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Abstract

The aim of this work is to study composites in which carbon fibers coated
with radially aligned carbon nanotubes are embedded in a matrix. The effec-
tive properties of these composites are identified using the asymptotic expan-
sion homogenization method in two steps. Homogenization is performed in
different coordinate system, the cylindrical and the Cartesian, and numerical
examples are presented.
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1. Introduction

Despite their recent discovery by Iijima (1991), the carbon nanotubes
(CNTs) have attracted considerable research attention. Nowadays a large
variety of composites containing CNTs have been manufactured (Milo et al.,
1999; Peigney et al., 2000; Potschke et al., 2004,Wagner et al., 1998; Lourie
and Wagner, 1998; Star et al., 2001; McCarthy et al., 2002; Zhu et al., 2003).
This scientific interest is derived from the CNTs exceptional properties. Car-
bon nanotubes are reported to have an axial Young’s modulus in the range of
300 - 1000 GPa, up to five times the stiffness and with half the density of SiC
fibers, while their theoretical elongation to break reaches 30-40% (Yakobson
and Smalley, 1997; Yakobson et al., 1997; Yu et al., 2000; Wang et al., 2001;
Salvetat-Delmotte and Rubio, 2002; Fisher et al., 2002; Popov, 2004).
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Modeling of composites containing CNTs has also grown significantly in
recent years. The mechanical response in tension of a single CNT embed-
ded in polymer via finite element analysis was studied by Liu and Chen
(2003), while Odegard et al. (2003) have modeled aligned and misaligned
CNT composites using the equivalent continuum method in conjunction with
the Mori-Tanaka micromechanics method. Fisher et al. (2002, 2003) stud-
ied the effects of nanotube waviness on the effective composite properties
using finite element analysis and the micromechanics Mori-Tanaka method.
Hadjiev et al. (2006) considered buckling of CNTs within an epoxy matrix.
Several efforts in CNT composite modeling have focused on the inclusion
of less than ideal CNT adhesion to the matrix (Wagner, 2002; Frankland
et al., 2003; Griebel and Hamaekers, 2004). The clustering of CNTs in the
polymer matrix was studied in Seidel and Lagoudas (2006). In Spanos and
Kontsos (2008) nanocomposite properties were computed using Monte Carlo
finite element method. Molecular Dynamics (MD) simulations have used to
obtain the stress-strain behavior of CNTs embedded in a polymer matrix
(Frankland et al., 2002), or the properties of the interphase between CNTs
and polymer (Awasthi et al., 2009). In all these modeling efforts, the carbon
nanotubes are embedded directly in a polymer matrix.

In this work we focus on composites containing carbon fibers, which are
coated with radially aligned carbon nanotubes (“fuzzy fibers”). In these
“fuzzy fiber” composites, the interphase layer between the fiber and the ma-
trix can be seen as a separate composite material consisting of CNTs in
radial arrangement inside a matrix. In this perspective, the “fuzzy fiber”
can be studied as a two concentric cylinders material, the fiber and the inter-
phase layer. The elastic response of homogeneous and non-homogeneous
cylinders under different boundary conditions was studied by Chatterjee
(1970); Horgan and Chan (1999a,b); Chen et al. (2000); Tarn and Wang
(2001); Tarn (2002); Ruhi et al. (2005); Hosseini Kordkheili and Naghdabadi
(2007); Chatzigeorgiou et al. (2008); Tsukrov and Drach (2010); Nie and
Batra (2010a,b,c).

Our goal is to obtain the effective mechanical properties of unidirectional
“fuzzy fiber” composites. In order to achieve it we use a multiscale ap-
proach based on the asymptotic expansion homogenization method (AEH).
The AEH method is well documented in the literature for periodic composites
(Sanchez-Palencia, 1978; Bensoussan et al., 1978; Kalamkarov and Kolpakov,
1997; Chung et al., 2001), whose periodicity can be represented in the Carte-
sian coordinate system. In this paper, due to the structure of the interphase
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layer (angular periodicity), we present a modified version of the AEH method,
in which the homogenized properties of the composite are obtained in two
steps. Initially, the properties of the interphase layer are computed through
homogenization with respect to a cylindrical coordinate system. Then, the
homogenized layer is introduced in the actual “fuzzy fiber” composite, which
is homogenized with respect to a Cartesian coordinate system.

The structure of this paper is the following: in Section 2 we describe the
characteristics of the “fuzzy fiber” composites and the mathematical assump-
tions. The first step of homogenization, which refers to the nanocomposite
layer of a “fuzzy fiber” is presented in Section 3. Section 4 discusses the
second step of homogenization in the mesoscale. A numerical example is
presented in Section 5, and the final section includes the major conclusions.

2. “Fuzzy fiber” composites

The “fuzzy fiber” composite we want to study is a fiber composite material
system, in which a carbon fiber (CF) is coated with radially aligned carbon
nanotubes (CNTs) (Figure 1). The “fuzzy fiber” is embedded in a matrix,
which can be an epoxy. The intermediate layer between the CF and the
matrix, consisting of CNTs and matrix, will be denoted in the sequel as
nanocomposite (NCP). The CF is represented here as a long cylinder, while
the CNTs are represented as hollow tubes of very large length, compared to
their diameter.

