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Abstract

In this paper, we propose a multiscale approach for solving the parameter-dependent elliptic equation
with highly heterogeneous coefficients. In particular, we assume that the coefficients have both small scales
and high contrast (where the high contrast refers to the large variations in the coefficients). The main
idea of our approach is to construct local basis functions that encode the local features present in the
coefficient to approximate the solution of parameter-dependent flow equation. Constructing local basis
functions involves (1) finding initial multiscale basis functions and (2) constructing local spectral problems
for complementing the initial coarse space. We use the Reduced Basis (RB) approach to construct a
reduced dimensional local approximation that allows quickly computing the local spectral problem. This
is done following the RB concept by constructing a low dimensional approximation offline. For any online
parameter value, we use a reduced dimensional approximation of the local problem to construct multiscale
basis functions. These local computations are fast and are used to solve the coarse-scale dimensional
problem. We present the details of the algorithm and numerical results. The locally supported basis
functions can be used to obtain a coarse multiscale approximation for any smooth right hand side (source
term). The approximation of the solution is obtained by solving a coarse global problem. The coarse
problem can also be used to construct robust iterative methods of the domain decomposition type. Our
numerical results show that one can achieve a substantial dimension reduction when solving the local
spectral problems. We discuss convergence of the method, the construction of initial multiscale basis
functions and the computational cost of the proposed method.

1 Introduction

Multiscale problems occur in many applications that include flow through porous media, composite mate-
rials, and so on. In many of these applications, the media properties can vary highly at the microscale. For
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example, in flow through fractured porous media, the conductivity within fractures can be several orders of
magnitude higher than the conductivity within the matrix. Fracture regions, that are main conduits of the
flow, can have complex heterogeneities. Note that in this case traditional scale separation assumptions no
longer hold and therefore, classical homogenization and upscaling techniques cannot be straightforwardly
applied. The variation in the conductivities in the fracture and matrix brings an additional small scale into
the problem that one needs to take into account when designing efficient coarse-grid simulation techniques
and iterative solvers.

Numerical discretization of flow problems in such heterogeneous media results to large ill-conditioned
systems of linear equations. Several approaches are proposed to solve such systems. Some approaches
involve the solution on a coarse grid (e.g., [23, 17, 24, 25, 31, 1, 4, 12, 9, 26, 36, 38]). In these approaches,
coarse-grid properties such as upscaled conductivities or multiscale basis functions are constructed that
represent the media or the solution on the coarse grid. For solving high-contrast problems on a fine grid,
robust iterative methods that converge independent of the contrast and multiple scales are needed (e.g,
[35, 29, 21, 5] and references therein). There are many works that discuss similarities between solvers and
multiscale methods, (e.g., [38]) in the context of multi-phase flow). We note that multiscale and upscaling
techniques are designed to solve global problems on a coarse grid for multiple source terms and right
hand sides. This provides additional computational gain as the coarse-grid properties do not need to be
re-computed.

In many applications, one deals with parameter-dependent heterogeneous problems. For example, in
the presence of uncertainties, the media properties are often parametrized where the parameter represents
realizations of the media properties. A typical example is the conductivity field described by a two-point
correlation function that represents the correlation of the spatial field. Via Karhunen-Loeve expansion,
one can expand the conductivity field and this expansion contains parameters that are random variables
and spatial fields that represent the modes of the covariance matrix. Each value of the parameter gives
a realization of the conductivity field. In many other more complex cases (e.g., channelized permeability
fields), the conductivity can also be parametrized. In these parameter-dependent cases, it can be expensive
to apply multiscale or upscaling methods realization-by-realization (i.e., to compute effective properties for
each realization). Indeed, many multiscale and upscaling methods involve elaborate procedures to compute
basis functions that can be used for multiple source terms and right hand sides. E.g., one may need to
construct several basis functions per coarse element (see discussions below) and the coarse regions, that
are often dictated by e.g., source terms, can be large. In this setup, it is important to construct smaller
dimensional problems to compute basis functions online inexpensively. These computations will be based
on some offline procedures. In this paper, we borrow the main idea from the Reduced Basis (RB) approach
to achieve dimension reduction.

The Reduced Basis (RB) approach is proposed in [28, 33] and has been successfully applied to many
parameter-dependent problems. The main idea of RB is to construct a reduced model based on offline
computations. The offline computation involves the solution of global problems that are used to compute
new basis functions. The reduced models are used for online computations for each parameter, i.e., the
problem is rapidly solved online for each parameter. In many cases, when the solution is smooth with
respect to the parameter one can achieve a substantial dimension reduction and represent the solution space
with a small dimensional space. RB relies on affine representation of the coefficients with respect to the
parameter or functionals of the parameter to pre-compute bilinear forms that speed-up the computations.
Affine representation assumption can be relaxed as noted in previous findings, e.g., [6]. Our goal is to use
RB ideas in constructing multiscale basis functions and to speed-up the simulations.

In this paper, we use multiscale methods for high-contrast media developed in [16, 19, 20] for a single
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parameter case. In these approaches, based on local spectral problems for each coarse region, we construct
multiscale basis functions to approximate the solution. The construction of coarse spaces starts with an
initial choice of multiscale basis functions that are supported in coarse regions sharing a common node.
The initial multiscale basis function is chosen to represent important features of local solutions for all
parameter values. These basis functions are complemented using weighted local (parameter-dependent)
spectral problems that are defined in coarse blocks sharing a common node. The weight function in the
local spectral problem is computed based on the initial choice of multiscale basis functions. Furthermore,
we identify important eigenvalues (small eigenvalues in our case, see discussion below) and corresponding
eigenvectors that represent important features of the solution. Coarse spaces are constructed by multiplying
the selected eigenvectors with the initial multiscale basis functions. These eigenvectors represent features
that can not be localized with initial multiscale space.

For parameter-dependent problems, solving the local eigenvalue problem for each parameter at the
online stage can be expensive, especially for the cases of large-size coarse blocks. RB offers an excellent
opportunity to reduce the local eigenvalue problem to a problem with much smaller dimension. In par-
ticular, first, at the offline stage, we identify important eigenvectors for a range of parameters. Then, we
use the RB technique to formulate a small dimensional spectral problem and downscaling operator that
allows for solving the local spectral problem inexpensively in the online computations stage. At the online
stage, for any parameter, we can rapidly compute multiscale basis functions. These basis functions are
computed by solving small dimensional eigenvalue problems and selecting important eigenvectors for basis
function construction. These eigenvectors are downscaled using a pre-computed multiscale interpolation
operator. Furthermore, the coarse space is constructed and the global problem is solved. The dimension
of the coarse system is related to important local features of the solution and it is the same as in standard
multiscale methods with local spectral basis functions. However, the cost of computing a basis function is
much smaller.

The coarse spaces constructed in this paper are targeting two main goals:

• obtaining robust convergence results of coarse multiscale approximations;

• obtaining robust bounds for the condition number of iterative (two-level additive) methods to compute
fine-scale finite element solutions.

We show numerically (see Section 4) that the estimate for the convergence of MsFEM and the condition
number of two-level preconditioners depend on the maximum of the inverse of the eigenvalues whose
eigenvectors are not included in the coarse space. The maximum is taken over all coarse nodes. In order
to obtain an optimal dimensional coarse space, the initial multiscale spaces are important. See [16, 19, 20].
We discuss possible choices for initial multiscale spaces for the parameter-dependent problem in Section
3.1.

The proposed methods have advantages over standard multiscale methods when applied to parameter-
dependent problems. Our new approaches use pre-computed solutions calculated for some values of param-
eters, that are identified with RB methods, to speed-up the computations. Moreover, these basis functions
can be used independent of the source terms which can not be done for general smooth right hand sides
when global snapshots are employed. For multiscale problems, applications of reduced basis approaches
that employ global snapshots are computationally expensive and the number of basis functions that are
needed for calculating the solution at the online stage can be large. The proposed methods alleviate these
problems (see Section 4.3). In particular, one does not need all snapshots when computing the solution
at the online stage. This is because many of these global snapshots can be eliminated at the coarse-grid
level by choosing appropriate basis functions. Our proposed approach can be especially useful when the
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parameter itself is a coarse-grid spatial function where the parameter in each coarse block is assumed to
be an independent scalar quantity. In this case, one has a very large dimensional parameter space, and
approaches such as the ones proposed in this paper are needed for efficient computations because local
problems will involve only a scalar parameter. Finally, the applications to domain decomposition methods
and solvers are new. In our methods, solvers are regarded as the correction to the coarse-grid solution at
the online stage. We show that one can use the offline coarse spaces to obtain robust preconditioners.

