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Abstract. An abstract setting for robustly preconditioning symmetric positive definite
(SPD) operators is presented. The term “robust” refers to the property of the condition
numbers of the preconditioned systems being independent of mesh parameters and prob-
lem parameters. Important instances of such problem parameters are in particular (highly
varying) coefficients. The method belongs to the class of additive Schwarz preconditioners.
The core of the method is a robust stable decomposition of functions into several local and
one coarse component. The coarse component is contained in a coarse space whose con-
struction is based on the solution of local generalized eigenvalue problems. The paper gives
an overview of the results obtained in a recent paper by the authors. It, furthermore, fo-
cuses on the importance of weighted Poincaré inequalities (WPIs) for the analysis of stable
decompositions. WPIs have recently received attention in the setting of the scalar elliptic
case. In our abstract framework we extend the notion of WPIs to general SPD operators.
To demonstrate the applicability of the abstract preconditioner the scalar elliptic equation
and the stream function formulation of Brinkman’s equations in two spatial dimensions are
considered. Several numerical examples are presented.
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1 Introduction

The robust preconditioning of symmetric positive definite (SPD) operators has been an important
topic in the numerical analysis community. These operators correspond to symmetric coercive bi-
linear forms appearing in the weak formulation of various partial differential equations (PDEs) and
systems modeling e.g. heat conduction or fluid flow in porous media. The condition numbers of
the resulting linear systems typically depend on the mesh parameters of the underlying discretiza-
tions and variations in physical problem parameters, e.g. (highly) varying thermal conductivities in
compound media. Thus, the convergence rates of iterative methods like conjugate gradients (CG)
deteriorate as the mesh parameters decrease and the variations in problem parameters increase.
One is, therefore, interested in designing preconditioners yielding preconditioned systems whose
condition numbers are robust with respect to problem and mesh parameters.

Commonly used approaches include domain decomposition methods (cf. e.g. [12, 17]) and mul-
tilevel/multigrid algorithms (cf. e.g. [1, 9, 19]). For certain classes of problems, including the scalar
elliptic equation, −∇·(κ(x)∇φ) = f , these methods are successful in making the condition number
of the preconditioned system independent of the mesh parameter. E.g., it is known that for the
scalar elliptic equation a two-level overlapping domain decomposition preconditioner with gener-
ous overlap yields a condition number independent of mesh parameters (cf. e.g. [17, Section 3]).
However, designing preconditioners that are robust with respect to variations in the physical pa-
rameters, e.g., the contrast in the conductivity maxx∈Ω κ(x)/minx∈Ω κ(x), where Ω is the domain,
is more challenging. Some improvements in standard domain decomposition methods were made
in the case of special arrangements of the highly conductive regions with respect to the coarse
cells. The construction of preconditioners for these problems has been extensively studied in the
last decades (see e.g. [8, 12, 17]). E.g., it was shown that nonoverlapping domain decomposition
methods converge independently of the contrast (e.g. [11, 13] and [17, Sections 6.4.4 and 10.2.4])
when conductivity variations within coarse regions are bounded.
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Classical arguments to estimate the condition number of a two level overlapping domain de-
composition method for the scalar elliptic case use weighted Poincaré inequalities (WPIs) of the
form ∫

ω

κ(ψ − Iω0 ψ)2 dx ≤ C
∫
ω

κ|∇ψ|2 dx, (1)

where ω ⊂ Ω is a local subdomain and ψ ∈ H1(ω). The operator Iω0 ψ is a local representation
of the function ψ in the coarse space. The constant C in (1) appears in the final bound for the
condition number of the operator. Thus, it is desirable to obtain (1) with a constant independent
of the contrast. In [15, Section 4.5] this is achieved for the case of quasi-monotonic coefficients.
Other approaches consider a more general WPI, given by (1) with κ on the left hand side being
replaced by κ(x)|∇ξ|2, where ξ denotes a partition of unity function subordinate to ω (cf. [7]).

For (1) to hold with a constant independent of the contrast in κ the choice of the coarse space
is crucial. In particular, two main sets of coarse basis functions have been used in previous works:
(1) multiscale finite element functions with various boundary conditions (see e.g. [5, 8, 10]) and
(2) energy minimizing or trace minimizing functions (see e.g. [18, 21]). In these cases the coarse
spaces have one coarse basis function per coarse node, and the corresponding overlapping domain
decomposition methods are robust when the high-conductivity regions are isolated islands.

