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ABSTRACT

Approximation Techniques for Incompressible Flows with Heterogeneous Properties.

(August 2010)

Abner Jonatan Salgado Gonzalez, B.S., Saint Petersburg State Polytechnic

University;

M.S., Saint Petersburg State Polytechnic University

Chair of Advisory Committee: Dr. Jean-Luc Guermond

We study approximation techniques for incompressible flows with heterogeneous

properties. Specifically, we study two types of phenomena. The first is the flow of a

viscous incompressible fluid through a rigid porous medium, where the permeability

of the medium depends on the pressure. The second is the flow of a viscous incom-

pressible fluid with variable density. The heterogeneity is the permeability and the

density, respectively.

For the first problem, we propose a finite element discretization and, in the case

where the dependence on the pressure is bounded from above and below, we prove its

convergence to the solution and propose an algorithm to solve the discrete system. In

the case where the dependence is exponential, we propose a splitting scheme which

involves solving only two linear systems.

For the second problem, we introduce a fractional time-stepping scheme which,

as opposed to other existing techniques, requires only the solution of a Poisson equa-

tion for the determination of the pressure. This simplification greatly reduces the

computational cost. We prove the stability of first and second order schemes, and

provide error estimates for first order schemes.

For all the introduced discretization schemes we present numerical experiments,

which illustrate their performance on model problems, as well as on realistic ones.
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CHAPTER I

INTRODUCTION

The efficient and accurate numerical approximation of complicated fluid flow phe-

nomena is of extreme importance for a wide range of applications. However, the

complexity of the models that this requires poses serious challenges in various areas

of mathematics. Just to mention a few, these areas might be the analysis of the math-

ematical models (equations) of these phenomena, trying to answer questions about

well-posedness of these problems which, in some sense, is a minimal requirement for

the consistency of a model. Another one is the development and analysis of efficient

discretization schemes and solution techniques for these problems. Since as a rule

these models are nonlinear, this always proves to be a highly nontrivial task.

The purpose of this dissertation is the study of effective discretization and solu-

tion techniques for problems that arise in the modeling of incompressible fluid flow

that has heterogeneous properties. To be more precise, we will analyze two of these

phenomena. The first one is related to the flow in porous media and a model that is

used in the problem of enhanced oil recovery. It is a Darcy’s model where the porosity

of the medium depends on the pressure. The second problem is the flow of incom-

pressible Newtonian fluids with variable density. This is a model that is frequently

used in the study of multiphase flow, temperature dependent flow and others. In both

cases, the flow has heterogeneous properties: the porosity and density, respectively.

This heterogeneity highly complicates the model and the techniques that must be

used to efficiently discretize and approximate the solution to them.

Let us briefly elaborate on each one of this models.

The journal model is SIAM Journal of Numerical Analysis.
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A. Darcy’s Equations with Pressure Dependent Porosity

The system of equations commonly referred to as Darcy’s law was obtained, on the

basis of experimental observations, by H. Darcy (cf. [23]) more than 150 years ago.

This law approximates the balance of linear momentum of a fluid flow through a

porous rigid body and is the simplest model of flow of a viscous incompressible fluid

through a porous medium. Darcy’s equations were obtained rigorously by Homoge-

nization; without being exhaustive, we refer to the works of I.H. Ene and E. Sánchez-

Palencia [26], G. Allaire [3], D. Cioranescu, P. Donato and I.H. Ene [22], S.E. Pas-

tukhova [67], and E. Skjetne and J.-L. Auriault [77].

Recently, in [70], K.R. Rajagopal developed systematically a family of models

within the framework of Mixture Theory, deriving first Darcy’s system, and next

relaxing one or more restrictions that were used in deriving this law. The steady

nonlinear model studied in the present work is one of the numerous models obtained

through this approach (cf. [70, Section 3.5]). It is a much simplified version of a model

of enhanced oil recovery, where oil is forced to flow through rocks by injecting steam

at high pressure. This model is simplified because only one fluid is considered and

the viscous and inertial effects are neglected, thus resulting in a steady system. On

the other hand, it is nonlinear because the porosity of the solid medium is allowed to

depend exponentially on the pressure. Indeed, it has been observed experimentally

that high variations on the pressure induce an exponential variation on the porosity

of the medium.

Let Ω be a bounded domain in Rd, with d = 2, 3. The boundary, ∂Ω, of this

domain is divided into two parts Γw and Γ. We are interested in the following model,
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which as we have stated above was derived by K.R. Rajagopal [70],

α(p)u +∇p = f , in Ω,

∇·u = 0, in Ω,

p = 0, on Γw,

u·n = g on Γ,

(1.1)

where the unknowns are the velocity u and the pressure p of the fluid. The function

α is known as the drag coefficient, permeability or inverse porosity. It describes how

easily the fluid can pass through the given medium, and for simplicity is assumed

homogeneous.

In the case when α is constant or dependent only on the medium, these equations

have been deeply studied, and the discretization techniques used in this case are well

established. We refer, for instance, to [16], [1] or [27]. However, as it is noted in [70],

experiments show that if the variations on the pressure are high, the material cracks

and thus the porosity varies. For this reason, it is proposed to consider the case where

the drag coefficient depends on the pressure. Moreover, the dependence that most

accurately describes experimental phenomena near a well is an exponential one

α(ξ) = α0e
γξ, (1.2)

for some positive parameters α0, γ. The homogeneous boundary condition in the third

row of (1.1) is just introduced to simplify the discussion. More generally, a non

homogeneous boundary condition can be prescribed on the pressure: p = pw on Γw.

Owing to the nature of α(p) the analysis we present readily carries over to this case

for adequately smooth boundary data.

For the sake of brevity, in what follows we shall refer to equations (1.1) simply as
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the nonlinear Darcy equations. Of course, there are other nonlinear Darcy’s model,

such as the well-known Forchheimer model introduced by Forchheimer in [30]. Con-

cering its discretization, we refer to the study of a steady Forchheimer model studied

by V. Girault and M.F. Wheeler in [35].