Figure 1: “Fuzzy fiber”: Carbon fiber coated with radially aligned carbon nanotubes.

The composite we investigate consists of unidirectional “fuzzy fibers”,
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distributed in a hexagonal form inside the matrix (Figure 2). The hexagonal
distribution represents efficiently a random distribution of the fibers in the
matrix (Hashin and Rosen, 1964).

(a) (b)

-

Figure 2: a) “Fuzzy fiber” composite and b) unit cell of the composite.

In order to obtain the effective properties of the composite, we are us-
ing the asymptotic expansion homogenization (AEH) method, which is a
two scale homogenization method. The AEH is a well established method
(Sanchez-Palencia, 1978; Bensoussan et al., 1978; Kalamkarov and Kolpakov,
1997), in which 2 scales are taken into account, the macroscale and the mi-
croscale. In a Cartesian coordinate system framework, the macroscale is
described by the coordinates (x1,x2,x3), while the microscale by the coor-

dinates (
x1

ε
,
x2

ε
,
x3

ε
), where ε is the characteristic length of the periodic cell.

The idea of the method is that the displacements are written in an asymp-
totic series form with respect to ε and the expanded forms of the equilibrium
equations lead to ε−1 terms (microequations) and ε0 terms (macroequations).
From the microequations we obtain the necessary quantities, whose averages
give as the homogenized properties used in the macroequations.

In our composite system, the unit cell of Figure 2b consists of 3 different
material systems, the carbon fiber, the nanocomposite and the matrix. The
nanocomposite though by itself is a composite (Figure 3a), whose periodic
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cell is represented in cylindrical coordinate system. Its structure can include
CNTs in tetragonal (Figure 3b) or hexagonal (Figure 3c) array. In this case, in
addition to the characteristic length ε, we need to introduce the characteristic
length of the nanocomposite δ. This leads to three series of coordinates,

the macroscale (x1,x2,x3), the mesoscale (
x1

ε
,

x2

ε
,
x3

ε
) and the microscale

(
x1

δ
,
x2

δ
,
x3

δ
). The characteristic lengths δ and ε can be related with one as

the square power of the other. In this work though we prefer to use two
independent characteristic lengths, in order to allow the independency of the
two scales. Since the AEH method is based on the idea of ε or δ tending to
zero, the microscale characteristic length δ and the mesoscale characteristic
length ε can be seen as independently tending to zero. If one of the two
characteristic lengths is not close to zero (for instance, if we have very few
CNTs in the nanocomposite, δ is not close to zero) then the homogenization
in this scale is not necessarily accurate.

In order to solve efficiently this 3 scale problem, we split it into two 2 scale
problems. The first problem is describing the relation between the microscale
and the mesoscale, and focuses in the computation of the effective properties
of the NCP. The NCP effective properties are used in the second problem
which deals with the connection between the mesoscale with the macroscale.

The homogenization of a “fuzzy fiber” composite can be put into a general
framework of homogenization with multiple metrics. As in homogenization
of a “fuzzy fiber” composite, there are many applications where small-scale
features can have periodic or regular forms that can be handled with existing
homogenization techniques. For example, one may need to select a certain
coordinate system at a given scale to have periodicity or sufficient regularity.
We will discuss some examples after presenting the homogenization. Consider
a material whose properties are defined on N different scales

C(
x

ε1

,
x

ε2

, ...,
x

εN

),

where we do not assume a periodicity at any scales. Assume that the period-
icity can be achieved at any of the scales if one can consider an appropriate
coordinate system. For example, the cylindrical coordinate system provides
periodic microstructure at the scale N , while for the scale N − 1, we may
need to choose the spherical coordinate system to achieve periodicity at that
scale. Any coordinate system is defined via a metric tensor G = (gij). We
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(a)

(b) (c)

Figure 3: a) Cross section of the nanocomposite, b) tetragonal unit cell of the nanocom-
posite and c) hexagonal unit cell of the nanocomposite.
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denote the metric that gives homogenization-amenable coordinate system for
ith scale by Gi. Then, we re-write our material properties as

C(
xG1

ε1

,
xG2

ε2

, ...,
xGN

εN

), (1)

where εN � ... � ε1 and Gi’s are the metrics for ith coordinate system where
homogenization is performed.

As we mentioned above that the metric elements G = (gij) can correspond
to some well-known coordinate transformations (e.g., spherical or cylindrical)
or can be non-trivial transformations as in the case of problems without scale
separation (Owhadi and Zhang, 2007; Efendiev and Hou, 2009). In Owhadi
and Zhang (2007) it was shown that in the case of no-scale separation, by
choosing the metric correctly, one can smooth the solution and thus, the
solution can be approximated by piecewise linear functions on new coordinate
system. The metric here is defined via a solution of cell problems in a large
domain. Consequently, in general, one needs to consider appropriate metrics
at different scales to take advantage of the regularity of the solution or special
features.

