this Table, MsFEM-Hr has a better accuracy
compared to MsFEM-Id and a better convergence rate. However, we observe the
resonance error in MsFEM-Hr due the the gridding issue discussed earlier.

Figure 10. Oscillating toroidal section surface and its harmonic
deformation. Bottom left: actual surface where the problem is
posed and solved. Top right: zoom out of a the grayed piece of
the surface. Bottom right: piece of the deformed domain cor-
responding to the image by FHar of the grayed piece of surface.
Convergence behavior for the elliptic problem on this surface is
shown in Table 4. f:torus

# basis H H/ε MsFem-Id MsFem-Hr
L2 error H1 error L2 error H1 error

18 0.518 16.5 0.239 0.487 0.184 0.422
60 0.278 8.9 0.064 0.252 0.047 0.209
216 0.142 4.5 0.023 0.153 0.015 0.117
816 0.073 2.3 0.020 0.141 0.008 0.087
3168 0.039 1.2 0.033 0.182 0.008 0.086

Table 4. Relative errors for the approximate solution of equation
(1) on an oscillatory surface around a torus section with an identity
diffusion tensor. Here, ε = 0.05, ε/h = 8.4 and the fine problem
has the number of dofs 787968.t:torus

For our last numerical example, we study MsFEM-Id and MsFEM-Hr for the
Laplace-Beltrami equation on an oscillating torus, see Figure 10 (left picture). In
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this case, a sectional piece of torus is normally perturbed by ε(cos(θ/ε) + cos(φ/ε)),
where θ and φ are the angles of the major and minor circles corresponding to the
point. The Laplace-Beltrami equation is solved with the source term f = 1 and
homogeneous Dirichlet boundary conditions. Numerical results are presented in
Table 4 for varying coarse-mesh size and fixed ε. In Figure 5, we plot these errors
against the coarse-mesh size. As we observe from these numerical results, MsFEM-
Hr converges faster and the error for decreasing H reduces faster for MSFEM-Hr
compared to MsFEM-Id. These results show that MsFEM-Hr has smaller resonance
effects though, as we discussed it, still contains resonance errors due to coarse-grid
ding.

fig:errortorus

Figure 11. Error comparisons between MsFEM-Id and MsFEM-
Hr. Solid lines designate MsFEM-Id error (red lines are for H1

errors and black lines for L2 errors) and dashed lines represent the
errors for MsFEM-Hr.

6. Conclusions

In this paper, we develop multiscale finite element methods (MsFEMs) for prob-
lems on rough surfaces. The proposed approach consists of two parts: (1) multiscale
basis function computations; (2) coupling multiscale basis functions in a global vari-
ational formulation. We consider the diffusion problem, though the proposed con-
cepts can be applied to more general equations. The multiscale basis computation
entails the use of transformations that map the reference surface to the deformed
surface. On the deformed surface, the computation of basis functions is defined and
then these basis functions are used in the reference domain. In particular, reduced
(1D) problems are solved along the edges of coarse-grid blocks to calculate nodal
multiscale basis functions in the deformed domain. We discuss the use of appropri-
ate transformation operators that improve the accuracy of the method. The method
has an optimal convergence if the transformed surface is smooth and the image of
the coarse partition in the reference configuration forms a quasiuniform partition.
Numerical results are presented where we compare two different multiscale basis
functions: (1) basis functions that are computed using local deformations; (2) basis
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functions that are computed using global deformations. Our numerical results show
that the second approach is more accurate and we discuss the convergence of the
method.
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