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ABSTRACT

Approximation Techniques for Incompressible Flows with Heterogeneous Properties.
(August 2010)
Abner Jonatan Salgado Gonzalez, B.S., Saint Petersburg State Polytechnic
University;
M.S., Saint Petersburg State Polytechnic University

Chair of Advisory Committee: Dr. Jean-Luc Guermond

We study approximation techniques for incompressible flows with heterogeneous
properties. Specifically, we study two types of phenomena. The first is the flow of a
viscous incompressible fluid through a rigid porous medium, where the permeability
of the medium depends on the pressure. The second is the flow of a viscous incom-
pressible fluid with variable density. The heterogeneity is the permeability and the
density, respectively.

For the first problem, we propose a finite element discretization and, in the case
where the dependence on the pressure is bounded from above and below, we prove its
convergence to the solution and propose an algorithm to solve the discrete system. In
the case where the dependence is exponential, we propose a splitting scheme which
involves solving only two linear systems.

For the second problem, we introduce a fractional time-stepping scheme which,
as opposed to other existing techniques, requires only the solution of a Poisson equa-
tion for the determination of the pressure. This simplification greatly reduces the
computational cost. We prove the stability of first and second order schemes, and
provide error estimates for first order schemes.

For all the introduced discretization schemes we present numerical experiments,

which illustrate their performance on model problems, as well as on realistic ones.
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CHAPTER I

INTRODUCTION

The efficient and accurate numerical approximation of complicated fluid flow phe-
nomena is of extreme importance for a wide range of applications. However, the
complexity of the models that this requires poses serious challenges in various areas
of mathematics. Just to mention a few, these areas might be the analysis of the math-
ematical models (equations) of these phenomena, trying to answer questions about
well-posedness of these problems which, in some sense, is a minimal requirement for
the consistency of a model. Another one is the development and analysis of efficient
discretization schemes and solution techniques for these problems. Since as a rule
these models are nonlinear, this always proves to be a highly nontrivial task.

The purpose of this dissertation is the study of effective discretization and solu-
tion techniques for problems that arise in the modeling of incompressible fluid flow
that has heterogeneous properties. To be more precise, we will analyze two of these
phenomena. The first one is related to the flow in porous media and a model that is
used in the problem of enhanced oil recovery. It is a Darcy’s model where the porosity
of the medium depends on the pressure. The second problem is the flow of incom-
pressible Newtonian fluids with variable density. This is a model that is frequently
used in the study of multiphase flow, temperature dependent flow and others. In both
cases, the flow has heterogeneous properties: the porosity and density, respectively.
This heterogeneity highly complicates the model and the techniques that must be
used to efficiently discretize and approximate the solution to them.

Let us briefly elaborate on each one of this models.

The journal model is STAM Journal of Numerical Analysis.



A. Darcy’s Equations with Pressure Dependent Porosity

The system of equations commonly referred to as Darcy’s law was obtained, on the
basis of experimental observations, by H. Darcy (cf. [23]) more than 150 years ago.
This law approximates the balance of linear momentum of a fluid flow through a
porous rigid body and is the simplest model of flow of a viscous incompressible fluid
through a porous medium. Darcy’s equations were obtained rigorously by Homoge-
nization; without being exhaustive, we refer to the works of I.H. Ene and E. Sanchez-
Palencia [26], G. Allaire [3], D. Cioranescu, P. Donato and I.H. Ene [22], S.E. Pas-
tukhova [67], and E. Skjetne and J.-L. Auriault [77].

Recently, in [70], K.R. Rajagopal developed systematically a family of models
within the framework of Mixture Theory, deriving first Darcy’s system, and next
relaxing one or more restrictions that were used in deriving this law. The steady
nonlinear model studied in the present work is one of the numerous models obtained
through this approach (cf. [70, Section 3.5]). It is a much simplified version of a model
of enhanced oil recovery, where oil is forced to flow through rocks by injecting steam
at high pressure. This model is simplified because only one fluid is considered and
the viscous and inertial effects are neglected, thus resulting in a steady system. On
the other hand, it is nonlinear because the porosity of the solid medium is allowed to
depend exponentially on the pressure. Indeed, it has been observed experimentally
that high variations on the pressure induce an exponential variation on the porosity
of the medium.

Let Q be a bounded domain in R¢, with d = 2,3. The boundary, 9%, of this

domain is divided into two parts I',, and I". We are interested in the following model,



which as we have stated above was derived by K.R. Rajagopal [70],

§
a(ppu+Vp=1f, inQ,
Voau =0, in Q,
(1.1)
p=0, on I'y,
un=g on I
(

where the unknowns are the velocity u and the pressure p of the fluid. The function
« is known as the drag coefficient, permeability or inverse porosity. It describes how
easily the fluid can pass through the given medium, and for simplicity is assumed
homogeneous.

In the case when « is constant or dependent only on the medium, these equations
have been deeply studied, and the discretization techniques used in this case are well
established. We refer, for instance, to [16], [1] or [27]. However, as it is noted in [70],
experiments show that if the variations on the pressure are high, the material cracks
and thus the porosity varies. For this reason, it is proposed to consider the case where
the drag coefficient depends on the pressure. Moreover, the dependence that most

accurately describes experimental phenomena near a well is an exponential one
a(f) = age™, (1.2)

for some positive parameters ag, v. The homogeneous boundary condition in the third
row of (1.1) is just introduced to simplify the discussion. More generally, a non
homogeneous boundary condition can be prescribed on the pressure: p = p, on I'y,.
Owing to the nature of a(p) the analysis we present readily carries over to this case
for adequately smooth boundary data.

For the sake of brevity, in what follows we shall refer to equations (1.1) simply as



the nonlinear Darcy equations. Of course, there are other nonlinear Darcy’s model,
such as the well-known Forchheimer model introduced by Forchheimer in [30]. Con-
cering its discretization, we refer to the study of a steady Forchheimer model studied
by V. Girault and M.F. Wheeler in [35].

The analysis of the nonlinear Darcy equations is difficult because of the expo-
nential nonlinearity. In this dissertation, following the work of M. Azaiez, F. Ben
Belgacem, C. Bernardi, and N. Chorfi in [5], we propose first to discretize (1.1) when
the function « is truncated above and below. We introduce a straightforward finite
element scheme, such as IP,_; for each component of the velocity and P, for the pres-
sure, similar to the scheme studied by J.E. Roberts and J.-M. Thomas in [72] and
by D. Kim and E.J. Park in [59]. When the exact solution is sufficiently small so
that it satisfies a sufficient condition for uniqueness, we establish optimal a priori
error estimates, and geometric convergence of a successive approximation algorithm
for computing the discrete solution. We also study the case when the exact solution
is nonsingular in the sense of F. Brezzi, J. Rappaz and P.-A. Raviart [17], but is not
necessarily unique. We give sufficient conditions for the finite element scheme to have
a nonsingular solution, establish convergence and a priori error estimates, and study
the convergence of Newton’s algorithm for computing this solution. In particular, we
prove that Newton’s method converges quadratically, but not uniformly. This con-
firms the convergence analysis for nonlinear second order elliptic problems studied by
J. Douglas and T. Dupont in [24] and by E.J. Park in [66].

Next, we study the problem with fully exponential porosity. To begin with, the

velocity is eliminated by:
1. dividing the equation by the exponential,

2. taking the divergence of the equation,



3. and making a change in variable.

This splits the problem into exactly two consecutive linear equations: first a diffusion—
convection—reaction equation and next a linear Darcy system. These are discretized
by an easy variant of the finite element scheme used in the first approach. The
analysis of each discrete linear system is straightforward, but the global analysis of

the complete algorithm is still an open problem.

B. The Variable Density Navier-Stokes Equations

The flow of incompressible viscous fluids with variable density, under certain assump-

tions, is governed by the time-dependent Navier-Stokes equations:

(

pr+ V- (pu) =0,
p(up +u-Vu) + Vp — pAu = f, (1.3)
Viu =0,

\

where the unknowns are the density p > 0, the velocity field u, and the pressure
p. The constant p is the dynamic viscosity coefficient and f is a driving external
force. In stratified flows we typically have f = pg, where g is the gravity field.
The fluid occupies a bounded domain 2 in R¢ (with d = 2 or 3) and a solution to
the above problem is sought over a time interval [0, 7. The Navier-Stokes system is
supplemented by the following initial and boundary conditions for u and p:

p(l‘,O) = pO(x)> p<x>t)‘F* = a(x, t)?
(1.4)

u(x,0) = ug(x), u(x,t)sq = b(x,1),

'~ is the inflow boundary, which is defined by

I'"={xel: ux)n<0},



with n being the outward unit normal vector. Throughout this dissertation we assume
that the boundary I' is impermeable, i.e., un = 0 everywhere on I', and I'~ = ().

The mathematical theory of existence and uniqueness for (1.3)-(1.4) is quite in-
volved and far from complete. We refer the reader to the works of P.L. Lions [61],
E. Fernandez-Cara and F. Guillén [28] for further details. The difficulty comes from
the fact that these equations entangle hyperbolic, parabolic, and elliptic features. Ap-
proximating (1.3)—(1.4) efficiently is a challenging task. A testimony of the difficulty
is that, so far, very few papers have been dedicated to the mathematical analysis of
the approximation of (1.3)—(1.4). We refer to C.L. Liu and N.J. Walkington [63] for
one of the few attempts in this direction.

Approximating (1.3)—(1.4) can be done by solving the coupled system (1.3), but
this approach may sometimes be computer intensive due to saddle point structure that
the incompressibility induces in the problem. Alternative, more efficient, approaches
advocated in the literature consist of using fractional time-stepping and exploiting,
as far as possible, techniques already established for the solution of constant density
incompressible fluid flows. The starting point of most fractional time-stepping al-
gorithms consists of decoupling the incompressibility constraint and diffusion in the
spirit of A.J. Chorin’s [20] and R. Temam’s [79] projection method. Several algorithms
have been developed which extend this idea to the case of variable density flows, see
for example J.B. Bell and D.L. Marcus [11], A. Almgren et al. [4], J.-L. Guermond
and L. Quartapelle [48], and J.-H. Pyo and J. Shen [69]. To the best of our knowledge,
[48] gave the first stability proof of a projection method for variable density flows.
The algorithm proposed in [48] is somewhat expensive since it is composed of two
time-consuming projections. An alternative algorithm composed of only one projec-
tion per time step was proposed in [69] and proved to be stable. It seems that so far

[48] and [69] are the only papers where projection methods for variable density flows



have been proved to be stable, the best available results being that of [69]. However,
no rigorous error analysis of these methods is available in the literature.

The common feature of all the projection-like methods referred to above is that
at each time step, say t"*!, the pressure or some related scalar quantity, say ®, is

determined by solving an equation of the following form:
1
-V FV@ =V, On®|r =0, (1.5)

where p**! is an approximation of the density at time t,,; and W is some right-hand
side that varies at each time step. The problem (1.5) is far more complicated to solve
than just a Poisson equation. It is time consuming since it requires assembling and
pre-conditioning a variable-coefficient stiffness matrix at each time step. Note also in
passing that it is necessary to have a uniform lower bound on the value of the density
for (1.5) to be solvable. This condition is often overlooked in the literature.

On the basis of the observations above, in this dissertation we introduce a family
of fractional time-stepping methods for solving variable density flows that involve
solving only one Poisson problem per time step instead of problems like (1.5). We
will show the stability and convergence properties of the first order schemes and the

stability of a formally second order variant.



CHAPTER II

PRELIMINARIES
The purpose of this chapter is to establish the notation that shall be used in the
subsequent chapters. In the following, we denote by ¢ a generic constant, the value of
which may vary at each occurrence. When studying continuous problems, the value
of this constant may depend on the data of the problem, but not on the solution.
On the other hand, when studying the discretization of a problem, the value of this
constant may depend on the data of a problem and its exact solution, but it does not

depend on the discretization parameters or the solution of the numerical scheme.

A. Function Spaces

Henceforth, we denote by 2 a bounded connected domain in R?, with d = 2 or 3. The
boundary of this domain is denoted by 02. As usual, we denote by L9(2) the space

of Lebesgue integrable functions with exponent ¢ € [1, c0] defined on € and normed,

1/q
ollos = ( / |v|q) |
Q

|v]| L := esssup |v].
x€e)

for 1 < g < oo, by

and, for ¢ = oo

For which these spaces are Banach spaces. In the case ¢ = 2 we denote by (-, -) the
L?-scalar product.
By W7 (€2), for an integer s, we denote the Sobolev space of functions in L(£2)

with partial derivatives of order up to s in L?(£2), namely

Wi(Q) == {v e LY Q) : d™v e LYQ),V|Im| < s},



equipped with the seminorm

1/q
ey i= | 30 [ ]
|m|=s Q
and norm (for which it is a Banach space)
1/q

Polwe = [ 32 Jwlh,

0<|m|<s
When s is not an integer, W7(€2) is defined using the real method of interpolation (cf.
J.L. Lions and E. Magenes [60] or J. Berg and J. Lofstrom [12]). In this case, there
are several equivalent norms. Here, we choose the following seminorm and norm: let

s =m+ & for an integer m > 0 and 0 < ¢’ < 1, then we set

1/q

_ o) - Duly)
i = (3 [ [ e

[l]=m

follwg = (Il + o) "
When ¢ = 2 we set H*(Q) := W5(Q) for any s. By H}(Q2) we denote the closure of
C5°(2) in the H'-norm.
In Chapter III the following trace property will be needed. If the domain )
has a Lipschitz-continuous boundary and v belongs to H*(Q2) for s € (1/2,1] then
it has a well defined trace on the boundary, this trace belongs to H*"Y/2(9Q) (cf.

P. Grisvard [36, Theorem 1.5.1.2]) and

||U| Hs—1/2 S C||U| Hs-

In this chapter, the space Hééz(F) will also be needed, this space is defined as follows.

Let T be a subset of 99 that has positive measure, we say that a function g € H'/2(T")

belongs to H&éQ(F) if its extension by zero to 92 belongs to H'/2(92). For a discussion
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on this space see L. Tartar [78], for instance.

There are several well known embedding theorems for Sobolev spaces. We shall
use repeatedly the embedding H'(Q) — L5(Q) which, given enough smoothness of
the domain, is valid for d < 3 (cf. R.A. Adams [2] or [78]). When we wish to indicate
explicitly that we are using the constant of this embedding, we denote it by ¢(€2).

That is, by ¢(€2) we denote the smallest constant such that
lgllze < c(Q)lala, Vg€ HY(Q).

Finally, we must state that we use bold-face characters to denote vector valued

functions and their spaces.

B. Time Dependent Problems

Chapter IV is dedicated to the study of a time dependent problem. Here we introduce
some notation that shall be used in this chapter.

Whenever E is a normed space with norm || - ||z, we say that a function ¢ :
[0,7] — E belongs to L(0,7; E') ( which will also be denoted by L?(FE) ) if the map
(0,T) >t ||o(t)||g is L9 integrable. A similar definition allows us to define the
spaces W7 (E).

When introducing a time discretization, we denote by 7 > 0 a time step and we
set t = k7 for 0 < k < K := [T'/7]. For any time-dependent function ¢ : [0,7] — E,
we denote by ¢* := ¢(t;). The sequence ¢°, ¢!, ..., ¢ is denoted ¢,. To shorten the

notation, we introduce the time-increment operator d by setting
(S(bk — ¢k o ¢k71

Finally, the errors of our discretization schemes will be measured in the following



discrete norms:

K 1/2
[orlle2y = (TZIW’“H%) o Morlleem) = max ([16°]|g) -
k=0

0<k<K

Which, clearly, are consistent with the L*(E) and L*(FE), respectively, as 7 — 0.

11
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CHAPTER III

NONLINEAR DARCY EQUATIONS *
In this chapter we study problem (1.1). The results of this chapter were originally
presented in [32], and the organization is as follows. In Section A we study the
mathematical analysis of the problem, i.e., questions regarding the existence and
uniqueness (both global and local) of a solution to this problem. In Section B we
analyze the discretization of this problem in the case when the porosity is uniformly
bounded from above and below. We present discretization schemes for the case when
the solution is unique and non-singular. Section C is dedicated to the case of an
exponential porosity and proposes a solution scheme for this case. Finally, Section D
presents some numerical experiments that illustrate the algorithms introduced in the

previous sections.

A.  Analysis of the Problem

Before considering the discretization of problem (1.1) we will discuss some properties
of its exact solution, namely its existence and sufficient conditions for this solution to
be globally unique and possess certain smoothness properties. When the nonlinear
Darcy equations have more than one solution we shall discuss the so-called nonsingular
solutions, in the sense of [17]. This shall prove useful for the development and analysis
of the discretization.
We intend to study problem (1.1) under the following assumptions:

* Reprinted with permission from:

Finite Element Discretization of Darcy’s Equations with Pressure Dependent Poros-
ity by V. GIRAULT, F. MURAT AND A. SALGADO. M2AN Math. Model. Nu-

mer. Anal. DOI: 10.1051/m2an/2010019.  Copyright 2010 by EDP Sciences.
http://www.esaim-m2an.org/
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e The domain € has a Lipschitz-continuous boundary 02 divided into two parts

I', and T, also with Lipschitz continuous boundaries.
e The part of the boundary I',, has positive surface measure.

e The function a : R — R is continuous and there are two positive constants auyi,
and omax such that

Omin S 05(5) S Omax; v€ € R (31)

e The function « is uniformly Lipschitz-continuous on R. That is, there is a

constant L, > 0 such that for all £;,&% € R
(&) = a(&)] < La |6 — &l (3.2)

Remark 1. Assumptions (3.1) and (3.2) are not true when the function « is un-
bounded, as it is the case when it is exponential. However, these assumptions can
be easily recovered by truncating the original function a. Obviously, the solution of
the truncated problem will not in general solve the original one. The analysis of how

these two problems are related is beyond the scope of this work.

It is well known that Darcy’s equations have several variational formulations. We have
chosen here the formulation that treats the boundary condition on p as an essential
one and leads, roughly speaking, to taking u in L*(Q) and p in H*(2). This choice
is motivated by the fact that the forthcoming analysis of the nonlinear term «a(p)u
uses intensively the fact that p is in H*(2). Moreover, a velocity u in L?() is easily
discretized. Another option consists in taking u in H(div; ) and p in L*(2). Then u
must be discretized with mixed finite elements, with the advantage that this leads to
a locally conservative scheme. But the drawback is that the analysis of the nonlinear

term is not so clear.
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Let us define the space
Hy(Q) :={qe H(Q) : q|r, =0},

and assume, for the sake of simplicity, that p,, = 0. Then the variational formulation
is the following:
Given f € L2(Q) and g € HY)*(TY, find a pair (u, p) € L2(Q) x HL(Q) such that

a(p;u,v) +b(v,q) = [ fv, VveL}Q), (3.3)

b(u,q) = (g, q)r, Vg € HL(Q).

The bilinear forms a(¢;-,-) for any measurable function £ on €2 and b(-,-) are

defined by
a(&;v,w) ::/Qa(f)v-w, (3.4)

b(v,q) ::/QV-V(], (3.5)

and (-, -)r denotes the duality pairing between HééQ(l") and its dual space H§é2(T)’ :

It is readily checked that under assumption (3.1) the forms a(¢; -, ) and b(-, -) are
continuous on L?(Q) x L*(Q)) and L?(Q) x H'(Q) respectively. Thus, standard argu-
ments yield the equivalence of problem (3.3) with the system (1.1) in the distribution

sense.

Remark 2. The above variational formulation is defined for homogeneous boundary
conditions: p,, = 0. Standard techniques (i.e., lifting arguments) allow us to reduce
the case of nonhomogeneous Dirichlet boundary conditions on the pressure p to the
present one. For this, it is sufficient to assume that p, € H'/?(T',,) and notice that
the function £ — «(&—p,,), where p,, is a proper lifting of p,,, has the same properties

as £ — «(§). Hence, there is no loss of generality in considering only homogeneous
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Dirichlet boundary conditions.

The existence of a solution to problem (3.3) is studied in [5]. For the sake
of completeness we list here the results that later prove useful for our purposes.

Regarding existence we have the following Theorem.