The analysis of the nonlinear Darcy equations is difficult because of the expo-

nential nonlinearity. In this dissertation, following the work of M. Azäıez, F. Ben

Belgacem, C. Bernardi, and N. Chorfi in [5], we propose first to discretize (1.1) when

the function α is truncated above and below. We introduce a straightforward finite

element scheme, such as Pk−1 for each component of the velocity and Pk for the pres-

sure, similar to the scheme studied by J.E. Roberts and J.-M. Thomas in [72] and

by D. Kim and E.J. Park in [59]. When the exact solution is sufficiently small so

that it satisfies a sufficient condition for uniqueness, we establish optimal a priori

error estimates, and geometric convergence of a successive approximation algorithm

for computing the discrete solution. We also study the case when the exact solution

is nonsingular in the sense of F. Brezzi, J. Rappaz and P.-A. Raviart [17], but is not

necessarily unique. We give sufficient conditions for the finite element scheme to have

a nonsingular solution, establish convergence and a priori error estimates, and study

the convergence of Newton’s algorithm for computing this solution. In particular, we

prove that Newton’s method converges quadratically, but not uniformly. This con-

firms the convergence analysis for nonlinear second order elliptic problems studied by

J. Douglas and T. Dupont in [24] and by E.J. Park in [66].

Next, we study the problem with fully exponential porosity. To begin with, the

velocity is eliminated by:

1. dividing the equation by the exponential,

2. taking the divergence of the equation,
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3. and making a change in variable.

This splits the problem into exactly two consecutive linear equations: first a diffusion–

convection–reaction equation and next a linear Darcy system. These are discretized

by an easy variant of the finite element scheme used in the first approach. The

analysis of each discrete linear system is straightforward, but the global analysis of

the complete algorithm is still an open problem.

B. The Variable Density Navier-Stokes Equations

The flow of incompressible viscous fluids with variable density, under certain assump-

tions, is governed by the time-dependent Navier-Stokes equations:
ρt +∇· (ρu) = 0,

ρ(ut + u·∇u) +∇p− µ∆u = f ,

∇·u = 0,

(1.3)

where the unknowns are the density ρ > 0, the velocity field u, and the pressure

p. The constant µ is the dynamic viscosity coefficient and f is a driving external

force. In stratified flows we typically have f = ρg, where g is the gravity field.

The fluid occupies a bounded domain Ω in Rd (with d = 2 or 3) and a solution to

the above problem is sought over a time interval [0, T ]. The Navier-Stokes system is

supplemented by the following initial and boundary conditions for u and ρ:
ρ(x, 0) = ρ0(x), ρ(x, t)|Γ− = a(x, t),

u(x, 0) = u0(x), u(x, t)|∂Ω = b(x, t),

(1.4)

Γ− is the inflow boundary, which is defined by

Γ− = {x ∈ Γ : u(x)·n < 0} ,
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with n being the outward unit normal vector. Throughout this dissertation we assume

that the boundary Γ is impermeable, i.e., u·n = 0 everywhere on Γ, and Γ− = ∅.

The mathematical theory of existence and uniqueness for (1.3)–(1.4) is quite in-

volved and far from complete. We refer the reader to the works of P.L. Lions [61],

E. Fernández-Cara and F. Guillén [28] for further details. The difficulty comes from

the fact that these equations entangle hyperbolic, parabolic, and elliptic features. Ap-

proximating (1.3)–(1.4) efficiently is a challenging task. A testimony of the difficulty

is that, so far, very few papers have been dedicated to the mathematical analysis of

the approximation of (1.3)–(1.4). We refer to C.L. Liu and N.J. Walkington [63] for

one of the few attempts in this direction.

Approximating (1.3)–(1.4) can be done by solving the coupled system (1.3), but

this approach may sometimes be computer intensive due to saddle point structure that

the incompressibility induces in the problem. Alternative, more efficient, approaches

advocated in the literature consist of using fractional time-stepping and exploiting,

as far as possible, techniques already established for the solution of constant density

incompressible fluid flows. The starting point of most fractional time-stepping al-

gorithms consists of decoupling the incompressibility constraint and diffusion in the

spirit of A.J. Chorin’s [20] and R. Temam’s [79] projection method. Several algorithms

have been developed which extend this idea to the case of variable density flows, see

for example J.B. Bell and D.L. Marcus [11], A. Almgren et al. [4], J.-L. Guermond

and L. Quartapelle [48], and J.-H. Pyo and J. Shen [69]. To the best of our knowledge,

[48] gave the first stability proof of a projection method for variable density flows.

The algorithm proposed in [48] is somewhat expensive since it is composed of two

time-consuming projections. An alternative algorithm composed of only one projec-

tion per time step was proposed in [69] and proved to be stable. It seems that so far

[48] and [69] are the only papers where projection methods for variable density flows
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have been proved to be stable, the best available results being that of [69]. However,

no rigorous error analysis of these methods is available in the literature.

The common feature of all the projection-like methods referred to above is that

at each time step, say tn+1, the pressure or some related scalar quantity, say Φ, is

determined by solving an equation of the following form:

−∇·
(

1

ρk+1
∇Φ

)
= Ψ, ∂nΦ|Γ = 0, (1.5)

where ρk+1 is an approximation of the density at time tk+1 and Ψ is some right-hand

side that varies at each time step. The problem (1.5) is far more complicated to solve

than just a Poisson equation. It is time consuming since it requires assembling and

pre-conditioning a variable-coefficient stiffness matrix at each time step. Note also in

passing that it is necessary to have a uniform lower bound on the value of the density

for (1.5) to be solvable. This condition is often overlooked in the literature.

On the basis of the observations above, in this dissertation we introduce a family

of fractional time-stepping methods for solving variable density flows that involve

solving only one Poisson problem per time step instead of problems like (1.5). We

will show the stability and convergence properties of the first order schemes and the

stability of a formally second order variant.
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CHAPTER II

PRELIMINARIES

The purpose of this chapter is to establish the notation that shall be used in the

subsequent chapters. In the following, we denote by c a generic constant, the value of

which may vary at each occurrence. When studying continuous problems, the value

of this constant may depend on the data of the problem, but not on the solution.

On the other hand, when studying the discretization of a problem, the value of this

constant may depend on the data of a problem and its exact solution, but it does not

depend on the discretization parameters or the solution of the numerical scheme.