In [6, 7] the construction of coarse basis functions is based on the solution of local generalized
eigenvalue problems. Using a proper projection onto the resulting coarse space, WPIs with contrast
independent constants are obtained. This result holds true for general configurations of κ. Using
multiscale partition of unity functions accounts for isolated local features within coarse blocks
yielding a reduced dimension of the coarse space (see [7]). The idea of using local and global
eigenvectors to construct coarse spaces within two-level and multi-level techniques has been used
before (e.g. [2, 16]). However, these authors did not study the convergence with respect to physical
parameters and did not use generalized eigenvalue problems to achieve small dimensional coarse
spaces.

In [4] the construction of coarse spaces based on generalized eigenfunctions has been generalized
to abstract SPD bilinear forms. It is shown that the resulting coarse spaces yield robust additive
Schwarz preconditioners, such that the resulting condition numbers are controlled by the maximal
number of overlaps of subdomains and a predefined threshold determining which generalized eigen-
functions enter the coarse space construction. Also, to reduce the dimension of the coarse space
multiscale partition of unity functions are considered, which as in [7] are shown to capture local
features. The general framework of [4] was shown to be applicable to scalar elliptic equations and
the stream function formulation of the corresponding mixed forms, Stokes’ and Brinkman’s equa-
tions. The latter models fluid flow in highly porous media and can be viewed as a generalization
of Stokes’ and Darcy’s equations (see [20] and the references therein).

The robustness properties of the methods in [6, 7] and [4] are similar. Nevertheless, the gener-
alized eigenvalue problems of the general framework in [4] applied to the scalar elliptic case differ
from those studied in [6, 7]. In the paper at hand we investigate the relation between the two
approaches. In particular we show that in the scalar elliptic case the validity of (1), with a coarse
space as in [6], is equivalent to an estimate in [4] which only involves the bilinear form of the
problem. Since the latter estimate can be formulated in an abstract setting, it can be considered a
generalization of the concept of WPIs.

The paper is organized as follows. In Section 2 we introduce the problem setting and outline
the construction of abstract robust preconditioners as discussed in [4]. Section 3 briefly addresses
the application of this abstract framework to the scalar elliptic equation and Brinkman’s problem.
In Section 4, we discuss the relation between the abstract framework in [4] and WPIs. Section 5
is devoted to some numerical results showing the robustness of the abstract preconditioner when
applied to the scalar elliptic and Brinkman’s equations.

2 Constructing Coarse Spaces in Robust Stable Decompositions

Let Ω ⊂ Rn be a bounded polyhedral domain, and let TH be a quasiuniform quadrilateral (n = 2)
or hexahedral (n = 3) triangulation of Ω with mesh-parameter H. Let X = {xj}nx

j=1 be the set
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of nodes of TH , and for each xj ∈ X we set Ωj := interior(
⋃
{T |T ∈ TH , xj ∈ T}), i.e., Ωj

is the union of all cells surrounding xj . We define Ij := {i = 1, . . . , nx |Ωi ∩ Ωj 6= ∅} and set
nI := max

j=1,...,nx

#Ij . Thus, nI denotes the maximal number of overlaps of the Ωj ’s.

For a separable Hilbert space V0 = V0(Ω) of functions defined on Ω and for any subdomain
ω ⊂ Ω we set V (ω) := {φ|ω |φ ∈ V0}. Using this notation, we make the following assumptions:

(A1) aω(·, ·) : (V (ω),V (ω)) → R, for subdomains ω ⊂ Ω, is a family of symmetric positive semi-
definite bounded bilinear forms. For ω = Ω we drop the subindex and we assume that a(·, ·) is
positive definite. For ease of notation we write aω(φ, ψ) instead of aω(φ|ω, ψ|ω) for all φ, ψ ∈ V0.

(A2) For any φ ∈ V0 and any family of pairwisely disjoint subdomains {ωj}nω
j=1 with ∪nω

j=1ωj = Ω

we have a(φ, φ) =
∑nω

j=1 aωj
(φ, φ).