To carry out the homogenization in a media where different coordinate
metrics are used at different scales, we start the homogenization from the
smallest scale by freezing coordinates in all larger scales. Once the homog-
enization is performed at the corresponding metric, the material properties
are transformed to the metric of the next scale. One requirement is that the
metric needs not to vary rapidly at the scale of the homogenized variable so
that when transforming to the next coordinate system, the smallest scales
are removed. More precisely, assume that the scale εN is being homogenized
in the metric GN . Then,

C∗(
xG1

ε1

,
xG2

ε2

, ...,
xGN−1

εN

) = HGN

(
C(

xG1

ε1

,
xG2

ε2

, ...,
xGN

εN

)

)
,

where HGN
is the homogenization operator (generally, nonlinear operator) in

coordinate system with metric GN . To do this homogenization, coefficients
are frozen at the scales ε1, ..., εN−1, and then transformed to the coordinate
system with the metric GN . At this scale, the coefficients are homogenized
and then transformed to GN−1. One needs to ensure that this transformation
does not bring back εN scale. For this reason we need to assume that GN

does not depend on εN , i.e., the transformation metric does not vary rapidly
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at the scale εN . The mathematical error analysis will require some additional
conditions on metrics such as boundedness of the transformation tensor. In
this paper, our new framework is applied to an example problem.

3. Nanocomposite layer of a “fuzzy fiber” composite

In this section we are going to investigate the effective properties of the
NCP. This intermediate layer of the “fuzzy fibers” composites consists of
radially aligned CNTs and matrix (Figure 3a). The unit cell of the NCP is
shown in Figure 3b. The effective mechanical properties of the nanocomposite
will be obtained using the asymptotic expansion homogenization method. In
this approach two scales are considered, the mesoscale and the microscale
with characteristic length δ. In cylindrical coordinates we have the meso

coordinates (r, θ, z)1 and the micro coordinates (
r

δ
,
θ

δ
,
z

δ
) → (r̄, θ̄, z̄) . The

choice of the cylindrical coordinate system has two main advantages: a)
due to the NCP structure, there is no fast variation in the radial direction,
reducing the microscale equations to 2-D, b) allows us to represent in a
rigorous way the homogenization procedure and c) the periodicity of the
microstructure is represented easier with respect to θ̄ and z̄. For clarity and
simplification, we denote the axes (r, θ, z) as (1, 2, 3) and we use the Einstein
summation rule for double indices. Additionally, we introduce the operators
Li for the mesoscale and L̄i for the microscale, where

L1 =
∂

∂r
, L2 =

1

r

∂

∂θ
, L3 =

∂

∂z
, (2)

L̄1 =
∂

∂r̄
, L̄2 =

1

r

∂

∂θ̄
, L̄3 =

∂

∂z̄
. (3)

The aim of the asymptotic expansion homogenization (AEH) method is
to identify the behavior of the composite material, when the size of the mi-
crostructure becomes infinitesimally small, i.e. δ → 0. In all the quantities
(displacements, strains, stresses, stiffness components) we will use the su-
perscript δ, denoting that we refer to a material point, which can be in the
matrix, in the CNT or in the void. The strain-displacement relation of the

1For simplicity in the expressions, we omit the mesoscale characteristic length ε
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material system in cylindrical coordinates read2

ε̂δ
11 = L1û

δ
1, ε̂δ

22 = L2û
δ
2 +

ûδ
1

r
, ε̂δ

33 = L3û
δ
3,

ε̂δ
23 =

1

2

(
L2û

δ
3 + L3û

δ
2

)
, ε̂δ

13 =
1

2

(
L1û

δ
3 + L3û

δ
1

)
,

ε̂δ
12 =

1

2

(
L1û

δ
2 + L2û

δ
1 −

ûδ
2

r

)
.

(4)

Ignoring inertia and body forces, the equilibrium equations are written as

Ljσ̂
δ
1j +

σ̂δ
11 − σ̂δ

22

r
= 0, Ljσ̂

δ
2j + 2

σ̂δ
12

r
= 0, Ljσ̂

δ
3j +

σ̂δ
13

r
= 0. (5)

Finally, the Hooke’s law is written

σ̂δ
ij = Ĉδ

ijklε̂
δ
kl. (6)

The stiffness components Ĉδ
ijkl are generally spatially dependent. At the

microscale level it depends on the microcoordinates θ̄ and z̄. The material
parameters vary very slowly in the radial direction and depend on the meso-
coordinate r. Due to the geometry of the CNT (only its center is independent
on r), the stiffness components present local discontinuity with respect to r.
The discontinuity appears only when we move from the void to the CNT and
from the CNT to the matrix. So we can write

Ĉδ
ijkl = Ĉδ

ijkl(r, θ̄, z̄), slow variation with respect to r. (7)

In the AEH method, the displacements are represented in a series expan-
sion form

