
An energy-conserving discontinuous multiscale finite

element method for the wave equation in

heterogeneous media

Eric T. Chung∗ Yalchin Efendiev† Richard L. Gibson, Jr.‡

February 5, 2011

Abstract

Seismic data are routinely used to infer in situ properties of earth materials on many
scales, ranging from global studies to investigations of surficial geological formations.
While inversion and imaging algorithms utilizing these data have improved steadily,
there are remaining challenges that make detailed measurements of the properties of
some geologic materials very difficult. For example, the determination of the con-
centration and orientation of fracture systems is prohibitively expensive to simulate
on the fine grid and, thus, some type of coarse-grid simulations are needed. In this
paper, we describe a new multiscale finite element algorithm for simulating seismic
wave propagation in heterogeneous media. This method solves the wave equation on
a coarse grid using multiscale basis functions and a global coupling mechanism to
relate information between fine and coarse grids. Using a mixed formulation of the
wave equation and staggered discontinuous basis functions, the proposed multiscale
methods have the following properties.

• The total wave energy is conserved.

• Mass matrix is diagonal on a coarse grid and explicit energy-preserving time
discretization does not require solving a linear system at each time step.

• Multiscale basis functions can accurately capture the subgrid variations of the
solution and the time stepping is performed on a coarse grid.
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We discuss various subgrid capturing mechanism and present some preliminary nu-
merical results.

1 Introduction

Seismic data provide important constraints on in situ earth properties on many scales,
ranging from global studies to investigations of the properties of shallow soils and sur-
ficial geologic formations comprising the first several meters of the earth. A broad
variety of methods have been developed to analyze the data to provide images of
earth structure, including tomography algorithms that provide 3-D images of struc-
ture from wavefields propagating through, and possibly scattered by, the geological
features of interest [43, 31, 45, 40, 4, 33, 36, 15]. Other solutions emphasize the anal-
ysis of reflected waves, especially from artificial sources of seismic waves, and such
measurements provide some of the most important information for applications such
as hydrocarbon exploration [2, 14, 26, 3]. Recent research has also been extending
the application of such methods to apply them to seismic waves generated by natural
sources to image the structure of Earth’s crust and mantle [5, 42, 28].

However, significant challenges remain when the goal is to relate seismic measure-
ments to detailed variations in rock properties, e.g., fractured media. For example,
CO2 sequestration provides a compelling approach for mitigating the global warming
effects of greenhouse gases [1]. Sequestration in geologic formations such as known
hydrocarbon reservoirs provides one of the most mature and effective technologies for
reduction of greenhouse gas levels [41, 1, 25, 6]. Nonetheless, challenges in the imple-
mentation of sequestration efforts remain, as long term storage of CO2 faces potential
difficulties associated with potential movement of CO2 through fractures, processes
that may be accelerated because of the low density and viscosity of CO2 [19]. Geo-
chemical reactions over long time scales also complicate the process [24, 29, 18, 12].
Seismic reflection data have significant potential for monitoring the movement of CO2,
since the low bulk modulus and density lead to strong contrasts in elastic properties
of rock, thereby facilitating the detection of leaks. However, heterogeneities have a
critical influence on subsurface fluid flow because of the dramatic contrast in perme-
ability between fractures and the surrounding rock, and because the fracture network
thereby controls the overall flow patterns. An important goal is therefore not only
to use seismic data to detect CO2, but also to infer fine-scale features of the earth
materials.

Given the practical importance of incorporating the influence of fine-scale hetero-
geneities into seismic modeling and inversion algorithms, there are therefore strong
incentives to develop new, more accurate, efficient numerical modeling schemes to pro-
vide more reliable results. Current practice in modeling seismic wave propagation in
complex, 3-D media typically relies on finite difference solutions to the wave equation
using regular, Cartesian grids. These algorithms in principle provide exact results,
but there are important limitations. First, the discretization is typically on the order
of 10 to 20 m in each coordinate direction, with results restricted to relatively low
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frequencies (e.g., 30 Hz) [35, 34]. When the targets of interest are subtle features such
as fracture distributions, this discretization may be too coarse to accurately describe
them. Recent studies show that there are inherent sources of error in regular grid
finite difference algorithms because they do not accurately model the geometry of
interfaces [34]. Furthermore, models are forced to rely on upscaling procedures to
estimate elastic properties on the coarse grid, and there is no guarantee that this will
provide accurate and reliable results [23]. In the presence of complex heterogeneities,
the accuracy of upscaling methods deteriorate. In fact, complex fracture networks
can introduce important non-local effects that can not be approximated via simple
upscaling methods [30, 22]. To capture the effects of these features, more complex
subgrid models need to be introduced that can take into account important non-local
features.