A. Function Spaces

Henceforth, we denote by Ω a bounded connected domain in Rd, with d = 2 or 3. The

boundary of this domain is denoted by ∂Ω. As usual, we denote by Lq(Ω) the space

of Lebesgue integrable functions with exponent q ∈ [1,∞] defined on Ω and normed,

for 1 ≤ q <∞, by

‖v‖Lq :=

(∫
Ω

|v|q
)1/q

,

and, for q =∞

‖v‖L∞ := esssup
x∈Ω

|v|.

For which these spaces are Banach spaces. In the case q = 2 we denote by 〈·, ·〉 the

L2-scalar product.

By W s
q (Ω), for an integer s, we denote the Sobolev space of functions in Lq(Ω)

with partial derivatives of order up to s in Lq(Ω), namely

W s
q (Ω) := {v ∈ Lq(Ω) : ∂mv ∈ Lq(Ω),∀|m| ≤ s} ,
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equipped with the seminorm

|v|W s
q

:=

∑
|m|=s

∫
Ω

|∂mv|q
1/q

,

and norm (for which it is a Banach space)

‖v‖W l
q

:=

 ∑
0≤|m|≤s

|w|qWm
q

1/q

.

When s is not an integer, W s
p (Ω) is defined using the real method of interpolation (cf.

J.L Lions and E. Magenes [60] or J. Berg and J. Löfstrom [12]). In this case, there

are several equivalent norms. Here, we choose the following seminorm and norm: let

s = m+ s′ for an integer m ≥ 0 and 0 < s′ < 1, then we set

|v|W s
q

:=

∑
|l|=m

∫
Ω

∫
Ω

|∂lv(x)− ∂lv(y)|q

|x− y|d+qs′

1/q

,

‖v‖W s
q

:=
(
‖v‖qWm

q
+ |v|W s

q

)1/q

.

When q = 2 we set Hs(Ω) := W s
2 (Ω) for any s. By H1

0 (Ω) we denote the closure of

C∞0 (Ω) in the H1-norm.

In Chapter III the following trace property will be needed. If the domain Ω

has a Lipschitz-continuous boundary and v belongs to Hs(Ω) for s ∈ (1/2, 1] then

it has a well defined trace on the boundary, this trace belongs to Hs−1/2(∂Ω) (cf.

P. Grisvard [36, Theorem 1.5.1.2]) and

‖v‖Hs−1/2 ≤ c‖v‖Hs .

In this chapter, the space H
1/2
00 (Γ) will also be needed, this space is defined as follows.

Let Γ be a subset of ∂Ω that has positive measure, we say that a function g ∈ H1/2(Γ)

belongs to H
1/2
00 (Γ) if its extension by zero to ∂Ω belongs to H1/2(∂Ω). For a discussion
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on this space see L. Tartar [78], for instance.

There are several well known embedding theorems for Sobolev spaces. We shall

use repeatedly the embedding H1(Ω) ↪→ L6(Ω) which, given enough smoothness of

the domain, is valid for d ≤ 3 (cf. R.A. Adams [2] or [78]). When we wish to indicate

explicitly that we are using the constant of this embedding, we denote it by c(Ω).

That is, by c(Ω) we denote the smallest constant such that

‖q‖L6 ≤ c(Ω)|q|H1 , ∀q ∈ H1(Ω).

Finally, we must state that we use bold-face characters to denote vector valued

functions and their spaces.

B. Time Dependent Problems

Chapter IV is dedicated to the study of a time dependent problem. Here we introduce

some notation that shall be used in this chapter.

Whenever E is a normed space with norm ‖ · ‖E, we say that a function φ :

[0, T ]→ E belongs to Lq(0, T ;E) ( which will also be denoted by Lq(E) ) if the map

(0, T ) 3 t 7→ ‖φ(t)‖E is Lq integrable. A similar definition allows us to define the

spaces W s
q (E).

When introducing a time discretization, we denote by τ > 0 a time step and we

set tk = kτ for 0 ≤ k ≤ K := [T/τ ]. For any time-dependent function φ : [0, T ]→ E,

we denote by φk := φ(tk). The sequence φ0, φ1, . . . , φK is denoted φτ . To shorten the

notation, we introduce the time-increment operator δ by setting

δφk = φk − φk−1.

Finally, the errors of our discretization schemes will be measured in the following
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discrete norms:

‖φτ‖`2(E) :=

(
τ

K∑
k=0

‖φk‖2
E

)1/2

, ‖φτ‖`∞(E) := max
0≤k≤K

(
‖φk‖E

)
.

Which, clearly, are consistent with the L2(E) and L∞(E), respectively, as τ → 0.
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CHAPTER III

NONLINEAR DARCY EQUATIONS ∗

In this chapter we study problem (1.1). The results of this chapter were originally

presented in [32], and the organization is as follows. In Section A we study the

mathematical analysis of the problem, i.e., questions regarding the existence and

uniqueness (both global and local) of a solution to this problem. In Section B we

analyze the discretization of this problem in the case when the porosity is uniformly

bounded from above and below. We present discretization schemes for the case when

the solution is unique and non-singular. Section C is dedicated to the case of an

exponential porosity and proposes a solution scheme for this case. Finally, Section D

presents some numerical experiments that illustrate the algorithms introduced in the

previous sections.

A. Analysis of the Problem

Before considering the discretization of problem (1.1) we will discuss some properties

of its exact solution, namely its existence and sufficient conditions for this solution to

be globally unique and possess certain smoothness properties. When the nonlinear

Darcy equations have more than one solution we shall discuss the so-called nonsingular

solutions, in the sense of [17]. This shall prove useful for the development and analysis

of the discretization.

We intend to study problem (1.1) under the following assumptions:

∗ Reprinted with permission from:
Finite Element Discretization of Darcy’s Equations with Pressure Dependent Poros-
ity by V. Girault, F. Murat and A. Salgado. M2AN Math. Model. Nu-
mer. Anal. DOI: 10.1051/m2an/2010019. Copyright 2010 by EDP Sciences.
http://www.esaim-m2an.org/
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• The domain Ω has a Lipschitz-continuous boundary ∂Ω divided into two parts

Γw and Γ, also with Lipschitz continuous boundaries.