(A3) For a suitable subspace V0(Ωj) of V (Ωj) we have that aΩj
(·, ·) : (V0(Ωj),V0(Ωj)) → R is

positive definite for all j = 1, . . . , nx.
(A4) {ξj}nx

j=1 : Ω → [0, 1] is a family of functions such that: (a)
∑nx

j=1 ξj ≡ 1 on Ω; (b) supp(ξj) = Ωj
for j = 1, . . . , nx; (c) For φ ∈ V0 we have ξjφ ∈ V0 and (ξjφ)|Ωj

∈ V0(Ωj) for j = 1, . . . , nx.

Now, we would like to construct a “coarse” subspace VH = VH(Ω) of V0 with the following
property: For any φ ∈ V0 there is a representation

φ =
nx∑
j=0

φj with φ0 ∈ VH , φj ∈ V0(Ωj), j = 1, . . . , nx such that
nx∑
j=0

a(φj , φj) ≤ Ca(φ, φ) . (2)

By abstract domain decomposition theory (see e.g. [17, Section 2.3]) we know that the additive
Schwarz preconditioner corresponding to (2) yields a condition number that only depends on the
constant C in (2) and nI . Thus, we would like to “control” this constant and keep the dimension
of VH “as small as possible”.

For the construction of VH we define the following symmetric bilinear form for j = 1, . . . , nx.

mΩj
(·, ·) : (V (Ωj),V (Ωj))→ R, with mΩj

(φ, ψ) :=
∑
i∈Ij

aΩj
(ξjξiφ, ξjξiψ) (3)

To ease the notation, as we did for the bilinear form a(·, ·), we write mΩj(φ, ψ) instead of
mΩj

(
φ|Ωj

, ψ|Ωj

)
for any φ, ψ ∈ V0.

Due to (A4) we have that (3) is well-defined. Also note, that since supp(ξj) = Ωj we have
ξjφ|Ωj

≡ 0⇔ φ|Ωj
≡ 0, which implies that mΩj

(·, ·) : (V (Ωj),V (Ωj))→ R is positive definite.
Now for j = 1, . . . , nx we consider the generalized eigenvalue problems: Find (λji , ϕ

j
i ) ∈

(R, V (Ωj)) such that

aΩj

(
ψ, ϕji

)
= λji mΩj

(
ψ, ϕji

)
, ∀ψ ∈ V (Ωj). (4)

Without loss of generality we assume that the eigenvalues are ordered, i.e., 0 ≤ λj1 ≤ λj2 ≤ . . . ≤
λji ≤ λ

j
i+1 ≤ . . . . We now state our final assumption.

(A5) For a sufficiently small “threshold” τ−1
λ > 0 we may choose Lj ∈ N0 such that λjLj+1 ≥ τ−1

λ

for all j = 1, . . . , nx. Without loss of generality we may assume τ−1
λ < 1.

It is easy to see that any two eigenfunctions corresponding to two distinct eigenvalues are
aΩj

(·, ·)- and mΩj
(·, ·)-orthogonal. By orthogonalizing those eigenfunctions corresponding to one

and the same eigenvalue, we can thus without loss of generality assume that all computed eigen-
functions are pairwisely mΩj(·, ·)-orthonormal. Now, every function in V (Ωj) has an expansion
with respect to the eigenfunctions of (4).

For φ ∈ V0 let φj0 be the mΩj(·, ·)-orthogonal projection of φ|Ωj onto the first Lj eigenfunctions
of (4), where Lj ∈ N0 is some non-negative integer, i.e.,

mΩj

(
φ− φj0, ϕ

j
i

)
= 0, ∀ i = 1, . . . , Lj . (5)
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If Lj = 0, we set φj0 ≡ 0. It is easy to see that φ|Ωj
− φj0 =

∑
i>Lj

mΩj

(
φ, ϕji

)
ϕji . Now, we note

that

mΩj(φ, φ) = mΩj

φ,∑
i≥1

mΩj

(
φ, ϕji

)
ϕji

 =
∑
i≥1

mΩj

(
φ, ϕji

)2

,

and by (4) we see that

aΩj
(φ, φ) =

∑
i≥1

mΩj

(
φ, ϕji

)
aΩj

(
φ, ϕji

)
=
∑
i≥1

λjimΩj

(
φ, ϕji

)2

.