ûδ
i = û

(0)
i (r, θ, z) + δû

(1)
i (r, θ, z, θ̄, z̄) + δ2û

(2)
i (r, θ, z, θ̄, z̄) + ..., (8)

where û
(0)
i denotes the mesodisplacement and û

(1)
i , û

(2)
i e.t.c. are periodic

functions and represent the oscillating terms. The derivatives can be written
in the form

Li = Li +
1

δ
L̄i. (9)

2In the sequel, we will use ˆ to denote that the specific quantity refers to cylindrical
coordinate system.
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Using (8) and (9), the strains in (4) can be written in the form

ε̂δ
ij = ε̂

(0)
ij + δε̂

(1)
ij + ..., (10)

where

ε̂
(m)
ij = ε̂

(m∗)
ij +

1

2

(
L̄iû

(m+1)
j + L̄jû

(m+1)
i

)
, m = 0, 1, 2, ... (11)

and

ε̂
(m∗)
11 = L1û

(m)
1 , ε̂

(m∗)
22 = L2û

(m)
2 +

û
(m)
1

r
, ε̂

(m∗)
33 = L3û

(m)
3 ,

ε̂
(m∗)
23 =

1

2

(
L3û

(m)
2 + L2û

(m)
3

)
, ε̂

(m∗)
13 =

1

2

(
L1û

(m)
3 + L3û

(m)
1

)
,

ε̂
(m∗)
12 =

1

2

(
L2û

(m)
1 + L1û

(m)
2 − û

(m)
2

r

)
.

(12)

From the Hooke’s law (6) and equation (10) we can write the expanded form
of the stresses

σ̂δ
ij = σ̂

(0)
ij + δσ̂

(1)
ij + ..., (13)

where
σ̂

(m)
ij = Ĉijklε̂

(m∗)
kl + ĈijklL̄kû

(m+1)
l . (14)

Using the expanded form of the stresses (13) and the equations (9) the equi-
librium equations take the form

1

δ

(
L̄jσ̂

(0)
1j

)
+ Ljσ̂

(0)
1j +

σ̂
(0)
11 − σ̂

(0)
22

r
+ L̄jσ̂

(1)
1j + δ... = 0, (15)

1

δ

(
L̄jσ̂

(0)
2j

)
+ Ljσ̂

(0)
2j + 2

σ̂
(0)
12

r
+ L̄jσ̂

(1)
2j + δ... = 0, (16)

1

δ

(
L̄jσ̂

(0)
3j

)
+ Ljσ̂

(0)
3j +

σ̂
(0)
13

r
+ L̄jσ̂

(1)
3j + δ... = 0. (17)

According to the classical procedure of the AEH method, the micro-
equations are defined from the δ−1 terms

L̄jσ̂
(0)
ij = 0, i = 1, 2, 3, (18)
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which, using equation (14) for m = 0, can be written as

L̄j

(
Ĉijkl

)
ε̂
(0∗)
kl + L̄j

(
ĈijklL̄kû

(1)
l

)
= 0. (19)

In equation (19) ε̂
(0∗)
ij depends only on the meso-displacements û

(0)
i . By as-

suming that
û

(1)
i = N̂mn

i ε̂(0∗)
mn , (20)

the micro-equations (19) are written

L̄j

(
Ĉijmn + ĈijklL̄kN̂

mn
l

)
= 0. (21)

The final form of the micro-equations are solved for the unknown functions
N̂mn

i , which are periodic in the (θ̄, z̄) space. Also, we need to impose the
necessary continuity conditionsr

N̂mn
i

z
= 0,

r(
Ĉijmn + ĈijklL̄kN̂

mn
l

)
nj

z
= 0, (22)

where ni is the unit normal vector to the surface of discontinuity.
The meso-equations can be obtained from the δ0 terms of the equilibrium

equations. When δ approaches zero, periodic functions attain their weak
limit, which is equal to the area integral of the functions in the periodic unit
cell. We introduce the area integral symbol on the area A of the 2-D unit
cell in (θ̄, z̄),

〈φ〉 =
1

A

∫ z̄′/2

−z̄′/2

∫ θ̄′/2

−θ̄′/2

rφ(r, θ̄, z̄)dθ̄dz̄. (23)

By setting ωi as the outer unit normal vector to the boundary and ∂A the
boundary surface of the unit cell, we can use the Gauss theorem and the
periodicity of σ̂

(1)
ij to show that

〈L̄jσ̂
(1)
ij 〉 =

r

A

∫
∂A

σ̂
(1)
ij ωjdS = 0. (24)

The meso-equations then are obtained from the weak limit of the δ0 terms
of the equilibrium equations

Lj〈σ̂(0)
1j 〉 +

〈σ̂(0)
11 〉 − 〈σ̂(0)

22 〉
r

= 0, Lj〈σ̂(0)
2j 〉 + 2

〈σ̂(0)
12 〉
r

= 0,

Lj〈σ̂(0)
3j 〉 +

〈σ̂(0)
13 〉
r

= 0,

(25)
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where
〈σ̂(0)

ij 〉 = 〈Ĉijmn + ĈijklL̄kN̂
mn
l 〉ε̂(0∗)

mn . (26)

From the last equation it becomes obvious that the effective, or homogenized,
properties ĈNCP

ijkl are given by

ĈNCP
ijmn = 〈Ĉijmn + ĈijklL̄kN̂

mn
l 〉, (27)

where the functions N̂mn
i are determined by solving the equations (21). It is

important to note that one can possibly derive the homogenized equations
using curvilinear periodicity cells. However, our approach provides a rigorous
foundation of performing homogenization in curvilinear system.