In this paper, we present a new class of energy-preserving discontinuous multiscale
finite element methods for modeling wave propogation in heterogeneous media. The
multiscale finite element methods we propose offer a flexible approach that has not
yet been applied to seismic wave propagation in detail. The main idea of these ap-
proaches is to represent the effects of the small scales on the large ones by constructing
multiscale basis functions. This allows performing the time discretization on a coarse
grid. We note that there are several multiscale methods (e.g., [39, 37, 38, 17]) that
are proposed in the literature for solving wave equations. To our best knowledge, [39]
is the first paper where the multiscale method is employed to the solve wave equa-
tion. Our work shares similarities with [39, 37, 38], though it has some important
differences. In particular, we employ a different coarse-scale discretization that allows
having diagonal mass matrices that are easy to invert. We would like to use the pro-
posed methods when the coarse grid is not too coarse and is capable of resolving the
initial condition. For this reason, it is important to have a diagonal mass matrice that
will help to speed-up the computations substantially. Another difference between the
proposed method and the methods in [39, 37, 38] that they are based on different
multiscale coupling frameworks though these frameworks share similarities.

One of the main aspects of the proposed methods is the construction of multiscale
basis functions that can capture the effects of the small scales accurately. In our pre-
vious work [22], we have developed several subgrid models where the basis functions
accomplish this goal. In particular, we have used both local and global information
within mixed and Galerkin discretization of wave equations in [22]. In general, this
approach solves the relevant equations on a coarse grid using pre-computed basis
functions that can recover the fine-scale features of the solution such as those that
would be generated by fractures. However, the mass matrices in this formulation are
not local and may require expensive inversions within explicit schemes. Recently,
there are newly developed optimal discontinuous Galerkin methods [10, 9] that give
both explicit and energy conserving numerical schemes. Following the framework
in [10, 9], our proposed approaches avoid the inversion of global mass matrices by
allowing multiscale basis functions to have discontinuities. In designing multiscale
finite element methods, we consider mixed formulations of the wave equation. With
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appropriate temporal discretizations, this allows the design of numerical schemes that
conserve energy, which is important in simulations of wave propagation. Numerical
results are presented.

Our proposed approach can be seen as a multiscale FDTD method and the co-
volume method [7] for wave simulations. All these methods are known to be explicit
and energy conserving, and are hence very efficient for the numerical approximation
of waves.

2 Coarse-scale multiscale finite element discretiza-

tion

In this section, we will describe a coarse-scale formulation of the wave equation. We
will use a formulation that provides energy conservation and results in an explicit
scheme. Local multiscale basis functions will be employed to demonstrate the main
concept of these new multiscale coupling techniques. We will discuss advanced subgrid
capturing mechanisms and how to improve our methods by representing local features
more accurately.

To describe the coarse-scale formulation, we let Ω be a bounded domain in Rd

(d = 2, 3) and T > 0. We will consider the acoustic wave equations in mixed form

ρ
∂u

∂t
−∇ · v = f, (x, t) ∈ Ω × [0, T ], (1)

A
∂v

∂t
−∇u = 0, (x, t) ∈ Ω × [0, T ]. (2)

The extension to elastic wave equations is under investigation.
In the above system (1)-(2), the scalar function u(x, t), representing pressure for

example, and the vector field v(x, t), representing particle velocity for example, are
the unknowns to be approximated. The function f is a source term. The coefficient
ρ(x) satisfies ρ(x) ≥ ρ0 > 0 and the d×d symmetric matrix A satisfies qT Aq ≥ a0|q|2,
with a0 > 0, for all q ∈ Rd and for all x ∈ Ω. We supplement the system (1)-(2)
with the homogeneous Neumann boundary conditions v · n = 0 on ∂Ω and initial
conditions u(x, 0) = u0(x) and v(x, 0) = v0(x) for x ∈ Ω.