Combining these two observations we note that

mΩj

(
φ− φj0, φ− φ

j
0

)
≤ τλ aΩj

(
φ− φj0, φ− φ

j
0

)
≤ τλ aΩj(φ, φ) . (6)

With these preliminaries we are now able to define a decomposition described in (2): First, we
specify the coarse space by

VH := span{ξjϕji | j = 1, . . . , nx and i = 1, . . . , Lj}. (7)

Then, for any φ ∈ V let

φ0 :=
nx∑
j=1

ξjφ
j
0 ∈ VH , and for j = 1, . . . , nx φj := (ξj(φ− φ0))|Ωj

∈ V0(Ωj), (8)

where φj0 is chosen according to (5). Note that with these definitions φ =
∑nx

j=0 φj .

Theorem 1. Using the notation above and assuming that (A1)–(A5) hold, the decomposition de-

fined in (8) satisfies
nx∑
j=0

a(φj , φj) ≤ (2 + C τλ)a(φ, φ) , where C only depends on nI .

Proof. See [4, Theorem 3.4].

3 Application to Scalar Elliptic and Brinkman’s Equations

Scalar Elliptic Equation

The scalar elliptic equation is given by

−∇ · (κ∇φ) = f, x ∈ Ω, and φ = 0, x ∈ ∂Ω, (9)

where 0 < κ ∈ L∞(Ω), φ ∈ H1
0 (Ω), and f ∈ L2(Ω). With V0 := H1

0 (Ω), the corresponding
variational formulation reads: Find φ ∈ V0 such that for all ψ ∈ V0

aSE(φ, ψ) :=
∫
Ω

κ(x)∇φ · ∇ψ dx =
∫
Ω

fψ dx.

It is easy to see that with V0(Ωj) := H1
0 (Ωj) ⊂ V0|Ωj

and ξj the Lagrange finite element function
of degree 1 corresponding to xj , j = 1, . . . , nx, we have that (A1)–(A4) hold. Now consider (4)
with a(·, ·) and m(·, ·) replaced by aSE(·, ·) and mSE(·, ·), where mSE(·, ·) is given by (3) with
aSE(·, ·) instead of a(·, ·). It can then be shown (see [4, Section 4.1]), that for a binary medium,
i.e., a medium with

κ(x) =
{
κmin in Ωs

κmax in Ωp,
with Ω

s ∪Ωp = Ω and κmax � κmin > 0,

the (Lj + 1)-st eigenvalue of (4), i.e., λLj+1 is uniformly (with respect to H and κmax/κmin)
bounded from below. Here Lj denotes the number of connected components of Ωs ∩ Ωj . Thus,
also (A5) is established with τλ independent of the contrast κmax/κmin. Note that by Theorem 1
this implies the robustness of the stable decomposition (8) and the corresponding additive Schwarz
preconditioner.
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Brinkman’s Equations

Brinkman’s equations modeling flows in highly porous media are given by

−µ∆u +∇p+ µκ−1u = f in Ω, ∇ · u = 0 in Ω, and u = 0 on ∂Ω, (10)

where p ∈ L2(Ω)/R, u ∈ (H1
0 (Ω))2, f ∈ (L2(Ω))2, µ ∈ R+, and κ ∈ L∞(Ω), with κ > 0. Here we

assume that Ω ⊂ R2 is simply connected. The variational formulation of the Brinkman problem
is: Find (u, p) ∈ ((H1

0 (Ω))2, L2
0(Ω)) such that for all (v, q) ∈ ((H1

0 (Ω))2, L2
0(Ω)) we have∫

Ω

µ∇u : ∇v dx +
∫
Ω

µκ−1u · v dx−
∫
Ω

p∇ · v dx−
∫
Ω

q∇ · u dx =
∫
Ω

f · v dx. (11)

As described in [4, Section 4] we may adopt the setting of stream functions. For V0 :={
ψ ∈ H2(Ω) ∩H1

0 (Ω) | ∂ψ∂n |∂Ω = 0
}

the variational stream function formulation reads: Find φ ∈ V0

such that for all ψ ∈ V0 we have

aB(φ, ψ) :=
∫
Ω

µ
(
∇(∇×φ) : ∇(∇×ψ) + κ−1∇×φ · ∇×ψ

)
dx =

∫
Ω

f · ∇×ψ dx. (12)

Here {ξj}nx
j=1 denotes a sufficiently regular partition of unity and V0(Ωj) :={

ψ ∈ H2(Ωj) ∩H1
0 (Ωj) | ∂ψ∂n |∂Ωj = 0

}
. As shown in [4, Section 4.4] we can verify (A1)-(A5),

where for the case of a binary medium, τλ in (A5) can again be chosen independently of the
contrast κmax/κmin.