In the microlevel and at a specific radius r, equations (21) represent 2
anti-plane strain problems and 4 plane strain problems. Due to the large
difference in θ̄ and z̄ scales, it is more preferable to solve the microequations
in the rθ̄ − z̄. In the sequel, we will use ŷ∗

2 for the rθ̄ coordinate and ŷ3 for
the z̄ coordinate and we will adopt the Voigt notation3. In the 2-D form, the
anti-plane problems are given for i = 1, α = 5, 6

− ∂

∂ŷ∗
2

(
Ĉ66

∂N̂α
1

∂ŷ∗
2

+ Ĉ56
∂N̂α

1

∂ŷ3

)
− ∂

∂ŷ3

(
Ĉ56

∂N̂α
1

∂ŷ∗
2

+ Ĉ55
∂N̂α

1

∂ŷ3

)
=

∂Ĉ6α

∂ŷ∗
2

+
∂Ĉ5α

∂ŷ3

,

(28)

The plane strain problems are given for i = 2 and i = 3, α = 1, 2, 3, 4 from
the system of equations

− ∂

∂ŷ∗
2

(
Ĉ22

∂N̂α
2

∂ŷ∗
2

+ Ĉ24
∂N̂α

2

∂y3

+ Ĉ24
∂N̂α

3

∂y∗
2

+ Ĉ23
∂N̂α

3

∂ŷ3

)
− ∂

∂ŷ3

(
Ĉ24

∂N̂α
2

∂ŷ∗
2

+ C44
∂N̂α

2

∂ŷ3

+ Ĉ44
∂N̂α

3

∂ŷ∗
2

+ Ĉ34
∂N̂α

3

∂ŷ3

)
=

∂Ĉ2α

∂ŷ∗
2

+
∂Ĉ4α

∂ŷ3

.

(29)

3We note that the Voigt notation is a way to rewrite a fourth order symmetric tensor
Aijkl in a 6 × 6 matrix form Aαβ , by applying the substitutions: 11→1, 22→2, 33→3,
23→4, 13→5, 12→6.
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and

− ∂

∂ŷ∗
2

(
Ĉ24

∂N̂α
2

∂ŷ∗
2

+ Ĉ44
∂N̂α

2

∂ŷ3

+ Ĉ44
∂N̂α

3

∂ŷ∗
2

+ Ĉ34
∂N̂α

3

∂ŷ3

)
− ∂

∂ŷ3

(
Ĉ23

∂N̂α
2

∂ŷ∗
2

+ Ĉ34
∂N̂α

2

∂ŷ3

+ Ĉ34
∂N̂α

3

∂ŷ∗
2

+ Ĉ33
∂N̂α

3

∂ŷ3

)
=

∂Ĉ4α

∂ŷ∗
2

+
∂Ĉ3α

∂ŷ3

.

(30)

The effective properties of the nanocomposite are obtained by the relations

ĈNCP
1α =

〈
Ĉ1α + Ĉ12

∂N̂α
2

∂ŷ∗
2

+ Ĉ14
∂N̂α

2

∂ŷ3

+ Ĉ14
∂N̂α

3

∂ŷ∗
2

+ Ĉ13
∂N̂α

3

∂ŷ3

〉
,

ĈNCP
2α =

〈
Ĉ2α + Ĉ22

∂N̂α
2

∂ŷ∗
2

+ Ĉ24
∂N̂α

2

∂ŷ3

+ Ĉ24
∂N̂α

3

∂ŷ∗
2

+ Ĉ23
∂N̂α

3

∂ŷ3

〉
,

ĈNCP
3α =

〈
Ĉ3α + Ĉ23

∂N̂α
2

∂ŷ∗
2

+ Ĉ34
∂N̂α

2

∂ŷ3

+ Ĉ34
∂N̂α

3

∂ŷ∗
2

+ Ĉ33
∂N̂α

3

∂ŷ3

〉
,

ĈNCP
4α =

〈
Ĉ4α + Ĉ24

∂N̂α
2

∂ŷ∗
2

+ Ĉ44
∂N̂α

2

∂ŷ3

+ Ĉ44
∂N̂α

3

∂ŷ∗
2

+ Ĉ34
∂N̂α

3

∂ŷ3

〉
,

ĈNCP
5α =

〈
Ĉ5α + Ĉ56

∂N̂α
1

∂ŷ∗
2

+ Ĉ55
∂N̂α

1

∂ŷ3

〉
,

ĈNCP
6α =

〈
Ĉ6α + Ĉ66

∂N̂α
1

∂ŷ∗
2

+ Ĉ56
∂N̂α

1

∂ŷ3

〉
.