The proposed approaches share similarities with approaches where the RB is used in homogenization
or MsFEM setting to solve local problems (e.g., [7, 30]). In these approaches, via offline computations,
one reduces the cost associated with computing local solutions. Unlike the proposed approaches, these
approaches do not systematically add new degrees of freedom on a coarse-grid level and do not con-
sider high-contrast multiscale problems. Moreover, using our proposed coarse spaces, we construct robust
contrast-independent preconditioners for multiscale problems. The proposed methods also have some rela-
tion to ensemble level multiscale methods [10, 2]. In ensemble level approaches, several realizations of the
conductivity field are chosen and based on these realizations, multiscale basis functions are constructed
for the whole ensemble or a part of the ensemble. Thus, one can construct a small dimensional space
to span the solution for each member of the ensemble. In the proposed approaches, we speed-up basis
computations to reducing these problems to much smaller dimensional ones at the online stage.

We present some representative numerical results. In our examples, we consider parameter-dependent
high-contrast permeability fields where various distinct permeability features appear for different values of
the parameter. We show numerically (see Section 4) that using our proposed technique one can substan-
tially reduce the computational cost without sacrificing the accuracy of the method. We consider both
coarse-grid approximation and the condition number for the preconditioned system where coarse spaces
are inexpensively computed for each online parameter based on reduced dimensional local systems. We
discuss the choice of initial multiscale basis functions designed for the entire parameter range. We show
numerically (see Section 4) that if one can incorporate small-scale features (smaller than the coarse region)
associated with all parameters into initial basis functions , we can achieve a dimension reduction for the
coarse spaces. We discuss convergence of the method based on numerical experiments and computational
cost (see Sections 4.1 and 4.3). Our proposed approach has lower computational cost, in general, compared
to standard RB approaches that use global solutions. The computational gain is due to the fact that at
online stage, we do not need all features that are in global solutions when standard RB is used. Via local
solutions and online basis computations, we can identify small dimensional coarse spaces that are needed
to compute the solution online without sacrificing the accuracy. Moreover, local computations can be
performed in parallel and thus the computational time of solving local problems will be equivalent to that
of solving one local problem. Our numerical results show that the combination of RB and MsFEM can
provide an efficient computational tool for solving large-scale parameter-dependent multiscale problems
with the parameter possibly varying over the coarse regions.

The paper is organized in the following way. In the next section, we present some background discussion
on multiscale spaces, the RB, and two-level preconditioners. In Section 3, the details of the proposed
algorithm are discussed. Numerical results and further discussions are presented in Section 4.

2 Preliminaries

We consider the following parameter-dependent problem

−div(κ(x;µ)∇u) = f in D (1)
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subject to some boundary conditions, where

κ(x;µ) :=

Q∑
q=1

Θq(µ)κq(x). (2)

Here, κq(x) is the heterogeneous spatial field with multiple scales and high contrast (e.g., see Figure 6 for
an example of such a permeability field), the parameter µ ∈ Λ ⊂ Rp is possibly a coarse grid function and
the functions Θq : Λ → R. We define the weak formulation of the problem (1) as follow

a(u0, v;µ) = f(v), for all v ∈ H1
0 (D), (3)

with

a(u, v;µ) =

∫
D

κ(x;µ)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D) (4)

and

f(v) =

∫
D

f(x)v(x)dx for all v ∈ H1
0 (D).

Next, we introduce the notation for the coarse grid and briefly introduce the main concept of multiscale
finite element methods. Let T H be a usual conforming partition of D into finite elements (triangles,
quadrilaterals and etc.). We call this partition the coarse grid and assume that the coarse grid is partitioned
into fine-grid blocks. We denote by Nv the number of coarse nodes, by {yi}Nv

i=1 the vertices of the coarse
mesh T H and define the neighborhood of the node yi by

ωi =
∪

{Kj ∈ T H ; yi ∈ Kj} (5)

(see Figure 1) and the neighborhood of the coarse element K by

ωK =
∪

{ωj ∈ T H ; yj ∈ K}. (6)

Our objective is to construct a coarse-grid reduced order model, so that for any value of the parameter
µ and any value of the right hand side f we will be able to compute, in a very efficient way, the solution
to (1).

To obtain numerical approximations of (1), we will compute numerically a set of multiscale basis
functions for each node yi. We denote the basis functions for the node i, χℓ

i(= χℓ
i(x;µ)), and assume

that the basis functions are supported in ωi. As in standard finite element methods, once multiscale basis
functions are constructed, we seek u0 =

∑
iℓ ciℓχ

ℓ
i , where ciℓ are determined from a standard Galerkin

projection
a(u0, v;µ) = f(v), for all v ∈ V0, (7)

where V0 = span{χℓ
i} that vanish on the boundary of D. Once ciℓ’s are determined, one can define a

fine-scale approximation of the solution by reconstructing via basis functions, u0 =
∑

iℓ ciℓχ
ℓ
i .

As the multiscale basis function are adapted to the specific oscillation present in the coefficient, they
strongly depend on µ. It is often expensive to compute multiscale basis functions as one may need to solve
local spectral problems to find an appropriate number of basis functions. Moreover, for the MsFEM to be
accurate, we need to define a new basis for each single value of the parameter µ. For this purpose we will
construct a reduced order problem to compute the basis function. The construction of the basis involves
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Figure 1: Schematic description of coarse regions.

the approximation of local parametric eigenvalue problems. We will be applying reduced basis techniques
to these local parametric eigenvalue problems posed on coarse regions.

We will also use coarse spaces constructed via the RB technique in two-level additive Schwarz precondi-
tioners (e.g., [29]). Our main goal is to show that with these basis functions one can obtain optimal (in terms
of contrast) preconditioners. Next, we briefly describe the two-level domain decomposition setting that
we use. We denote by {D′

i}Mi=1 the overlapping decomposition obtained from the original non-overlapping
decomposition {Di}Mi=1 by enlarging each subdomain Di to

D′
i = Di ∪ {x ∈ D, dist(x,Di) < δi}, i = 1, . . . ,M, (8)

where dist is some distance function and let V i
0 (D

′
i) be the set of finite element functions with support

in D′
i and zero trace on the boundary ∂D′

i. We also denote by RT
i : V i

0 (D
′
i) → V h the extension by zero

operator.
We consider iterative methods to find the solution of the fine-grid finite element problem

a(u, v;µ) = f(v), for all v ∈ V h, (9)

where V h is the fine-grid finite element space of piecewise linear polynomials and the bilinear form a defined
in (4). The matrix of this linear systems is written as

A(µ)u(µ) = b.

Here, A is the stiffness matrix associated to the bilinear form a and b is such that vT b = f(v) for all
v ∈ V h. We note that we are representing finite element functions and their vector of coordinates by
the same symbols. We can solve the fine-scale linear system iteratively with the preconditioned conjugate
gradient (PCG) method. Any other suitable iterative scheme can be used as well. We introduce the two
level additive preconditioner of the form

B−1(µ) = RT
0 (µ)A

−1
0 (µ)R0(µ) +

M∑
i=1

RT
i A

−1
i (µ)Ri, (10)
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where the local matrices are defined by

vAi(µ)w = a(v, w;µ) for all v, w ∈ V i
0 (D

′
i). (11)

The coarse projection matrix RT
0 is defined byRT

0 = RT
0 (µ) = [Φ1, . . . ,ΦNv ] and A0(µ) = R0(µ)A(µ)R

T
0 (µ).

The columns Φi’s are fine-grid coordinate vectors corresponding to the basis functions {χj
i}. See [35, 29]

and references therein. In this paper, we will use RB procedures to construct (approximations of) the
coarse space basis, i.e., R0(µ), for any given value of the parameter µ.

The application of the preconditioner involves solving local problems in each iteration. In domain
decomposition methods, our main goal is to reduce the number of iterations in the iterative procedure. It
is well known that a coarse solve needs to be added to the one level preconditioner in order to construct
robust methods. The appropriate construction of the coarse space V0 plays a key role in obtaining robust
iterative domain decomposition methods.

In the numerical experiments, we will assume that the overlapping subdomains {D′
i} coincide with the

coarse vertex neighborhoods {ωi} of T H . In this case δ ≍ H, where δ = max1≤i≤N δi is the overlapping
parameter.