Remark 1. Instead of solving (12) for the stream function φ and then recovering u = ∇×φ, one may
equivalently use the coarse space corresponding to (12) to construct a coarse space corresponding
to the original formulation (11) by applying ∇× to the coarse stream basis functions. By this, one
obtains an equivalent robust additive Schwarz preconditioner for the formulation of Brinkman’s
problem in the primal variables u and p (for details see [12, Section 10.4.2]).

4 Connection to Weighted Poincaré inequalities

Poincaré type inequalities play a crucial role in the analysis of domain decomposition methods.
In the scalar elliptic case, taking VH to be the space of Lagrange finite elements of degree 1
corresponding to the coarse mesh TH , one can show by using the standard Poincaré inequality that
the constant in (2) is independent of the mesh parameter H (see [17, Chapter 3] and the references
therein).

Recently, for scalar elliptic problems with varying κ(x), so called “weighted” Poincaré inequal-
ities (WPIs) have received increasing attention (see [6, 7, 14]). According to [6, 7, 14] the validity of
an appropriate WPI with a constant independent of the contrast κmax/κmin yields a corresponding
stable decomposition such that the constant in (2) is independent of the contrast.

For giving the precise form of the WPI used in [6] we consider the following generalized eigen-
value problem for each Ωj , j = 1, . . . , nx: Find (λ̂ji , ϕ̂

j
i ) ∈ (R, H1(Ωj)) such that

aSEΩj

(
ψ, ϕ̂ji

)
= λ̂ji m̂

SE
Ωj

(
ψ, ϕ̂ji

)
, ∀ψ ∈ H1(Ωj), (13)

where m̂SE
Ωj

(φ, ψ) := H−2

∫
Ωj

κ(x)φψ dx for φ, ψ ∈ H1(Ωj) is the weighted mass matrix scaled by

H−2. This scaling is not considered in [6], however, we introduce it here to simplify the exposition.
The WPI derived in [6] then reads as follows:

m̂SE
Ωj

(
φ− φ̂j0, φ− φ̂

j
0

)
≤ τbλaSEΩj

(φ, φ) , (14)

where similarly to above φ̂j0 is the m̂SE
Ωj

(·, ·)-orthogonal projection of φ onto those eigenfunctions of
(13) whose eigenvalues are below a suitably chosen threshold τ−1bλ . Note, that (14) can be obtained
by exactly the same reasoning as (6). Due to the scaling by H−2 the eigenvalues in (13) are
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independent of H. In addition, it can be shown by the same reasoning as in [4, Section 4.1], that
for a binary medium the (Lj+1)-st eigenvalue of (13), i.e., λ̂Lj+1 is bounded from below, uniformly
with respect to κmax/κmin, where as above, Lj denotes the number of connected components of
Ωs∩Ωj . Note, that this result in particular implies the existence of τ−1bλ > 0 such that only a finite
number of eigenvalues are below this threshold. This is analogous to (A5), and as for τ−1

λ we may
assume without loss of generality that τ−1bλ < 1.

Before pointing out a connection between this WPI and our estimate (6), we introduce a
triangular (for n = 2) or tetrahedral (for n = 3) mesh corresponding to TH . According to e.g. [3]
we can obtain a quasiuniform triangular/tetrahedral mesh, denoted by T̃H , by subdividing cells in
TH without introducing new nodes, i.e., the nodes of T̃H are given by X .

Proposition 1. Let {ξj}nx
j=1 be the piecewise linear Lagrange finite element functions correspond-

ing to T̃H . Then we have that inequalities (6) (with a(·, ·) = aSE(·, ·) and m(·, ·) = mSE(·, ·)) and
(14) are up to constants equivalent in the following sense:

For φ̂j0 satisfying (14) we have mSE
Ωj

(
φ− φ̂j0, φ− φ̂

j
0

)
≤ Cτbλ aSEΩj

(φ, φ) . (15)

For φj0 satisfying (6) we have m̂SE
Ωj

(
φ− φj0, φ− φ

j
0

)
≤ Cτλ aSEΩj

(φ, φ) . (16)

I.e., (up to constant C) (6) holds with φ̂j0 instead of φj0 and τbλ instead of τλ, and vice versa, (14)
holds with φj0 instead of φ̂j0 and τλ instead of τbλ. Here the constants C are independent of H, τbλ,
and τλ but may depend on nI and the geometry of Ωj.