• The part of the boundary Γw has positive surface measure.

• The function α : R→ R is continuous and there are two positive constants αmin

and αmax such that

αmin ≤ α(ξ) ≤ αmax, ∀ξ ∈ R. (3.1)

• The function α is uniformly Lipschitz-continuous on R. That is, there is a

constant Lα > 0 such that for all ξ1, ξ2 ∈ R

|α(ξ1)− α(ξ2)| ≤ Lα |ξ1 − ξ2| . (3.2)

Remark 1. Assumptions (3.1) and (3.2) are not true when the function α is un-

bounded, as it is the case when it is exponential. However, these assumptions can

be easily recovered by truncating the original function α. Obviously, the solution of

the truncated problem will not in general solve the original one. The analysis of how

these two problems are related is beyond the scope of this work.

It is well known that Darcy’s equations have several variational formulations. We have

chosen here the formulation that treats the boundary condition on p as an essential

one and leads, roughly speaking, to taking u in L2(Ω) and p in H1(Ω). This choice

is motivated by the fact that the forthcoming analysis of the nonlinear term α(p)u

uses intensively the fact that p is in H1(Ω). Moreover, a velocity u in L2(Ω) is easily

discretized. Another option consists in taking u in H(div; Ω) and p in L2(Ω). Then u

must be discretized with mixed finite elements, with the advantage that this leads to

a locally conservative scheme. But the drawback is that the analysis of the nonlinear

term is not so clear.
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Let us define the space

H1
w(Ω) :=

{
q ∈ H1(Ω) : q|Γw = 0

}
,

and assume, for the sake of simplicity, that pw = 0. Then the variational formulation

is the following:

Given f ∈ L2(Ω) and g ∈ H1/2
00 (Γ)′, find a pair (u, p) ∈ L2(Ω)×H1

w(Ω) such that
a(p; u,v) + b(v, q) =

∫
Ω

f ·v, ∀v ∈ L2(Ω),

b(u, q) = 〈g, q〉Γ, ∀q ∈ H1
w(Ω).

(3.3)

The bilinear forms a(ξ; ·, ·) for any measurable function ξ on Ω and b(·, ·) are

defined by

a(ξ; v,w) :=

∫
Ω

α(ξ)v·w, (3.4)

b(v, q) :=

∫
Ω

v·∇q, (3.5)

and 〈·, ·〉Γ denotes the duality pairing between H
1/2
00 (Γ) and its dual space H

1/2
00 (Γ)′.

It is readily checked that under assumption (3.1) the forms a(ξ; ·, ·) and b(·, ·) are

continuous on L2(Ω)×L2(Ω) and L2(Ω)×H1(Ω) respectively. Thus, standard argu-

ments yield the equivalence of problem (3.3) with the system (1.1) in the distribution

sense.

Remark 2. The above variational formulation is defined for homogeneous boundary

conditions: pw = 0. Standard techniques (i.e., lifting arguments) allow us to reduce

the case of nonhomogeneous Dirichlet boundary conditions on the pressure p to the

present one. For this, it is sufficient to assume that pw ∈ H1/2(Γw) and notice that

the function ξ 7→ α(ξ− p̄w), where p̄w is a proper lifting of pw, has the same properties

as ξ 7→ α(ξ). Hence, there is no loss of generality in considering only homogeneous
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Dirichlet boundary conditions.

The existence of a solution to problem (3.3) is studied in [5]. For the sake

of completeness we list here the results that later prove useful for our purposes.

Regarding existence we have the following Theorem.

Theorem 1. Assume that the function α satisfies assumption (3.1). Then, for any

data (f , g) ∈ L2(Ω)×H1/2
00 (Γ)′ problem (3.3) has a solution (u, p) ∈ L2(Ω)×H1

w(Ω).

Moreover, this solution satisfies

‖u‖L2 + ‖p‖H1 ≤ c
(
‖f‖L2 + ‖g‖

(H
1/2
00 )′

)
. (3.6)

A sufficient condition for the global uniqueness of the solution is given by the

following Proposition.

Proposition 1. Assume that the function α satisfies assumptions (3.1) and (3.2).

If problem (3.3) has a solution (u, p) such that u ∈ Lr(Ω) with r > d, where d is the

space dimension, and satisfies

αmax + αmin

αmin

c(r,Ω)Lα‖u‖L3 < 1. (3.7)

for an appropriate constant c(r,Ω) that depends only on r and Ω. Then, there is no

other solution to problem (3.3).

Remark 3. Examining the proof given in [5] we see that the constant c(r,Ω) in the

smallness condition (3.7) is the norm of the Sobolev embedding H1
w(Ω) ↪→ Lr

′
(Ω)

with 1
r

+ 1
r′

= 1
2
. Moreover, the condition r > d is due to the Sobolev embedding

when d = 2. However, when d = 3, this proof is also valid with r = 3. For the sake

of definiteness, in the sequel, we shall assume that d = 3. The reader can verify that

similar arguments, and less restrictive assumptions, yield the results for d = 2.

Finally, concerning the regularity of the solution the following result holds.



16

Proposition 2. There exists a real number ρ0 > 2 only depending on the geometry of

Ω such that, for all ρ such that 2 < ρ ≤ ρ0, and for all data (f , g) ∈ Lρ(Ω)×W−1/ρ
ρ (Γ),

any solution (u, p) to problem (3.3) belongs to Lρ(Ω)×W 1
ρ (Ω).

Remark 4. The existence of ρ0 is obtained in [5] by a perturbation argument, but in

dimension d = 3, there is no guarantee that ρ0 ≥ 3. Therefore, in general, condition

(3.7) for global uniqueness cannot be checked from the data.

Let us now consider the case when the solution is only locally unique. In this

case, although problem (3.3) may have more than one solution, we assume that there

exists an isolated solution. That is, there exists a neighborhood of this solution where

no other solution exists. A sufficient condition for this to hold is that the solution

is nonsingular (cf. [17] or V. Girault and P.-A. Raviart [34]). We shall analyze the

properties of nonsingular solutions, and give sufficient conditions for such a solution

to exist.