(31)

4. Effective properties of the “fuzzy fiber” composite

Having defined the effective properties of the NCP, the homogenization of
the actual composite can be determined using again the AEH method. The
actual composite can be described easier in Cartesian coordinates, which
necessitates to transfer the effective properties of the NCP from cylindrical
(r, θ, z) to Cartesian (x1,x2,x3) coordinates. The obtained NCP effective
properties can be transformed from a cylindrical coordinates form ĈNCP to a
Cartesian coordinates form CNCP according to the rotation formula for fourth
order tensors

CNCP
ijkl = RimRjnRkoRlpĈ

NCP
mnop, (32)
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with

RRR =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (33)

Here we need to mention that, according to the analysis of the previous
section, the effective coefficients ĈNCP

ijkl of the NCP are functions of the radius
r. In Cartesian coordinates, we have r2 = x2

1 +x2
2. Using the Voigt notation,

the stiffness tensor of the NCP is given in Cartesian coordinates by

CCCNCP =



CNCP
11 CNCP

12 CNCP
13 0 0 CNCP

16

CNCP
12 CNCP

22 CNCP
23 0 0 CNCP

26

CNCP
13 CNCP

23 CNCP
33 0 0 CNCP

36

0 0 0 CNCP
44 CNCP

45 0

0 0 0 CNCP
45 CNCP

55 0

CNCP
16 CNCP

26 CNCP
36 0 0 CNCP

66


, (34)

where

CNCP
11 =

ĈNCP
11 x4

1 + 2(ĈNCP
12 + 2ĈNCP

66 )x2
1x

2
2 + ĈNCP

22 x4
2

(x2
1 + x2

2)
2

,

CNCP
12 =

ĈNCP
12 (x4

1 + x4
2) + (ĈNCP

11 + ĈNCP
22 − 4ĈNCP

66 )x2
1x

2
2

(x2
1 + x2

2)
2

,

CNCP
13 =

ĈNCP
13 x2

1 + ĈNCP
23 x2

2

x2
1 + x2

2

,

CNCP
16 =

(ĈNCP
11 − ĈNCP

12 − 2ĈNCP
66 )x3

1x2 + (ĈNCP
12 − ĈNCP

22 + 2ĈNCP
66 )x1x

3
2

(x2
1 + x2

2)
2

,

CNCP
22 =

ĈNCP
11 x4

2 + 2(ĈNCP
12 + 2ĈNCP

66 )x2
1x

2
2 + ĈNCP

22 x4
1

(x2
1 + x2

2)
2

,

CNCP
23 =

ĈNCP
13 x2

2 + ĈNCP
23 x2

1

x2
1 + x2

2

,

CNCP
26 =

(ĈNCP
11 − ĈNCP

12 − 2ĈNCP
66 )x1x

3
2 + (ĈNCP

12 − ĈNCP
22 + 2ĈNCP

66 )x3
1x2

(x2
1 + x2

2)
2

,

CNCP
33 = ĈNCP

33 ,
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CNCP
36 =

(ĈNCP
13 − ĈNCP

23 )x1x2

x2
1 + x2

2

,

CNCP
44 =

ĈNCP
44 x2

1 + ĈNCP
55 x2

2

x2
1 + x2

2

,

CNCP
45 =

(ĈNCP
55 − ĈNCP

44 )x1x2

x2
1 + x2

2

,

CNCP
55 =

ĈNCP
44 x2

2 + ĈNCP
55 x2

1

x2
1 + x2

2

,

CNCP
66 =

(ĈNCP
11 − 2ĈNCP

12 + ĈNCP
22 )x2

1x
2
2 + ĈNCP

66 (x2
1 − x2

2)
2

(x2
1 + x2

2)
2

.

The other two material components of the composite, the matrix and the
carbon fiber, are generally assumed as homogeneous isotropic or transversely
isotropic materials, with the axis of symmetry parallel to the axis of the fiber.
Under these conditions, the application of the AEH method for the second
periodic problem with characteristic length ε (Figure 2b) follows the standard
approach. The equations that describe the behavior of the constituents are
the equilibrium equations (neglecting body forces)

∂σε
ij

∂xε
j

= 0, (35)

the constitutive law

σε
ij = Cε

ijkl

∂uε
k

∂xε
l

, (36)

and appropriate boundary conditions. The stiffness tensor in the mesoscale

level is a periodic function of
x1

ε
and

x2

ε
,

Cε
ijkl = Cε

ijkl(
x1

ε
,
x2

ε
) = Cijkl(y1, y2). (37)

Expanding the displacements in terms of the mesoscale characteristic
length ε,

uε
i = u

(0)
i (x1, x2, x3) + εu

(1)
i (x1, x2, x3, y1, y2) + ε2u

(2)
i (x1, x2, x3, y1, y2) + ...,

(38)
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and substituting in equations (36) and (35) we get an expanded form of the
equilibrium equations, in which the ε−1 terms (meso-equations) are written

− ∂

∂yj

(
Cijkl

∂u
(1)
k

∂yl

)
=

∂u
(0)
k

∂xl

∂Cijkl

∂yj

. (39)