Next, we briefly describe basic concepts of the reduced basis approach that employs global snapshots to
construct reduced-order models for computing the solution of the parameter-dependent elliptic problem.
The RB method can be understood as a way to discretize the manifold E = {u(x;µ), µ ∈ Λ}; otherwise
stated it consists of defining a finite dimensional space XN = Span{u(x;µm), 1 ≤ m ≤ N}, where N is
small. Once XN has been defined, we compute the solution using a standard Galerkin projection:

a(u, v;µ) = f(v), for all v ∈ XN , (12)

with a defined in (4). The problem above is equivalent to solving a linear problem of dimension N and
is thus cheap provided that N is small. We thus are left with the definition of the basis of XN , which is
done by computing N snapshots (i.e., solution of the original equation for a given value of the parameter
µm). A Greedy algorithm (see Section 3.3 below) is used to select iteratively the snapshots. Note that in
the methods proposed in this paper, RB is used locally to construct multiscale basis functions that can be
used to solve the global problem on a coarse grid.

3 Coarse-scale model reduction. Reduced Basis Multiscale Fi-
nite Element Method (RB-MsFEM)

In this section, we describe how coarse spaces are constructed. The main idea of this construction is to
start with an initial multiscale basis functions which capture the effects that can be localized within coarse
regions, this step is described in Section 3.1. Furthermore, we introduce, in Section 3.2, a local spectral
problem where initial multiscale space is used to construct the weight function for this spectral problem.
The eigenvectors corresponding to small eigenvalues represent important features of the solution (in energy
norm). These eigenvectors are multiplied by initial basis functions to form the coarse space.

In order to speed-up the computation of the spectral problems in a parameter dependent case, we
use the RB techniques (see Section 3.3). Note that the computation of local eigenvalue problem for each
coarse domain and for each online parameter can be expensive (see Section 4.3). We thus perform offline
computation to pre-compute all the stiffness matrices needed for basis calculations and their reduced
representation as well as the downscaling operators that allow us to easily go from the reduced basis to
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the fine mesh basis. The online stage (see Section3.4) is a two step computation where first we solve on
each coarse region, for a given value of µ, the reduced problems that yield the multiscale basis functions
and then compute the solution of the initial problem for a given value of the right hand side f . First,
we describe some essential ingredients needed for our method and in Section 3.5, we will summarize our
algorithm.

3.1 Initial basis functions

First, we briefly discuss the construction of the initial basis functions as they are used in setting up local
spectral problems (see Item 3 of the offline stage). As we mentioned, initial multiscale basis functions
are chosen such to include the features of the solution for all parameters µ. For this reason, we need to
identify a permeability that contains as many of the small-scale features as possible. We denote this special
permeability by κS(x). We note that we can choose κS(x) = κ(x;µ0) as mentioned above. The idea is to
construct multiscale basis functions for this permeability and use them as initial basis functions for our
construction (Item 6 of the offline stage, Section 3.5.1). Multiscale basis functions solve local problems (
see (23) and Section 3.5 where a summary of the method is presented). A good choice of the permeability
field κS is possible for some problems. We discuss this issue further in the next section.

As an alternative to the multiscale basis functions defined in (23), we can consider energy minimizing
basis functions (see [37]), where basis functions are obtained by minimizing the energy of the basis functions

subject to a global constraint. More precisely, one can use the partition of unity functions {χemf
i }Nv

i=1, with
Nv being the number of coarse nodes, that provide the least energy. This can be accomplished by solving

min
χemf
i

∑
i

∫
ωi

κS |∇χemf
i |2 (13)

subject to
∑

i χ
emf
i = 1 with Supp(χi) ⊂ ωi, i = 1, . . . , Nv. Note that the restriction

∑
i χ

emf
i = 1 is a

global constraint though it is not tied to any particular global fields.

3.2 Spectral Multiscale basis

The initial coarse basis functions χi (discussed above) often need to be complemented if more accurate
coarse-scale solutions or more robust preconditioners are sought. This completion is accomplished via local
spectral problems. For the case of parameter-dependent elliptic problems considered here, this completion
is done at the online stage. See Section 3.5.2. Following [16, 13], we consider, in the online computations,
the local parametric homogeneous Neumann eigenvalue problem

−div(κ(x;µ)∇φωi(x;µ)) = λκ̃(x;µ)φωi(x;µ), (14)

posed on subdomains ωi. Here, the modified weight κ̃ is defined by

κ̃(x;µ) =
1

H2
κ(x;µ)

Nv∑
j=1

|∇χj |2, (15)

where χj are the initial basis functions.
In this paper, we will use RB techniques to compute cheap online approximations of this eigenvalue

problem. The online approximation is computed based on the reduced order model constructed offline.
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Figure 2: Schematic description of basis function construction. Left: subdomain ωi. Right-Top: Selected
eigenvector φℓ

i with small eigenvalue. Right-Bottom: product χiφ
ℓ
i where χi is the initial basis function of

node i.

The construction is summarized in Items 5-9 in Section 3.5.1 and further detailed in Section 3.3 where we
describe the RB procedure applied to the eigenvalue problem above. Recall that we denote by

λωi,Nrb

ℓ = λωi,Nrb

ℓ (µ) and φωi,Nrb

ℓ = φωi,Nrb

ℓ (x;µ)

the online RB approximation of the eigenvalue problem (14); see Section 3.5 where a summary of the
method is presented. This approximation is computed by solving the small linear system in (24). The RB
procedure parameter Nrb is introduced in Section 3.5.1. It denotes the number of RB parameter values used
for the construction of the reduced order eigenvalue problem. During our online stage (described in Section
3.5.2), we construct multiscale basis functions. The (online) multiscale basis functions are constructed as

χℓ
i = χℓ

i(x;µ) = χ∗
iφ

ωi,Nrb

ℓ (see Item 3 of Section 3.5.2 and Figure 2 for illustration). The coarse space is

V0 = V0(µ) = span(χ∗
iφ

ωi,Nrb

ℓ ).

The coarse-scale solution is sought based on (3) with the coarse space above. We note that the local blocks
of the coarse matrix (see (7) will be dense due to the fact that local eigenfunctions are supported in the
coarse grid block. However, the coarse matrix will have a block sparse structure. The overall sparsity of
the blocks of coarse matrix can be increased with a choice of initial multiscale basis functions.

Next, we discuss some properties of the local eigenvalue problem of the fine-scale system. We remind
the notation for fine-scale eigenvalues and eigenvectors of the true eigenvalue problem (14)

λωi

ℓ = λωi

ℓ (µ) and φωi

ℓ = φωi

ℓ (x;µ).

The choice of initial basis functions is important for defining local spectral spaces. We would like to
discuss the dimension of the coarse space in the presence of high-conductivity inclusions. For this reason,
we assume in the rest of the subsection that the initial multiscale basis function is computed for an online
value of the parameter and RB approximation of the local spectral problem is accurate (see discussions later
about coarse-space dimension reduction when offline initial multiscale basis functions are used). Assume
eigenvalues are given by

0 = λωi
1 ≤ λωi

2 ≤ ....
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Basis functions are computed by selecting a number of eigenvalues (starting with small ones) and multi-
plying corresponding eigenvectors by χi (see Figure 2 for the illustration). Thus, the multiscale space is
defined for each i as the span of χiφ

ωi

ℓ , ℓ = 1, ..., Li, where Li is the number of selected eigenvectors. In
[16], we show that under some conditions the convergence rate is inversely related to the smallest eigen-
value whose eigenvector is not included in the coarse space. This is also observed in our numerical results.
More precisely, we show in [16] that the convergence rate in the energy norm

∫
D
κ(x;µ)|∇(u − u0)|2 is

proportional to

max
i

H1+β

λωi

Li+1

, (16)

where H is the coarse mesh size and β ≥ 0 is related to the smoothness of the coefficients. Thus, our goal
is to find initial basis functions such that the resulting eigenvalue problem has fewer small eigenvalues.

In high-contrast problems, one can show that the number of small eigenvalues is related to the number
of isolated inclusions within a coarse region, see [16, 20]. These contrast-dependent small eigenvalues are
inversely proportional to the contrast for the isolated inclusions, and, thus, they can be very small in
high-contrast problems. One can show that by using initial multiscale basis functions (see [16, 20]), we
can eliminate small inclusions (smaller than the coarse region) by incorporating their effects into one (per
coarse node) basis function. As a result, the local spectral problem identifies features that are not included
in the initial multiscale space. These features typically consist of high-conductivity channels (channel is a
high-conductivity region that connects two boundaries of the coarse region). Thus, it is important to use
multiscale basis functions in constructing the weight function in (14). Initial multiscale basis functions will
allow achieving smaller dimensional coarse spaces by eliminating many small eigenvalues. In RB-MsFEM,
one of our goals is to incorporate small-scale features of the ensemble into multiscale basis functions in
order to achieve small dimensional coarse spaces (see Section 4).