Theorem 1. Assume that the function « satisfies assumption (3.1). Then, for any
data (f,g) € L2(Q) x Héf(l“)’ problem (3.3) has a solution (u,p) € L%(Q)) x HL(Q).

Moreover, this solution satisfies

lulle + lpl < e (IElkee + gl gy ) - (3.6)
(Hpp")

A sufficient condition for the global uniqueness of the solution is given by the

following Proposition.

Proposition 1. Assume that the function « satisfies assumptions (3.1) and (3.2).
If problem (3.3) has a solution (u,p) such that u € L"(Q) with r > d, where d is the

space dimension, and satisfies

Qmax + Gmin

c(r, Q) Lol ulles < 1. (3.7)

for an appropriate constant c(r,2) that depends only on r and Q. Then, there is no

other solution to problem (3.3).

Remark 3. Examining the proof given in [5] we see that the constant ¢(r, Q) in the
smallness condition (3.7) is the norm of the Sobolev embedding H} () — L™ ()
with % + % = % Moreover, the condition r» > d is due to the Sobolev embedding
when d = 2. However, when d = 3, this proof is also valid with » = 3. For the sake
of definiteness, in the sequel, we shall assume that d = 3. The reader can verify that

similar arguments, and less restrictive assumptions, yield the results for d = 2.

Finally, concerning the regularity of the solution the following result holds.
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Proposition 2. There exists a real number py > 2 only depending on the geometry of
Q such that, for all p such that 2 < p < py, and for all data (f, g) € LP(Q) x Wp_l/p(F),

any solution (u,p) to problem (3.3) belongs to L(2) x W (Q).

Remark 4. The existence of pg is obtained in [5] by a perturbation argument, but in
dimension d = 3, there is no guarantee that py > 3. Therefore, in general, condition

(3.7) for global uniqueness cannot be checked from the data.

Let us now consider the case when the solution is only locally unique. In this
case, although problem (3.3) may have more than one solution, we assume that there
exists an isolated solution. That is, there exists a neighborhood of this solution where
no other solution exists. A sufficient condition for this to hold is that the solution
is nonsingular (cf. [17] or V. Girault and P.-A. Raviart [34]). We shall analyze the
properties of nonsingular solutions, and give sufficient conditions for such a solution
to exist.

First we cast problem (3.3) in a more convenient, but nevertheless equivalent,

functional setting. With this purpose let us define the data space
Y = L) x Hyy (I,
with norm

(£, 9)llp == €Nz + llgll 172,

and the solution space

X = L2(Q) x HL(Q),

with norm

1(w, p)l|x = [lullez + [|pl[ -

We also define T as the solution operator to the linear Darcy problem, i.e., T : %) — X
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is such that, for every n = (f,¢9) € Y, X 3 2 = (u,p) =Tn = T(f, g) solves

(

au+Vp=1f, in(,
Vu =0, in €2,
(3.8)
p=0, on Iy,
un=g, on I,

for a fixed a > 0.
It is classical that problem (3.8) is well-posed. This implies that 7" € £(), X).

In other words, there is a constant ¢ > 0 such that for every (f,g) € 9

IT(£,9)llx < cll(£,9)]ly - (3.9)

By assumption (3.1) we get that o € L*°(R). Then, for any (u,p) € X we can
conclude that a(p)u is in L?(Q2) and we can define the map G : X — Q) as follows. If

x = (u,p) is an element of X, then

Finally, let us define F': X — X as
F(z) =2+ TG(z).

With this notation, problem (3.3) can be equivalently restated as:

Find z = (u,p) € X such that

F(z) = 0. (3.10)

We are now in a position to define the notion of nonsingular solutions
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Definition 1 ([17]). Let x € X solve problem (3.10). This solution is called nonsin-
gular if the linear operator

F'(z) =1+ TG (x),

is an isomorphism of X. Here F'(x) and G’(x) denote the Fréchet derivative of the

maps F' and G at the point x, respectively.

Let us now provide sufficient conditions for a solution to be nonsingular in this
sense. With this in mind, first of all, by assumption (3.2) we know that the derivative
of a exists a.e. on R (cf. G.B. Folland [29]). Denoting this derivative by & we can,

formally, obtain the derivative of the map G. Let x = (u,p), y = (v,q) € X, then

' (2)y = (a(p) — @) v +a(p)qu | (3.11)

0

From this we can conclude that if x = (u,p) € L3(Q) x HL(Q) C X, the Fréchet

derivative of the map G is well-defined, given by equation (3.11), and G'(z) € L(X,D)).

Remark 5. In the case d = 3, we need u € L3(2) because of the term & (p)qu. Indeed,

by assumption (3.2), Holder’s inequality and the Sobolev embedding H! — L5, we

1/3 2/3
/ |a<p>qu|2SLi(/Q qG) (/ ruP) < (2L all [l

where all inequalities are sharp. Clearly, if d = 2 we should require u € L**¢(Q) for

have

some € > 0. In both cases, we must assume that the velocity u lies in a smaller space
than L?(Q) for the derivative to make sense. This is in contrast to the common feature
of many nonlinear operators arising in the analysis of partial differential equations
that describe physical phenomena. For such an operator, its derivative is everywhere
defined and the range of the derivative is a smaller space (i.e., smoother or more

regular) than the data space. For this reason, we say that the operator G does
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not have regularizing properties. The fact that for problem (1.1) the nonlinearity G
does not have regularizing properties lies at the heart of all the difficulties that its

theoretical and numerical analysis present.

We now give sufficient conditions for a solution of problem (3.10) to be nonsin-

gular in the sense of Definition 1.

Proposition 3. Assume that for problem (3.10) the function « is such that conditions
(3.1) and (3.2) hold. Let x = (u,p) € X be a solution to problem (3.10). Ifu € L3(Q)
and

Qmax + Qmin

c(Q) Lo[ullis < 1, (3.12)

Gmin

then this solution is nonsingular.

Proof. We need to show that the map I + T'G’(x) is an isomorphism of X. Since the
operator is continuous, by the Open Mapping Theorem (cf. A.Ya. Helemskii [54]) it
is sufficient to show that the operator is bijective. That is, given any z = (w,r) € X

there exists a unique y = (v, q) € X such that
y+ TG (v)y =z,

(y —2) = T(=G'(z))y.

In other words, we must prove that the problem: Find (v,q) € X such that

(

a(v—w)+V(g—r)=(a—a(p)v—adlpgu, inQ,
V(v —w) =0, in €2,

(v—w)n =0, on I,

qg—1r=020, on Iy,
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always has a unique solution. Doing the elementary change of variables (V,Q) =

(v —w,q —r) € X this problem can be equivalently restated as: Find (V,Q) € X

such that )
a(p)V+VQ =F(Q), inQ,
V-V =0, in Q,
Vo =0, on I,
\Q =0, on Iy,
where
F(Q) = (a - a(p))w — a(p)ru — a(p)Qu =F + F(Q),
with

F = (a—a(p)w - a(p)ra, F(Q) = a(p)Qu.

Notice that, since u € L*(Q2) then F(Q) € L*(Q). This problem can be written

in variational form as: Find (V, Q) € X such that

Joa(p) VW + [[W-VQ = [ F(Q)-W, VW e L*(Q), (3.13)

[, V-VR =0, VR € HL(Q).

We observe that (3.13) is a linear Darcy’s system with an affine perturbation F(Q).
If we define the bilinear form 4 : X x X — R by

,MV@MWﬁ»—Avaw+LWVQ+AVVR

and assume for the moment that F(Q) = 0, i.e., F(Q) does not depend on @, then,

problem (3.13) has a unique solution if and only if:

1. There exists a constant 34 > 0 such that

| A[(V,Q), (W, R)
f . 3.14
o xS TV, O (WL R) s = (3.14)
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2. The form A has the following property:
(A[(V,Q), (W, B)] =0¥(V,Q) € X) = (W,R) =0.  (3.15)

These two properties are equivalent to the fact that the linear Darcy problem defined
by the form A is well-posed, which is a classical result. This also implies the a prior:
estimate

Ve + 1@l < cl[Flg2 (3.16)

for some ¢ > 0 that does not depend on F, V or Q). Now, the well-posedness of (3.13)
follows immediately by proving that the affine mapping S +— @), where @ is the second
component of the solution pair (V, Q) of (3.14) with data F(S) is a contraction, i.e.,

there exists K € (0, 1) such that
1Qlm < K|S|m, VS € HYQ).

To do this, let S be given in H*(2), set F = 0, and take W = V in the first equation

of problem (3.13). The second equation, together with condition (3.1) imply

ol V122 < / a(p)VV = / F(S)V < [F(S)]12] Ve,

or

L E(S) o

V]2 <
0]

By taking W = V() we obtain
@B = [ vove= [ FS)ve- [arvve
Q Q Q
< F(S) 2@l + max [V |12 Q1

amaX T amaX .
< (14222 ) IBSulQln < (1+222) a(sulus @l

min

min
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Since

la(p)Sullrs < ¢(2) Lal[ul[Ls ||,

we derive

amax
@l < (1422 ) @) Lol

min

Therefore the mapping S +— (@ is a contraction if

(1 + O‘“‘”‘) c(Q)Ly|lullws < 1,

min

which is condition (3.12). O

Remark 6. We see that (3.12) coincides with the condition for global uniqueness
(3.7). This reflects that the nonlinearity G does not have regularizing properties.
Nevertheless, these are only sufficient conditions, and it is plausible that problem (1.1)

has a nonsingular solution without satisfying condition (3.12).

B. Discretization

Having analyzed the mathematical properties of problem (1.1) we now proceed to
propose several methods for its approximate solution. With this purpose, let h be a
discretization parameter (that will tend to zero). For every h > 0 we introduce two

finite dimensional spaces X; C L*(Q) and M;,, C H]} () such that:

1. The pair of spaces (Xp,, M},) is stable, in the sense that they satisfy a uniform
inf-sup condition (cf. [16, 34], A. Ern and J.-L. Guermond [27] or D. Boffi, et
al. [13]). That is, there exists a constant 5 > 0 independent of h such that

b(whth)
sup ——— %
wpEX} ||vvh||L2

> Blanlm,  Van € My, (3.17)

where the form b is defined in (3.5).
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2. There exist continuous interpolation operators 7, : L(Q) — X, Zp, : HY(Q) —

M), and an integer £ > 1, such that for all (v, q) € H(Q) x H*1(Q)
v — vl < v e (318)

and

g — Tnqlmr < ch’|qlgess. (3.19)

In order to find examples of such discrete spaces, assume to simplify that € is
a polyhedron, and let 7, be a family of triangulations of €, made of tetrahedra
with diameter bounded by h. We suppose that 7j, is regular in the following sense

(cf. P.G.Ciarlet [21]): There exists a constant o > 0, independent of h, such that

h
L <o, VT ET, (3.20)
Pr

where hr is the diameter of T" and pr is the diameter of the ball inscribed in T". Then,

for any integer k > 1, the following pair of spaces satisfy conditions (3.17)—(3.19):
Xy, = {Vh € L2<Q) : Vh’T € ]P)z_l,VT € 7;1} , (321)

and

M;, = {qh € CO(Q) : thT € P, VT € 7;1} . (322)

For a proof the reader can consult standard references, for instance [16, 34, 27].

Finally, we define the discrete solution space
%h = Xh X Mh,

normed by || - ||z. Clearly, X;, C X. For the sequel, it is also useful to introduce the
space

Vi i={viy € Xy : Vg € My, b(vy, qn) = 0}, (3.23)
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and its orthogonal in X,

V}J{ = {Vh € Xy, : VYwy, €V, /Vh'Wh = O} (324)
Q

For each such pair of discrete spaces we define the Galerkin solution to problem (3.3)
as the pair x;, = (up, pn) € X, such that

a(pr; ap, Vi) + b(Vi, pr) = [ Vi, Vv, € X,
(3.25)

b(un, gn) = (g, qn)r Van € M.

Under assumptions (3.1) and (3.17), the existence of a solution for this problem can
be established by the same techniques used in Theorem 1 (cf. [5]). It is even simpler,
since problem (3.25) is already set in finite dimension. All solutions of problem (3.25)
satisfy uniform a priori estimates and (3.18) and (3.19) suffice to establish weak
convergence (up to subsequences) of any solution of (3.25) to some solution of (3.3).

In the remainder of this Section we analyze this discrete problem. For the case
when the solution is unique we prove optimal error estimates and propose an algo-
rithm to find such an approximate solution. The algorithm is proved to converge
independently of the discretization parameter. For the nonuniqueness case, in the
spirit of [17, 34],we show that for h small enough there exists a nonsingular solution
to (3.25) in a neighborhood of the nonsingular solution to the exact problem. We
analyze some properties of the application of Newton’s method to this problem, and
we obtain estimates on its speed of convergence and conditions on the initial approx-
imation. The main difficulty in this analysis is that there exist x in X for which the
operator G'(x) is not bounded in £(X,%)). More precisely, we require that the first
component of z belong to L3(€2), a smaller space than L?(Q). This again is related

to the fact that the nonlinearity G does not have regularizing properties.
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Recall that condition (3.7) is sufficient for the solution to problem (3.3) to be
unique. In the setting that we have described, and under a similar assumption, we

have the following a priori estimate.

Theorem 2. Let the pair of finite dimensional spaces X, satisfy condition (3.17).
Assume that the solution x = (u,p) € X to (3.3) is such that u € L3(Q) and is small

enough, in the sense that

1 O'max + Q'min

ER—— c(Q)Ly|jull: <6 < 1. (3.26)
Then both (3.3) and (3.25) have a unique solution and there exists a constant ¢ > 0

independent of h such that the solution xy, = (up,pn) € Xy, of problem (3.25) satisfies

u b+l =l < e (Lo u=valeot i o aily ). (20

Proof. The proof proceeds in three steps.
(i) The second equation in (3.25) can be viewed as a non-homogeneous constraint; let
us show that we can approximate u with functions of X, that satisfy this constraint.

For this, let v, be an arbitrary function of X;,, define r;, in X;, by

b(ry, qn) = b(u—vu,qn), Vg, € My,

and set wy, := r;, + v;. It follows from (3.17) and the Babuska-Brezzi’s theory (cf.
[6] or [16, 34, 27]) that this equation has a solution r;, € X, unique in Vit, and such
that

BlienllLe < [lu— v L. (3.28)

Thus

b(Wr,qn) = b(u,qn) = (g, qn) = b(un, qn), Van € My,
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and u;, — wj, € V. This implies

a(ph; up, — Wy, Yh)

Omin||un, — WpjL2 < sup

0#£yn€Vp ||Yh||L2
< sup a(pr;up —w,yp) + sup a(pp;u— Wy, yn)
0#£yn€Vp ||Yh||L2 0#£yn€Vp ||Yh ||L2
a .Uy — u
0#£yr€Vy HthL2

(ii) Subtract the first equation of (3.3) from the first equation in (3.25) with test

function y;, € V. Since X, C L*(9),

a(pp;up —a,yp) = / (a(p) — a(pn)) wyn + /Q}"h'v(p — Pn)

Q

< Lo|lp — pallcellullus[|yallne + 0(yn, p — pn)

< () Lalp — prlmullusllyrllLz: + 0(yn, 2 — qn) +0(¥n, gn — pn)-
This yields
Amin||un — WallL2 < ¢(Q)La|p — prla ||ullLs + [P — qnlmt + dmax|[u — Wi |12,

where the last inequality holds since y;, € Vj,. Finally, by the triangle inequality and
(3.28)

1
tminl|t = Wl < (Comin + ) (1 + B) 1 = va e

+ C(Q)La|p - ph|H1 HUHL3 + ]p — qh|H1. (3.29)
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(iii) Let g, € M}, be arbitrary. By the inf-sup condition (3.17),

b(Yn, Pr — Gn
Blpn — qulm < sup b P — 1)
0#yn€Xp Hyhl|L2
b — b —
< sup (Yh,Pn — D) T+ sup (Yn,p— qn)
0#yn€Xp HYh||L2 0#£yn€Xp, ||yh||L2
b(yn,pn —
S sup (yh DPh p) + |p . Qh|H1-
0#£yr€Xp, ||Yh||L2

Subtracting the first equation of (3.3) from the first equation of (3.25), since X} C
L?(Q) we obtain

b(Yn,pn —P) = /Q (a(p) — a(pn)) wyn + / a(pr)(u —up)-yn

Q

< Q) Lalp = pula [[ullesllynllee + amaxllw = anllez{lyale2,

which implies

1 C Q L Ol ax
=l < o=l + (6) ol = pal + 22 =

By the triangle inequality

1 C(Q)La Qmax
p=pulm S {14+ = ) [p—anlm + llallwslp — pulm + [u —up[L:.
B B B
Assumption (3.26) implies
— — — u—u .
o + Ol P = DPrlHT > 3 P — qnlH h||L2

Combining this last inequality, assumption (3.26), and (3.29) we obtain

amaxe
Qmax + CVmin<1 - (9)

[u =z < e(flu—=vallez + [p = galm) + [u = |-

Since

1 amaxe o QO'max + Q'min (1
Omax + &min(l - 9) B Qmax + &min(l - 6)

—0)>0
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and the pair (v, qn) € X}, is arbitrary we obtain the desired result. O

Remark 7. For the pair of finite element spaces (3.21), (3.22) condition (3.17) holds

with § = 1. Hence, in this case, assumption (3.26) is the same as (3.7).

The next corollary follows readily from this Theorem.

Corollary 1. Under the setting of Theorem 2, if the spaces X, and M, satisfy as-

sumptions (3.18) and (3.19), then

}1113(1) [(a,p) — (un, pu)llx = 0.

Moreover, if the exact solution (u,p) € H*(2) x H*TY(Q) for some real number s €

[0, /], then there is a constant ¢ > 0 independent of h such that

10w, p) = (wn, pa)llx < ch® (ufla + llgflms+) -

Proof. The conclusion of Theorem 2, an elementary density argument and assump-
tions (3.18) and (3.19) give that the Galerkin solution converges to the exact solution
as h — 0. If the exact solution is more regular, assumptions (3.18) and (3.19) give

the claimed error estimates. O

We now propose an iterative scheme to solve the discrete nonlinear system (3.25).
Although the scheme requires assembling a new matrix at each iterative step, we show
that, under an assumption similar to (3.7), the speed of convergence to the Galerkin
solution is independent of the discretization parameter h.

The proposed scheme is the following:



29

Given an arbitrary initial approximation pg)) € My, forn >0 find (uglnﬂ),pglnﬂ)) €

X, that solve

a (s v )+ b (Vi p ) = fyfva, Vv € X, (3.30)

b (ug”l), qh> = (g9, qn)r, Vg, € M.

Now we prove that this scheme converges independently of the discretization

parameter.

Proposition 4. Assume that the pair of spaces (X, My) satisfies condition (3.17).
Let the solution to (3.25) be small enough, in the sense that there are two constants

0 <1 and hg > 0 such that for every h < hg

Omax + Qmin

c(Q) Lo [up|[rs < 6. (3.31)

min

Then for the iterative scheme (3.30) the following error estimates hold

n+1
(n+1) 1 0 (0)
u, —u —
H " h Lz~ Qmax + Omin ﬁn P ph H1 7
and
(n-+1) AN (0)
—n" < (= — )
‘ph Pn = (ﬁ) Ph=Pn|

Proof. Take the difference of equations (3.25) and (3.30). We obtain

Jo (a(ph)llh -« (pé”)) ui”*”) vy +b <Vh7ph - pgﬁl)) =0, Vv, €Xy,

b (wn — w0, 0n) =0, Van € M.
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Set Vi = up — uglnH), then

2
Qmin ||Up — u](1n+1)‘ < / (04 (pén)> - CV(]%)) Up: (uh - uﬁf‘“))‘
L2 Q
+1
< () Ly |pn —pén)‘Hl [up|Ls || up — ul” ) L
which by (3.31) implies
Huh — (vt L (3.32)
L2 Omax + Omin H!
By the inf-sup condition (3.17),
o (nt+1)
(n+1) b (Vh’ph Ph )
B \pn—py < sup
b 0AVREX), ||Vh||L2
Jo (a(Ph)uh —a (Pén)> ug:m)) Vi
= sup
0#£vLEX), HVh“L2
Ja (a(ph) - a(P@)) up-Vi
< sup
0#£vLEX), ||Vh||L2
fQ o (pgn)) <uh _ ugnﬂ)) V),
+ sup
0#AvREX), thHL2
n n+1
< C(Q)La ph_pg))Hl ||uh||L3 + Qmax uh_ul(l )‘LQ.
By condition (3.31) and inequality (3.32)
5 ‘ph - p(n+1) L (amax + amin) Pn — p(n)‘
4 HY Qmax + Qmin & H1
= 0’ph -
From this inequality and (3.32) the claimed error bounds follow. O

Remark 8. One might argue that the previous error bounds do not guarantee conver-

gence of the algorithm, since the value of 3 is not known and, hence, the ratio 6/3
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could be greater than one. Using a similar assumption as (3.26), namely

1 Omax + Qmin

c(Q)L Uyl|s < 9,
S () L g
we can bypass this constraint. Moreover, as we have mentioned before, for the con-

crete examples of spaces (3.21)—(3.22) we have § = 1.