First we cast problem (3.3) in a more convenient, but nevertheless equivalent,

functional setting. With this purpose let us define the data space

Y := L2(Ω)×H1/2
00 (Γ)′,

with norm

‖(f , g)‖Y := ‖f‖L2 + ‖g‖
(H

1/2
00 )′

,

and the solution space

X := L2(Ω)×H1
w(Ω),

with norm

‖(u, p)‖X := ‖u‖L2 + ‖p‖H1 .

We also define T as the solution operator to the linear Darcy problem, i.e., T : Y→ X
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is such that, for every η = (f , g) ∈ Y, X 3 x = (u, p) = Tη = T (f , g) solves

ᾱu +∇p = f , in Ω,

∇·u = 0, in Ω,

p = 0, on Γw,

u·n = g, on Γ,

(3.8)

for a fixed ᾱ > 0.

It is classical that problem (3.8) is well-posed. This implies that T ∈ L(Y,X).

In other words, there is a constant c > 0 such that for every (f , g) ∈ Y

‖T (f , g)‖X ≤ c ‖(f , g)‖Y . (3.9)

By assumption (3.1) we get that α ∈ L∞(R). Then, for any (u, p) ∈ X we can

conclude that α(p)u is in L2(Ω) and we can define the map G : X→ Y as follows. If

x = (u, p) is an element of X, then

G(x) :=

 (α(p)− ᾱ) u− f

−g

 ∈ Y.

Finally, let us define F : X→ X as

F (x) := x+ TG(x).

With this notation, problem (3.3) can be equivalently restated as:

Find x = (u, p) ∈ X such that

F (x) = 0. (3.10)

We are now in a position to define the notion of nonsingular solutions
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Definition 1 ([17]). Let x ∈ X solve problem (3.10). This solution is called nonsin-

gular if the linear operator

F ′(x) = I + TG′(x),

is an isomorphism of X. Here F ′(x) and G′(x) denote the Fréchet derivative of the

maps F and G at the point x, respectively.

Let us now provide sufficient conditions for a solution to be nonsingular in this

sense. With this in mind, first of all, by assumption (3.2) we know that the derivative

of α exists a.e. on R (cf. G.B. Folland [29]). Denoting this derivative by α̇ we can,

formally, obtain the derivative of the map G. Let x = (u, p), y = (v, q) ∈ X, then

G′(x)y =

 (α(p)− ᾱ) v + α̇(p)qu

0

 . (3.11)

From this we can conclude that if x = (u, p) ∈ L3(Ω) × H1
w(Ω) ⊂ X, the Fréchet

derivative of the mapG is well-defined, given by equation (3.11), andG′(x) ∈ L(X,Y).

Remark 5. In the case d = 3, we need u ∈ L3(Ω) because of the term α̇(p)qu. Indeed,

by assumption (3.2), Hölder’s inequality and the Sobolev embedding H1 ↪→ L6, we

have ∫
Ω

|α̇(p)qu|2 ≤ L2
α

(∫
Ω

q6

)1/3(∫
Ω

|u|3
)2/3

≤ c(Ω)2L2
α‖q‖2

H1‖u‖2
L3 ,

where all inequalities are sharp. Clearly, if d = 2 we should require u ∈ L2+ε(Ω) for

some ε > 0. In both cases, we must assume that the velocity u lies in a smaller space

than L2(Ω) for the derivative to make sense. This is in contrast to the common feature

of many nonlinear operators arising in the analysis of partial differential equations

that describe physical phenomena. For such an operator, its derivative is everywhere

defined and the range of the derivative is a smaller space (i.e., smoother or more

regular) than the data space. For this reason, we say that the operator G does
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not have regularizing properties. The fact that for problem (1.1) the nonlinearity G

does not have regularizing properties lies at the heart of all the difficulties that its

theoretical and numerical analysis present.

We now give sufficient conditions for a solution of problem (3.10) to be nonsin-

gular in the sense of Definition 1.

Proposition 3. Assume that for problem (3.10) the function α is such that conditions

(3.1) and (3.2) hold. Let x = (u, p) ∈ X be a solution to problem (3.10). If u ∈ L3(Ω)

and

αmax + αmin

αmin

c(Ω)Lα‖u‖L3 < 1, (3.12)

then this solution is nonsingular.

Proof. We need to show that the map I + TG′(x) is an isomorphism of X. Since the

operator is continuous, by the Open Mapping Theorem (cf. A.Ya. Helemskii [54]) it

is sufficient to show that the operator is bijective. That is, given any z = (w, r) ∈ X

there exists a unique y = (v, q) ∈ X such that

y + TG′(x)y = z,

or

(y − z) = T (−G′(x))y.

In other words, we must prove that the problem: Find (v, q) ∈ X such that

ᾱ(v −w) +∇(q − r) = (ᾱ− α(p)) v − α̇(p)qu, in Ω,

∇·(v −w) = 0, in Ω,

(v −w)·n = 0, on Γ,

q − r = 0, on Γw,
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always has a unique solution. Doing the elementary change of variables (V, Q) =

(v − w, q − r) ∈ X this problem can be equivalently restated as: Find (V, Q) ∈ X

such that 

α(p)V +∇Q = F(Q), in Ω,

∇·V = 0, in Ω,

V·n = 0, on Γ,

Q = 0, on Γw,

where

F(Q) := (ᾱ− α(p))w − α̇(p)ru− α̇(p)Qu = F + F̄(Q),

with

F = (ᾱ− α(p))w − α̇(p)ru, F̄(Q) = α̇(p)Qu.

Notice that, since u ∈ L3(Ω) then F(Q) ∈ L2(Ω). This problem can be written

in variational form as: Find (V, Q) ∈ X such that
∫

Ω
α(p)V·W +

∫
Ω

W·∇Q =
∫

Ω
F(Q)·W, ∀W ∈ L2(Ω),∫

Ω
V·∇R = 0, ∀R ∈ H1

w(Ω).

(3.13)

We observe that (3.13) is a linear Darcy’s system with an affine perturbation F(Q).