One important physical property described by the system (1)-(2) is the following
conservation of energy: if f = 0, then

d

dt

∫
Ω

1

2
(ρu2 + vT Av) dx = 0,

d

dt

∫
Ω′

1

2
(ρu2 + vT Av) dx =

∫
∂Ω′

u (v · n) dσ (3)

for any subdomain Ω′ ⊂ Ω. We would like to preserve this relation in our numerical
simulations. We will use the main concepts developed in [10] to achieve the energy
conservation and diagonal mass matrices. We would like to point out that there
have been many developments within finite element methods for the wave equation
in mixed formulation and for the elastic wave equation [13, 21, 32, 11]. In particular,
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Figure 1: Illustration of rectangular elements for mixed multiscale basis functions.

the mixed finite element methods developed in [21, 11] result in block diagonal mass
matrices. In this paper we follow the framework presented in [10].

In [22], a general mixed finite element formulation of wave equations is presented
that can use multiple local information in constructing multiscale basis functions.
However, in this formulation, the mass matrix is global, and it is computationally
expensive to invert this matrix. Our goal is to develop a mixed multiscale finite
element approach where the mass matrix is block diagonal and easy to invert by em-
ploying discontinuous basis functions for v. We present this approach for rectangular
domains. These methods can be extended to handle general unstructured grids.

We will follow the conceptual discretization framework proposed in [10]. Similar
finite elements have been proposed for flow in porous media in [27]. For these ap-
proaches, the mass matrix is block diagonal and basis functions are discontinuous,
allowing more flexibility. To describe the basis functions, we first consider rectangular
elements. In Figure 1, four coarse blocks are plotted. Each piecewise constant basis
function η for u is supported in each rectangle K. Next, we will define basis functions
for v.

Basis functions for v are defined for each edge of a coarse block. The key idea of
our approach is that, for each edge of a coarse block, we will only define a basis for the
normal component of v, where the normal direction is the one that is perpendicular
to the edge. We show this construction for one of the edges S as it is depicted in
Figure 1. The support of this basis function ψS is restricted to KD

1

⋃
KD

2 , i.e., only
half of each rectangular element having the edge S. To construct multiscale basis
functions, we first find λS such that it solves the following equations in KD

1 and KD
2 :

∇ · λS = 0, λS = A−1∇φS. (4)

In each KD
1 and KD

2 , the solution is subject to the following boundary conditions:

λS · n = 0 on S2, S3, S5, S6. (5)
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For the edge S, we have
λS · n = 1 on S, (6)

where S is the length of the edge S. Because we would like to have divergence
free λS, the unit flow needs to be distributed on S1 and S4. One can use various
distributions depending on the spatial variations in heterogeneous material properties
(see discussions later). Here, for simplicity we use

λS · n = 1 on S1

λS · n = 1 on S4.
(7)

Then the basis function for the edge S is defined as ψS = λS · n where n is the unit
normal vector for the edge S. The above construction is to demonstrate the basis
function for the edge S and this process is repeated for each coarse-grid block edge.
These basis functions are used to represent v, v =

∑
S vSψS, where vS are coarse-scale

values of the solution on the edge S.
We remark that for the case with constant coefficient, that is when A is a scalar

multiple of the identity matrix, the basis function ψS = 1 everywhere on KD
1

⋃
KD

2 .
Thus our method reduces to the standard FDTD method for wave propagation [44].
In this sense, the method developed in this paper can be seen as a multiscale FDTD
method for wave simulations.

We denote basis functions for representing u by η and basis functions for repre-
senting v by ψ. Notice that at each point in the domain except those discontinuous
points of ψ, we can write ψ = (ψS, 0)T or ψ = (0, ψS)T for some edge S. We denote
the coarse space spanned by basis functions η by Uh and the coarse space spanned by
velocity basis functions by Vh. The coarse-scale problem is defined as follows. Find
uh ∈ Uh and vh ∈ Vh such that for all z ∈ Uh and q ∈ Vh we have∫

Ω

ρ
∂uh

∂t
z dx + Bh(vh, z) = Fh(z), (8)

∫
Ω

A
∂vh

∂t
· q dx − B∗

h(uh, q) = 0, (9)

where Fh, Bh and B∗

h are defined by

Fh(z) =

∫
Ω

f z dx (10)

Bh(vh, z) = −
∑
K

∫
∂K

(vh · n) z dσ, (11)

B∗

h(uh, q) =
∑
KS

∫
∂KS

uh(q · n) dσ, (12)

where in (11) K denotes the support of a basis function in Uh while in (12) KS denotes
the support of a basis function in Vh. By the construction of the spaces Uh and Vh, we
will show that the operator B∗

h is the adjoint of Bh (see also [10, 9]) in the following
lemma. This is the key step for energy conservation.
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Lemma 1 For all z ∈ Uh and q ∈ Vh we have

Bh(q, z) = B∗

h(z, q).