Remark 9. In addition to (3.17)—(3.19), assume that the following inverse inequality
holds

[VallLs < ch™2lvillLe,  Vvi € X (3.33)

If the exact solution (u,p) belongs to H*(2) x H*1(Q2) for some real number s with
3 < s < 1, then the uniqueness condition (3.7) implies (3.31). Indeed, under these

assumptions we have

[u— wplus = O(h*~2),

hence, if

max F Omin )7 Haf|gs < © < 1,

min
then,

Omax + Q'min

c(Q) Lol [up s < (14 O(h*2))0.

If h is small enough, we obtain condition (3.31).
Let us study now the approximation of nonsingular solutions. With this purpose,
we introduce a final assumption on the function «, namely

a € W2 (R). (3.34)

As we have mentioned before, in the truncated case this is not restrictive for the

problem we are treating.
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Next, we complement (3.17)-(3.19) and (3.33) with an additional inverse in-
equality:

lgnllzoe < ch™|gnlar,  Van € My, (3.35)

Both inverse inequalities (3.33) and (3.35) hold when the family of triangulations 7,
is quasi-uniform (or uniformly regular) in the following sense (cf. [21]): In addition

to (3.20), there exists a constant 7 > 0, independent of h, such that
hr > th, YT €71,. (3.36)

We are now concerned with the approximation of nonsingular solutions to (3.10)
under the hypotheses (3.17)-(3.19), (3.33), and (3.35). In order to do that, let us
define the discrete solution operator to the linear Darcy equations T), : 9 — Xj.

That is, for any n = (f,9) € 9, Xy, 2 x, = (ap, pn) = Ty = Ti(f, g) solves

a(up, vi) +b(vi,pn) = [ofva, Vv € X,
b(un, qn) = (9, an)r, Van € My,

where the bilinear form a : L?(Q) x L%(Q) is defined by

a(u,v) = @/Qu-v.

It is a classical matter ([16, 27]) to show that, under assumption (3.17), this operator
is well-defined, injective, T}, € £(2),X},), and there is a constant ¢ independent of h

such that

ITn(E, 9)llx < cll(f, 9)llp,  V(F,9) €D. (3.37)

We can also define the discrete nonlinearity. This is an operator G, : X; — X, X

H&éQ(F)' C 9, such that if z;, = (up,pn) € Xy, then Gy(zy) = (Fp,—g), where
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F) € X, is the unique solution to

/QFh-vh = /Q [(a(pn) — a)uy — f] vy, Vv, € X,

Finally, define the operator Fj, : X;,, — X}, by
Fh(l'h) =+ ThGh(l’h).

With this notation, problem (3.25) can be equivalently rewritten as:
Find x5, € X, such that

Fy(zn) = 0. (3.38)

The approximation properties of the operator T}, are the following.

Proposition 5. Assume that (3.17)—(3.19) hold. Let (f,g) € ) be such that T(f, g) €
H:(Q) x H'5(Q) C X, for some 0 < s < (. Then, there is a constant ¢ > 0,

independent of h such that

(T =T0)(£, g)llx < h®[[T(£, g)]

Hsx Hl+s. (339)

Proof. 1t is a direct consequence of assumptions (3.17)-(3.19), together with a basic

interpolation argument ([12]). O
Corollary 2. Under the hypotheses of Proposition 5, the operator Ty, satisfies
lim |7 =T | (9. = 0- (3.40)

Proof. Standard regularity results for the linear Darcy problem (3.8) imply that,
for sufficiently small s > 0, T(f,g) € H*(Q) x H'**(Q) if (f,g) belongs to 9 :=
H?(Q) x H*~1/2(99), which is a dense subset of §. The boundedness of operator T



34

(see (3.9)), together with inequality (3.39) imply

T —Ty)(f T —"Ty)(f T(f
sop ML —TW(E 9= _ T =T E 9l s ITE D s
oxtgey  I(F9)lly coey  IE 9y I(£, 9)ll»
from which (3.40) clearly follows. O

We are interested in approximating a nonsingular solution z = (u,p) € X to

(3.10). For this, we must assume that there is a real number s > 1/2 such that
(u,p) € H¥(Q) x H'™(Q). (3.41)

Remark 10. Since s > 1/2, (3.41) implies that (u,p) € L3(Q) x C°(Q), see [2].

To alleviate the notation, define
o) = (u),p) = (mpu, Tpp) € Xy, (3.42)

where 7, and Z, are the interpolation operators of (3.18) and (3.19) respectively.
Important properties of the interpolant 29 and the operator F}(x)) are established

below.

Lemma 1. Let the function o satisfy conditions (3.1), (3.2) and (3.34). Let the
solution (u,p) € X to problem (3.10) be nonsingular and satisfy the smoothness con-
dition (3.41). If the pair of spaces (X, My,) satisfies assumptions (3.18), (3.19), then

there exists a constant ¢ > 0 independent of h, such that

[ —uj]|, < ch?|ul

Hs, (343)
and
}p — pg‘Hl < ch®||p||gi+s. (3.44)

Moreover, if the pair (X, My) also satisfies conditions (3.17), (3.33) and (3.35), then

there exists a hg > 0 such that for every h < hy the operator F}(z%) is an isomorphism
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of Xy, and the norm of its inverse is bounded independently of h.

Proof. Inequalities (3.43) and (3.44) are a simple consequence of (3.18), (3.19) and
assumption (3.41) via interpolation ([12]).

To show that Fj(z9) is an isomorphism of X}, notice that
[+ T,Gp(ah) =1 + TG (x) + Ty, (G'(2}) — G'(2)) + T, (G (2)) — G'(2)) -

Let us consider each term separately.
(i) I 4+ T,G'(z). Notice, first of all, that if y, € X}, then (I +T,G'(z)) yn € Xp.
Moreover,

[+ TG (2) — F'(2) = (T, — T) G'(2).

Since x is a nonsingular solution, F’(x) is an isomorphism of X. Corollary 2 and an
application of the Theorem about the Perturbation of an Invertible Operator (see
[58, Theorem 4, p.207] for instance) imply that there is h(()l) > 0 such that for all
h < hél) the operator I +7T,G'(z) is an isomorphism of X. Hence it is an isomorphism
of X},. Thus, the result of the Lemma will be proved if we show that the remaining
two terms tend to zero (in the || - || z(x,)norm) as b — 0.

(i) Th(G'(29) — G'(x)). Let yr, = (Vh,qn); using the definition of the derivatives, for

any w € L?(Q)

((G'(z3) = G'(@)yn, (W, 0))

I
S — S —5— 5

=
S
o

(a(py) — a(p)) virw
(af
(e

)112 - d(p)u) qn-W

_|_
3
So

)
So
|
o

(p)) Vi W

+

(a(ph) — alp)) gnu-w

+

) (u) — u) gr-w.
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Consider each term separately. By (3.2) and the inverse inequality (3.33)
/Q (a(ph) = a(p)) virw < e(Q)La [p = Ph| g [Vallwellwllez
< ch™ 2 |p = ph| o Vil [ wllze.
By (3.34) and the inverse inequality (3.35)
| 60 = ) e < llanl [ | = 8] fullw
< ch™ 2 |p = 1| o lanl e | s [[ W -
Finally, by (3.2) and the inverse inequality (3.35)
R (=) v < Lo = e oo
< ch™ 2 {Ju =} || lgnlm [ w]|Le
Thus, by the stability property (3.37) of Ty,

|T(G" () — G'(@)[| o x,,) < NG (@) = G'(@) eixn)
(G (zh) — G'(x))ynlly

=c sup

0AyneXy, Hthx
G/ 0 _G/
R i <A CO) T
0#£yn€X ), 0AWEL2(Q) [[ynllzllwllLe

< ch ™ (Ip = ]+ lu = udlp) .

which by the approximation properties (3.43) and (3.44) of 29 and the fact that
s > 1/2 implies that this last quantity tends to zero as h — 0.

(iil) T(G) (2) — G'(2Y)). Tt is sufficient to notice that for any wy;, € X,

((Gh(xh) — G (h))yn, (Wn, 0)) = 0.
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Remark 11. In the example (3.21), (3.22), as in most finite element spaces, inverse
estimates such as (3.33) and (3.35) hold locally. Therefore they may be applied locally
when used in proving the interpolation Lemma 1, because interpolation properties are
also local. In this case, the statement of Lemma 1 is valid even if the triangulation
is not quasi-uniform. But of course intermediate results would have to be stated

differently. For instance the bound for

| (ol = o) view

would read, for s > %:

[ @) = ) viw < et il il w
Q

However, this does not apply to inverse inequalities that are used in conjunction with
global error estimates, such as in Remark 9 or in Lemma 2 below, in which case some

restriction on the mesh cannot be avoided.

Once we know the main properties of the operator F(zY), it is possible to study

F} (yp,) for y, close to .

Lemma 2. Under the assumptions of Lemma 1, there is a constant ¢y > 0 indepen-

dent of h such that

1G5 () — (@)l ek < b |lyn = 23|l w0 Von € Xa, (3.45)
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Proof. Let yn = (Vh,qn), zn = (Wp, 1) € X;. For an arbitrary t, € X,

(Ghon) = Ghlah))ons (4.0)) = [ (alaw) =) wicts + [ a(an) (vi = ) ity
= [ @l = o) ity
< c(|[th = anll o wnllezlltn e
{10 = Vil L e

+ Hpg - QhHLoo |\112HL3|7"h\H1chHL2) ]

hence
1G5 () = G (@)l exiy < e ([P = anl| e + [J0h = Val|ga) -

This estimate and the inverse inequalities (3.33), (3.35) imply (3.45). O

Remark 12. Lemma 2 states that G}, is Lipschitz-continuous in a neighborhood of z,
but this continuity is not uniform with respect to h. One more time, the absence of

regularizing properties for the nonlinearity GG does not allow us to obtain uniform in

h bounds.

It is important to know whether the consistency error Fj,(x)) tends to zero as
h — 0, and if this is the case at which rate. The following Lemma shows that the

convergence is optimal given the regularity of the exact nonsingular solution x.

Lemma 3. Under the assumptions of the first part of Lemma 1, there is a constant

c > 0, independent of h such that

1En (@)l < ch* (J[ul

et [pllries). (3.46)
Proof. Since F(z) =0,

Fy(xy) = o — @+ Th(Gr(ay) — G(2)) + (T, — T)G(2),
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which implies
[Fu(ai) |z < llo = 2yl + (T — Th)G(2) | x + 1Th(G(2) — Gh(zh)) ||z
From (3.43) and (3.44),

lz = 2hllx < ch® (J[ul

we + [|pllaes) -
Estimate (3.39) implies

(T = T)G(2)||x < ch*||TG(z)]

esries = ch* (e + [lpllne-).

Finally, since T, (Gp(29) — G(z)) belongs to Xy, by the stability property (3.37)
of T}, we see that it is sufficient to control the difference of the first coordinate of
G(z) — Gi(2Y) when tested against an element of Xj,. Let v, € X}, then using (3.43)
and (3.44)

/ [G(x) = Gu(ah)], Vi < (& + o) [l — w2 ]| Va2
Q

+c(Q)La [p = ph 1 10|z [valLe

< ch” (aflas + lIplla+s)

‘VhHLQ'

]

According to the theory in [17, 34], Lemmas 1, 2, and 3 allow us to prove our
main result, namely, the existence of a nonsingular solution for the discrete problem

and optimal error estimates for it.

Theorem 3. Let o satisfy (3.1), (3.2) and (3.34). Assume that problem (3.10) has
a nonsingular solution x = (u,p) € H*(Q) x H'™(Q) C X, for some s > 1/2. If
the pair of spaces (Xp, My) satisfies (3.17), (3.18), (3.19), (3.33), and (3.35), then

there is a hg > 0 such that for all h < hg the discrete problem (3.38) has a unique
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nonsingular solution x;, = (uy, py) in a neighborhood of the interpolant x) = (ul, p?)
of the exact nonsingular solution. Moreover, this solution satisfies the following error

estimate

o = allx < eh® (Jullms + [pllans). (3.47)

where the constant ¢ > 0 does not depend on h.

Proof. Let us define
en = || Fu(2)]| 2,

and

M (0) := sup 1F% (ym) — Fy (@)l

yn€Xn: llyn—al|lx <o
Lemma 1 implies that there is a h(()l) > 0 such that for all A < h(()l) the operator Fj (x))
is an isomorphism of X, with inverse bounded independently of h. Denote this bound

by A. Inequalities (3.45) and (3.46) imply that
2A M (2A¢p,) < ch*= /2,
hence there is a hé2) > 0 such that for all A < hé2)
2A M, (2A€,) < 1.

Set hy = min{h(()l), h((f)} and consider h < hy.
Since the operator F}(x)) is an isomorphism, solving problem (3.38) is equivalent

to finding a fixed point of the map ®; : X;, — X}, defined by
~1
Oy (yn) = yn — [Fi(zp)] " Fa(yn).

Denote

Si={yn €Xn: llyn— 2llx < 2861} .
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We shall show that ®;, is a contraction from S to S.

If Yp € S,

Op(yn) —ah = [Fp(@D)] " (L) (yn — 25) — (Falyn) — Fa(22)) — Fu(x))) -

By the Mean Value Theorem

Fu(un) — Fu(al) = / FL () 4+ 0(yn — 22)) (g — )0,

from which follows

1E5 () (yn, — ) — (Fr(yn) — Fu(z3)) [1x

1
< / [E5 (k) — Fr(ah +0(yn — 23))|| g x, 190 — 2hll2d0 < 286, M, (246).
0
And, by the choice of h
||(I)h(yh) — x%”x S A (QAEth<2A€h) + Eh) = Aeh (QAMh<2AEh) + 1) < 2A6h,

which means that @ (y,) € S.

Let yn, z, € S, then a similar computation shows that

1
[Pr(yn) — Pn(2n)llx < AMR(2A6L) [[yn — 2nllx < §Hyh — znllx,

which implies that &, is a contraction and we can conclude that there is a unique
x, € S such that x, = ©p(xp,).

To realize that this solution is nonsingular, notice that

1
< Mp(206p) < —,

||F/L(5U2)—F/L($h 2A

) Hc(xh)

and apply the Theorem about the Perturbation of an Invertible Operator (see L.V. Kan-

torovich and G.P. Akilov [58, Theorem 4, p.207] for instance).
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Finally, to get the error estimate (3.47) it is sufficient to use (3.46), the triangle

inequality; and properties (3.43) and (3.44) of 29,

lon = 2llx < llon — @hllz + [loh — 2l

< 2Aep, + ch® (||u]

we + [|pllaes)

< ch”(|[u|

g+ |[pllaies) -
This concludes the proof. ]

Remark 13. From the proof of this Theorem we see that the discrete nonsingular

solution x; is unique in a ball larger than S. Namely, it is unique in the ball

S0) == {yn € Xn: llyn —2pllx <0},
where § is such that AM,(d) < 1. Both radii tend to zero as h — 0. But, according
to (3.46), the radius of S is O(h*), s > 1/2, whereas § = O(h'/?).

We have obtained that the discrete problem (3.38) has a unique nonsingular
solution in a neighborhood of the exact nonsingular solution. We now analyze the
application of Newton’s method to the solution of this discrete problem. The algo-
rithm is the following:

Given x%o) € Xy, forn >0 define xglnﬂ) by

1
:I:EL"H) = $,(1") — [F,’L <1:§1n)>] F, (:vﬁf”) )

For this method to make sense F}, (:vg")> must be an isomorphism of X, for all

n. Let us introduce the following notation

S(wp,6) == {yn € Xt |lyn — xal|x < 6},
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and,
1

K = ,
ATl £9.x,) C0A

where the constant ¢y is the constant in inequality (3.45), A is such that for A small

enough

<A
L(Xp)

Y

e

and z¥ is the interpolant of = defined in (3.42).

Lemma 4. There exists a real number hg > 0 such that for all h < hg, if § = O(h'/?)
and yp, € S(zp, d), then the linear operator F (yy) is an isomorphism of X;,. Moreover,

the norm of the inverse of this operator is bounded independently of h.

Proof. Since
Fy(yn) = Fy(an) + (F(yn) — Frlan),

and, by Theorem 3, there exists hy > 0 such that for all h < hgy, Fj(z;) is an
isomorphism of Xj,, the result is obtained if we show that Fj (y,) — F}(xp) is small

enough. We know that,

< 2A.

I -

A similar argument as in the proof of Lemma 2 gives us that

1E7(yn) = Fn (@)l oy < coh™ 21Tl cenxallyn — zallx:

Hence, if

2¢o| Tl o xllyn — znl|xART2 < 1,

then the Theorem about the Perturbation of an Invertible Operator implies that
F}(yp) is an isomorphism of X;. Moreover, from this inequality we see that it is

sufficient to set

§ < Kh'/?,
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where K is a constant independent of h. O

Theorem 4. There exists a real number hg > 0 such that for all h < hg, if
6 < eKh'/?

for some real number ¢ with 0 < ¢ < 1, and if the initial approrimation of New-
ton’s method xglo) belongs to S(xp,0), then Newton’s method converges to the discrete

nonsingular solution x;, and the following error estimate holds

1 2
< —pU2 (n) H '
th - K Th h x

Proof. Assume h is small enough. Let us show by induction that if xéo) € S(xp,0),

then xﬁj‘) € S(xp, o) for all n > 0. If xﬁl") is in S(zp,0) and 0§ is chosen as indicated,

then by the previous Lemma, K can be chosen independently of h, so that F, ,’L(a:g"))

is an isomorphism of X, with

|[et ()]

Furthermore with a similar argument as in the proof of Theorem 3 we obtain

Jfl(szrl) — Th = [F}/L (xgzn))}_l <F11}/l (ﬁ:z)) (ﬂfgn) - l’h) - (Fh (xgn)) — Fh(xh)>>
- [ (:ci”))}—l / [F (o) = By (0 (o = )] (5 ) .

Then, by the induction hypothesis, a similar argument as in Lemma 2 and the choice

< 4A.
L(Xp)
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of 6 and K imply

Joire? = < [ ()]
* L(Xp)

1
6 (465 (082, 2~
X/o ‘ w N T, — T o Ty = T,

2
<AAITi ccoxyoh™? [of = o]

| Thl 2.x,) %

<’ =]

On one hand, this shows that :Uénﬂ) € S(xp,0) and hence, by Lemma 4, that

F/L(:pgnﬂ)) is an isomorphism of X, for all n > 1, on the other hand this shows

the claimed error estimate. O]

Remark 14. As we can see, the initial guess in Newton’s method must be very close
to the discrete solution. Moreover, the convergence of the method deteriorates as
the discretization parameter h tends to zero. This is again related to the lack of

regularizing properties for the nonlinearity G, as is reflected by Lemma 2.

C. A Splitting Algorithm for Exponential Porosity

The preceding analysis does not apply to an exponential porosity «, since assumptions
(3.1) and (3.2) are not satisfied. So far, a rigorous analysis of this problem is beyond
our reach. Nevertheless, for the exponential case, we propose a split formulation
derived heuristically by taking the divergence of the first equation of (1.1) and making
a change of variable.