If we define the bilinear form A : X× X→ R by

A [(V, Q), (W, R)] :=

∫
Ω

α(p)V·W +

∫
Ω

W·∇Q+

∫
Ω

V·∇R,

and assume for the moment that F̄(Q) = 0, i.e., F(Q) does not depend on Q, then,

problem (3.13) has a unique solution if and only if:

1. There exists a constant βA > 0 such that

inf
0 6=(V,Q)∈X

sup
0 6=(W,R)∈X

A [(V, Q), (W, R)]

‖(V, Q)‖X‖(W, R)‖X
≥ βA. (3.14)



21

2. The form A has the following property:

(A [(V, Q), (W, R)] = 0 ∀(V, Q) ∈ X)⇒ (W, R) = 0. (3.15)

These two properties are equivalent to the fact that the linear Darcy problem defined

by the form A is well-posed, which is a classical result. This also implies the a priori

estimate

‖V‖L2 + |Q|H1 ≤ c ‖F‖L2 , (3.16)

for some c > 0 that does not depend on F, V or Q. Now, the well-posedness of (3.13)

follows immediately by proving that the affine mapping S 7→ Q, where Q is the second

component of the solution pair (V, Q) of (3.14) with data F(S) is a contraction, i.e.,

there exists K ∈ (0, 1) such that

|Q|H1 ≤ K|S|H1 , ∀S ∈ H1(Ω).

To do this, let S be given in H1(Ω), set F = 0, and take W = V in the first equation

of problem (3.13). The second equation, together with condition (3.1) imply

αmin‖V‖2
L2 ≤

∫
Ω

α(p)V·V =

∫
Ω

F̄(S)·V ≤ ‖F̄(S)‖L2‖V‖L2 ,

or

‖V‖L2 ≤ 1

αmin

‖F̄(S)‖L2 .

By taking W = ∇Q we obtain

|Q|2H1 =

∫
Ω

∇Q·∇Q =

∫
Ω

F̄(S)·∇Q−
∫

Ω

α(p)V·∇Q

≤ ‖F̄(S)‖L2|Q|H1 + αmax‖V‖L2|Q|H1

≤
(

1 +
αmax

αmin

)
‖F̄(S)‖L2 |Q|H1 ≤

(
1 +

αmax

αmin

)
‖α̇(p)Su‖L2|Q|H1 .
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Since

‖α̇(p)Su‖L2 ≤ c(Ω)Lα‖u‖L3|S|H1 ,

we derive

|Q|H1 ≤
(

1 +
αmax

αmin

)
c(Ω)Lα‖u‖L3|S|H1 .

Therefore the mapping S 7→ Q is a contraction if(
1 +

αmax

αmin

)
c(Ω)Lα‖u‖L3 < 1,

which is condition (3.12).

Remark 6. We see that (3.12) coincides with the condition for global uniqueness

(3.7). This reflects that the nonlinearity G does not have regularizing properties.

Nevertheless, these are only sufficient conditions, and it is plausible that problem (1.1)

has a nonsingular solution without satisfying condition (3.12).

B. Discretization

Having analyzed the mathematical properties of problem (1.1) we now proceed to

propose several methods for its approximate solution. With this purpose, let h be a

discretization parameter (that will tend to zero). For every h > 0 we introduce two

finite dimensional spaces Xh ⊂ L2(Ω) and Mh ⊂ H1
w(Ω) such that:

1. The pair of spaces (Xh,Mh) is stable, in the sense that they satisfy a uniform

inf–sup condition (cf. [16, 34], A. Ern and J.-L. Guermond [27] or D. Boffi, et

al. [13]). That is, there exists a constant β > 0 independent of h such that

sup
wh∈Xh

b(wh, qh)

‖wh‖L2

≥ β|qh|H1 , ∀qh ∈Mh, (3.17)

where the form b is defined in (3.5).
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2. There exist continuous interpolation operators πh : L2(Ω)→ Xh, Ih : H1(Ω)→

Mh and an integer ` ≥ 1, such that for all (v, q) ∈ H`(Ω)×H`+1(Ω)

‖v − πhv‖L2 ≤ ch`‖v‖H` , (3.18)

and

|q − Ihq|H1 ≤ ch`|q|H`+1 . (3.19)

In order to find examples of such discrete spaces, assume to simplify that Ω is

a polyhedron, and let Th be a family of triangulations of Ω̄, made of tetrahedra

with diameter bounded by h. We suppose that Th is regular in the following sense

(cf. P.G.Ciarlet [21]): There exists a constant σ > 0, independent of h, such that

hT
ρT
≤ σ, ∀T ∈ Th, (3.20)

where hT is the diameter of T and ρT is the diameter of the ball inscribed in T . Then,

for any integer k ≥ 1, the following pair of spaces satisfy conditions (3.17)–(3.19):

Xh :=
{
vh ∈ L2(Ω) : vh|T ∈ Pdk−1,∀T ∈ Th

}
, (3.21)

and

Mh :=
{
qh ∈ C0(Ω̄) : qh|T ∈ Pk, ∀T ∈ Th

}
. (3.22)

For a proof the reader can consult standard references, for instance [16, 34, 27].

Finally, we define the discrete solution space

Xh := Xh ×Mh,

normed by ‖ · ‖X. Clearly, Xh ⊂ X. For the sequel, it is also useful to introduce the

space

Vh := {vh ∈ Xh : ∀qh ∈Mh b(vh, qh) = 0}, (3.23)
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and its orthogonal in Xh

V⊥h = {vh ∈ Xh : ∀wh ∈ Vh

∫
Ω

vh·wh = 0}. (3.24)

For each such pair of discrete spaces we define the Galerkin solution to problem (3.3)

as the pair xh = (uh, ph) ∈ Xh such that
a(ph; uh,vh) + b(vh, ph) =

∫
Ω

f ·vh, ∀vh ∈ Xh,

b(uh, qh) = 〈g, qh〉Γ, ∀qh ∈Mh.

(3.25)

Under assumptions (3.1) and (3.17), the existence of a solution for this problem can

be established by the same techniques used in Theorem 1 (cf. [5]). It is even simpler,

since problem (3.25) is already set in finite dimension. All solutions of problem (3.25)

satisfy uniform a priori estimates and (3.18) and (3.19) suffice to establish weak

convergence (up to subsequences) of any solution of (3.25) to some solution of (3.3).