3.3 Reduced Basis for eigenvalue problems

The RB method is used to reduce the dimension of the eigenvalue problem so that we can compute
the basis functions during the online stage with a much reduced workload. The RB approach, mainly
consists of defining a (small) set of functions, denoted by XNrb

, that can approximate the manifold
{φωi

ℓ (x;µ), with φωi

ℓ solution to (21), µ ∈ Λtrial}. This set is constructed iteratively by a Greedy pro-
cedure, which consists of solving the eigenvalue problem for some selected values of the parameter µ. We
thus can write

XNrb
:= Span {φωi

ℓ (µm), 1 ≤ m ≤ Nrb, λ
ωi

ℓ (µm) ≤ τ} .

Once this space is defined, solving (21) for a given value of µ amounts to finding
{
φωi,Nrb

ℓ (µ), λωi,Nrb

ℓ (µ)
}
∈

XNrb
× R such that

∀v ∈ XNrb
,

∫
ωi

κ(x;µ)∇φωi,Nrb

ℓ ∇vdx = λωi,Nrb

ℓ

∫
ωi

κ̃(x;µ)φωi,Nrb

ℓ vdx.

In this section, we will discuss the Greedy procedure by itself: how to choose the judicious set of
{µm}1≤m≤Nrb

and then describe the key element of this procedure which is the error estimate, in the
particular case of the linear eigenvalue problem.
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The Greedy Algorithm. We would like to choose the set of parameters {µm}1≤m≤Nrb
such that it

minimizes the error between the solution and its reduced basis approximation, namely e(µ) = ∥φωi

ℓ (µ) −
φωi,Nrb

ℓ (µ)∥H1(ωi), as a function of µ. In other words, the desirable choice of µ is defined by:

{µm}1≤m≤Nrb
= inf

{µm}1≤m≤Nrb
∈ΛNrb

(
sup
µ∈Λ

∥φωi

ℓ − φωi,Nrb

ℓ ∥H1(ωi)

)
.

In practice, we don’t want to compute φωi

ℓ (µ), µ ∈ Λ for a twofold reason: first Λ can be a continuous set,
second computing φωi

ℓ (µ) for a given µ is computationally expensive, and so we just want to perform this
computation for the selected {µm}1≤m≤Nrb

. Therefore, the RB approach suggests a feasible procedure,
which consists of selecting the minimizers of

{µm}1≤m≤Nrb
= inf

{µm}1≤m≤Nrb
∈Λ

Nrb
trial

(
sup

µ∈Λtrial

∆Nrb
(µ)

)
,

where Λtrial is a discrete set and ∆Nrb
(µ) is an estimator of the quantity e(µ), the choice of which is

discussed in the paragraph below. We are now in position to describe the Greedy procedure. We will select
the sequence {µm}1≤m≤Nrb

incrementally:

1. choose µ1 ∈ Λtrial

2. solve (21) with µ = µ1 to define X1 := span (φωi

ℓ (µ1), λ
ωi

ℓ (µ1) ≤ τ),

3. for m = 2 to Nrb do

4. choose µm := max
µ∈Λtrial

∆m−1(µ),

5. solve (21) with µ = µm to define Xm := span (φωi

ℓ (µj), λ
ωi

ℓ (µj) ≤ τ, 1 ≤ j ≤ m)

6. end for

Remark 1. For numerical reason, it is very important to orthogonalize and normalize the space XNrb
. It

can be achieved by a Gram-Schmidt procedure during the greedy procedure.

Error estimation for eigenvalue problem. We are thus left with the definition of ∆N (µ). We
will use the error estimator introduced in [27]. First, we introduce the weak formulation of the eigenvalue
problem:

∀v ∈ H1(ωi), aωi(φ
ωi

ℓ ; v;µ) = λi
ℓmωi(φ

ωi

ℓ , v;µ),

where

aωi(u, v;µ) :=

∫
ωi

κ(x;µ)∇u · ∇vdx and mωi(u, v;µ) :=

∫
ωi

κ̃(x;µ)uvdx.

Following [27], we first define a scalar product

0 < α ≤ g(µ)aωi
(v, w) ≤ aωi(v, w;µ)

and then define (implicitly) eℓN (µ) as the dual of the residual, namely

∀v ∈ H1(ωi), aωi
(eℓN (µ), v) = aωi(φ

ωi,N
ℓ , v;µ)− λωi,N

ℓ mωi(φ
ωi,N
ℓ , v;µ), (17)

11



where {φωi,N
ℓ , λωi,N

ℓ } is the solution to

∀vN ∈ XN , aωi(φ
ωi,N
ℓ , vN ;µ) = λωi,N

ℓ mωi(φ
ωi,N
ℓ , vN ;µ).

Observe that, due to the linearity of equation (17), the dual of the residual eℓN (µ) satisfy an affine expansion,
similarly to the coefficient κ(x;µ). It reads:

eNℓ (µ) =

Q∑
q=1

Θq(µ)(e
1,N
ℓ,q − λωi,N

ℓ (µ)e2,Nℓ,q ),

where
aωi

(e1,Nℓ,q , v) = aqωi
(φωi,N

ℓ , v) and aωi
(e2,Nℓ,q , v) = mq

ωi
(φωi,N

ℓ , v).

We now turn to the definition of the error estimate, ∆N writes

∆N (µ) :=

Nτ∑
ℓ=1

aωi
(eℓN , eℓN )

λωi,N
ℓ

,

where Nτ is the cardinal of the ensemble {ℓ ∈ N, λωi,N
ℓ ≤ τ}. We note that this estimator may not

be robust for general high-contrast problems; however, we find it to work well for the problems studied
numerically in this paper.

Remark 2. By the definition of the error estimate, we need to solve 2×Q Poisson problems for each new
basis function.

Remark 3. Most of the computational efficiency, lies in the fact that κ(x;µ) is an affine representation of
the parameter or functionals of the parameter. This affine representation allows us to represent ∆N as an
affine function of µ or functionals of µ and thus to pre-compute all the matrices of its expansion. Affine
representation assumption can be relaxed as noted in previous findings, e.g, [6] by representing a general
functional dependence via an affine approximation. Another case that is of interest to applied community
is when the permeability field is described discretely without any explicit parametrization. In this case,
one needs to define affine representation of the permeability field in order to take an advantage of RB
framework. Otherwise, the computation of stiffness matrix at the online stage will require the calculations
on the fine grid.

Offline Assemble We take advantage of the affine representation to precompute all stiffness matrices
of the coarse scale problem, so that we speed-up the online computation. For this purpose, we need that
the the online initial basis function χ∗

i corresponds to the offline partition of unity χi.
In our case, we have to pre-compute the following integrals, for all i1 and i2, and each ℓ1 and ℓ2 and

all 1 ≤ q ≤ Q and all 1 ≤ m1,m2 ≤ Nrb, compute:

Kq(i1, ℓ1, i2, ℓ2,m1,m2) :=

∫
D

kq(x)∇
(
χi1φ

ωi1

ℓ1
(µm1)

)
∇
(
χi2φ

ωi2

ℓ2
(µm2)

)
. (18)

Then, during the online computations, once we solve the reduced order local spectral problem:

∀v ∈ XNrb
,

∫
ωi

κ(x;µ)∇φωi,Nrb

ℓ ∇vdx = λωi,Nrb

ℓ

∫
ωi

κ̃(x;µ)φωi,Nrb

ℓ vdx

12



and obtain the following representation of φωi,Nrb

ℓ as a linear combination of the vector field in XNrb
:

φωi,Nrb

ℓ :=

Nrb∑
m=1

Nτ (µm)∑
j=1

αmj(µ)φ
ωi
j (µm).

We can construct the coarse stiffness matrices, using pre-computed matrices:

Kcoarse :=

Q∑
q=1

Nrb∑
(m1,m2)=1

Nτ (µm1
)∑

j1=1

Nτ (µm2
)∑

j2=1

Θq(µ)αm1j1αm2j2Kq(i1, ℓ1, i2, ℓ2,m1,m2).