Thus, by precisely exploiting the exponential character of the porosity (1.2), we
are able to decompose the nonlinear Darcy problem into a linear elliptic equation and
a linear Darcy system. But this process is heuristic since we develop this method

without even knowing whether in general problem (1.1), with the porosity defined as
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(1.2), does have a solution.

This section is organized as follows. First, we present the motivation behind
the split formulation, next we study the properties of the solution to the auxiliary
problem, i.e., the linear elliptic equation. Finally, we discretize the split formulation
and we study the convergence of the resulting algorithm.

Let (u,p) be a solution of problem (1.1) with the porosity given by (1.2) and
assume that p belongs to L>(2). Since a(p) > 0, we can divide the first equation
n (1.1) by a(p), take the divergence of the result, and make a suitable change in

variable. Using the second equation of (1.1), we obtain

1 1
0=Vu=V|——f-—=Vp].
(st~ ™)
Since 1/a(p) = 1/ape ", then
va — ie’vpr — _Lveﬂp’
a(p) Qo QoY

and the above equation can be rewritten as
—Ae " =V (e 7f) . (3.48)
Let us introduce the new variable
g=e P —1. (3.49)

Since p =0 on I,

g=e v —1=0o0nT,.

From (3.48) and (3.49), this new variable satisfies a.e. in

—Agq — V- (¢f) = 7V,
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a(p) = g (3.50)

Assume that the right-hand side f is smooth enough so that it has a normal trace on

I'. Then it is legitimate to multiply the first equation of (1.1) by n on I' and obtain
a(p)g + Opp = fn.
Denote F' := f-n. By (3.49),
Onq +7Fq = agyg — vF.

Thus, for the variable ¢, we have obtained the following boundary value problem

(

—Ag — Vi (¢f) =VE, inQ,
y¢=0, on I'y, (3.51)
Onq +Fq=agyg —vF, onT.
\
This motivates the following split formulation for problem (1.1):
1. Find ¢ that solves (3.51),
2. In view of (3.50), define
~ Qo
= ——, € Q. 3.52
i = S x (3.52)
3. Find (U, P) that solve
(
aU+VP=f inQ,
VU =0, in €2,
(3.53)
P = Pw, on va
Un=gyg on I'.




48

Summing up, if (u,p) is a solution of problem (1.1) and p belongs to L>(f2), then
(¢,U,p) solves (3.51)—(3.53). The converse is partially established in the next sub-

section.
Remark 15. This formulation requires only the solution of two linear problems.

Let us first examine the well-posedness of the boundary value problem (3.51).
For this, we write it in a variational form. Multiply the first equation of (3.51) by
a sufficiently smooth function r that vanishes on I'y,, apply Green’s formula and use

the last equation of (3.51). We obtain

/Vq-Vr—irfy/qf-Vr:ozofy/gr—y/f-Vr.
Q ) r Q

In the case d = 3, the minimal smoothness requirements for these integrals to be
meaningful are ¢,r € H'(Q), f € L3(Q), and g € HY*(T"). Hence, the weak formula-
tion of problem (3.51) that we will consider is the following:

Given £ € L*(Q) and g € H&é2(F)', find g € HL(Q) such that

/ Var+ 7/ qf-Vr = agy (g, r)p — 7/ f-Vr, Vre H,(Q). (3.54)
Q Q Q

A sufficient condition for this problem to be well posed is the following.

Proposition 6. Assume there exists a constant x < 1 such that
7e(Q) [[fflgs < x < 1. (3.55)
Then, problem (3.54) has a unique solution q € H.(Q).
Proof. Let ¢ = r in (3.54); Holder’s inequality and (3.55) give
o [t < Ml Veles < 2@ Elwslafys < vk

Then Lax-Milgram’s Lemma implies that problem (3.54) is well-posed. O
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Remark 16. Condition (3.55) is only sufficient for problem (3.51) to be well-posed.
We do not want to provide a thorough analysis of this problem, but only to show

that there are cases when the algorithm that we are developing is meaningful.

Next, we turn to problem (3.53). This problem is well-posed if & defined by
(3.52) belongs to L>*(€2) and is bounded away from zero. For this, it suffices that

there exists a constant ¢y > 0 such that
g+ 1>qo>0,a.e. in ), (3.56)
and
q € L>(9Q). (3.57)

Condition (3.57) can be regarded as a restriction on the smoothness of the data
and the domain. Sufficient conditions for assumption (3.56) to hold elude us at the

moment, but we have the following partial result, in the simpler case when I, = 0f2.

Proposition 7. Assume that Iy, = 02 and condition (3.55) holds. Then q satisfies
qg+1>0,a.e in .
Proof. Let us define the set
Q" ={xeQ: q(x)+1<0},

and the function

(x) = 0, x & O,
—(gx)+1), xeQ .

Clearly, ry € H'(Q2) and by definition ry > 0 almost everywhere in 2. Moreover, since

q+ 1)go =1 > 0 then ry € Hj(Q). By setting r = rq in (3.54) and changing signs we
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obtain that
/ Vrol? +4 / rof-Vrg = 0. (3.58)

Owing to condition (3.55), equality (3.58) implies that

(1-) / Vol < 0.
Q

In other words Vrg = 0, a.e. in Q. Since 1y € HJ(f2), we have 1 = 0, a.e. in Q thus

implying the result. ]

Under restrictions (3.56), (3.57) and (3.55), we are able to show that the solution

(U, P) to (3.53) solves (1.1).

Proposition 8. In addition to (3.55), assume that the solution q to problem (3.51)
is in L>(Y) and satisfies (3.56). Then problem (3.53) has a unique solution (U, P)

and this solution solves (1.1).

Proof. By (3.56), there is a unique P such that a.e. in Q,
e P = q+ 1.

The assumption that ¢ € L>(Q) together with (3.56) imply that P € H'(€2). More-
over, since ¢ = 0 on I',, we obtain P € HL(Q).

Define U € L2(Q) by
ayU := Vg +v(qg + Df;

by (3.51), this implies that

Moreover, by the definition of P,

ayU = V(e‘”ﬁ —1)+ ”ye_“sf = —fye“’ﬁV}5 + 'ye_vpf;
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hence

a(PYU+ VP =f.
The boundary condition on U can be obtained in a similar way. This implies not
only that the pair (U, P) solves (1.1), but also that

&%)

U+VP=H.
qg+1

Since the solution to (3.53) is unique (U, P) = (U, P). O

Remark 17. In the case of Dirichlet boundary conditions on the whole boundary:
I, = 09, if we slightly restrict the angles of the domain and assume that f is
smoother, for instance f € L°(Q) and V-f € L*(Q2), then a bootstrap argument, and
regularity results for the Laplace equation, show that ¢ € W!(Q) for some r > 3 and

hence ¢ is continuous. Therefore (3.57) is satisfied.

Let us now discretize (3.51)—(3.53). In order to approximate the linear Darcy
system (3.53) we use the spaces X, and M), introduced in Section B and assume that
they satisfy (3.17). We also introduce another finite dimensional space W, C H.(Q)

to discretize (3.51). Then, the discrete algorithm is the following:

1. Find ¢, € W), such that

/th-Vsh—l—v/th-Vsh :ao'y/gsh—v/f-Vsh, Vs € Wy, (3.59)
Q Q r Q

2. Compute the function

ap(x) = PR x € Q. (3.60)
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3. Find (uy,pn) € Xp, x M, that solve the discrete linear Darcy system

Jo @nty v+ [ vi-Vip = [ fvh, Vv, € Xy, (3.61)

fQ Uy Vry = (g, 7)1, Vr, € M,,.

Remark 18. Note that finding this approximate solution involves solving only two

consecutive linear problems.

Remark 19. Clearly, under assumption (3.55), problem (3.59) has a unique solution.
Then, for the discrete version of the splitting method to make sense we need assump-
tions analogous to (3.56) and (3.57). When W), has the same structure as in (3.22),
(3.57) is always satisfied, although the upper bound may not be uniform with respect
to h. Furthermore, if q,(x) + 1 > 0 for all x in €, then since problem (3.61) is set
into finite dimension, it also has a unique solution. But of course, (3.56) is not guar-
anteed, although in the numerical experiments of Section D, we observe indeed that

the discrete solution satisfies g, + 1 > 0.

Now, we present an error analysis of the algorithm (3.59)—(3.61), but this analysis
is still heuristic because we must assume that the function ¢, satisfies uniformly
assumptions similar to (3.56) and (3.57). More precisely, we suppose that there are

constants ¢umin, max > 0 such that for every h > 0,
0 < Gmin < ¢a(%) +1 < gmax, VX € (3.62)

With this, we can proceed in two directions: a straightforward analysis of (3.59)-
(3.61), or a comparison with (3.25). In both cases, we suppose that (3.55) holds, so
that (3.59) has a unique solution.

Let us proceed first with the second option, namely comparison with (3.25). We

do not know whether the nonlinear Darcy problem with exponential porosity has a
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solution or not; and if so, which are its properties. For this reason, we shall carry this

error analysis under the assumption that problem (1.1) with the function « defined

by (1.2) does have a solution. Moreover, we shall assume that the discrete problem

defined by (3.25), with « as in (1.2) has a unique solution for all h > 0.

Proposition 9. In addition to (3.17) and (3.55), assume that the solution g, to

problem (3.59) satisfies (3.62). If the pair (Qn,prn) € X X My, solves (3.61), then

there exists a constant ¢ > 0 independent of h such that

lap — UnllLz + [pr — Dulm < csup |a(pa(x)) — an(x)|[|un| L2,
xeN

where (up, pr) € Xy X My, solves (3.25).
Proof. Let us take the difference of equations (3.25) and (3.61). We obtain

Jo ((pr)ay, — anty) v + [ Va-Vi(pn — pn) =0, Vv, € X,

fQ VTh—O \V/ThEMh.
Let v, = uj, — uy; assumption (3.62) implies

(%]

lu, — a2 < / Ginluy, — i
Q

max

/Q (a(pn) — an) up-(u, — ay)|

whence

[ap, — a2 < esup |a(pn(x)) — an(x)|[|an ||z
x€eN

(3.63)
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By the inf-sup condition (3.17)

fQ (a(ph>uh - &hﬁh) “V,

Blpr, — Prlm < sup

0#veXy ||VhHL2
~ sup Jo @n (w, —0g) vy + [, ((pn) — au) up-vy
0AvRLEX), ”Vh,HL2

< cl[uy, — |z + sup |a(pr(x)) — an(x)|[|un |2
xe

< csup |a(pn(x)) — an(x)|[lun|rz.
xeN

]

This estimate should be regarded as the basic one. If the exact solution is smooth
enough, it can easily be reduced, for instance, to max—norm error estimates for the

pressure p and the auxiliary variable q.

Corollary 3. In addition to (3.17) and (3.55), assume that the solution q to (3.54)
belongs to L>(§2) and satisfies (3.56). Assume, also, that the pair (u,p) that solves
(1.1) is such that p € L™(R). If q5 satisfies (3.62) then there is a constant ¢ > 0

independent of h such that

lwp, — Qnllee + |pn — Prler < c(|p = pulle + [lg — anllze) [[un]Le. (3.64)

Proof. Using (3.63) it is sufficient to bound the L* norm of the difference a(py) — &

Then

lee(pn) = anllz < fla(p) = alpn)llz= + [la(p) = anllz=

< D|lp — pullze + l|a(p) — énllze,

where the constant D satisfies

D < agyexp (ymax {||p||ze<, |prllz=}) -
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Comparing (3.50) and (3.60), we obtain for a.e. x in

X)) — qp(x « 9,(x) ~ 4(x)
lalp(x)) = an(l < ot ey 357000 + 1]

= 10 + Dian() + 1)|th — |~

Assumptions (3.56) and (3.62) imply that there is a constant ¢ > 0 independent of h
such that

|(g(x) + 1)(gn(x) + 1)| > ¢ for a.e.x € €,

whence (3.64). O

Finally, to be able to provide an order of convergence, we must assume one
additional approximation property of the space M), and we must assume that the

space W}, has adequate approximation properties. More precisely,

1. There is a constant ¢ > 0, independent of h, such that for every r € W’ (Q) the

interpolation operator Z, defined in (3.19) satisfies

7 — Zur| e < chf|r|lwe - (3.65)

2. There exists an interpolation operator p, : H'(Q) — W), such that for all

1 <s<oo,ifre WHLQ)
I = prrlles + hlr = parlws < ch™ |7l e, (3.66)
where the constant ¢ > 0 does not depend on 7 or h.

3. There is a constant ¢ > 0 independent of h, such that for every r, € W), the

following inverse inequality holds

[7all e < ch™Y2|rnlan. (3.67)
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Remark 20. The space M), defined in (3.22) has properties (3.65) and (3.66) with the
same interpolation operator 7. Hence, the triple (X, M, M) with X, defined in

(3.21) and M}, defined in (3.22) has all the desired properties for all k£ > 1.

Under these assumptions, we first bound the error of the auxiliary problem.

Proposition 10. If (3.55) holds, the solution q, of (3.59) satisfies

Q
\q—qh|H1§2<1+’”()
I—x

HfHLs) mf g —rafan. (3.68)

Proof. By taking the difference between (3.59) and (3.54), inserting any function 7,

in W), and testing with s, = ¢q; — r,, we obtain
gn = ralm (1= ye(@Q)[|f[lus) < g — ralm (1 +vc(Q)[|f]lws) -

By virtue of (3.55), this implies that

c(Q)||f
|Qh_rh|H1 S (1_'_2 ’7( )H ||L3 )| —’r’th1,

1= ye(Q)[[f]|s

Then (3.68) follows from (3.55) and the triangle inequality. O
Now we are able to prove a convergence result.

Corollary 4. In addition to (3.55), assume that the solution q to problem (3.51)
belongs to HH(Q)NWE () and satisfies (3.56). Moreover, assume that the solution
(u,p) to (1.1) is such that p € H**H(Q) N W.(Q). Then, if the space M, satisfies
(3.19), (3.35) and (3.65), and the space W), satisfies (3.66) and (3.67), and if qp

satisfies (3.62), there exists a constant ¢ > 0 that does not depend on h, such that

lap, = Tllez + o — Bule < k2 (Iplwe, + [plress + lalwe, + lalmes) JJuglce.
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Proof. By property (3.65),

lp = prllzee < llp = Zupllee + 1Zop — pallzee < ch’|plwe, + 1 Znp — pallre-

By the inverse inequality (3.35) and by (3.19)

1 Znp — pallre < ch™ 2| Typ — prln < ch ™2 (Ip — Tupls + |p — pulm)

< ch™Y2 (W ||p| gresr + |p — Pl -

To estimate the term |p — py| g1 it is sufficient to recall Corollary 1 in the uniqueness

case, or (3.47) for nonsingular solutions (with s = ¢+ 1). We obtain
lp = pullos < chflplws, + b= 2|pl e

Then we conclude the proof by applying (3.68) and the inverse inequality (3.67). O

Remark 21. The above estimates are suboptimal, but they show heuristically that
the splitting algorithm does indeed converge. By using a more refined analysis,
for instance the method of weighted norms of Nitsche (see [21], S.C. Brenner and
L.R. Scott [15, Chapter 8], or V. Girault, R. Nochetto and L.R. Scott [33], for more
details) we may derive (again heuristically) optimal error estimates. The results of

Section D give examples where the errors have indeed optimal order.

Remark 22. If g belongs to H*(Q)NWL (Q) and satisfies (3.56), then for all sufficiently

small h, ¢, also satisfies (3.62).

Now, let us estimate the error of (3.59)—(3.61) without reverting to (3.25). The
estimate (3.68) is rigorous because it is derived solely under assumptions on the
data. However, the remaining estimates are heuristic because we do not know how

to estimate the error on @, without assuming that g, satisfies (3.62) and ¢ satisfies

(3.56) and (3.57). Then we have the following result.
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Theorem 5. In addition to (3.17) and (3.55), suppose that the solution q to (3.54)
satisfies (3.56) and (3.57), the solution U of (3.53) belongs to L3(2), and the solution
qn of (3.59) satisfies (3.62). Then

~ max 1 . maXl
||U—uh||Lzs(1+q )(Hg) inf U = il + 22 L) Uil - guln

min vheXpy min 40
+ Gmax inf |P — 7’h|[_117
0[0 ’/‘hEMh
(3.69)
and
5 1 . 1 « .
|P — pulm < (1 + B) rh%{}h |P — rplm + ir ? (IU — ap|r2

min (3.70)

c(Q)
i Q||U||Ls|q—qh|m).
q0

Proof. First, the assumptions on ¢ and ¢, imply that & and ¢;, are well-defined and
strictly positive. Next, by taking the difference between the first row of (3.61) and
(3.53) in weak form, and inserting any element v, of X; and rj, of M}, we obtain for

any wj, in Xy,

/thmh vi)wa + /Q(ah &) Uew + /quah S
/th(U — Vp)Wy, + /QV(P — ) Wh,.

In order to eliminate pj,, we proceed as in Theorem 2: owing to (3.17), there exists

vy, in X, such that wy, := u, — vy, belongs to V), (see (3.23)), and

1\ .
U = viyllee < <1+B) inf U = v ee. (3.71)

vreEXp

This choice of test function eliminates the last term in the left-hand side of the above
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difference. Then by applying (3.62), we derive

Qmax Qmax

- Gmax
10 = vallee + == llan = allzo|[Ulles + =P = ralm. (3.72)

|t — vilL2 <
Qmin (67)) Q)

There remains to estimate & — &:

lan — éllzs < c(Q)|q — qnlm- (3.73)

0¢min
Then (3.69) follows by substituting this bound into (3.72) and using (3.71) and the
triangle inequality:.
To obtain (3.70) notice that, by the discrete inf-sup condition (3.17), for any
rn € My,

~ b ) D - b ,P— D
Blpn = rhlm < sup oy, P = 7h) <|P—=rplm +  sup bn, P = pn)
oyneX,  |IYnllee oomix,  lynlee

Y

which shows that it is sufficient to estimate b(yy, P — py). By taking the difference of

the first equation in (3.53) in weak form and the first equation of (3.61) we obtain

by, P — i) = /

Q

(Gnity — GU) yp — /

) ap (u, —U) -y, — / (@ —an) Uyy

Q
< lanlle U = tnlle2llynlle: + |& — anllzs [|U||ws [[ynlLe,
which, by (3.73) and (3.17) implies
- 1 Q - c(Q2
|pn — rulm < = (|P — Tplgr + 0 (Huh —Ul|pz + QHUHL?’M — Qh|H1)) .
B Qmi qo
(3.74)

min

The error estimate (3.70) follows from (3.74) and the triangle inequality. O

Remark 23. Proposition 10 and Theorem 5 immediately yield straightforward orders

of convergence for (i, pr). We skip them for the sake of brevity.
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D. Numerical Experiments

To illustrate the theory of the previous Sections, we present a series of numerical ex-
periments, in two and three dimensions, which show the performance of the developed
methods in a series of testcases.

The numerical experiments in two dimensions were conducted using the package
FreeFem++ (see [53]). In this case, unless otherwise stated, the computational domain
is Q = (0,1)2, where the top and right sides are I',, and the other two sides are T.

The numerical experiments in three dimensions were carried out with the help of
the deal.II library (see [8, 7]). For the experiments in this dimension, the domain
is Q = (0,1)% with T, = {(z,y,2) € 9Q : = =1} U{(z,y,2) € 02 : y = 1} and
[ =00\ T,.

To test the algorithm (3.30) developed in Section B we have conducted a series
of numerical experiments, the results of which we present below. We always initiate

the iterative process with pgo) = 0 and use the stopping criterion

2

(n+1 (n
!
2

\/Hugnﬂ)

(n+1)
e

(1) (]2

) + ‘ph by,

"L 1010,

2

Hl
Small Porosity

To test the algorithm in the case when the porosity does not have high variations, we
define the porosity as

a(g):1+%€2, 3

Notice that 1 < «(§) < 2. We define the exact solution as

2 2)T
)

u(z,y) = (=2 4o p(z,y) = sin(27z) sin(27y) sin(27z).
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Table I. 3-D. Iterative Algorithm. Small Porosity. Q;dc—velocity, Q;—pressure.