Considering u
(0)
k as known, we assume that u

(1)
i is given, up to an additive

function on x1, x2, x3, from

u
(1)
i = Nmn

i

∂u
(0)
m

∂xn

, (40)

where Nmn
i is given from the auxiliary system

∂

∂yj

(
Cijkl

∂Nmn
k

∂yl

+ Cijmn

)
= 0. (41)

Returning to the equilibrium equations and the ε0 terms, we can easily show
that the effective properties of the actual composite are given by

Ceff
ijkl =

〈〈
Cijkl + Cijmn

∂Nkl
m

∂yn

〉〉
, (42)

where

〈〈φ〉〉 =
1

V mes

∫ y1
′/2

−y1
′/2

∫ y2
′/2

−y2
′/2

∫ y3
′/2

−y3
′/2

φ(y1, y2, y3)dy1dy2dy3, (43)

and V mes is the volume in the mesoscale level.
In the case of our composite, the meso-macroscale structure does not vary

with y3 (monoclinic materials) and the derivatives with respect to y3 vanish.
This leads, with the help of the Voigt notation, to the meso-equations

− ∂

∂y1

(
C11

∂Nα
1

∂y1

+ C16
∂Nα

1

∂y2

+ C16
∂Nα

2

∂y1

+ C12
∂Nα

2

∂y2

)
− ∂

∂y2

(
C16

∂Nα
1

∂y1

+ C66
∂Nα

1

∂y2

+ C66
∂Nα

2

∂y1

+ C26
∂Nα

2

∂y2

)
=

∂C1α

∂y1

+
∂C6α

∂y2

,

(44)
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− ∂

∂y1

(
C16

∂Nα
1

∂y1

+ C66
∂Nα

1

∂y2

+ C66
∂Nα

2

∂y1

+ C26
∂Nα

2

∂y2

)
− ∂

∂y2

(
C12

∂Nα
1

∂y1

+ C26
∂Nα

1

∂y2

+ C26
∂Nα

2

∂y1

+ C22
∂Nα

2

∂y2

)
=

∂C6α

∂y1

+
∂C2α

∂y2

,

(45)

for α=1,2,3,6 (plane strain problems) and

− ∂

∂y1

(
C55

∂Nα
3

∂y1

+ C45
∂Nα

3

∂y2

)
− ∂

∂y2

(
C45

∂Nα
3

∂y1

+ C44
∂Nα

3

∂y2

)
=

∂C5α

∂y1

+
∂C4α

∂y2

,

(46)

for α=4,5 (anti-plane strain problems). The effective properties are given by

Ceff
1α =

〈〈
C1α + C11

∂Nα
1

∂y1

+ C16
∂Nα

1

∂y2

+ C16
∂Nα

2

∂y1

+ C12
∂Nα

2

∂y2

〉〉
,

Ceff
2α =

〈〈
C2α + C12

∂Nα
1

∂y1

+ C26
∂Nα

1

∂y2

+ C26
∂Nα

2

∂y1

+ C22
∂Nα

2

∂y2

〉〉
,

Ceff
3α =

〈〈
C3α + C13

∂Nα
1

∂y1

+ C36
∂Nα

1

∂y2

+ C36
∂Nα

2

∂y1

+ C23
∂Nα

2

∂y2

〉〉
,

Ceff
6α =

〈〈
C6α + C16

∂Nα
1

∂y1

+ C66
∂Nα

1

∂y2

+ C66
∂Nα

2

∂y1

+ C26
∂Nα

2

∂y2

〉〉
,

for α=1,2,3,6 and

Ceff
4α =

〈〈
C4α + C45

∂Nα
3

∂y1

+ C44
∂Nα

3

∂y2

〉〉
,

Ceff
5α =

〈〈
C5α + C55

∂Nα
3

∂y1

+ C45
∂Nα

3

∂y2

〉〉
,

for α=4,5.
In the above methodology for obtaining effective properties of “fuzzy

fiber” composites we utilize a two step homogenization method, because in
the first step (nanocomposite layer) we express our equations in cylindri-
cal coordinates and in the second step (actual composite) we use Cartesian
coordinates. A one step homogenization whould require everything to be
expressed in one coordinate system, e.g. Cartesian, leading to solve a curvi-
linear unit shell in the microscale level (nanocomposite layer).
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Table 1: Mechanical properties of layers
T650 carbon fiber

Young’s Modulus 276 GPa
Poisson’s Ratio 0.3

EPIKOTE 862 resin

Young’s Modulus 3 GPa
Poisson’s Ratio 0.3

CNT

Young’s Modulus 1100 GPa
Poisson’s Ratio 0.14

5. Examples

The numerical examples presented in this section are motivated by the
experiments presented in Sager et al. (2009). T650 carbon fibers with diam-
eter 5 µm are coated with radially aligned hollow carbon nanotubes of 2 µm
length. The CNTs have internal radius 0.51 nm, external radius 0.85 nm.
The “fuzzy fibers” are embedded in EPIKOTE 862 resin. The intermediate
layer contains CNTs with average volume fraction 42.17%. The properties
of the CNTs are assumed the same as the properties of the graphene (Seidel
and Lagoudas, 2006). The mechanical properties of the carbon fibers, the
resin and the CNTs are shown in Table 1.