In the remainder of this Section we analyze this discrete problem. For the case

when the solution is unique we prove optimal error estimates and propose an algo-

rithm to find such an approximate solution. The algorithm is proved to converge

independently of the discretization parameter. For the nonuniqueness case, in the

spirit of [17, 34],we show that for h small enough there exists a nonsingular solution

to (3.25) in a neighborhood of the nonsingular solution to the exact problem. We

analyze some properties of the application of Newton’s method to this problem, and

we obtain estimates on its speed of convergence and conditions on the initial approx-

imation. The main difficulty in this analysis is that there exist x in X for which the

operator G′(x) is not bounded in L(X,Y). More precisely, we require that the first

component of x belong to L3(Ω), a smaller space than L2(Ω). This again is related

to the fact that the nonlinearity G does not have regularizing properties.
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Recall that condition (3.7) is sufficient for the solution to problem (3.3) to be

unique. In the setting that we have described, and under a similar assumption, we

have the following a priori estimate.

Theorem 2. Let the pair of finite dimensional spaces Xh satisfy condition (3.17).

Assume that the solution x = (u, p) ∈ X to (3.3) is such that u ∈ L3(Ω) and is small

enough, in the sense that

1

β

αmax + αmin

αmin

c(Ω)Lα‖u‖L3 ≤ θ < 1. (3.26)

Then both (3.3) and (3.25) have a unique solution and there exists a constant c > 0

independent of h such that the solution xh = (uh, ph) ∈ Xh of problem (3.25) satisfies

‖u− uh‖L2 + |p− ph|H1 ≤ c

(
inf

vh∈Xh

‖u− vh‖L2 + inf
qh∈Mh

|p− qh|H1

)
. (3.27)

Proof. The proof proceeds in three steps.

(i) The second equation in (3.25) can be viewed as a non-homogeneous constraint; let

us show that we can approximate u with functions of Xh that satisfy this constraint.

For this, let vh be an arbitrary function of Xh, define rh in Xh by

b(rh, qh) = b(u− vh, qh), ∀qh ∈Mh,

and set wh := rh + vh. It follows from (3.17) and the Babuška–Brezzi’s theory (cf.

[6] or [16, 34, 27]) that this equation has a solution rh ∈ Xh, unique in V⊥h , and such

that

β‖rh‖L2 ≤ ‖u− vh‖L2 . (3.28)

Thus

b(wh, qh) = b(u, qh) = 〈g, qh〉 = b(uh, qh), ∀qh ∈Mh,
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and uh −wh ∈ Vh. This implies

αmin‖uh −wh‖L2 ≤ sup
06=yh∈Vh

a(ph; uh −wh,yh)

‖yh‖L2

≤ sup
06=yh∈Vh

a(ph; uh − u,yh)

‖yh‖L2

+ sup
06=yh∈Vh

a(ph; u−wh,yh)

‖yh‖L2

≤ sup
06=yh∈Vh

a(ph; uh − u,yh)

‖yh‖L2

+ αmax‖u−wh‖L2 .

(ii) Subtract the first equation of (3.3) from the first equation in (3.25) with test

function yh ∈ Vh. Since Xh ⊂ L2(Ω),

a(ph; uh − u,yh) =

∫
Ω

(α(p)− α(ph)) u·yh +

∫
Ω

yh·∇(p− ph)

≤ Lα‖p− ph‖L6‖u‖L3‖yh‖L2 + b(yh, p− ph)

≤ c(Ω)Lα|p− ph|H1‖u‖L3‖yh‖L2 + b(yh, p− qh) + b(yh, qh − ph).

This yields

αmin‖uh −wh‖L2 ≤ c(Ω)Lα|p− ph|H1‖u‖L3 + |p− qh|H1 + αmax‖u−wh‖L2 ,

where the last inequality holds since yh ∈ Vh. Finally, by the triangle inequality and

(3.28)

αmin‖u− uh‖L2 ≤ (αmin + αmax)

(
1 +

1

β

)
‖u− vh‖L2

+ c(Ω)Lα|p− ph|H1‖u‖L3 + |p− qh|H1 . (3.29)
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(iii) Let qh ∈Mh be arbitrary. By the inf–sup condition (3.17),

β|ph − qh|H1 ≤ sup
06=yh∈Xh

b(yh, ph − qh)
‖yh‖L2

≤ sup
06=yh∈Xh

b(yh, ph − p)
‖yh‖L2

+ sup
0 6=yh∈Xh

b(yh, p− qh)
‖yh‖L2

≤ sup
06=yh∈Xh

b(yh, ph − p)
‖yh‖L2

+ |p− qh|H1 .

Subtracting the first equation of (3.3) from the first equation of (3.25), since Xh ⊂

L2(Ω) we obtain

b(yh, ph − p) =

∫
Ω

(α(p)− α(ph)) u·yh +

∫
Ω

α(ph)(u− uh)·yh

≤ c(Ω)Lα|p− ph|H1‖u‖L3‖yh‖L2 + αmax‖u− uh‖L2‖yh‖L2 ,

which implies

|ph − qh|H1 ≤ 1

β
|p− qh|H1 +

c(Ω)Lα
β
‖u‖L3|p− ph|H1 +

αmax

β
‖u− uh‖L2 .

By the triangle inequality

|p− ph|H1 ≤
(

1 +
1

β

)
|p− qh|H1 +

c(Ω)Lα
β
‖u‖L3|p− ph|H1 +

αmax

β
‖u− uh‖L2 .

Assumption (3.26) implies

αmax + αmin(1− θ)
αmax + αmin

|p− ph|H1 ≤
(

1 +
1

β

)
|p− qh|H1 +

αmax

β
‖u− uh‖L2 .

Combining this last inequality, assumption (3.26), and (3.29) we obtain

‖u− uh‖L2 ≤ c (‖u− vh‖L2 + |p− qh|H1) +
αmaxθ

αmax + αmin(1− θ)
‖u− uh‖L2 .

Since

1− αmaxθ

αmax + αmin(1− θ)
=

αmax + αmin

αmax + αmin(1− θ)
(1− θ) > 0
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and the pair (vh, qh) ∈ Xh is arbitrary we obtain the desired result.