Level h | Velocity-L? | Rate | Pressure-H' | Rate | Iterations
11 0.5000 | 1.63E+000 3.25E4-000 — 5)
21 0.2500 9.35E-001 | 0.80 1.72E4+000 | 0.92 9
31 0.1250 4.97E-001 | 0.91 8.66E-001 0.99 8
41 0.0625 2.53E-001 | 0.97 4.35E-001 0.99 8
5| 0.0313 1.27E-001 | 0.99 2.18E-001 1.00 8

These functions determine the right-hand side and boundary data.

The results of the algorithm obtained using a discontinuous-QQ; approximation
of the velocity and a Q; approximation of the pressure are reported in Table I. We
see that the number of iterations does not depend on the discretization parameter,
and the errors on the velocity and pressure have optimal order. We obtained similar
results in two dimensions, using spaces Pyp-P; and Pdc-P;. For the sake of brevity,
we do not present them here.

Notice that for the last level the number of cells equals 32,768 and

dim X, = 786,432 dim M, = 35,937.

Big Porosity

To illustrate the case when the porosity has high variations, but is still bounded we

consider
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Table II. 2-D. Iterative Algorithm. Big Porosity. Pidc—velocity, Po—pressure.

h | Velocity-L? | Rate | Pressure-H' | Rate | Iterations
0.250000 | 2.07E+4000 — 9.27E+000 — 14
0.125000 8.57E-001 1.33 2.64E+000 1.43 10
0.062500 2.66E-001 1.27 6.76E-001 1.81 9
0.031250 7.11E-002 1.69 1.69E-001 1.96 9
0.015625 1.81E-002 1.90 4.22E-002 2.00 10

Notice that 1 < «(§) < 11. We define the exact solution to be

u(z,y) = (=% 2%)7, p(z,y) = 10sin(27z) sin(27y).

These functions determine the right-hand side and boundary data.

The results of the algorithm obtained with a discontinuous—IP; approximation of
the velocity and a Py approximation of the pressure are reported in Table II. We
see that the number of iterations does not depend on the discretization parameter,
and the errors on the velocity and pressure have optimal order. Using lower order

elements, i.e., a Py-IP; approximation, we obtain the same results.

Exponential Porosity

Finally, although the theory developed for algorithm (3.30) does not cover the case

of an unbounded (i.e., exponential) porosity, we nevertheless test this case. We set
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Table III. 3D Iterative Algorithm. Exponential Porosity. Q;dc—velocity, Q—pressure.

Level h | Velocity-L? | Rate | Pressure-H' | Rate | Iterations
11 0.5000 | 3.26E+000 — 3.25E4-000 — 8
2 10.2500 | 1.73E4-000 | 0.91 1.72E+000 | 0.92 8
31 0.1250 8.93E-001 | 0.96 8.68E-001 | 0.98 7
41 0.0625 4.61E-001 | 0.95 4.39E-001 | 0.98 7
5| 0.0313 2.50E-001 | 0.88 2.25E-001 | 0.96 7
the porosity to be defined as in (1.2) with
1
Qp = 17 Y= 1_17
and the exact solution
Ly o o _ - : :
u(z,y) = 2( Yy, z5 ), p(z,y) = 2 + sin(27z) sin(27y) sin(27z2).

These functions determine the right-hand side and boundary data.

The results of the algorithm obtained using a discontinuous-Q; approximation of
the velocity and a (Q; approximation of the pressure are reported in Table III. We see
that the number of iterations does not depend on the discretization parameter, and
the errors on the velocity and pressure have optimal order. In two dimensions, and on

a similar problem, we obtain similar results using Py-P; and Pydc-Py approximations.
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Table IV. 3D Splitting Algorithm. (Q;dc, Q1, Q) discretization.
Level h | Velocity-L? | Rate | Pressure-H' | Rate

11 0.5000 | 5.25E4-000 — | 3.25E4-000 —

21 0.2500 | 2.80E+000 | 0.91 1.72E+000 | 0.92

31 0.1250 | 1.45E+000 | 0.95 8.70E-001 | 0.98

41 0.0625 7.73E-001 | 0.91 4.44E-001 | 0.97

5| 0.0313 3.95E-001 | 0.97 2.35E-001 | 0.92

Splitting Method

To test the algorithm developed in Section C, let

1
ag =1, 7:1.

We define the exact solution to be
L e o ot _ - : -
u(z,y) = 2( Yy, z5 %), p(x,y) = 2 + sin(27x) sin(27y) sin(272).

Notice that this is the same problem with exponential porosity that we solved using
the iterative algorithm. The following triple of finite element spaces was used: X;—
discontinuous-Qq, M;,—Q; and W;,—Q;. The obtained results can be seen in Table IV.
The velocity error in the L?-norm, and the pressure in the H'-norm asymptotically
have optimal order. Testing the method on a similar two-dimensional problem, we
can draw the same conclusions for the triples (Pgy, Py, Py), (Py, Py, Ps), (P1dc, Py, Py)

and (Pldc, PQ, PQ) .
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Table V. 2-D. Computational Time [s]. Exponential Porosity.

Iterative Splitting
h| (Po,Py) | (P1dc,Py) | (Po,P1,Py1) | (Po,Pq1,Ps) | (P1de,Po,P1) | (Pyde, Po, P2)
5E-1 0.21 0.74 0.02 0.04 0.04 0.06
2.5E-1 0.40 1.13 0.08 0.09 0.10 0.13
1.25E-1 1.20 3.35 0.23 0.27 0.53 0.59
6.25E-2 4.71 23.16 0.95 1.08 5.15 5.25
3.13E-1 23.69 248.62 5.81 7.00 69.87 82.07
1.56E-2 | 167.36 | 3341.34 50.64 65.48 1366.66 1702.59
7.81E-3 | 1711.00 — 713.58 894.86 — —

Computational Time

In order to estimate the computational complexity of the proposed algorithms, we

compare the computational time involved in solving the following two dimensional

problem:

u= (_y?)’ x3)T’

a(§) =2,

p(z,y) = 2 + sin(27x) sin(27y).

We compare the iterative algorithm (3.30) and the splitting method of Section C.

The obtained results are shown in Table V.

From the results shown in this Table we can clearly see that the splitting algo-

rithm of Section C outperforms the iterative algorithm (3.30) of Section B. This is

expected to be the case, since the splitting algorithm requires solving only two linear
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problems as opposed to the iterative algorithm; which although converges indepen-
dently of the discretization parameter, requires the assembly and solution of a linear
problem at each iterative step.

Finally, when comparing the computational times for the splitting algorithm
using a fixed velocity-pressure pair but different approximation spaces for the auxiliary
problem, we see that the computational times differ very little, their relative difference
is never greater than 20%. This suggests that the most time consuming procedure is
solving the linear Darcy problem (3.61). This is in agreement with the theory, as this
problem has more unknowns and its matrix is indefinite. A better approach for the

solution of this problem may reduce the time involved in solving this problem (see

the work of J. Schéberl and W. Zulehner [73] and W. Zulehner [87] for instance).

Numerical Investigation of the Convergence Condition for the Iterative Algorithm

In order to further investigate the properties of the iterative algorithm (3.30) and,
more precisely, the role of condition (3.31) we solve the following particular problem

in the domain
Q= {(:U,y) ER?: 1 < /a2 +y2 <4},
with

Fw:{(az,y)eR2:m:1},

and I' = 0Q \ I',,. In this domain we solve the nonlinear Darcy equations with expo-

nential porosity. We set the right-hand side that corresponds to the exact solution

u(z,y) = (zr,—yr)",  plz,y) =r,

where r = /22 4+ 32. In the numerical experiments that follow we use a (Pgy,P;,P;)

approximation of the velocity-pressure-auxiliary variable. We set ag = 2 and vary
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the parameter 7. Experimentally we have obtained that if v < 0.038 the iterative
algorithm converges independently of the initial guess, and it behaves the same way
as the cases considered before.

For bigger values of the parameter 7, the splitting algorithm of Section C per-
forms as before. However, the iterative algorithm does not converge anymore. More-

over, if we truncate the porosity function « setting, for instance,

(
Q, §< 07

(&) = { apes, 0< &< 4.5,

04064'5’y, 5 > 45,
\

where the choice of truncation is dictated by 1 < p(z,y) < 4 V(x,y) € Q, the method
still diverges. For v = 0.2, a history of the behavior of the approximate pressure is
shown in Figure 1.

From Figure 1 we can see that although the approximate solution diverges, it
does remain bounded, and it seems to be oscillating around more than one fixed
functions. A detailed analysis of the reasons behind these phenomena is a topic for

future research.
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Fig. 1. Approximate pressure for the iterative algorithm. Shown every ten (10) itera-

tions.
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CHAPTER IV

THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VARIABLE
DENSITY *
In this chapter we consider the time-dependent variable density Navier-Stokes system
(1.3)-(1.4) on the finite time interval [0,7] and in an open connected and bounded
domain Q C R? (d = 2 or 3) with boundary 99, which we assume to be sufficiently
smooth. More precisely, we assume that €2 is such that the Stokes operator pos-
sesses the usual regularization properties (see [19, 80]). Under these assumptions,
our objective is to construct a time and space discretization scheme which has op-
timal approximation properties and minimizes the computational cost. The space
discretization is carried out using Galerkin techniques. The novelty in our approach
is the fractional time-stepping technique that we use to discretize in time.
The original results in this chapter were originally presented in [49], [51] and [50].
The organization is as follows. In Section A we review the well known projection
schemes for constant density incompressible flows. This proves useful in understand-
ing the difficulties that arise in the case when the density is variable. Moreover, we
provide a new proof of a well known result. Namely, the stability of the so-called pres-
sure correction incremental scheme in standard form (see Theorem 9). The novelty
in this analysis is that we completely eliminate the projected velocity from the algo-
rithm. Section B presents novel first order schemes for the solution of variable density
* Part of the results in this chapter are reprinted with permission from:
A Fractional Step Method Based on a Pressure Poisson Equation for Incompressible
Flows with Variable Density by J.-L. GUERMOND AND A. SALGADO. C. R. Math.
Acad. Sci. Paris, Sér. I 346 (2008), 913-918. Copyright 2008 by Elsevier.
A Splitting Method for Incompressible Flows with Variable Density Based on a Pres-

sure Poisson Equation by J.-L. GUERMOND AND A. SALGADO. J. Comput. Phys.
228 (2009), 2834-2846. Copyright 2009 by Elsevier.
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incompressible flows. The stability and convergence of these schemes are studied in
Section C and Section D, respectively. In Section E a formally second order scheme
is introduced and we prove its stability. Finally, Section F presents several numerical

experiments that illustrate the performance of the introduced methods.

A. Projection Methods for Constant Density Flows

To understand the ideas and difficulties behind the approximation of variable density
flows, let us briefly review the heuristics behind the projection techniques that are
used for constant density incompressible flows. For a comprehensive description of
these methods we refer the reader to J.-L. Guermond, P.D. Minev and J. Shen [44].
As we stated in Section B of Chapter I, the main difficulty in the approximation
of incompressible flows is, in fact, the incompressibility constraint. Let us begin with
a technical result, which gives a description of the divergence-free vector fields. For

a proof see R. Temam [80, Theorem 1.4].

Theorem 6 (Helmholtz Decomposition). Let Q C RY be Lipschitz. The following

orthogonal decomposition holds
L*(Q)=He{vel*Q): g€ H(Q):v="Vq},

where

H:={vel’(Q):Vv=0, vo=0}.

With this result at hand we can describe the projection methods. To simplify the
argumentation, for the time being, let us neglect the nonlinear terms. Moreover, as it
is customary in the description of these schemes, we use a semi-discrete setting, i.e.,
we will not discuss the space discretization. We begin by partitioning the time interval

[0, 7] into K subintervals, which for the sake of simplicity we take uniform. We then
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introduce the time step 7 = T'/N and the discrete times t, = k7, for k € {0,..., K}.

Let us start by reviewing the usual non-incremental Chorin/Temam algorithm for
constant density flows [20, 79, 71, 74]. This algorithm for solving the constant density
time-dependent Stokes equations consists of computing two sequences of approximate
velocities {1 }—  x, {u* ' }io0. k., and one sequence of approximate pressures

{p" im0,k as follows: First, set u® = uy, then for all time steps 441, k£ > 0, solve

g(ﬁk+1 - uk) o ,LLAﬁk — fk)+17 ﬁk+1|aQ — O, (41)
and
Lokt _ crvny | Lo wt k+1 k+1
—(u" 0"+ =Vp" =0, Vau"™ =0, u" n|sn =0, (4.2)
T p
where we have set f*! := f(¢;,,). One key observation is that, with the help of

Theorem 6, the second sub-step can be interpreted as a projection. Indeed, this

sub-step can be recast as follows:

T .
w4 Dgphtt = gkt Voubt! = 0, u“tln|yg = 0, (4.3)

k41

which is the Helmholtz decomposition of u**" into a solenoidal part with zero normal

trace plus a gradient. The above decomposition can be equivalently rewritten u**! =
Puu*t!, where Py is the L2-projection onto H. This fact is the reason this method
together with its many avatars is often referred to as a projection algorithm. One
very interesting feature of (4.1)—(4.2) is that the pressure can be computed by solving

the following Poisson problem:
ApFt! = gVﬁk“, 0np" o = 0. (4.4)

The algorithm (4.1)—(4.2) is simple and can be proved to converge. See e.g.

[71, 74, 47] for a proof of the following result.
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Theorem 7. Assume that the solution (u,p) to system (1.3)—(1.4) is smooth enough.

Then, the sequences @, u, and p, generated by (4.1)—(4.2) satisfy

||L|T — 1~l7—||goo(L2) + ||UT — Ll7-||goo(L2) S CT,

lur — 8|y + |IPr — prlleecrey < er'/2

It is important to note at this point that to infer (4.4) from (4.2) we used the fact
that the density is constant. When the density is not constant, most of the attempts
at splitting the pressure and the velocity that we are aware of so far are based on
strategies that are similar to that described above. The main idea always consists
of projecting a non-solenoidal provisional velocity onto H; in other words, most of
the currently known splitting algorithms consist of solving problems similar to (4.2).
When taking the divergence of the left-most equation in (4.2) one is then reduced to

solve a problem like the following:

1
—V (pkﬂm) =0, 9,Dlp =0, (4.5)

where p**1 is an approximation of the non constant function p(t,,). It seems that
all the algorithms that are more or less based on the Helmholtz decomposition (4.3)
always lead to problems like (4.5), which are hard to solve efficiently due to the 1/p**!
variable coefficient. The key conceptual leap proposed in this dissertation consists of
abandoning the projection point of view in favor of a penalty-like argument.

As emphasized in J.-L. Guermond [38] and J.-L. Guermond and L. Quartapelle
[46], the projected velocity uf*! can be eliminated from (4.1)—(4.2). More precisely,

the two sub-steps in (4.1)—(4.2) can be equivalently recast as follows:

Pkt — @by — pAG + Vph = £ @b 0 = 0, (4.6)
.
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and
Apk—l-l _ gvﬁk+17 5npk+1!aﬂ —0. (4.7)

k+1

Once u"*' is eliminated, it is clear that the Chorin/Temam algorithm is a discrete

version of the following perturbation of the Navier-Stokes equations:

p(u; +u-Vu) + Vp — pAu=1£, ulsq =0,
(4.8)

Vou — IEAP = 07 anp|8ﬂ - 07
where € := 7. Actually, this perturbation is nothing more than a penalty on the
divergence of the velocity as recognized by R. Rannacher in [71], since the momentum

equation can also be recast into
p(uy +u-Vu) + pe 'VA'Vou — pAu = f, (4.9)

where A~! is the inverse of the Laplace operator equipped with homogeneous Neu-
mann boundary conditions. That is, given ¥ € L?*(Q), we denote by ® = A™'¥ €

H'(2) the function that has zero mean value and solves
(VO,Vr) =(U,r), VreH(Q). (4.10)

We shall show that adopting the penalty point of view stated in (4.8) yields
efficient splitting algorithms whether the density is constant or not. This point of
view is somewhat orthogonal to the current mainstream in the literature which mainly

focuses on the projection point of view.

Remark 24. Note that (4.9) is significantly different from standard penalty tech-
niques using —e !'VV-u as penalty term, which are generally ill-conditioned. These
techniques penalize the divergence in L? whereas the term e 'VA~!V-u penalize it

in a weak norm somewhat related to that of H~' := (H})'".
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As we have seen from Theorem 7, the non-incremental pressure correction method
is low-order accurate. More precisely, the error is O(7) for the velocity in the L?-norm
and O(T%) for the velocity in the H!-norm and the pressure in the L?>-norm. However,
Chorin/Temam’s constant density algorithm can be improved by making the pressure
explicit in the viscous step and by correcting it in the projection step. This technique
is usually referred to as the incremental pressure-correction algorithm. This algo-
rithm consists of computing two sequences of approximate velocities {0*™ }i—o. . r,
{uF*1} o K, and one sequence of approximate pressures {p"™1},_o  x as follows:
First, set u’ = ug, p° = p(0), compute an approximation of u' := u(r), then for all

time steps txi1, k > 1, solve

Qﬁ(?)ﬁk“ —4uf 4 uth - AT VPP = T @by = 0, (4.11)
.

and

3 1
2—(uk+1 — ") 4+ -Vt =0, VU =0, u"n|y =0, (4.12)
T P

Again, the so-called projected velocity (i.e., the solenoidal one) can be alge-

braically eliminated, thus we obtain the equivalent system

%(311’@“ — 4R A — AR 4V = FR @R g = 0, (4.14)
Apht! = g—fvﬁk“, Ondloa =0, (4.15)

and (4.13). Here
ot %lqyc _ %(bk—l. (4.16)

The works of J. Shen [74] and J. L. Guermond and L. Quartapelle [46] present an

analysis of this scheme. These results can be summarized in the following Theorem.
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Theorem 8. Assume that the solution (u,p) to system (1.3)—(1.4) is smooth enough.
Then, with proper initialization, the sequences Q., u, and p, generated by (4.11)-
(4.13) satisfy

lur = el + ur = vl ey < 7,
lur = il + 1P, = prlleee < e

Let us prove stability estimates for this algorithm. As we have seen, this result
per se is not new but the technique that we use to prove these estimates gives insight
on the way to proceed when the density is variable. The main novelty is that the
projected velocity is totally eliminated from the analysis. To the best of our knowledge
this proof technique has never been used before. This trick enables us to easily extend
the proof to the variable density case (see Section E). To avoid irrelevant technicalities

assume that f = 0. We now prove that algorithm (4.14)—(4.15) and (4.13) is stable.

Theorem 9. Let p = 1. The solution {(0*,p")}r>0 to (4.14)—(4.15) and (4.13) sat-
isfies the following estimate:

k
I8 1E2 + 72 VP IRe + 72IVOp T Ee + D [Fllat i + 72l Vap' ]
=2

< c (0L + [0 + IVl + 7V L) . k> 2.

Proof. We proceed in two steps:
(i) Initialization: We consider the steps k = 1,2 separately as they involve the initial
quantities. Let us begin by noticing that the definition of p* involves only terms from

the previous time steps. For k = 1 or 2 multiply (4.14) by 47u**!. Using the identity

_ 2 2 2 2 112
9k +1 (BakJrl —daF + o 1) _ |ak+1‘ +|2ak+1 _akl +‘52ak+1| _‘ak| _’2ak — 1P
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and the Cauchy-Schwarz inequality we obtain
e R L g L A
which implies

g + 70 < e (18°)1% + @' 1% + 7V Iz + 721 Vp'IE:) .

for kK = 1 or 2. The estimate on the pressure is obtained by eliminating ¢**! from
(4.15) using (4.13), multiplying by 6p**! and integrating by parts. Again, the Cauchy-

Schwarz inequality implies

Ar? SpF L2 S k12
IO < 8
The triangle inequality and the estimates obtained above imply the claimed estimate

for the first two steps k =1, 2.