For the computations we used the finite element program COMSOL Mul-
tiphysics. The effective properties for the nanocomposite were obtained for
both the tetragonal and the hexagonal arrangement of the CNTs. Since the
periodic structure of the nanocomposite depends on the radius, we needed
to solve numerically several unit cells. Each unit cell represents a different
profile of the nanocomposite with respect to radius and the volume fraction
of the CNTs decreases as the radius increases. Figures 4 and 5 show several
unit cells that were solved for tetragonal and hexagonal arrangement of the
CNTs respectively. Here the arrangement of CNTs is exactly tetragonal or
hexagonal only at the interphase between the carbon fiber and the nanocom-
posite. As we move closer to the matrix, the length of the unit cell at the rθ̄
direction elongates, disturbing the tetragonal or hexagonal symmetry.

The obtained effective properties are shown in Figures 6 and 7. As it can

18



(a) (b) (c)

Figure 4: Unit cell of the NCP for r equal to a) 2.5 µm, b) 3.25 µm and c) 4.25 µm.
Tetragonal arrangement.

(a) (b)

(c)

Figure 5: Unit cell of the NCP for r equal to a) 2.5 µm, b) 3.25 µm and c) 4.25 µm.
Hexagonal arrangement.
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be seen from these figures, the NCP becomes more cylindrically orthotropic
with the increase of radius. For the hexagonal arrangement the NCP in
cylindrically transversely isotropic only at the interphase between NCP and
carbon fiber (r=2.5 µm). Moreover the tetragonal arrangement favors the
orthotropy more than the hexagonal arrangement. The radial Young’s mod-
ulus has the same decrease in both cases with the increase of the NCP ra-
dius. From the results it is clear that the effective properties of the NCP are
strongly affected by the radius. This radial dependency can be simulated by
assuming that all the mechanical properties can be described with fifth order
polynomials with respect to radius.
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Figure 6: Effective properties of NCP for tetragonal arrangement of CNTs.

In the second step of the homogenization, the NCP is substituted by
the effective medium, which is introduced in the mesoscale unit cell. As
it can be seen in Figure 8, transferring the effective properties from the
cylindrical to Cartesian coordinates, produces a fully anisotropic behavior
for the NCP. Terms like C16 are no longer zero, only the average C16 over
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Figure 7: Effective properties of NCP for hexagonal arrangement of CNTs.
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the whole NCP becomes zero. For the numerical example we use a volume
fraction of 60% for the “fuzzy fiber” (carbon fiber plus NCP) inside the
resin. The numerically obtained effective properties (Table 2) show that the
arrangement of the CNTs in the NCP do not alter significantly the behavior
of the actual composite. In both arrangements (tetragonal and hexagonal)
the overall behavior of the “fuzzy fiber” composite is transversely isotropic
with axis of symmetry the axis of the carbon fiber. This transverse isotropy
is observed in typical fiber composites, indicating that the presence of the
NCP changes the mechanical performance but not the level of anisotropy
of the actual composite. In Table 2 we also present the results from an
analytical approach, based on the Composite Cylinders Method and in the
assumption of transversely isotropic nanocomposite layer with the axis of
symmetry parallel to the axis of CNTs (for more details see Chatzigeorgiou
et al., 2011). As it can be seen, the results from the analytical micromechanics
approach are very close to the effective properties of “fuzzy fiber” composites
with hexagonal CNTs arrangement.

(a) (b)

Figure 8: Distribution of the stiffness coefficients a) C11 and b) C16 in the mesoscale unit
cell. The units are GPa.

6. Conclusions

In this paper we presented a two step homogenization approach, based on
the asymptotic expansion homogenization method, in order to evaluate the
effective properties of carbon fiber composites, in which the carbon fibers are
coated with radially aligned carbon nanotubes (CNTs). From the theoretical
analysis it is shown that the homogenization process can be split in two parts,
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Table 2: Effective properties of “fuzzy fiber” composites
CNTs Axial Transverse Axial Transverse Transverse

arrangement Young’s Young’s shear shear bulk
in NCP modulus modulus modulus modulus modulus

(GPa) (GPa) (GPa) (GPa) (GPa)
tetragonal 56.57 9.03 2.82 3.10 8.53
hexagonal 55.92 9.07 2.70 3.12 8.53
analytical 55.34 9.50 2.55 3.33 8.50

in each one of which different coordinate system can be used. In the first
part of homogenization, the nanocomposite layer which includes CNTs and
matrix show cylindrically orthotropic behavior and the material properties
depend on the radius. The results from the second step of homogenization,
which includes the mesoscale unit cell, indicate that the nanocomposite does
not influence the overall anisotropy of the composite. Additionally the ar-
rangement of CNTs in the nanocomposite (tetragonal and hexagonal) does
not change significantly the overall behavior of the “fuzzy fiber” composite.
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