3.4 Online computation

In the online stage, we first compute on each coarse region ωi the reduced eigenvalue problem, and then
define the multiscale basis functions

χℓ
i := χiφ

ωi,Nrb

ℓ .

We then assemble the coarse-grid problem, using the precomputed matrices (if χi is independent of µ).
With a reduced-dimensional eigenvalue problem, we can rapidly solve the local spectral problem and
construct multiscale basis functions. These basis functions are further used to solve the global problem.
This approach can be effectively used when the parameter µ is a coarse-grid spatial function, i.e., µ varies
on a coarse grid where the parameter in each coarse block is assumed to be an independent scalar quantity.
In this case, one has a very large dimensional parameter space, and approaches such as the ones proposed in
this paper are needed for efficient computations because local problems will involve only a scalar parameter.
RB-MsFEM allows rapidly computing the global solution.

We note that the coarse-scale system obtained by solving reduced eigenvalue problems will have the
same dimension as the coarse-scale system where the the exact eigenvalue problem is solved (i.e., they have
the same number of important eigenvalues). The computational saving is due to solving small-size local
eigenvalue problems. As we noted earlier, the eigenvalue problem can have a large dimension and thus the
basis function can be expensive for each value of µ. Using the RB, we simplify these computations.

As we noted that these coarse spaces can be used for designing preconditioners. In particular, one can
use the coarse spaces computed with the RB in two-level additive Schwarz preconditioners

B−1(µ) = (RRB
0 (µ))T (ARB

0 (µ))−1RRB
0 (µ) +

N∑
i=1

Ri(µ)
TA−1

i (µ)Ri(µ), (19)

where R0 and A0 are defined using the coarse space computed online. The local matrices Ai(µ) correspond
to the exact local solver for each µ as in the standard two-level additive Schwarz constructed for (9). The
computations of the latter involve local corrections while the former requires local eigenvalue computa-
tions and downscaling operators that are computed using the reduced system. We will show numerically
that these preconditioners are optimal with respect to the contrast, i.e., cond(B−1(µ)A(µ)) is bounded
independent of the contrast.

We can use inexact local solvers instead of exact solvers Ai(µ)
−1 in subdomains ([35]). In our proposed

methods, the inexact solvers can be constructed rapidly at the online stage via pre-computed calculations
from the offline stage. The offline stage will involve RB technique for identifying important Dirichlet modes
of local problems and downscaling operators. This information can be used to construct inexact solver

13
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Figure 3: Flow chart

approximation. The required properties for these inexact solvers that will guarantee robust preconditioners
can be found in, e.g., [35].

3.5 Description of the algorithm

In this section, we summarize the algorithm. We present an overall picture of all the computations involved.
We distinguish the following computations.

• Offline computation (Section 3.5.1):

– Coarse grid generation and parameter set discretization;

– Computation of the initial partition of unity;

– Individual subdomain RB computations to construct reduced order models for subdomain para-
metric eigenvalue problems.

• Online computations (Section 3.5.2):

– Individual computation of reduced order eigenvalue problems for given parameter value;

– Construction of coarse spaces with important modes;

– Approximation of solutions using the coarse spaces.

A schematic description of the algorithm is presented in Figure 3. Itemized step-by-step more precise
descriptions of the computations are presented in Section 3.5.1 and 3.5.2 below. Further details related to
the design and analysis of some individual steps were presented in previous sections.
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3.5.1 Offline stage

We assume here that a fine grid, on which κ is defined, is given. We also assume that we know the
parameter space µ ∈ Λ ⊂ Rd, a threshold τ and a number Nrb, that corresponds to the the number of
selected parameter value. We then proceed as follows:

1. Define a coarse mesh TH and the P1 finite element basis functions WH = Span
{
χ0
i

}
,

2. Define Λtrial as a discrete subset of Λ,

3. Choose a partition of unity {χi}1≤i≤Nv
. We can choose the linear basis function (χ0

i ), but other
choices can be made (see Section 3.2)

4. For each coarse region ωi,

5. Compute on the fine grid the following stiffness and mass matrices for all 1 ≤ q ≤ Q

vTAωi
q u :=

∫
ωi

κq(x)∇u · ∇vdx and vTMωi
q u :=

∫
ωi

κq(x)

Nv∑
k=1

|∇χk|2 uvdx. (20)

6. Define the sequence {µm}1≤m≤Nrb
, using a Greedy procedure (see Section 3.3 below), and solve

Q∑
q=1

Θq(µj)(A
ωi
q − λωi

ℓ (µm)Mωi
q )φωi

ℓ (µm) = 0, λωi

ℓ (µm) ≤ τ. (21)

7. Construct the matrix

RT
ωi

:= [φωi

ℓ (µm), λωi

ℓ (µm) ≤ τ, 1 ≤ m ≤ Nrb]. (22)

8. end for

9. Outputs of the offline stage are Rωi
, Aωi

j , Mωi
j and RT

0 := [χi, 1 ≤ i ≤ Nv]

Remark 4. Note that a possible choice for the partition of unity, is to select a judicious value of µ0

(see discussions later on selecting multiscale basis functions) and for each element Ki ∈ TH compute the
following multiscale partition of unity functions:

−div [(κ(x;µ0))∇χi(x)] = 0 in Ki, χi = χ0
i on ∂Ki. (23)

3.5.2 Online stage

The purpose of this step is to compute the solution for a given value of µ and a given f :

1. For each coarse region ωi

2. Solve the reduced order eigenvalue problem and keep only some eigenvectors that correspond to
eigenvalues below a certain threshold

Q∑
q=1

Θq(µ)
(
RT

ωi
Aωi

q Rωi − λωi,Nrb

ℓ (µ)RT
ωi
Mωi

q Rωi

)
φωi,Nrb

ℓ (µ) = 0, λωi,Nrb

ℓ (µ) ≤ τ. (24)
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3. Compute the multiscale basis functions (see Section 3.2 below)

χj
i := χ∗

iφ
ωi,Nrb

j .

4. end for

5. Solve the coarse-grid system and use it in two-level preconditioners (if needed).

Remark 5. Note that the standard choice of initial basis functions χ∗
i is the partition of unity used during

the offline stage χi, but other choices can be employed. For instance, we can choose to compute online
partition of unity for the given value of µ (See Section 4).

Remark 6. We note that our proposed method can be extended to time-dependent parabolic equations,
∂u
∂t − div(κ(x;µ)∇u) = f , or some other model problems. In this case, the offline part of the algorithm
will remain the same and involve multiscale basis function computations via local eigenvalue problems and
RB procedure. In the online stage, the computation of online coarse space V0 will also remain unchanged.
However, the coarse-grid global problem formulation will change to(

∂u0

∂t
, v

)
− a(u0, v;µ) = f(v), for all v ∈ V0, (25)

where (·, ·) is the usual L2 inner product,

a(u, v;µ) =

∫
D

κ(x;µ)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D) (26)

and f(v) =
∫
D
f(x)v(x)dx for all v ∈ H1

0 (D). One can solve (25) implicitly on a coarse grid. Because
multiscale basis functions do not change in time, this will provide additional CPU savings.

4 Numerical results and discussions

In this section, we present representative numerical results for the coarse-scale approximation with the
RB and its use in two-level additive preconditioners. The equation −div(κ(x;µ)∇u) = 1 is solved with
boundary conditions u = x+ y on ∂D. For the coarse-scale approximation, we will vary the dimension of
the coarse spaces (online) and change offline space dimensions. We will investigate the convergence rate as
a function of minimum eigenvalue and the contrast. For preconditioning results for (9), we will investigate
the behavior of the condition number of B−1(µ)A(µ), where B−1(µ) is defined in (19), as we increase the
contrast for various choices of coarse spaces that include variations in online and offline parameter setting.
In our simulations, we run the Preconditioned Conjugate Gradient (PCG) until the ℓ2 norm of the residual
is reduced by a factor of 1010. We take D = [0, 1] × [0, 1] that is divided into 5 × 5 (example 1) or 8 × 8
(example 2) equal square subdomains. Inside each subdomain we use a fine-scale triangulation, where
triangular elements constructed from 10× 10 squares are used. The size of the fine-scale mesh is denoted
by h.