Proof. Since ξj is piecewise linear we note that
1
CH

≤ min{|∇ξj(x)| | x ∈ T̊ , for T ∈ T̃H , T̊ ⊂ Ωj} and ‖∇ξi‖L∞(Ωj)
≤ C

H
for i ∈ Ij , (17)

where |·| denotes some norm on Rn and C is a constant only depending on the geometry of Ωj .
For proving (15) we note that by (3) we have

mSE
Ωj

(
φ− φ̂j0, φ− φ̂

j
0

)
=
∑
i∈Ij

aSEΩj

(
ξjξi(φ− φ̂j0), ξjξi(φ− φ̂j0)

)
=
∑
i∈Ij

∫
Ωj

κ
∣∣∣∇(ξjξi(φ− φ̂j0)

)∣∣∣2 dx
≤ 2

∑
i∈Ij

∫
Ωj

κ

(∣∣∣∇(φ− φ̂j0)
∣∣∣2 +

∣∣∣∇(ξjξi)(φ− φ̂j0)
∣∣∣2) dx,

where we have used Schwarz’ inequality and the fact that |ξi| < 1 for i ∈ Ij . Thus by (17),

mSE
Ωj

(
φ− φ̂j0, φ− φ̂

j
0

)
≤ CaSEΩj

(
φ− φ̂j0, φ− φ̂

j
0

)
+

C

H2

∑
i∈Ij

∫
Ωj

κ(φ− φ̂j0)2 dx

≤ C aSEΩj
(φ, φ) + C m̂SE

Ωj

(
φ− φ̂j0, φ− φ̂

j
0

)
≤ Cτbλ aSEΩj

(φ, φ) ,

where we have used that φ̂j0 satisfies (14), τbλ > 1, and aSEΩj

(
φ− φ̂j0, φ− φ̂

j
0

)
≤ aSEΩj

(φ, φ), which
holds by an analogous reasoning as the second inequality in (6). This establishes (15).

For verifying (16) we first note that by the definition of m̂SE
Ωj

(·, ·) and (17) we have

m̂SE
Ωj

(
φ− φj0, φ− φ

j
0

)
= H−2

∫
Ωj

κ(φ− φj0)2 dx

≤ C
∫
Ωj

κ |∇ξj |2 (φ− φj0)2 dx = C

∫
Ωj

κ
∣∣∣∑
i∈Ij

∇(ξiξj)(φ− φj0)
∣∣∣2 dx,

where we have used that
∑
i∈Ij

ξi ≡ 1 in Ωj . Since∇(ξiξj(φ−φj0)) = ∇(ξiξj)(φ−φj0)+ξiξj∇(φ−φj0),
Schwarz’ inequality yields

1
C
m̂SE
Ωj

(
φ− φj0, φ− φ

j
0

)
≤
∑
i∈Ij

∫
Ωj

κ
∣∣∣∇(ξiξj(φ− φj0))

∣∣∣2 + κ (ξiξj)2︸ ︷︷ ︸
≤1

∣∣∣∇(φ− φj0)
∣∣∣2 dx

≤
∑
i∈Ij

aSEΩj

(
ξiξj(φ− φj0), ξiξj(φ− φj0)

)
+ CaSEΩj

(
φ− φj0, φ− φ

j
0

)
≤ mSE

Ωj

(
φ− φj0, φ− φ

j
0

)
+ CaSEΩj

(φ, φ) ,
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where we have used the second inequality in (6). Thus, m̂SE
Ωj

(
φ− φj0, φ− φ

j
0

)
≤ C τλ a

SE
Ωj

(φ, φ) ,

by our assumption that φj0 satisfies (6) and τλ > 1. This establishes (16).
Remark 2 (Generalized Weighted Poincaré Inequality). Proposition 1 allows the interpretation of
(6) as a generalized weighted Poincaré inequality (GWPI). For the scalar elliptic case, i.e., for
a(·, ·) = aSE(·, ·) and m(·, ·) = mSE(·, ·), Proposition 1 shows that in terms of the robustness
of the stable decomposition it does not matter whether the coarse space is based on eigenmodes
corresponding to (4) or (13). For more complicated bilinear forms, such as aB(·, ·), it may, however,
be rather difficult to formulate a suitable analogue to the weighted Poincaré inequality (14). Using
our abstract approach this is straightforward, since the bilinear form mΩj(·, ·) is entirely based on
the partition of unity {ξi}nx

i=1 and the bilinear form a(·, ·) (see (3)).