Proof. By the definition of Bh,

Bh(q, z) = −
∑
K

∫
∂K

(q · n) z dσ

=

∫
Ω

q · ∇z dx −
∑
K

∫
∂K

(q · n) z dσ,

where the last equality follows from the fact that z is a piecewise constant function,
and the gradient operator is defined element-wise. Applying element-wise Green’s
identity (see also [10]), we obtain

Bh(q, z) = −
∫

Ω

z∇ · q dx +
∑
KS

∫
∂KS

z(q · n) dσ.

We recall that q is taken as a divergence-free vector, see (4). Hence

Bh(q, z) =
∑
KS

∫
∂KS

z(q · n) dσ = B∗

h(z, q).

¤

Writing the system (8)-(9) in matrix form, we get

M1
dU

dt
+ BV = F, (13)

M2
dV

dt
− BT U = 0, (14)

where U is the vector of coefficients in the expansion uh =
∑

i uiηi and V is the vector
of coefficients in the expansion vh =

∑
S vSψS. The vector F is defined as Fi = Fh(ηi)

and the matrix B is defined by Bij = B(ψi, ηj). The mass matrices M1 and M2 are
defined by

(M1)ij =

∫
Ω

ρ ηi ηj dx, (M2)ij =

∫
Ω

ψT
i Aψj dx.

Since the basis functions ηi in Uh and ψj in Vh have disjoint supports, M1 and M2

are diagonal matrices.
The time discretization for our scheme will use a leap-frog scheme which conserves

energy (see e.g. [8]). The resulting discretization has the form: given (Un, V n+ 1

2 ),

find (Un+1, V n+ 3

2 ) by solving

M1U
n+1 = M1U

n − ∆t BV n+ 1

2 + ∆t F n+ 1

2 (15)

M2V
n+ 3

2 = M2V
n+ 1

2 + ∆t BT Un+1, (16)

where Un represents the function uh(x, tn) and V n+ 1

2 represents the function vh(x, tn+ 1

2

).

Note that since M1 and M2 are diagonal matrices, the system (15)-(16) can be trivially
inverted.
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2.1 Discussion on subgrid capturing

The approach discussed above employs the constant boundary conditions for multi-
scale basis functions defined in (5), (6), and (7). It is known that these boundary
conditions result in resonance errors [20, 16] and, thus, give large subgrid errors. The
utilization of local solutions in larger domains, oversampling, improves subgrid cap-
turing [20]. Oversampling methods use the solutions of the local problems in larger
domains to impose boundary conditions. In some cases, these regions will be taken
as a whole domain (as in [16]). Once these local solutions are defined, they are used
in turn to impose boundary conditions for multiscale basis functions. Several alterna-
tives for implementing oversampling have been proposed (e.g., see [16] for a review).
We can also study the extensions of these basis functions when we need to span sev-
eral vector fields. In particular, we will use vi’s to impose boundary conditions for the
basis functions on the interior edges (faces). The main goal is to span v1,..., vN with
the constructed multiscale basis functions. This extension is needed for achieving
better subgrid accuracy.

One can show that the proposed approach can recover the homogenized solution
when there is a scale separation, e.g., when A = A(y), y = x/ǫ, is a periodic function
with respect to y. In particular, using first-order corrector expansion of the local
solution for the basis function, ψi = A−1(I + ǫ∇yN)∇η0

i + ..., where N is the solution
of the cell problem, ∇y · A−1(I + ∇yN) = 0, η0

i is the homogenized component of ηi

we can show that the mass matrix M2 is approximately the same as the mass matrix
that corresponds to the wave problem with homogenized coefficients. The rigorous
proof of this fact is more difficult. Similar results can be shown for M1. This also
indicates that one can use local solutions in smaller representative volumes ([16]),
e.g., in a periodic cell for periodic heterogeneities, to compute M2 when there is a
scale separation.