(ii) General Step: For k > 3 notice that, by (4.13)

pﬁ B 7pk . 5pk71 _f_pkﬁ B 3pk+1 _ 352pk+1 + 52pk
n 3 3 '

Multiply (4.14) by 470%™ and integrate. Using the identity

s <3ak+1 . +ak—1) 3 {ak—&-l}Q 4 ‘ak’2 + ‘ak—1‘2

+2|6a5 2 - 2|80k + |82+,

we obtain

Bl [T, — 40t L. + 2" IE
+ 2[5 L — 2[100% L + [l0* 0" L, + 4r(lat

+ 47_ <Vpk+1, ﬁk+1> . 47_ <v52pk+1’ﬁk+1> + 4?7— <v52pk’ﬁk+1> — 0
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From the projection equation (4.15) and the pressure update equation (4.13) we
deduce that

2
(Vr, @) = ET (Vr, Voprtl)  vr e HY(Q).
Using this property together with the identity 2a(a — b) = a® — b* + (a — b)* we infer

BT — 40t + 8" + 2f6ut L. — 2/loa%|L

472

+ “52 kHHLz + 470 kHHﬂl + [HVpkH”L? - HVp “L2

+\|V5pk|]i2 — HVdZPkJrlHiQ} -+ 7 <V52pk, V(spk+1> = 0.
Now we use the following identity:
. _ 2T 472
663 = 55 — = VaplE. + - IVOpE.

which we apply at time steps t;1 and ¢, (note that it is critical to have k& > 3 here)

and we obtain

Bl |3, — 4l@¥]F. + 05 1E + 10705 IR + 470" 1
2 2
4 2H5ﬁk+1 . %Vé?p’““\!iz . 2H5‘~1k . ETV(SZpkHiQ
ﬁ V k+1112 v k12 V(S k112
+ 3 [H D HL2 H PllLe + IVép HL2}

472
— 7|W<52p’““|!iz - HV(SkaHL? i <V52pk VepMtt) = 0.

We observe from this inequality that we need to control the last three terms. We

rewrite these as follows:

472 872 872
- 7\|V52pk+1||%2 - 7||V52pkH%2 + — (V& pF, Vephtt) =

9
47‘2 47.2
_ ?Hvdgpk-i-l”]z'_ﬂ - 7 <v52pk’ \V4 (62pk‘ + 252pk+1 . 25pk+1)> )

Use (4.13) to eliminate ¢*+1 from (4.15). Applying 6% to the result, multiplying it by
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§3p**1, integrating and using the Cauchy-Schwarz inequality we obtain, for & > 3

47’ 3, k+1)|2 2= k412
5 IVOP I < [lo7a™ ..
Observing that 6%p* + 282pF+t — 26p**t = —6p* — dp*~! and using the inequality

above, we obtain the following bound:

472
9

87t

5 <V62pk7 vépk+l> 2

872
I = ST+
_ 472 _
— [|6*a* . + o 160" = [lop™111%] |

from which we finally deduce the following energy estimate:

Blla"[T. — 4l@f(fg, + (@2 + 47 (ot
2 2
2|5 — SV - 260t - VR
472 k4112 k|2 k|2 47° k(2 E—1/2
+ = VPR — IVP II2 + IVop©|E2] + o [IIVop¥(IE: — IVop"72] <O.
(4.17)

We are now going to use the stability estimates proved in Appendix A. Let us

define the quantities

a® = [[0°]|zz,
5 472
e R 2

Ls 2T s 472 s 472 o
&’ := 2 6u’ — §V52p 32 + ?va 32 + ?HVCSP Mz
Then (4.17) can be rewritten as
345 — daF +aF N < — (B 4 d —dF) | k>3

Setting gFt! := — (bF 4 d** — @) this three-term recursion inequality satisfies the
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hypotheses of Corollary 6 (see Appendix A) for £ > 3. Hence

v l

a”gc(al—l—cﬂ)—Zﬁ (bs—l—ds—ds_l), v>3
=3 s=3

or

v v l
1 1
a’ +Z 3V+1—ldl + E : 3r+1-1 E b* < C(al + a® +d2) , v>3.
=3 =3 s=3

Dropping some positive terms in the left-hand side we deduce

1% 11/ 1 - S
a —|—§d +§sz:;b Sc(a1+a2+d2).

Given the bounds obtained in the initialization step, this inequality implies the

claimed result. O

If, in (4.14)—(4.15), the difference quotients are replaced by time derivatives and
the remaining 7’s are replaced by e, the above algorithm reduces to the following

perturbation of the Navier-Stokes equations:

;

p(u; +u-Vu) + Vp — pAu =1, ulspg =0,

Vi — £A¢ =0, Bdlo0 = 0, (4.18)

€pr = ¢

Formally, (4.18) is a O(€?) perturbation of the constant density incompressible
Navier-Stokes equations. The system (4.18) serves as the starting point for the new

algorithm for variable density flows developed in Section E.

Remark 25. L.J.P. Timmermans et al. [82] proposed another version of this scheme
which, following the terminology of [44] is called rotational. In this version, the

pressure update step (4.13) is replaced by

pk+l — pk + ¢k+l _ //LV'ﬁk+1- (419)
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In this case, we can see that the scheme corresponds to the following perturbation of

the Navier-Stokes equations:

(

p(u; +uVu) + Vp — pAu =1£, ulspq =0,

Viu - £Ag =0, Onlon = 0,

epr = ¢ — ’;‘V-u.
\

Moreover, J.L Guermond and J. Shen have shown (cf. [52]) that this divergence
correction significantly improves the pressure approximation. To be more precise, the
velocity error in the ¢2(H")-norm and the pressure in the ¢2(L?)-norm are O(7%/2).

This is the best convergence result known so far.

B. Description of the First Order Schemes

On the basis of the observations of the previous section, we are going to construct a
fractional time-stepping technique for incompressible flows with variable density. Let
us begin by describing the space discretization. To construct a Galerkin approxima-
tion of (1.3)—(1.4) we introduce three sequences of finite-dimensional spaces {W}, }r~0,
{Xn} hs0, {Mp}iso, for b > 0, with W, ¢ H*(Q), X;, € H§(Q?) and M, C H'(Q).
We use W, X;, and M, to approximate the density, the velocity, and the pres-
sure, respectively. With these spaces we can now describe the first-order fractional

time-stepping schemes.

Initialization Given the initial data (pg,ug), we construct the approximate data
(P2, u), p?%) € W), x Xj, x My, The initial pressure p can be computed from the

pair (po, ug), see [44] for more details.

Time-Stepping Technique Given (pf,uf pk) € W), x X, x M, we now describe

how to obtain the next approximations (pf ™, uf ™! pr) € W), x X, x M;,. The
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algorithm proceeds in three steps: density update, velocity update, pressure

update.

Density Update The density update is computed using the mass conservation equa-
tion, which we recall is hyperbolic. It is well known that Galerkin techniques
are not well suited for the solution of hyperbolic problems (see for instance
[27]). The list of techniques aiming at addressing this issue is endless; among
these methods one can cite Galerkin-Least Squares [57], Discontinuous-Galerkin
[57, 85], subgrid viscosity [40], method of characteristics [25], edge stabilization
[18], entropy viscosity [45] and many others. We assume that the sequence of ap-
proximate densities {p§ }x—o.. x C W} is obtained by one of these stabilization
techniques. More precisely, we assume that given the pair (pf,uf) € W, x X,
the approximation technique that is used to approximate the mass conservation
returns p’fLH and that this algorithm satisfies the following stability hypothesis:

x < 1361(;21 Pyt itelg pitt < o, VEk > 1. (4.20)
Note that this is a natural assumption since, owing to the incompressibility of
the velocity field, the density field p satisfies the following property:
p(t) € I}{leigpo(x)jilelgpo(w) ,

for all ¢ > 0, cf. [61]. For instance, first-order monotone schemes satisfy (4.20)

with x = minycq po(z) and ¢ = sup,cq po(x).

Velocity Update Having obtained an approximate density, we define

pr=5 (i + 1) s (4.21)

N | —

ph, == ph+0pk, 7 €{0,1}. (4.22)
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The parameter v is user-dependent. We say that the method is non-incremental
if ¥ = 0 and incremental if v = 1. The incremental version of the algorithm is
more accurate that the non-incremental one. We consider the non-incremental
version of the algorithm for historical reasons. As we have seen above, the orig-
inal algorithm of Chorin and Temam for constant density incompressible flows
is non-incremental. When v = 1, we take p) = 0. The next approximation of

the velocity field uffl € X, is computed by solving the following problem:

okl ko k
Pply — — PRy AR v Ly, (k) ub !
- 1 Vh +<Ph u,-vuy, vVh>+<§ '(Ph uh)uh vVh>

+ u <Vufl+1, VVh> + <Vp§l, Vh> = <fk+1, Vh> s Vvh € Xh. (423)
Penalty We let ¢ € M, be the solution of:
(V& V) = é (Wi V), Y, € My, (4.24)

Pressure Update Finally, we define the pressure approximation p’fl“ € M, by

ot =¢n+mh, v €{0,1}, (4.25)

Remark 26. The term 2 [pfuj*' — pfuf] + 2V (pf ™ uf)uj ! in (4.23) is asymptotically

consistent with the equation. Notice that if the involved functions are sufficiently

smooth
Lok+l | kyoktl ok k+1 k
5 +pp)u " — ppu 1 u’ —u
2(on pr)uy PrUh L) (pzﬂuz) ubtt = pEZh h
T 2 T
k+1 &k 1
1 (Ph o Ph)uzﬂ +§V'(pz+1u;i)uz“

= [on(up) )" + O(7),

The purpose of this particular way of discretizing the quantity pu; will become clear
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once we do the stability analysis.

Remark 27. Let us introduce the auxiliary space Y}, := X, + VM, In view of (4.24),

the quantity

-
it = uf — ;w; €Y,

is discretely divergence free (in the sense that (uf, Vr,) = 0 for all r, € M;) and
could be used as a solenoidal approximation of the velocity. This particular choice of
Y, fits into the commutative diagram framework described in [37, 38, 47]. Therefore,
it could be possible to develop a much more general theory about fractional time-
stepping techniques for variable density incompressible flows that would include our
method as a particular instance. More specifically, let us assume that one has at
hand a space Y, so that X, C Y,. Let By : X, — M, be the operator defined
by (BaVh, qn) = (V-vp, qn) for all v, € X, and all ¢, in Mj,. Assume that one can
construct an extension of By over Yy, say C}, : Y, — Mj. The operator (', being
an extension of B, over Y, means that B, = Cjiy, where 1), is the natural injection

in : X, — Y. Then, in this setting, our theory will work by replacing (4.24) by
00T ¢ = X Byubtt, (4.26)
T

For the sake of clarity, we shall not pursue this direction. However, the reader can

easily verify that the arguments presented here extend to this situation.

C. Stability of the First-Order Schemes

To obtain stability estimates we henceforth assume that minycq po(z) > 0 (i.e., that
there is no vacuum), and that the sequence of approximate density fields {p}} satisfies
property (4.20). Moreover, to avoid irrelevant technicalities, we assume that there

is no driving force, i.e., f = 0. Under this assumptions the stability of the non-
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incremental scheme is given by the following Theorem.

Theorem 10. Assume that (4.20) holds. Then, for any T > 0 the solution uy, , C X,

and py, . C My, to the scheme of Section B with v = 0 satisfies the following inequality:

K 9 K
T
low wp 32 + 20y [ Vuze + < DIVl < llopudlfze,
k=1 k=0

where af = +/pf.
Proof. We begin by setting v, = 2ruf ! in the momentum equation (4.23). Notice
then that

230" + pr)uy ™ — o, w ™) = Jlog L + llopoug I — oy 2.

Moreover, given the boundary conditions
(U Tul + 1T bt ut) = 0.
Thus, we obtain

log ™y e = o b e+ llonoug 1L +-207 | Vuy ™ [ +27(Vph, ™) = 0. (4.27)

Since we are analyzing the non-incremental method, v = 0 and ¢}, = prH.

Apply the operator § to (4.24) and set rj, = 6p;*! in the result. The Cauchy-Schwarz

inequality and Hypothesis (4.20), imply that
7 k412 kg k12
;HWPh L2 < lloyow,™ Iz (4.28)

Setting rj, = 272pf in (4.24), we derive

2

2r(up ™, Vipp) = Z=(Vppt, k) = = (VR IR + I VoRlRe — VR I1Ee] -

(4.29)
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Adding (4.27) and (4.29), and using (4.28), we obtain
2
-
o IR + 207 || Vag T Re + ;vaﬁ“y\p < |lopuy|zs
which when we add up over k =0,..., K — 1 gives the desired stability result. O]

Remark 28. The quantity |ofuf||?, is the kinetic energy of the flow. Hence it is
more natural to establish bounds in terms of this quantity than on the velocity itself;

see also Lions [61].
Let us now prove stability estimates for the incremental scheme.
Theorem 11. Assume that (4.20) holds. Then, for any T > 0 the solution uy, , C X,

and ppr C My, to the scheme of Section B with v = 1 satisfies the following inequality:

K 2
-
lof a1 + 2um Y [ Vuf|l. + ;vafflliz
k=1

9 K—1 2
T T
+ = Ikl < lofudls + IVARIE:,
k=1

k—  /k
where oy =/ p}.

Proof. In this case, v = 1 and ¢} = 5172“' Proceeding as in the proof of Theorem 10

we obtain the similar to (4.27) identity
log  uy I — lomug |E + lokows ™ [+ 20m [ Vg |22 +27(Vpj, wi ) = 0. (4.30)
By (4.22), we infer

—27'<Vp§1, ufl+1> = —27(V(2p} —p’,i_l), uZ+1>

= 27(V&pi ity — 27 (Vpitt ul ). (4.31)
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Now, in (4.24), set r, = %52pﬁ+1. We obtain

2
—%(Vépfbﬂ Vépk“ Vops) + 2T<uﬁ+1, V52pi+l> =0.

Using the identity 2a - (a — b) = a* — b* + (a — b)? we obtain

7_2

< [IVap Iz + IV OpsRe — V8D, IRe] + 27wy, Vo) = 0. (4.32)
Set ), = pffl (4.24). We get

% (1925 e = 1VPEl122 + V3P 122] = 27(ul ™, Vo +), (4.33)

where we used the identity mentioned before. Finally, apply the operator d to (4.24).

Using the lower bound Hypothesis (4.20), we derive the following estimate
||V52 h e < xllow™ Te < llohoug ™. (4.34)
Adding (4.30), (4.31), (4.32), (4.33) and (4.34), we obtain

oy e = llopuglize + 20| Vug g

2
i
> VPR IE = IVPLIIE: + IVophIIE.] <0

The desired result is obtained by adding up these relations forn =0,..., N —1. [

Remark 29. The above algorithm is an improvement over the second-order algorithm
described [69, Algorithm 2], which requires a very strong (somewhat unrealistic)

compatibility condition between the density and velocity spaces.

Remark 30. As usual for fractional time stepping techniques for the Stokes and
Navier-Stokes equations, the stability property from Theorems 10 and 11 does not
explicitly require the pair of spaces (X, M) to satisfy the LBB condition. This

impression is misleading, since the estimates given by these Theorems do not give a
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realistic stability on the pressure (unless 7 > ch). When going through the details
one eventually realizes that the LBB condition must be invoked to prove stability on
the pressure in L*(Q), we refer the reader to e.g. [38, 39, 44] for more details on this

1ssue.

D. Error Estimates for the First-Order Scheme

The purpose of this section is to obtain error estimates for the algorithm (4.21)—(4.25).
In order to do so, we must assume that the pair of spaces (X, M},) satisfies a discrete
inf-sup condition (cf. [34, 27]), i.e., there is ¢ > 0 independent of h such that

. fﬂ Vp * th
inf sup ——m—— >
qnE€Mp, viReEX) th”LQHVhHHI

Moreover, we assume that the following approximation properties hold (cf. [34, 27]):

There is [ € N such that for all ¢ € [0, ]

inf ||r —7pll2 < A ||| e, Vr € HTHQ). (4.35)

rRh€EWH

inf {|lv—wvpllLze + Allv —vi|lm} < ch€+1||v||Hz+1, You € HHI(Q) N H(l)(Q)7

vreXp

(4.36)

inf g — aallee < Mllalla, Vo€ HAQ)NIAQ). (437)
qrn€EMp,

Remark 31. The references cited above provide several examples of spaces with these
properties. A simple example is the following. Let 7;, be a regular triangulation of

composed of triangles in two dimensions (tetrahedra in three dimensions). Then, for
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any [ > 1 the spaces

Wh:{ThECO(Q)Z Th|T€IEDl, VTG’];L},
Xh: {Vh ECO(Q) . Vh|T€]P)l+17 VTG’];L},
Mh: {Qh ECO(Q> : qh|T E]P)l, VTEIZ;L},
satisfy all the hypotheses given above. If the triangulation consists of quadrilaterals

(rectangular prisms) the same definitions with the polynomial space P replaced by Q

also satisfy the hypotheses.

For any ¢ in [0,7] we define the Stokes projection of the solution (u(t),p(t)) of

(1.3)—(1.4) as the pair (wy(t), qn(t)) € Xp, x M}, that solves

(Vwy,(t), Vvp) + (Vau(t), vi) = (Vu(t), Vvy) — (p(t), Vvy), Vv, € Xy,
(4.38)

(wh(t),Vrh> = 0, \V/Th € Mh.

Owing to the regularization properties of the Stokes operator, the following estimates

hold:

Lemma 5. [fu € L (H"(Q) NH{(Q)) and p € L (H()) for 1 < 3 < oo, then

there exists ¢ > 0 such that

Ju—wa sz + b [[lu = Wil Lo + 1P — anllLo2))

< b [|lull sy + lIpllLogan] - (4:39)
Moreover, if u € LP (H2(Q2) NHE(Q)) and p € LP (HY(Q))
1Whllzs@wenwis) + llanll sy < e [lull oz) + Pl o)) - (4.40)

Concerning the initial approximations obtained in the Initialization step, we must
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assume that
lpo — phllze= + (w0 — ullez + Ao — whllear + Allpo — phllzz < k™' (4.41)

We begin by carrying out a consistency analysis of the schemes. To simplify the
notation, we introduce the following functions to represent the errors:

n(t) == u(t) —wa(t), p(t):=p()— ),
(4.42)

k. wk k k. gk _ ok
e, =W, —uy, € = qdp — Ph>

The functions 7(t) and u(t) can be regarded as the interpolation errors, whereas the

functions ef and €} represent the approximation errors. In addition to (4.41), we

make the following regularity assumptions on the exact solution of problem (1.3):

p € Whee (WlOO(Q)) , uewhee (Hé(Q) N H”l(Q)) , pewh® (HZ(Q)) :
(4.43)
Let us now determine the equations that control the errors. By taking the dif-
ference between the first equation of (4.38) and (4.23) we obtain the equation that

controls ef:

* k41 k kK
P, € — pre
< Lok L havh> M<vez lavvh>

-
+ <V <q,’i+1 - pi) ,Vh> =R (vy), Vv, € Xy, (4.44)

where the residual R*"!(vy,) is decomposed as follows

R¥H(vi) = R (vi) + Ry (vi) + Ry (va), (4.45)

nl
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and
k+1 _ ok
R (vy) = <p§u _ pk+1uf+1,vh>7 (4.46)
T
1/pf™ = pf
leH(Vh) = 5<hfhwi+1 _ Pf+luk+17vh>, (4.47)
REF (vy) = (it hag -Vt — g UF vt ) (4.48)
1
+ 5 (Vo u)u ™ = V(o et v (4.49)

To obtain the equation that controls the quantity ef we use (4.24) along with

the property that (wy, Vr,) = 0 for all ry, € My,
<V6?L, Vrp) = X (e}, Vry) + <qu, V), (4.50)
T
where for any sequence ¢, we henceforth denote

e R A (4.51)

The two equations (4.44)—(4.50) will be used repeatedly in the error analysis.

The error analysis is based on energy arguments similar to those used to obtain
stability in Section C. The first of these arguments consists of testing (4.44) with
k+1
h

vy, ;= 27e; . Then, as in the proof of Theorem 10,

2k — ) = e + s — e
Testing (4.44) with v, := 27e} ™ gives
lof e 12 — llofellze + llof e 12: + 27 ||ef+ |0

+2r (Ve eft) =27 (V(gh — g ), ef ) + 2 RMI (), (4.52)

where, as before, o, := \/pn.