In our numerical experiments, we test the accuracy of RB-MsFEMs when coarse spaces include eigenvec-
tors corresponding to small, asymptotically vanishing (as contrast increases), eigenvalues as well the cases
when additional eigenvectors are included in the coarse space (see [16] for more discussions). We choose the
following notation: LSM+n indicates that the coarse spaces include eigenvectors corresponding to small,

16



asymptotically vanishing as contrast increases, eigenvalues and an additional n eigenvectors corresponding
to the next n eigenvalues (in an increasing order). E.g., LSM+0 indicates the coarse space that only in-
cludes eigenvectors corresponding to small, asymptotically vanishing eigenvalues, while LSM+1 indicates
the coarse space that includes eigenvectors corresponding to small, asymptotically vanishing eigenvalues,
plus one more eigenvector in each coarse region that corresponds to the next largest eigenvalue. We con-
sider two different contrasts. We study the convergence of the methods LSM (when χ0 are used to compute

κ̃ and then κ̃ ≈ κ) and L̃SM (when multiscale basis functions χms, see (23), are used to construct κ̃). We
will consider the error in the following energy norm

eA := ∥u− uref∥2A/∥uref∥2A,

where

∥u∥2A =

∫
D

κ(x;µ) |∇u(x)|2 dx.

We implement a two-level additive preconditioner with the following coarse spaces: multiscale functions
with linear boundary conditions (MS); spectral coarse spaces with κ̃ = κ where piecewise linear partition
of unity functions are used as an initial space (LSM κ̃ ≈ κ).

In the first numerical example, we consider a permeability field which is the sum of two permeability
fields with each containing inclusions such that their sum gives a channelized permeability field. The
permeability field is described by

κ(x;µ) := (1− µ)κ0(x) + µκ1(x).

We can represent 3 distinct different features in κ(x;µ): inclusions (left), channels (middle), and shifted
inclusions (right), see Figure 4. We note that the other permeability fields introduce some connection
between the inclusions. There exists no single value of µ that has all the features. Furthermore, we will
use a trial set for the reduced basis algorithm that does not include µ = 0.5. Our goal is to show that the
proposed techniques are accurate and robust with respect to the parameter and the contrast. We will not
present convergence results in terms of discretization parameters.

Figure 4: From left to right: µ = 0, µ = 1/2 and µ = 1.

As there are three distinct spatial fields in the space of conductivities, we will choose several functions
(between one to four) in our reduced basis set to represent the manifold for µ. In the cases of one and two
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H = 1/5 true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4
LSM+0 13.58(44) 39.22(36) 39.22(36) 13.58(44) 13.58(44)
LSM+1 4.01(80) 36.75(72) 27.59(72) 4.01(80) 4.01(80)
LSM+2 3.93(116) 34.65(108) 28.06(108) 3.93(116) 3.93(116)

Table 1: Convergence results (energy norm in % and space dimension) for RB-MsFEM with the increasing
dimension of the coarse space. LSM+n indicates that the coarse spaces include eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, η = 104. µ = 1/2 (error with MsFEM 39.07%).

H = 1/5 true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4
LSM+0 13.61(44) 39.30(36) 39.30(36) 13.61(44) 13.61(44)
LSM+1 4.01(80) 39.29(72) 38.65(72) 4.01(80) 4.01(80)
LSM+2 3.93(116) 39.18(108) 26.48(108) 3.93(116) 3.93(116)

Table 2: Convergence results (energy norm in % and space dimension) for RB-MsFEM with the increasing
dimension of the coarse space. LSM+n indicates that the coarse spaces include eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, η = 106. µ = 1/2 (error with MsFEM 39.29%).

permeability fields, we will observe that when the online permeability field does not contain appropriate
features, then we can not obtain the convergence. Note that the greedy procedure selects the number of
dimension of the reduced space in terms of the parameter while the number of small eigenvalues controls
the number of basis functions at the online stage. We observe in Tables 1-4 that we indeed need Nrb ≥ 3
to capture all the details of the solution. In these tables, we compare the errors obtained with RB-
MsFEM when the online problem is solved with a corresponding number of basis functions. We observe
a convergence with respect to the number of local eigenvectors when Nrb is chosen such that it contains
spatial features included in the conductivity space. In particular, we observe that the error is comparable
to the error of “true” - when the online multiscale basis functions and local spectral problems are solved
for the online value of µ. However, the cost of the computations at the online stage is substantially lower
when RB is utilized. We have also computed weighted L2 error which shows a similar trend and these
errors are much lower (typically less than 2 %). Some numerical illustrations are depicted in Figure 5
where we plot the fine-scale solution (top left), the solution computed with one multiscale basis functions
computed for the online value of µ (top right), the solution computed with RB-MsFEM (bottom left), and
the solution computed with the spectral multiscale method (bottom right) where the initial partition of
unity and the local spectral problem are solved for the online value of µ. We see from this figure that
RB-MsFEM provides a solution that is close to the true, fine-scale, solution.

We use the same example as before for testing the two-level additive Schwarz preconditioners. In this
example, we only use coarse spaces based on reduced models. The numerical results are presented in Tables
5-8. In these numerical results, we observe that when the dimension of the reduced space is 3 and more, the
condition number of the preconditioned system is independent of the contrast. In all these examples, we
only choose the eigenvectors that correspond to eigenvalues that are small and asymptotically vanishing.
Note that in this example, we only choose basis functions corresponding to the interior nodes, while in
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H = 1/5 true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4
LSM+0 9.92(80) 92.56(36) 50.73(68) 9.85(80) 9.90(80)
LSM+1 3.19(116) 89.93(72) 20.65(112) 3.48(116) 3.48(116)
LSM+2 3.06(152) 88.76(108) 3.85(150) 3.06(152) 3.07(152)

Table 3: Convergence results (energy norm in % and space dimension) for RB-MsFEM with the increasing
dimension of the coarse space. LSM+n indicates that the coarse spaces include eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, η = 104. µ = 1 (error with MsFEM 48.87%).

H = 1/5 true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4
LSM+0 9.95(80) 92.73(36) 51.29(74) 9.93(80) 9.93(80)
LSM+1 3.19(116) 92.73(72) 14.88(112) 3.48(116) 3.48(116)
LSM+2 3.06(152) 92.63(108) 21.14(150) 3.06(152) 3.08(152)

Table 4: Convergence results (energy norm in % and space dimension) for RB-MsFEM with the increasing
dimension of the coarse space. LSM+n indicates that the coarse spaces include eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, η = 106. µ = 1 (error with MsFEM 49.09%).

Figure 5: Contrast η = 104, µ = 1, Nrb = 3, LSM+0.
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the coarse-grid approximation, we choose basis functions that also represent boundary nodes. We observe
that the number of iterations does not change as the contrast increases when spectral coarse spaces are
used. On the contrary, when using multiscale basis functions (one basis per coarse node), the condition
number of the preconditioned matrix increases as the contrast increases. The latter is due to the fact that
the coarse space does not contain enough degrees of freedom.

η MS true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4

105 47(1.36e+ 004) 27(8.69e+ 000) 42(2.02e+ 004) 45(1.75e+ 004) 26(9.34e+ 000) 26(9.34e+ 000)
107 57(1.36e+ 006) 31(7.81e+ 000) 52(2.02e+ 006) 53(2.02e+ 006) 28(9.34e+ 000) 28(9.34e+ 000)

Dim 16 24 16 16 24 24

Table 5: Number of iterations until convergence and estimated condition number for the PCG and different
values of the contrast η with µ = 1/2. We set the tolerance to 1e-10. Here H = 1/5 with h = 1/50.

η MS true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4

105 24(1.18e+ 001) 27(7.81e+ 000) 27(9.37e+ 000) 28(8.08e+ 000) 24(6.16e+ 000) 24(6.16e+ 000)
107 25(1.18e+ 001) 27(8.70e+ 000) 27(9.37e+ 000) 29(8.03e+ 000) 28(6.16e+ 000) 28(6.16e+ 000)

Dim 16 24 16 34 36 36

Table 6: Number of iterations until convergence and estimated condition number for the PCG and different
values of the contrast η with µ = 0. We set the tolerance to 1e-10. Here H = 1/5 with h = 1/50.

η MS true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4

105 27(1.58e+ 001) 29(7.81e+ 000) 34(1.01e+ 001) 28(5.88e+ 000) 28(5.88e+ 000) 27(5.88e+ 000)
107 27(1.58e+ 001) 29(7.81e+ 000) 35(1.01e+ 001) 30(5.87e+ 000) 27(5.87e+ 000) 27(5.87e+ 000)

Dim 16 60 40 60 60 60

Table 7: Number of iterations until convergence and estimated condition number for the PCG and different
values of the contrast η with µ = 1. We set the tolerance to 1e-10. Here H = 1/5 with h = 1/50.