In this paper, our main goal is to discuss multiscale coupling and a new multi-
scale basis functions that are discontinuous. In a subsequent paper, we will study
advanced subgrid capturing mechanisms that employ oversampling or limited global
information. The proposed methods can be extended to unstructured coarse grids.

3 Numerical results

In this section, we present some preliminary numerical results. We only consider
multscale basis functions with constant boundary conditions (see (5), (6), and (7)),
but we will present results for several models of heterogeneous distributions of material
properties. Our main goal is to show that the proposed methods provide a robust
framework for coupling discontinuous multiscale basis functions. As we mentioned,
some attractive features of the proposed methods are (1) energy conservation and
(2) local mass matrix on a coarse grid. The first set of test results demonstrates
the accuracy of the solutions for arbitrary, smoothly varying initial conditions, and
the second set of solutions shows that our scheme correctly handles models of that
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localized, point sources that are typically applied in seismic reflection experiments.

3.1 Examples with smoothly varying initial conditions

In our first set of numerical simulations, we take ρ = 1 and compare results for various
distributions of isotropic, scalar coefficients A = A(x)δij. In these examples, the fine
grid is 400 × 400, the coarse grid is 20 × 20, and the domain size is 1 × 1. Zero
Neumann boundary conditions are imposed on external boundaries. Initial velocity
v is taken to be zero and the initial pressure field u is taken to be

u(x1, x2) = cos(πx1) + cos(πx2).

We note that initial conditions need to be resolved on the coarse grid for multiscale
methods, as is the case for this simulation; otherwise extra basis functions are needed
to represent additional fine-scale features due to initial conditions or source terms.
We present simulation results at t = 0.3.

In the first numerical example, we take

A−1(x1, x2) = 3 + sin2(80πx1) + sin2(80πx2). (17)

In Figure 2, we depict the total wave energy for the fine-scale solution (red) and
coarse-scale solution (blue). The coarse-scale solution energy is almost the same as
that for the fine-scale solution. In Figure 3, we depict both fine- and coarse-scale
solutions for u and the x1 and x2 components of v at t = 0.3. The fine-scale solutions
are shown on the top row, while the corresponding coarse-scale solutions are presented
on the bottom row. Though there are some discrepancies, the coarse-scale solution
captures the main features of the fine-scale solution accurately. Moreover, we do
not observe any spurious features in the coarse-scale solutions. Denoting the relative
errors in u and the x1 and x2 components of v as Eu, Ev1, and Ev2, respectively, we
find the following values at t = 0.3: Eu = 0.01, Ev1 = 0.046, and Ev2 = 0.046. All
errors are computed using the L2 norm.

In the second numerical example, A−1 is taken a realization of a random field with
exponential covariance function

exp(−|x1 − x2|
L1

− |y1 − y2|
L2

), (18)

where the correlation lengths are L1 = 1.0 and L2 = 0.05. We use standard Karhunen-
Loeve expansion to generate a realization of the random field. We take the variance to
be σ2 = 0.2. Larger variations introduce bigger errors and may require better subgrid
capturing mechanisms to obtain accurate approximation of the solution. This is
currently under investigation. A−1 is plotted in Figure 4 (left). In the right portion
of Figure 4, we show the total wave energy for fine-scale solution (designated by red
color) and coarse-scale solution (designated by blue color). As for the previous results,
the coarse-scale solution predicts the energy accurately. Figure 5 compares the fine-
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Figure 2: Energy as a function of time for coarse- and fine-scale solutions for shorter
(left) and longer (right) time intervals. Periodic case.
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Figure 3: Comparison of the solution at time t = 0.3. Top-left: fine-scale solution.
Top-middle: fine-scale x1 component of velocity. Top-right: fine-scale x2 compo-
nent of velocity. Bottom-left: coarse-scale solution. Bottom-middle: coarse-scale
x1-velocity. Bottom-right: coarse-scale x2-velocity. Periodic case.
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Figure 4: Left: Coefficients A (see 18). Right: Energy as a function of time for coarse-
and fine-scale solutions. Random case with L1 = 1.0 and L2 = 0.05.

and coarse-scale solutions u and the two components of v at t = 0.3. Fine-scale
solutions are depicted on the top row, while corresponding coarse-scale solutions are
depicted on the bottom row. The coarse-scale solution captures the main features of
the fine-scale solution and the relative errors at t = 0.3 are: Eu = 0.011, Ev1 = 0.109,
and Ev2 = 0.046.