We finish the consistency analysis by giving an estimate on the consistency resid-
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ual 27R*+1(ef™). The following Lemma provides this estimate.

Lemma 6. Assume that the solution to (1.3)-(1.4) satisfies (4.43) and that the se-

quence of approzimate densities {p}} satisfies (4.20). Then

RE e < e [ b k= s+ | ok —

L2

2
Hlop ™ = o ] +§u|!e’2“|!§p+C|!0;’feiH%z- (4.53)

Proof. We estimate separately each of the terms that compose R¥*!(ef*!). For the

first term
1
k41, k+1 k k1 k41, kt1l k1
R+( +) <Ph;5""h+ P+Ut+7eh+>

1
YT R e

. <5 k+1 k+1 +1>

1
5wk+1 uic+1

< cflek o (HpZHLw

L2
+ (lph = P*llzz + 19p™ )l ™ lee)

< clleg e (7 + A"+ [loh — p*llz2)

where we used (4.39), (4.20), and (4.43) to derive the last inequality.

We proceed similarly for the second term,

1

2< 5pk+1 k+1 pf“ k+1 ei+1>
1

1
= 2 <( 6pk+1 piﬁ—i—l) k+17ei+1> + 5 <pi€+1( k+1 k+1>7ei+1>

< el s (H Loghet — gt

Rk-l—l ( k+1)

Wk s + 1ok s+ — uk+1||Lz)

Y
L2

L2

< CHe2+l”H1 (hHl + H (5pk+1 pi€+1
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where we used (4.39), (4.40), and (4.43) to derive the last inequality.

The derivation of an estimate for the nonlinear advection component of the resid-
ual is done by repeating an argument from [39]; we slightly modify the argument
though to account for the fact that the density is not constant. We begin by notic-
ing that, for functions that are smooth enough for the integrals to make sense, the

following identity holds:
1
(pu-Vv,v) + §(V-(pu)v, v) = 0.

Then, using the above identity with v = ey, we rewrite the term R"™ (ef™) as follows

REFA(Eb) = — (phlef w4 AW e wh o 1)
(7 = T ST = i o)
+ (P (wy - Vwp Tt — uM LR
n % (V(pH I whywhtl — W (ph1ub )kt an+1>
= A1+ Ay + Az
Since the approximate density sequence {pf} satisfies (4.20) and the approximate

velocity sequence {w} satisfies (4.40), we infer

Ay < cllogerlealler™ e,
where we estimated the second term after integrating it by parts, which is possible
given the smoothness of wi™ and e}™. Using (4.40) we obtain

As <cllpptt = " el

where, again, we integrated by parts the second term. Finally, given the smoothness

k+1

of p*T an estimate of As is obtained by proceeding as in the constant density case,
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see e.g. [39, 53]

Az < T+ hl+1)||efl+1||H1.

The estimate (4.53) is obtained by combining the results above. ]

As stated the results of Section C show, the stability of the algorithm that we are
analyzing only marginally depends on the method which is used to approximate the
density; the only assumption we make to achieve stability is that the algorithm that
solves the mass conservation equation satisfies (4.20). Of course (4.20) is not sufficient
to obtain error estimates. Performing the full error analysis would require to analyze
the nonlinear coupling between the mass conservation equation and the momentum
conservation equation. This would require to be specific on the type of approximation
which is used to compute the approximate density field and would probably lead to
lengthy technicalities of little interest. We are not going to do the full convergence
analysis to avoid technicalities and to remain as general as possible on the way the
mass conservation equation is approximated. We assume instead that, in some way,
we are capable of computing an approximate density sequence {pf} C W), from the
knowledge of the approximated velocity sequence {uf} C Xj,. To be more specific we
assume that the following holds:

2

< c(N)(T + W2

Opn
1(p — ph)‘rH?OO(Hl) + H (Pt - —>
T/ rlle=(L2)

+Allel i + e(Nllohehlltz, (4.54)

where A > 0 can be chosen as small as necessary. Given this assumption, the residual

term R(e} ™) simplifies as follows:

Corollary 5. Assume that (4.54) holds. Then, the following estimate holds under
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the reqularity assumptions of Lemma 6:
27|RM (el ™) < er(m+ B2 + prlley i + erlloter| . (4.55)

Proof. Use (4.53) where all the terms that involve differences of p, and p can be
majored by (4.54). The parameter A is chosen so that A = eu, where € is chosen

small enough. 0

We now consider the non-incremental and the incremental versions the algorithm
separately.

As we have stated before, the non-incremental version of the method is obtained
by setting v = 0. Under assumption (4.54), the main error estimate for this algorithm

is the following.

Theorem 12. Assume that the solution to (1.3)—(1.4) satisfies (4.43), and that (4.20)
hold for all 0 < k < K. Let (up,), be the solution of (4.23)—(4.24) with v = 0 and
assume that (4.41) and (4.54) hold. Then

lur = ()l < e (B 4772, Jlur = (), e < e (A4 747%) . (4.56)

Congecture 1. We expect that further regularity assumptions combined with a stan-
dard duality argument, e.g. multiplying the error equation by SeZH, where S is the
solution operator to the time-independent Stokes problem, should allow us to con-

clude that the following estimate holds in addition to (4.56):
Jur = (up)- ey < ¢ (B +7).

The reader is referred to [52, 39] for more details.

Remark 32. The error estimate (4.56) shows that, at least under assumption (4.54),

the non-incremental fractional time-stepping technique for variable density fluid flows
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performs as well as the analogous non-incremental pressure-correction scheme for

constant density flows (see Theorem 7).

Proof. [Theorem 12] In this case pf, = pf and ¢} = p*'. Setting rj, := 272§ /x in

(4.50) we obtain

[\

7_2

C (I 2+ ek = 93 5] —2r (Vo) = 2 (v, ).

X
(4.57)

Next, apply d to (4.50) and set rj, := 7562“. The Cauchy-Schwarz inequality implies

72 HV&EHH; < Hx5ei+1 + TV5q£+1Hi2 —

e 2 + 7 9+ 2 (Ve
which, by (4.20), implies
72 k+11)2 ks k412 72 k+1()2 k+1 s k+1
< HV(geh HL2 < Hahcgeh HL2 + M HVéqh ||L2 + 27 <V5qh ,oey > . (4.58)
Adding up (4.53), (4.57) and (4.58) and using Corollary 5, we obtain,
2
-
o el Te + prllel 5 + < Ve 1z + 1 Verliz:] <
1+1\2 k k|2 k+1 _k 7 k12 272 k1 k
cr(T+h )+ (1+c7)||ofef |1 — 27 (Vdgy ,eh>+;||5qh [ +7<th ,Ver).

We estimate the last three terms in the right-hand side separately. Integrating

by parts and using (4.40), the first one can be estimated as follows:
k1 Lk k+1 e 3 BTy kg2
=27 (Vog, " eh) < 27(10g, 2 llehllmn < v + S-llepllzn-
Similarly, the second term is estimated as follows:

7_2
;Hvaqzﬂniz < erd.
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For the last term, using again (4.40) we obtain
972 2 2
AV V) < Vel < er” + |V

Notice that this term is responsible for the loss of optimality, i.e., full first-order
accuracy is lost at this point.

Combining the above observations, we finally obtain
ok el s + el ™I < (1 -+ er)llokellza + A el + er(r2 + Y,
which, by the discrete Gronwall lemma implies
I(onen)-lle ) + ll(en)r gy < e(r'/2 + A1),

The claimed error estimates follow from the triangle inequality, the definition

k kE_ k k
u—u, =n +e,,

and (in the case of the ¢>°(L?)-norm) assumption (4.20). Notice that it is only at
this point that the interpolation error in the H'-norm, which is of order O(h!), is

introduced. This a well-known super-convergence effect induced by our particular

choice for the pair (wy, qp), see (4.38) and [86]. O

The incremental version of the algorithm is obtained by setting v = 1. Under

assumption (4.54), the main error estimate for this algorithm is stated as follows.

Theorem 13. Assume that the solution to (1.3)—(1.4) satisfies (4.43), and that (4.20)

hold for all 0 < k < K. Let (up), be the solution of (4.23)—(4.24) with v = 1 and
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assume that (4.41) and (4.54) hold. Then

lur = (up)r [l ay < e (7 + A7), (4.59)

HUT — (uh)T||p(H1) <c (T + hl) . (460)

Remark 33. The error estimates from Theorem 13 show that, under the given assump-
tions on the density approximation, the incremental pressure-correction algorithm for

variable density fluid flows performs as well as the analogous incremental projection-

type pressure-correction scheme for constant density flows (cf. [44]).

Proof. [Theorem 13] In this case p&b = 2pf — ph~' and ¢}, = dp;T. Setting 1y =
—272526}1 /x in (4.50), we obtain

2
- T; [IVéer Lz — IVoesllLz + Ve HIE:] + 27 (e, Vo*er™)

2 2
= —% (Vogyt!, valei ™).
Setting 7y, := 272%™ /x in (4.50), we obtain
72 [

272
Vb2, — (| Vek||2 + | Vo t[2,] = 27 (eh™! Vekt) + - (Vogitt, verth)

Adding these two equations we arrive at

V)

2
T T
™ Ve i — IVerllfe + IVoerllzz] — ;HW%QHHZQ
k+1 § 277 k+1 i
— 27 <eh ,V€h> = ~ <V5qh ,Veh>. (4.61)

Now we apply & to (4.50) and we set 77, := 762%™, The Cauchy-Schwarz in-
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equality implies
2| Va2ertt i < H)((Sef;rl + TV&QQ}";HH; =
Xlloel e + VoI + 2rx (Va2 de ™)
and owing to (4.20) we infer
T’ 2 k412 ks k4112 T’ 2 k412 2 k+1 ¢ kt1
;HVé e iz < |lo%oer |12 + ;||V5 @ e 4 27 (Vg def ) L (4.62)
Adding (4.52), (4.61) and (4.62), and using Corollary 5, we arrive at
2
-
oy e |1 Te + pr e ™ En + ;HIVE'Z“H@ +[IVae ] <
koK ()2 72 k(2
(L+c7)|lopenllz: + ynveh”m
iy | T 2 k4112 2 k+1 _k 277 k1 i
+er(T 4+ WY + — || V&gt T — 27 (V&g o) + — <V(5thr ,Veh> .
X X
Let us estimate the last three terms separately. Clearly,
T XV gy I < e
The second term is bounded from above as follows:
27 (Va'qi+, ef) < or + Bl lef .
Finally, for the third term we have
272

(VI Ve ) < er 4 IV + 7 Vo

We obtain the estimate (4.59)-(4.60) by finishing as in the proof of Theorem 12. [
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E. A Second-Order Fractional Time-Stepping Method

We have established in the previous section that the incremental version of the scheme
(4.20)—(4.25) is first-order accurate in time both for the L?- and the H'-norm of the
velocity. However, as shown in [39], we expect that the splitting error of the algorithm

is second-order since the pressure term
v, =29 — i, (4.63)

that appears in the approximate momentum equation is a second-order extrapolation
of the pressure pﬁ“. This observation is the main motivation for our introducing a
variant of the incremental method using a second-order approximation of the time
derivative of the velocity.

Keeping the same notation as in the previous sections, the second-order variant

of the algorithm is composed of the following steps:

Initialization First, we choose a penalty parameter y as in the Initialization step
of Section B. Next, we define (p9,u?, p% ¢9 = 0) € Wy, x X}, x My x My, to be a
suitable approximation of the initial data of the problem. Then we compute

an approximation of the exact solution at time ¢ = 7, say (p;,u;,p}, ¢ =

p,l1 —p%) € WhXXhXMhXMh.

Time-Stepping Given (pf, uf, pf, ¢F) € W, xXpx My x M, for 1 <k < K — 1, we

compute the next time-step approximation as follows:

Density Update We are not specific on the way pi“ € Wy is computed, but we

assume that (4.20) holds and that there is a uniform constant M so that

k+1 K
max Ph Ph

< . .
o hax My (4.64)

T
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Velocity Update Similarly to the Velocity Update step of Section B we define

. 3 2 1, 1 _

phi= Pk = PGP = T BT = A+ T, (4.65)
4 1,

pi = p’,j + gﬁbi - gﬁbi g (4.66)

Then we compute uﬁ“ € X}, so that the following holds:

<3pzui+l _4p;€l+1ui _’_pZJrluzfl Vh>
2T ’

1
+ <pZ“u2-Vui+l + §ui+1v-(pi“u2), vh>
+ 1 (Vujt Vv, ) + <vpi,vh> = (f"*vi), Vv, €X,, (4.67)

where

uj = 2u) —uf ! (4.68)
is a second-order extrapolation of the velocity.

Penalty We compute the pressure correction qbi“ € M), so that the following holds:

(Vo™ V) = X (b, T, v € M (4.69)

Pressure Update Finally, the pressure is updated by setting
ot =ph+ ot (4.70)

Remark 34. The quantities (p},u},, p}, ¢}) can be computed by using one step of the

incremental first-order scheme described in Section B.

Remark 35. The term <%V-(p’fl+1u2)u’fl+1, vh> has been added to the equation to obtain

unconditional stability with respect to the advection term. As in the proof of Lemma 6
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we are going to use the following identity:
1
<p£+luz-Vuﬁ“ + 5 V(o ug uZ+l> -
* 1 *
AR TR AR A A A
Remark 36. The term

* k1 k+1._k k+1._ k-1
3ppup T —4py T uy + pptay

2T

1 *
+ §V~ (o gy uptt,

is a second-order approximation of [ppuy](t*™). Indeed, if the involved functions

are smooth enough in time, we infer from the definition of pj that

3 *uk—i-l —4 k—i—luk + k+1uk—1 1
Prh thT h T Pn U +§v_(pi+1uz>ui+1 _

k+1 k+1 k k—1
P k k k— L (3p,"" —dpp+p
5—7_(3uh+1 —4duy +u,, D+ 3 ( L = L

F ) ) -

1
[onu " + B lone + V-(onwy)" T uf ™+ O(72) = [pru M+ O(72),

which proves the claim.

We now establish stability for the algorithm (4.67)-(4.69)-(4.70). Again, to avoid
irrelevant technicalities, assume that f = 0. The stability of the scheme is given by

the following Theorem.

Theorem 14. Assume that the sequence of approzimate densities {pf}r>0 C Wi
satisfies (4.20) and (4.64). Then, for T small enough, the sequence {(uf,pi)}iso C
XX My, obtained by the algorithm (4.67)-(4.69)-(4.70) satisfies the following estimate:

7_2 7_2 B
logug|Te + prllug | + ;HVpiHiz + ;IIWPZ 7 <

K1+ e™) (llopuplize + lloywillze + IVDhLe + IVoLllL2) . vk >2, (4.71)

for some constants ¢ and K.
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Proof. Note first that, as already mentioned in Remark 36, the time derivative can

be re-written as follows:

3P2ui+1 4Pk+1uh+0k+1 p k+13u2+1 4uh+u§ '
2T - P 2T
L3 —4ph 4 pH
R 27 ’

which is an approximation of pu; + %upt. Once tested with u, the expression (pu; +
supy)u gives (3pu?);, and after integration over 2 and over the time interval (0,T') this
yields kinetic energy conservation. We have been able to reproduce this argument at
the discrete level for the first-order time stepping described in Section B, see (4.52).
Unfortunately, we have not yet figured out how to repeat this argument with BDF2.
We are going to content ourselves with a sub-optimal stability analysis which will
yield the growth constant (1 + eT) in (4.71).

Using Assumption (4.64), we have the following estimate

<(3pk+1 4ph+ph ) k+1 uz+1> — 3/ (piJrl ph) |uk+1‘2

- / (Ph = piY) Jukt
Q

k
> <3' M
X oo
pr—ph!

|

) ok tub 2,
LOO

> —4MT||O’£+111£+1“%2.

X

A similar treatment gives

2 (pp™" (Buy ™ — duy +w ™) Wt > 3o — (44 8MT)ohug L

(1= M) o+ 2o o — 2l ko + ool
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Combining the above two inequalities gives

2(3phuy "t = Aph g+ o e W) > (3 — AMT) oy g g
— (4 -+ 8M7)loyuylEs + (1 — 6M7)l|oy ™ w11

+ 2]l ow L — 2llopuglizs + oyt ot T (4.72)

This estimate will be used repeatedly.

Now we proceed in two steps, as in the proof of Theorem 9: First we investigate
the time steps k = 1, 2, then we investigate the cases k > 3.
(i) Initialization: Let k € {1,2} and set v;, := 47u;*! in (4.67). Using (4.72) and the

Cauchy-Schwarz inequality we get,
k1 k412 k4112 87° g2 X\ k1, k4172
(3 —4M7)|[op " w, " |Le + 4pr|lu g < 7”vPhHL2 + E”Uh w," |,
which by (4.20) implies that if 7 small enough

loag HIZe + 4 luy iz < e (lopailize + llogugliE:
2 2
+TIVAIR: + ZIVAIE:).
The estimate on the pressure is obtained mutatis mutandis the argument in the
initialization step of the proof of Theorem 9. Hence
k41, k4112 k41112 T k4112 T’ k4112
oy Ty [T + Aper [y [ + ;HVPJ T2 + ;HV@?}ﬁ 12 <
0..0(2 1,12 7 012 7 112
| llopuplliz + [lopulli: + ;HVthL2 + ;HVPth , k=12

(ii) General Step: For k > 3 we proceed as in the general step for the constant density
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case. Using (4.72) we obtain the estimate

(3 = 4MT)|loy L — (4 4+ 8M7)|lopupllE. + (1 — 6M7) oy g~ I

+ 2]l ow T T — 2llonoubllT + lloy T e L+

472
Apr [ f + M [HVPZ“IILz — IVphllii: + IVop;II]

HV62 2, +8—<w2ph,vapk+l> <o.

Add and subtract to this inequality the terms 2x||duy,||2, taken at time steps tj41

and t;. Now, as in the constant density case, use the identity

2

Ar? 2
X 0w |7 = HX1/2511h - V& T oy V6 pal| 2

3 1/2

to deduce
(3 —4MT)|lop w17 — (4+ 8M7)|loyus|lf2 + (1 — 6M7) ||y w17

+ oy ot I + dpr oy

+2| (" - )1/25112“\\;—2H(p’£—x)l/25ui||iz

2
1/25 k+1 2 k+1 _ 1/25 k 2
+2 ' X/ ouy 3X1/2 ——=Vop g 2 ‘ X/ “ouy — X 1/2 Vé'p .
4i Vet 2, — v )
+ —— [IVer e = IVEiliRe + [ VopLl:]
472 2 k+12 2 87° 2 k+1
- gllwS p;f g2 — —IIW Phllfe + — ox (Vo%py, Vopit) <0, (4.73)

where we used assumption (4.20).

By assumption (4.20), the control on the last three pressure terms is obtained in
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872
IS I — S IV + o (V5 z,vap'f+1> >

105

— oy 0" “IIL2+ [||V5thLz IVéph " lIz2] -

Applying this estimate to (4.73) we arrive at the energy estimate

(3 — 4MT)|loy L — (4 + 8MT)|lopupllE. + (1 — 6M7) oy g~ IE

+ dpr|fub 2
+2|(ph = ) 20ut 7, — 2|k — ) 2007,

2 2

2T
3 1/2

2T
1/251124—1 . V62p2+1 X1/25uz 3 7 v52pk

+2'X

_2‘

L2 L2

472
+ 3 [l|ka+1|lL2 — [IVpillE: + | Vépr] 1]

472

+ oo [IVophllE. = Vop 7] < 0.