In the second example, we would like to discuss how a good choice of initial multiscale basis functions
will allow achieving a dimension reduction. Indeed, via initial multiscale basis functions, we can incorporate
features that can be localized into the initial multiscale basis functions. This property of initial multiscale
basis functions works well when the initial partition of unity is computed based on the online value of µ.
However, this can be expensive and we attempt to find initial multiscale basis functions that can allow
achieving a dimension reduction. This is not always possible as will be argued later on. But we can achieve
this if we can construct initial multiscale spaces such that they span all inclusions that are in permeability
fields of κ(x;µ) = µκ0(x) + (1 − µ)κ1(x). In the permeability field shown in Figure 7, one can construct
initial multiscale basis functions that incorporate all features that can be localized. We will use the largest
value of µ to construct initial basis function. With these basis functions, we can localize all isolated
inclusions of κ(x;µ) that comes from κ1(x) and thus achieve a dimension reduction. Next, we demonstrate
numerical results for RB-MsFEM in Tables 9 and 10 for two different contrasts η = 104 and η = 106.
One can observe from this table the use of initial multiscale basis functions allows achieving a dimension
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η MS true Nrb = 1 Nrb = 2 Nrb = 3 Nrb = 4

105 48(1.16e+ 004) 27(8.69e+ 000) 44(1.86e+ 004) 45(1.62e+ 004) 26(9.34e+ 000) 26(9.34e+ 000)
107 57(1.16e+ 006) 29(8.70e+ 000) 52(1.86e+ 006) 54(1.86e+ 006) 28(9.34e+ 000) 28(9.34e+ 000)

Dim 16 24 16 16 24 24

Table 8: Number of iterations until convergence and estimated condition number for the PCG and different
values of the contrast η with µ = 1/3. We set the tolerance to 1e-10. Here H = 1/5 with h = 1/50.

H = 1/8 RB-LSM RB-L̃SM
LSM+0 11.85(156) 13.61(122)
LSM+1 4.68(237) 3.86(203)

Table 9: Convergence results (energy norm in % and space dimension) for RB-MsFEM with the increasing
dimension of the coarse space. LSM+n indicates that the coarse spaces include eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, η = 104. µ = 1/2 and Nrb = 3 (error with MsFEM 21.05%).

reduction for the coarse space without sacrificing the accuracy much. In particular, we achieve a similar
error for the coarse spaces with the dimension that is smaller thanks to a good choice of initial multiscale
basis functions. Some numerical illustrations are plotted in Figure 7 where we plot the fine-scale solution
(top left), the solution computed with one multiscale basis function computed for the online value of µ (top
right), the solution computed with RB-MsFEM with piecewise linear initial partition of unity (bottom left),
and the solution computed RB-MsFEM with multiscale initial partition of unity (bottom right). We see
from this figure that RB-MsFEM with initial multiscale basis functions (with smaller dimensional coarse
space) provides a solution that is close to the true, fine-scale, solution. Similar observations can be made
for two-level preconditioners.

Figure 6: From left to right: µ = 0, µ = 1, and µ = 1/2

Next, we would like to discuss possible estimates for Nrb and the choice of initial basis functions for
more general setup when the permeability has an affine representation and each κi(x) is a high-contrast
permeability field. In general, it may be difficult to estimate Nrb because one needs to identify distinct
permeability features in the family κ(x;µ). For example, in our first example, there were three distinct
permeability fields in κ(x;µ). In general, we will need to find out which high-conductivity regions of κi(x)

21



H = 1/8 RB-LSM RB-L̃SM
LSM+0 11.87(156) 13.59(122)
LSM+1 4.69(237) 3.84(203)

Table 10: Convergence results (energy norm in % and space dimension) for RB-MsFEM with the increasing
dimension of the coarse space. LSM+n indicates that the coarse spaces include eigenvectors corresponding
to small, asymptotically vanishing eigenvalues, and additional n eigenvectors corresponding to the next n
eigenvalues. Here, η = 106. µ = 1/2 and Nrb = 3 (error with MsFEM 21.16%).

Figure 7: Contrast η = 104, µ = 1, Nrb = 3, LSM+0
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(i = 1, ..., Q) can form channels in κ(x;µ) and how many combinations of these channels can be formed.
For example, if we take κ1(x) to have inclusions, while κ2(x),..., κQ(x) contain inclusions such that each
κ1(x) + κj(x) (j ̸= 1) form channels where these channels are not contained in any other combination
of κ1(x) + κi(x), i ̸= j. In this case, Nrb will be of order of Q because each κ1(x) + κj(x) along with
κi(x) will have distinct high-conductivity features. In general, channels can have complex structures and
these connected features may be localized to coarse regions. An initial multiscale basis functions can
incorporate some of these features and reduce the dimension. An advantage of the proposed method is
that it can identify an appropriate number of representative functions and, consequently estimate Nrb, as
our numerical results show.

4.1 Discussions on the accuracy of RB-MsFEM

For the accuracy of our approach, we need to include essential features of the parameter-dependent solution
space. For this reason, we need to choose (1) an appropriate Nrb and (2) the appropriate number of local
eigenfunctions and (3) appropriate initial multiscale basis functions. As for initial multiscale basis functions,
we would like to include all localizable features across the whole range of the parameter space. As we noted
this is not always possible. The error in the proposed approaches will be controlled by the dimension of
the coarse space (which includes the number of eigenfunctions we choose and the initial multiscale space)
and the number of the reduced space Nrb.

When parametrized permeability fields consist of a linear combination of distinct spatial fields that
contain channels and inclusions, we can give some insight into the convergence of the method. In this case,
for the initial multiscale space, one needs to choose functions that contain small-scale inclusions (that are
included within the coarse-grid block) of all permeability fields in the space (c.f., the second numerical
example). This can be easily done when κq(x) contains distinct inclusions and any κ(x;µ) contains some
of these inclusions. In this case, we need to choose initial multiscale basis functions such that they include
all inclusions (within coarse regions). As for the number of local eigenfunctions, we need to choose all small
eigenfunctions in the space and, with appropriate choice of initial multiscale space, the final dimension of
the coarse space can be reduced. As for the number of Nrb, one needs to choose all distinct important
features. E.g., in the first numerical example, we had three distinct spatial fields and the others can be
approximated as our numerical results showed.

There is a trade-off in the accuracy of the coarse-grid approximation (the number of eigenvectors chosen
to form the coarse space) and the approximation that is due to the selection of appropriate dimension of
reduced space (denoted by Nrb). This can be observed in our numerical results. E.g., we observe from
Table 3, the accuracy with LSM+2 for Nrb = 2 is about the same as that with LSM+1 for Nrb = 3. We
note that the accuracy of the coarse-grid approximation for an online µ is given by Hγ/λ∗

L+1, where λ∗
L+1

is the smallest of all the eigenvalues (over all coarse regions) that are not included in the coarse space.
The next approximation is due to the approximation of the coarse solution for the online parameter value.
The error in this approximation is due to the dimension of the reduced space (denoted by Nrb). These
two errors may be comparable for some cases and one needs to control both errors to achieve a desirable
tolerance. For example, if the desired error threshold is large, then one does not need many eigenvectors
to include in the coarse space and Nrb can be kept low.
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4.2 Reduced Basis for the partition of unity

It is possible to use the RB method for the partition of unity function. The main idea is the following.
We still pick a µ0 in the offline stage to define κ̃. We also define a reduced order model for the multiscale
basis function, so that we are able to use an adapted partition of unity when we define the multiscale basis
function in the online stage. For that purpose, we first need to rewrite the problem (23), in a reduced basis
manner. Introduce ϕi := χi − χ0

i , that solves

−div [(κ(x;µ0))∇ϕi(x)] = div
[
(κ(x;µ0))∇χ0

i (x)
]
in Ki, ϕi = 0 on ∂Ki.

The weak formulation of this problem can be written as

Q∑
q=1

Θq(µ)
(
aqKi

(ϕi, v)− bq(v)
)
= 0,

where

aqKi
(u, v) :=

∫
Ki

κq∇u · ∇v and bq(v) :=

∫
Ki

κq∇χ0
i · ∇v.

Next, we define some key ingredients of the greedy procedure. As in Section 3.3, this is an iterative proce-
dure that selects judicious {µj}1≤j≤Nrb

used for the definition of the spaceXNrb
:= span (ϕi(µj), 1 ≤ j ≤ Nrb).