In the next numerical example, A−1 is again taken as a realization of a random
field with exponential covariance function in (18), but the correlation lengths are
set to L1 = 0.4 and L2 = 0.05. We again take the variance to be σ2 = 0.2. A−1

is plotted in Figure 6 (left figure). On the right figure of Figure 6, we depict the
total wave energy for fine-scale solution (designated by red color) and coarse-scale
solution (designated by blue color). We see that the coarse-scale solution can very
accurately approximate the fine-scale solution in terms of total energy. In Figure 7,
we depict fine-scale solution u and components of v as well as coarse-scale solution u
and component of v at t = 0.1 and t = 0.3. Fine-scale solutions are depicted on the
top row, while corresponding coarse-scale solutions are depicted on the bottom row.
Again, we observe that the coarse-scale solution captures the main features of the
fine-scale solution. We find the following errors at t = 0.3: Eu = 0.01, Ev1 = 0.089,
and Ev2 = 0.046.

3.2 Examples with Gaussian source

Seismic reflection experiments record wavefields generated by localized sources applied
to a small volume within the earth or a small area on the surface of the earth. In
this next set of examples, we implement such a source to simulate the propagation of
body waves that are typically utilized to estimate the properties of earth materials.
As in the previous simulations, we take ρ = 1. In all of these examples, the fine
grid is 2000 × 2000, the coarse grid is 200 × 200, and the domain size is 1 × 1.
Zero Neumann boundary conditions are imposed on external boundaries to suppress
artificial reflections. Initial velocity v is taken to be zero and the initial pressure field
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Figure 7: Comparison of the solution at time t = 0.3. Top-left: fine-scale solution.
Top-middle: fine-scale x1 component of velocity. Top-right: fine-scale x2 component
of velocity. Bottom-left: coarse-scale solution. Bottom-middle: coarse-scale x1 ve-
locity component. Bottom-right: coarse-scale x2 velocity component. Random case
with L1 = 0.4 and L2 = 0.05 (Fig. 6).

u is taken to be
u(x1, x2) = e−50

√
(x1−0.5)2+(x2−0.5)2 .

We take
A−1(x1, x2) = 3 + sin2(800πx1) + sin2(800πx2). (19)

The initial condition for u and the energy behavior are shown in Figure 8. Numerical
results are shown in Figure 9. In Figure 10, we also present the numerical solution
obtained with a coarse grid without using the multiscale basis. In the latter, we only
solve the problem on a coarse grid and do not perform downscaling with multiscale
basis functions. The wave clearly travels with an incorrect velocity. Moreover, the
relative errors are Eu = 0.0916, Ev1 = 0.106, and Ev2 = 0.106.

4 Conclusions

In this paper, we propose a mixed multiscale finite element method that uses discon-
tinuous basis functions. The proposed method can accurately solve wave propagation
on a coarse grid. Our methods can be efficient for seismic wave propagation problems
where the equations need to be solved many times, and one can re-use multiscale
basis functions. Moreover, subgrid information in the multiscale basis functions pro-
vides access to fine-scale features of the solution. The proposed methods avoid mass
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Figure 9: Comparison of the solution at time t = 0.1. Top-left: fine-scale solution.
Top-middle: fine-scale x1 component of velocity. Top-right: fine-scale x2 compo-
nent of velocity. Bottom-left: coarse-scale solution. Bottom-middle: coarse-scale x1

velocity component. Bottom-right: coarse-scale x2 velocity component.

14



 

 

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

−0.1

−0.05

0

0.05

0.1

 

 

−0.1

−0.05

0

0.05

0.1

Figure 10: Comparison of the solution at time t = 0.1. Left: coarse-scale solution.
Middle: coarse-scale x1 velocity component. Right: coarse-scale x2 velocity compo-
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matrix inversion as was demonstrated in the paper. Using leap-frog time discretiza-
tion, one can achieve energy conservation. In the paper, we also discuss the use of
various subgrid capturing mechanisms to improve the accuracy of these multiscale
methods by modifying boundary conditions of the basis functions. Numerical results
are presented.
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