9x

Introducing the notation

A:=3—-4Mr, B=—-(4+8M7), C=1—-6Mr,
a* = |lopuillf2, k>0,

472 _
b* = dpr|lug|ff. + @HWPIZ Hia k>1,

2

d" = Vo*py

2
(o —x)""* o] +2 ‘ X0y, +
L

3 1/2 L2

472 472 _
+ aﬂvpiufﬁ + WHV(SPIZ e k>2
inequality (4.74) can be rewritten as

Ad*™ 4+ Bd* + Ca* Tt < — (VT 4 T —dY) k>3

(4.74)

Define g**1 = —(b*+1 + gt — d%). If 7 is small enough, this three-term recursion
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inequality satisfies the assumptions of Proposition 12 of Appendix A. The roots of

the characteristic polynomial are

2+4MT —/1+38M7 —8M7%2 1 (1 A1MT

e 3 AMrt ~3 3
2+4M 1+38M7 — 8MT2
Ty 1= TAMT+ V1 + T T =1+9M7+ O(7?
3—4MT

+ 0(72)) :

).

Both roots are positive, the first one is strictly less than one third, and the second is

greater but close to one. Hence, for v > 3

v

1

3—4M7’l

a’ < cla' +a®)(rV + 1Y) —

which, since 7 is small, can be rewritten as

v

!
a’ + - b”<IC(1+eCT)(a + a?) — 3= 4M7‘z:: i z;ré

for some constants ¢ and K.

Notice that

N
|
—

l
Sorbd —dT ) =d (= 1))

s=3

@
Il
w

Hence (4.75) implies

1 1
a’ + gb” - gd” < K(1+eT)(a" + a?).

l
7“ ZZT —s bs+ds ds—l)’
s=3

(d* —d*™h),  (4.75)

This inequality combined with the estimates obtained at the initialization step imply

the result.

]

Conjecture 2. As numerical experiments show (see Section F) the algorithm (4.67)-

(4.69)-(4.70) performs as well as its constant density counterpart. This leads us to
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believe that the following error estimates hold:
H(O-U)T - (O'huh)THgoo([g) S 0(7'2 + hl+1>7
and
Jur — (uh)T”ﬁ(Hl) <ec(t+ hl).

The techniques presented here, together with those of [39] may provide a proof of

these facts.

Remark 37. In full analogy with the constant density case, it is possible to construct
a rotational version (see [52, 82]) of the algorithm introduced above by replacing the

pressure update (4.70) by the following: Find pi™ € M, so that,

<pi+1, Th> = <p§ + qbiﬂ, Th> + p <u’;;+1, Vrh> . (4.76)
The numerical experiments reported in Section F show that the algorithm (4.67)-

(4.69)-(4.76) is stable and accurate.

F. Numerical Experiments

Convergence Tests

To test the accuracy of the second-order algorithm proposed in this paper, both
in standard and rotational forms, we solve problem (1.3)-(1.4) using an analytical

solution defined on the unit disk

Q={(z,y) eR?:2* +¢* < 1}. (4.77)
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The exact solution is

p(r,t) =2+ rcos(f —sint), (4.78)
u(r,t) = (—y,z)" cost, (4.79)
p(r,t) = sinxsinysint, (4.80)

and the corresponding right-hand side in the momentum equation is

ysint — x cos®t)p(r,t) + cosx sinysin t
f(r,t) = ( () . (4.81)
—(zsint + ycos®t)p(r,t) + sinz cos y sin ¢

The computations are performed using the library deal.II (cf. [8, 7]). We use
a (Q2,Q2,Q;) approximation for the density, the velocity, and the pressure, respec-
tively. We perform the accuracy tests with respect to 7 on a mesh consisting of 5120
quadrangular cells. The dimensions of the vector spaces W), X, and M, are as

follows:

dim W}, = 20609, (4.82)
dim X, = 41218, (4.83)
dim M,, = 5185. (4.84)

We measure the maximum over the time interval [0,10] of the errors measured in
various norms. This mesh is chosen, so that the discretization error in space is
significantly smaller than that induced by the time discretization. The convergence
with respect to 7 is verified in the range 5.1073 < 7 < 1.107!.

We test the second-order standard formulation described in Section E. The
results are shown in Table VI. As expected, the error on the velocity and the density

in the L2-norm is of O(72) and the error on the velocity in the H'-norm and on the
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Table VI. Error in Time for Standard Scheme

T p—L? | Rate u—L? | Rate u—H! | Rate p—L? | Rate

0.1 | 9.15E-003 — | 6.93E-003 — | 3.29E-002 — | 4.34E-002 —

0.05 | 1.27E-003 | 2.84 | 1.70E-003 | 2.03 | 9.93E-003 | 1.73 | 1.21E-002 | 1.84

0.03 | 2.10E-004 | 2.60 | 4.20E-004 | 2.02 | 3.20E-003 | 1.64 | 3.62E-003 | 1.74

0.01 | 4.18E-005 | 2.33 | 1.05E-004 | 2.00 | 1.11E-003 | 1.52 | 1.19E-003 | 1.60

0.01 | 8.65E-006 | 2.27 | 2.61E-005 | 2.00 | 3.63E-004 | 1.62 | 3.78E-004 | 1.66

pressure in the L?-norm is of O(7).

Next we test the rotational version of the method which consists of using the
pressure update (4.76), introduced in Remark 37, instead of (4.70). The results are
shown in Table VII. We observe that all the errors are fully second-order with respect
to 7. It is likely that there is a super-convergence effect due to the regularity of the
domain. We recall that a similar super-converge effect is observed for the rotational
variant of the pressure-correction algorithm for constant density flows (see [52]). We
conjecture that in general domains the error on the velocity measured in the L2-norm

is O(7?), and the error on the velocity in the H'-norm and on the pressure in the

L%norm is O(73/2),

The Rayleigh-Taylor Instability

We now illustrate the performance of the method on a realistic problem. We compute
the development of a Rayleigh-—Taylor instability in the viscous regime as documented

by Tryggvason in [83]. This problem consists of two layers of fluid initially at rest
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Table VII. Error in Time for Rotational Scheme

T p—L? | Rate u—L? | Rate u—H! | Rate p—L? | Rate

0.1 | 3.70E-003 — | 3.90E-003 — | 1.59E-002 — | 1.12E-002 —

0.05 | 6.38E-004 | 2.54 | 1.18E-003 | 1.73 | 4.89E-003 | 1.70 | 3.31E-003 | 1.76

0.03 | 1.35E-004 | 2.24 | 3.34E-004 | 1.82 | 1.43E-003 | 1.78 | 9.34E-004 | 1.83

0.01 | 3.21E-005 | 2.07 | 9.03E-005 | 1.89 | 4.03E-004 | 1.82 | 2.53E-004 | 1.88

0.01 | 7.85E-006 | 2.03 | 2.37E-005 | 1.93 | 1.12E-004 | 1.84 | 6.71E-005 | 1.92

in the rectangular domain Q = (—d/2,d/2) x (—2d,2d). The transition between the

two fluids is regularized as follows

p(z,y,t=0) y —n(x)
B = ) 94 tanh [ 22— 4.85
pmin +tan 0.01d )’ (4.85)

where the initial position of the perturbed interface is n(x) = —0.1d cos(2wz/d). The

heavy fluid is above and the density ratio is 3, so that the Atwood number

A= (5™ = pg™) | (05 + P5™) , (4.86)

equals 0.5, according to Tryggvason’s definition, where we set p'®* := maxyxecq po(X).

For t > 0 the system evolves under the action of a vertical downward gravity field of
intensity g; the source term in the momentum equation is downward and equal to pg.

The equations are non-dimensionalized using the following references: pf" for
the density, d for lengths, and d'/?/g'/? for time, where g is the gravity field. Then,
the reference velocity is d'/2g'/?, and the Reynolds number is defined by Re =

pRind3/2g1/2 /1. The computational domain can be restricted to (0,d/2) x (—2d, 2d)
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Fig. 2. Rayleigh-Taylor Instability. Re = 1000; density ratio 3. The interface is shown
at times 1, 1.5, 1.75, 2, 2.25, and 2.5

since we assume that the symmetry of the initial condition is maintained during the
time evolution. The no-slip condition is enforced at the bottom and top walls and
symmetry is imposed on the two vertical sides.

The mass conservation equation is stabilized by adding a nonlinear viscosity
proportional to the residual of the conservation equation for p? in the spirit of the
entropy viscosity of [45].

The time evolution of the density field at Re = 1000 is shown in Fig. 2 at times
1, 1.5, 1.75, 2, 2.25, and 2.5 in the time scale of Tryggvason, which is related to ours
by t1yye = tv/A;. The mesh is such that there are 466573 degrees of freedom for each
component of the velocity. The mesh size is of order 0.025 in the refined regions. The
time step is 7 = 0.00125+/A,.

To further assess the sensitivity of the method to spatial resolution and to verify
that the numerical viscosity is significantly smaller than the physical viscosity we

solve the same problem using the same mesh for Re = 5000. The results are shown
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Fig. 3. Rayleigh-Taylor Instability. Re = 5000; density ratio 3. The interface is shown
at times 1, 1.5, 1.75, 2, 2.25, and 2.5

in Fig. 3.

The above results are in good agreement with those from [31]. Since the algorithm
of Section E only requires solving a Poisson equation, computing the above test cases
was significantly faster (one order of magnitude) than when doing the computations
reported in [31]. This time saving allowed us to use finer space resolution.

Next, we perform the test case reported in [11]. The geometry is the same as
above. The density ratio is 7 so that A; = 0.75, using Tryggvason’s definition (4.86)
(using the definition from [11] the Atwood number is 0.875). The initial density field

is regularized as follows:

P29t =0) ygann (y_—”(x)) , (4.87)

ppuin 0.01d

where the perturbation of the interface is given by n(x) = —0.01d cos(2wz/d). The
Reynolds number is Re = 1000.

The results using the same mesh and same time step as in for the low density ratio
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Fig. 4. Rayleigh-Taylor Instability. Re = 1000; density ratio 7. The interface is shown
at times 1, 1.5, 2, 2.5, 3, 3.5, and 3.75

are reported in Fig. 4 for times 1, 1.5, 2, 2.5, 3, 3.5, and 3.75 (using d*/2/¢"/? as time
scale). Although the locations of the falling and rising bubbles are similar to those
reported in [11], the details of the flow differ from those in [11]. This unexplained

discrepancy was already noted in [48].

A Lighter Bubble Rising in a Heavier Medium

Let us consider another realistic example. In a rectangular domain €2 = (—3d, 3d) x
(0,9d) there is initially a bubble of fluid of radius d (with density p; and viscosity p1)
immersed in a heavier medium (with density p, and viscosity o). The system evolves
under the action of a gravity field pointing downward and of intensity g. We non-
dimensionalize the equations with the following references: p; for the density, v/d/g
for time and d for lengths. The reference velocity is v/dg and the non-dimensional

viscosities are computed as

~ H
K= p1d3/2g1/2‘
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To properly model the relevant physics of the system it is necessary to include the
surface tension effects. This, being a force that acts only on the interface between the
two fluids, is quite complicated to properly handle numerically since it requires a good
representation of the interface boundary. Several approaches have been proposed to
handle such difficulty. Without being exhaustive, we can mention grid alignment
techniques [9], moving mesh methods [75], level set methods [64, 65, 84|, surface
tracking [68] and phase field [10, 14, 56, 62] and [76]. Here we adopt the phase field
approach of [76].

The idea of the phase field model is to replace the sharp interface between the
fluids by a smooth transition layer of thickness n. Then it turns out that the evolution
of the phase variable ¢, which serves as a marker for each one of the phases, is given

by the Cahn-Hillard equation

¢+ u-Vo = —yA(A¢ — f(9)),

where f = F’ and F' is the Ginzburg-Landau double well potential

F(¢) = # (6* —1)".

However, the Cahn-Hillard equation involves fourth order derivatives, which are dif-

ficult to handle using finite elements. Therefore, the evolution law for the phase

variable is usually replaced by the Allen-Cahn equation
¢ +uVo =7(A¢ — f(¢)).
Then, the surface tension appears as a volume term in the momentum equation
pu; + pu-Vu — pAu+ Vp + AV- (Vo ® Vo) =1,

where ) is the mixing energy density. For details, the reader is referred to the sources
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Fig. 5. Rising Bubble. Re = 1000; density ratio 100. The interface is shown at times
0,1, 1.5, 2,25, 3,35, 4and 4.5

cited above.

Let us consider the case where the density ratio ps/p; = 100 and the two fluids
have the same viscosity u = 1073. The space discretization of the problem is done
using (Qq, @2, Q) elements for the density, velocity and pressure, respectively. The
mesh is uniform and it has 4480 rectangular cells, so that there are 18193 (Qo-degrees
of freedom and 4617 Q;-degrees of freedom. The time step is 7 = 1073. The interface
thickness is taken equal to the mesh size. The results are shown in Figure 5, where we

can see the interface at times 0, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5. The results are in good
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agreement with similar ones obtained using different techniques (see the references

cited above).

A Falling Drop

As a final example, let us consider a falling drop. The geometry is the same as
before but, in this case, the subdomain €,,,; = (—3d,3d) x (0,3d) is filled with a
heavy medium of density py. There is a circular drop of this same medium of radius d
located at (0, 6d). The rest of the domain is filled with a lighter medium of density p;.
The system is at rest initially and we follow its evolution under the action of gravity.

We non-dimensionalize the equations using the same references as in the previous
example and consider the case ps/p; = 100, with gy = py; = 1072, The mesh is as in
the rising bubble and the time step is 7 = 1073.

To take into account the surface tension effects, we use the phase field method
described above. The parameters are the same as for the rising bubble experiment.

A plot of the interface, together with the velocity field can be seen in Figure 6.
Although the results are far from depicting all the details of the real phenomena
(see [81], for instance), at least we are able to capture some of the most significant
features of the phenomenon. It is possible that a combination of this method with
more sophisticated schemes to take care of the interface will provide more accurate

results. We leave this study for further investigation.
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Fig. 6. Falling Drop. Re = 1000; density ratio 100. The interface is shown at times 0,
1.5, 2,2.25, 2.5, 2.75, 2.9, 3, 3.1, 3.2, 3.3 and 3.35
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CHAPTER V

CONCLUSION
During the course of this dissertation we have studied two models that arise in the
study of complex fluid flow phenomena. For each one of them we have proposed
effective discretization techniques and proved that they converge to the solution. Let
us briefly review the obtained results.

For the nonlinear Darcy equations of Chapter III, in the case where the per-
meability is a bounded from above and a strictly positive function of the pressure,
we have obtained sufficient conditions for a solution to be nonsingular. In the case
of a unique solution, we have proposed a discretization scheme and we have proved
optimal error estimates for this scheme. Moreover, we proposed an algorithm for the
solution of this discrete system and we proved that this algorithm converges indepen-
dently of the discretization parameter. In the case where there is no unique solution,
we have proposed a discretization scheme for the approximation of nonsingular so-
lutions. We have shown that this discretization scheme has optimal error estimates.
Finally, we studied the convergence of a Newton type algorithm for the solution of the
discrete system that approximates a nonsingular solution. We have shown that this
method converges quadratically, but not uniformly with respect to the discretization
parameter. This type of deterioration has been observed in several other problems.

In the case when the dependence of the drag coefficient on the pressure is ex-
ponential, we proposed a splitting scheme which requires the solution of two linear
problems for the determination of the unknowns. Although the complete mathemati-
cal analysis the problem in this case remains an open question, under the assumption
that there is a solution, we have showed that this splitting scheme converges to the so-

lution. The obtained estimates are suboptimal, but the numerical experiments show
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that this method is indeed optimal. A more refined analysis may provide a proof of
this fact.

Concerning the approximation of incompressible viscous flows with variable den-
sity (see Chapter IV) we have proposed a new fractional time-stepping technique
which decouples the diffusion and incompressibility constraint. The main novelty of
this scheme lies in the fact that for the determination of the pressure one has to
solve a Poisson equation, as opposed to a variable-coefficient second-order elliptic
equation. This simplification greatly reduces the overall computational cost of the
scheme, which allows for the use of finer meshes and smaller time steps.

We have proposed a family of first order schemes, and have shown that these
schemes are stable, convergent and perform at least as good as their well-known coun-
terparts used in the solution of constant density flows. Moreover, we have proposed
a formally second order scheme and we proved its stability. Numerical experiments
show that this scheme is indeed second order accurate. The techniques developed
in this dissertation may enable us to prove this. However, we have not pursued this
direction. Finally, as a byproduct of our analysis, we have provided a new proof of
an old result. Namely, the stability of the so-called pressure correction incremental
fractional time-stepping scheme in standard form. The novelty in our proof tech-
nique is that we have completely removed the solenoidal velocity from the analysis.
This new family of methods has already proved useful in the development of new
and simpler fractional time-stepping schemes for incompressible flows. For instance,
[76] uses these ideas to introduce numerical methods for a phase-field model for two-
phase flows. Moreover, the ideas and techniques that we have here introduced, have
served as a basis for the development of a new class of methods for the Navier-Stokes

equations based on direction splitting. The reader is referred to [42, 41, 43] for details.
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APPENDIX A

THREE TERM RECURSION INEQUALITIES

Let us prove auxiliary results regarding three term recursion inequalities. These
results will be needed to prove stability of the algorithms (4.14)—(4.15)-(4.13) and
(4.65)—(4.70).

Proposition 11. Assume that the characteristic polynomial of the three term recur-
ston equation

A" 4 Bak 4+ O2M T = g k> 2 (A.1)

has two (not necessarily distinct) nonzero real roots 1 and ro. Then, the generic

solution to this equation has the form

!
1 14
¥ = cr] + cory + 1 Pyl Zrl{sgs, c1,c0 €R
=2 s=2
Proof. 1t is sufficient to show that
1 v l
o LS S g vz
=2 s=2

with 2! = z° = 0 is a particular solution of (A.1).
Let n > 1. Multiply (A.1) by 2" %72 and add all the results for k = 1,...,n.

Setting 2! = 2° = 0, we obtain

—_

Arnganrl +T§72(A7“2 T B)l’n + [(Argnfkfl + Br%nfka 4 CTgnfka)xk}
2

e
I|

n+1

_ 2n—s—1 s
- E :TQ g,

s=2
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which, since 7y is a root of the characteristic polynomial, implies

n+1

Az 4 (Ary 4+ B)z Zrnﬂ g%, n>2. (A.2)

Let v > 1. Multiply (A.2) by 777" and add all the results for n =1,...,v. We

obtain

v+1

At 4 Z ({7 (A(r1 + 12) + B)x Zr’f“ eré g%, v>1.
=2

Since ry, ry are roots of the characteristic polynomial of the recursion equation, we
have B = —(ry + r2) A, which implies
v+1

AZ I/-‘rl lzré sgs’ v > 1.

Hence, 7" is a particular solution of (A.1). O

Proposition 12. Assume that the coefficients of the three term recursion inequality
Ayt 4+ Byf + Oyt < P k> 1, (A.3)
satisfy
A>0, C>0, A+B+C<LNO.

Let {y*}1>0 be a solution to (A.3) with initial data y° and y*. If {a*}x>0 solves (A.1)

with initial data 2° = y° and 2 = y*, then the following estimate holds

y” < a”,

Vv > 0.

Proof. This is a comparison argument ¢ la Gronwall. Let {z¥},>0 be the sequence
defined by z¥ = y” — 2”. Let us prove by induction that z¥ < 2*¥=1 for all K > 1. The

claim holds true for k = 1 since 0 = z! < 2% = 0. Assume now that 2 < z¥~! for all
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1 < v < k. The definition of {z*};>¢ implies

A L BF O <0, VE> 1.

Hence

AT < A — (A4 B+ OV + OGN -2 < A
which proves the claim. [

The following corollary is a specialization of the two previous results which will

be needed in Section A of Chapter IV.

Corollary 6. The three term recursion equation
R L A AL - (A.4)

has the following general solution

v l
v (&) 1 s
$—01+§+§W;g, c1 €R, ¢ € R

Let {y*}1>0 be the solution to the three term recursion inequality
3yk+1 . 4yk + ykfl < ngrl7 k > 17

with initial data y° and y'. If {x*}1>0 is the solution to (A.4) with initial data x° = ¢°

and x* = y', then the following estimate holds
y’ <azx¥, Vv >0.

Proof. To obtain the generic solution, it is sufficient to notice that the roots of the
characteristic polynomial of the equation are ro = 1 and r; = 1/3. To obtain the
estimate it is sufficient to notice that A =3 > 0, C =1 > 0and A+ B+ C =

3—44+1=0<Z0. ]
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