Suppose that we have already defined N value of µ and therefore the space XN = span (ϕi(µj), 1 ≤ j ≤ N).
We now want to find µN+1 := max

µ
(∆N (µ)). First, we introduce the residual as

∀v ∈ H1(Ki), rN (v;µ) =

Q∑
q=1

Θq(µ)
(
aqKi

(ϕN
i , v)− bq(v)

)
,

where ϕN
i , with obvious notation, is the solution to

∀v ∈ XN ,

Q∑
q=1

Θq(µ)
(
aqKi

(ϕN
i , v)− bq(v)

)
= 0.

We then use the classical estimator for the RB method:

∆N := ∥eN (µ)∥H1(Ki),

where eN is implicitly defined by

∀v ∈ H1(Ki), (eN (µ), v)H1(Ki) = rN (v;µ).

The efficiency of such an approach has been already tested in a different context by [8].

4.3 Computational cost

In this section, we will compare the cost of our approach with the cost of using standard RB method,
which consists of using RB method for the problem (1) directly. Here we suppose that (1) the problem
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in Eq. (1) can be solved directly (note high condition number problem due to high contrast, and highly
detailed mesh due to small length scales in the coefficient) and (2) we do not consider the cost of the offline
computation and (3) we ignore the fact that we want to solve this problem for many right-hand side. All
these issues are main concerns when using directly the RB method to solve (1), while our approach is
designed to circumvent these difficulties. We discuss in the sequel that in the online stage we still speed-up
the computation. This is due to the fact that localization allows to separate the inversion of a full matrix,
by the inversion of many smaller (full) matrices (this step can be computed in parallel) and the inversion
of a sparse matrix (this can be done very efficiently) in our algorithm.

The main computational gain is due to the fact that at the online stage, we do not need all the features
that are in global solutions as in standard RB methods. Via local solutions and online basis computations,
we can identify small dimensional coarse spaces that are needed to compute the solution at the online stage
without sacrificing the accuracy. We note that local computations can be performed in parallel and thus
the computational time of solving local problems will be equivalent to that of solving one local problem.
Moreover, the coarse problem is sparse, while the standard RB technique will yield a dense system for
finding the solution.

Next, we discuss the computational cost. Assume that there are M coarse nodes. For each coarse
region, we have at most k important local eigenvectors that represent all essential features of the solution
space. Then, at the online stage, for each µ and in each coarse region, we solve a k × k-size eigenvalue
problem to identify basis functions. If we choose only a few basis functions for a particular µ, the cost
of solving the local eigenvalue problem will scale as k2 (for simplicity, we assume we have chosen one
basis function per coarse node). Moreover, these computations can be performed in parallel. To solve
the linear problem defined on a coarse grid, the number of operations will scale as M2 (M × M sparse
matrix is solved). The total cost for our procedure will scale as M2 +Mk2. In general, if there are only
k0 eigenvectors per coarse region selected to form multiscale basis functions, then the computational cost
is (k0M)2 +Mk0k

2.
To discuss the computational cost of the RB that uses global snapshots, we assume that there are L

snapshots of global solutions, u(1) = (u
(1)
1 , ..., u

(1)
mM ),..., u(L) = (u

(L)
1 , ..., u

(L)
mM ) that are selected, where

M is the number of coarse nodes and m is the number of fine nodes within a coarse region containing
a coarse node. We assume these regions are non-overlapping. The space of these global solutions has a
smaller dimension as discussed above. In particular, we assume that the restriction of the solution to a

coarse region i, that is spanned by ξ
(1)
i = (u

(1)
(i−1)m+1, ..., u

(1)
im),..., ξ

(L)
i = (u

(L)
(i−1)m+1, ..., u

(L)
im ), i = 1, ...,M ,

has the effective dimension k. We assume that the space span(ξ
(1)
i , ..., ξ

(L)
i ), that has the dimension

k, is spanned by ζ
(1)
i , ..., ζ

(k)
i . Consequently, the space of solutions u(1), ..., u(L) can be spanned by

Θ
(j)
(i) = (0.., 0, ζ

(j)
i , 0, ..., 0), i = 1, ...,M , j = 1, ..., k. Thus, the effective dimension of global snapshots is

kM . The Galerkin projection onto this space involves solving (kM) × (kM) dense matrix system, and
thus the work is (kM)2. On the other hand, when using our proposed approach, we solve (k0M)× (k0M)
sparse matrix system where one can achieve k0M computational cost if an optimal solver is employed.

Our proposed procedure will be more efficient for a large number of k’s and when only a few of these
local features are needed at the online stage, i.e., k0 is smaller than k. Our proposed approach also becomes
more efficient for large values of M , and when the problem is solved multiple times for different right hand
sides. Moreover, the computations of our procedure involve sparse matrix computations and can have high
parallel efficiency.
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5 Conclusions

In this paper, we propose an efficient approach for solving the parameter-dependent multiscale elliptic equa-
tion. In our approach, local reduced approximations are used to generate local multiscale basis functions.
The local problem setup combines techniques from spectral MsFEM and RB to achieve low dimensional
spaces to compute basis functions at the online stage. In particular, we start with an initial multiscale space
that is suitable for the whole range of parameter space. These functions are used to setup a local eigenvalue
problem that allows constructing local approximations for the solution. Reduced basis techniques are used
to construct small dimensional local problems that allow quickly solving the local eigenvalue problem for
the online value of the parameter. The greedy procedure is necessary to pick up the appropriate number
of representative fields. Taking the product of important eigenfunctions and initial multiscale basis func-
tions, we compute local basis functions. We discuss various choices for initial multiscale basis functions
for our parameter-dependent problem. Numerical results are presented. We discuss that the cost of online
computations is low and one can inexpensively solve the global problem. We discuss computational cost
and compare the proposed approaches with standard RB methods where global problems are solved to
generate reduced space. In particular, we discuss that the proposed approaches have lower computational
cost compared to standard RB approaches that use global solutions and the proposed approaches can be
easily parallelized.

Although the results presented in this paper are encouraging, there is scope for further exploration. As
our intent here was to demonstrate that one can efficiently compute local basis functions, we did not derive
rigorous error bounds involving both coarse-scale parameters and reduced basis space dimensions. This
error analysis will help us to choose a correct number of local eigenvectors and the dimension of the reduced
space and balance these errors. We also plan to study high-contrast problems where the magnitude of the
permeability varies continuously. These problems will need large-scale simulations. The applications of
the proposed methods to naturally fractured reservoirs is a subject of future research. In particular, we
will study how to incorporate known fracture models in local computations and the construction of basis
functions (cf. [22]). The extension of the proposed concepts to mass conservative discretization schemes
can be helpful in solving coupled flow and transport problems. We would also like to study the design and
analysis for initial multiscale spaces and the use of reduced basis concepts in the design of inexact local
solves in two-level Schwarz preconditioners.

6 Acknowledgements

YE would like to acknowledge partial support from NSF and DOE. JG would like to acknowledge partial
support from DOE. FT would like to acknowledge support from EOARD under Grant FA8655-10-C-4002.
We are grateful to anonymous reviewers for their comments that helped to improve the paper.

References

[1] J. E. Aarnes, On the use of a mixed multiscale finite element method for greater flexibility and increased
speed or improved accuracy in reservoir simulation, SIAM J. Multiscale Modeling and Simulation, 2
(2004), 421-439.

[2] J.E. Aarnes and Y. Efendiev, Mixed multiscale finite element for stochastic porous media flows, SIAM
Sci. Comp., Volume 30, Issue 5, pp. 2319-2339, 2008. DOI: 10.1137/07070108X.

26



[3] J. Aarnes and T. Hou, Multiscale domain decomposition methods for elliptic problems with high aspect
ratios, Acta Math. Appl. Sin. Engl. Ser., 18(1):63-76, 2002.

[4] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization, SIAM J.
Multiscale Modeling and Simulation, 4(3), 2005, 790-812.

[5] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, A multiscale mortar mixed finite element
method, SIAM J. Multiscale Modeling and Simulation, 6(1), 2007, 319-346.

[6] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera, An ’Empirical Interpolation’ Method: Appli-
cation to Efficient Reduced-Basis Discretization of Partial Differential Equations. CR Acad Sci Paris
Series I 339:667-672, 2004.

[7] S. Boyoval, Reduced-basis approach for homogenization beyond periodic setting, SIAM MMS, 7(1), 466-
494, 2008.
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