5 Numerical Results

In this section, we give some numerical examples showing the robustness of the additive Schwarz
preconditioner using the spectral coarse space VH introduced in [4] and outlined above (see (7)).
We consider applications to the equations in Section 3 with varying contrast κmax/κmin. For more
details and further numerical experiments we refer the reader to [4]. We consider the geometry
shown in Figure 1 where the black parts denote regions of high conductivity (for the scalar elliptic
case) and low permeability (in the Brinkman case), respectively. Tables 1(a) and 1(b) show the
results for the scalar elliptic and Brinkman case, respectively.

Fig. 1. Sample geometry. The
mesh indicates the 8 × 8 coarse
triangulation. The fine triangu-
lation is 64× 64.

In the scalar elliptic case we use a conforming finite element
discretization with bilinear Lagrange elements yielding a fine space
of dimension 4225. The right hand side f in (9) is chosen to com-
pensate for the boundary condition of linear temperature drop in
x-direction, i.e., φ(x) = 1−x1 on ∂Ω. As partition of unity {ξj}nx

j=1,
we use bilinear Lagrange finite element functions corresponding to
the coarse mesh TH .

Brinkman’s equations are discretized with an H(div)-
conforming Discontinuous Galerkin discretization (cf. [20] and the
references therein) using Raviart-Thomas finite elements of degree
1 (RT1) yielding a fine space of dimension 49408. It is well-known
that in two spatial dimensions the stream function space corre-
sponding to the RT1 space is given by Lagrange biquadratic finite
elements. The coarse (divergence free) velocity space is constructed
as outlined in Remark 1. The right hand side f is chosen to com-
pensate for the boundary condition of unit flow in x-direction, i.e.,
u = e1 on ∂Ω. As partition of unity we choose piecewise polynomi-
als of degree 3, such that all first derivatives and the lowest mixed

derivatives are continuous and ξj(xi) = δi,j for i, j = 1, . . . , nx.
In all numerical examples we choose τ−1

λ = 0.5 and prescribe a relative reduction of the precon-
ditioned residual by a factor of 1e−6 as stopping criterion. For comparison reasons we also provide
numerical results for additive Schwarz preconditioners using a standard coarse space, denoted by
V st
H . For the scalar elliptic case this is given by bilinear Lagrange finite element functions corre-

sponding to the coarse mesh. For the Brinkman problem the standard coarse space is given by the
span of the curl of the partition of unity functions corresponding to interior coarse mesh nodes. The
numerical results clearly show the robustness of the preconditioners using spectral coarse spaces,
whereas the condition numbers corresponding to the preconditioners using standard coarse spaces
deteriorate with increasing contrasts.

Acknowledgments

The research of Y. Efendiev, J. Galvis, and R. Lazarov was supported in parts by award KUS-C1-
016-04, made by King Abdullah University of Science and Technology (KAUST). The research of
R. Lazarov and J. Willems was supported in parts by NSF Grant DMS-1016525.



8 Efendiev, Galvis, Lazarov, Willems

(a) Scalar elliptic case.

Standard coarse
space V st

H

Spectral coarse
space VH

κmax/κmin dim V st
H cond. # dim. VH cond. #

1e2 49 3.50e1 70 15.5

1e3 49 3.11e2 124 26.7

1e4 49 3.06e3 145 7.92

1e5 49 3.06e4 148 7.90

1e6 49 2.71e5 148 7.90

(b) Brinkman case.

Standard coarse
space V st

H

Spectral coarse
space VH

κmax/κmin dim V st
H cond. # dim. VH cond. #

1e2 49 1.88e1 66 12.6

1e3 49 2.68e1 75 19.2

1e4 49 1.32e2 99 21.9

1e5 49 1.00e3 125 17.7

1e6 49 9.31e3 145 26.0

Table 1. Numerical results for standard and spectral coarse spaces. We report the dimension of the coarse
space and the preconditioned condition number for varying contrasts.
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