Remark 7. For the pair of finite element spaces (3.21), (3.22) condition (3.17) holds

with β = 1. Hence, in this case, assumption (3.26) is the same as (3.7).

The next corollary follows readily from this Theorem.

Corollary 1. Under the setting of Theorem 2, if the spaces Xh and Mh satisfy as-

sumptions (3.18) and (3.19), then

lim
h→0
‖(u, p)− (uh, ph)‖X = 0.

Moreover, if the exact solution (u, p) ∈ Hs(Ω) ×Hs+1(Ω) for some real number s ∈

[0, `], then there is a constant c > 0 independent of h such that

‖(u, p)− (uh, ph)‖X ≤ chs (‖u‖Hs + ‖q‖Hs+1) .

Proof. The conclusion of Theorem 2, an elementary density argument and assump-

tions (3.18) and (3.19) give that the Galerkin solution converges to the exact solution

as h → 0. If the exact solution is more regular, assumptions (3.18) and (3.19) give

the claimed error estimates.

We now propose an iterative scheme to solve the discrete nonlinear system (3.25).

Although the scheme requires assembling a new matrix at each iterative step, we show

that, under an assumption similar to (3.7), the speed of convergence to the Galerkin

solution is independent of the discretization parameter h.

The proposed scheme is the following:
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Given an arbitrary initial approximation p
(0)
h ∈Mh, for n ≥ 0 find (u

(n+1)
h , p

(n+1)
h ) ∈

Xh that solve
a
(
p

(n)
h ; u

(n+1)
h ,vh

)
+ b
(
vh, p

(n+1)
h

)
=
∫

Ω
f ·vh, ∀vh ∈ Xh,

b
(
u

(n+1)
h , qh

)
= 〈g, qh〉Γ, ∀qh ∈Mh.

(3.30)

Now we prove that this scheme converges independently of the discretization

parameter.

Proposition 4. Assume that the pair of spaces (Xh,Mh) satisfies condition (3.17).

Let the solution to (3.25) be small enough, in the sense that there are two constants

θ < 1 and h0 > 0 such that for every h ≤ h0

αmax + αmin

αmin

c(Ω)Lα‖uh‖L3 ≤ θ. (3.31)

Then for the iterative scheme (3.30) the following error estimates hold∥∥∥uh − u
(n+1)
h

∥∥∥
L2
≤ 1

αmax + αmin

θn+1

βn

∣∣∣ph − p(0)
h

∣∣∣
H1
,

and ∣∣∣ph − p(n+1)
h

∣∣∣
H1
≤
(
θ

β

)n+1 ∣∣∣ph − p(0)
h

∣∣∣
H1
.

Proof. Take the difference of equations (3.25) and (3.30). We obtain
∫

Ω

(
α(ph)uh − α

(
p

(n)
h

)
u

(n+1)
h

)
·vh + b

(
vh, ph − p(n+1)

h

)
= 0, ∀vh ∈ Xh,

b
(
uh − u

(n+1)
h , qh

)
= 0, ∀qh ∈Mh.
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Set vh = uh − u
(n+1)
h , then

αmin

∥∥∥uh − u
(n+1)
h

∥∥∥2

L2
≤
∣∣∣∣∫

Ω

(
α
(
p

(n)
h

)
− α(ph)

)
uh·
(
uh − u

(n+1)
h

)∣∣∣∣
≤ c(Ω)Lα

∣∣∣ph − p(n)
h

∣∣∣
H1
‖uh‖L3

∥∥∥uh − u
(n+1)
h

∥∥∥
L2
,

which by (3.31) implies∥∥∥uh − u
(n+1)
h

∥∥∥
L2
≤ θ

αmax + αmin

∣∣∣ph − p(n)
h

∣∣∣
H1
. (3.32)

By the inf–sup condition (3.17),

β
∣∣∣ph − p(n+1)

h

∣∣∣
H1
≤ sup

06=vh∈Xh

b
(
vh, ph − p(n+1)

h

)
‖vh‖L2

= sup
06=vh∈Xh

∫
Ω

(
α(ph)uh − α

(
p

(n)
h

)
u

(n+1)
h

)
·vh

‖vh‖L2

≤ sup
06=vh∈Xh

∫
Ω

(
α(ph)− α(p

(n)
h )
)

uh·vh
‖vh‖L2

+ sup
06=vh∈Xh

∫
Ω
α
(
p

(n)
h

)(
uh − u

(n+1)
h

)
·vh

‖vh‖L2

≤ c(Ω)Lα

∣∣∣ph − p(n)
h

∣∣∣
H1
‖uh‖L3 + αmax

∥∥∥uh − u
(n+1)
h

∥∥∥
L2
.

By condition (3.31) and inequality (3.32)

β
∣∣∣ph − p(n+1)

h

∣∣∣
H1
≤ θ

αmax + αmin

(αmax + αmin)
∣∣∣ph − p(n)

h

∣∣∣
H1

= θ
∣∣∣ph − p(n)

h

∣∣∣
H1
.

From this inequality and (3.32) the claimed error bounds follow.

Remark 8. One might argue that the previous error bounds do not guarantee conver-

gence of the algorithm, since the value of β is not known and, hence, the ratio θ/β
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could be greater than one. Using a similar assumption as (3.26), namely

1

β

αmax + αmin

αmin

c(Ω)Lα‖uh‖L3 ≤ θ,

we can bypass this constraint. Moreover, as we have mentioned before, for the con-

crete examples of spaces (3.21)–(3.22) we have β = 1.

Remark 9. In addition to (3.17)–(3.19), assume that the following inverse inequality

holds

‖vh‖L3 ≤ ch−1/2‖vh‖L2 , ∀vh ∈ Xh. (3.33)

If the exact solution (u, p) belongs to Hs(Ω)×Hs+1(Ω) for some real number s with

1
2
< s ≤ 1, then the uniqueness condition (3.7) implies (3.31). Indeed, under these

assumptions we have

‖u− uh‖L3 = O(hs−
1
2 ),

hence, if

αmax + αmin

αmin

c(Ω)Lα‖u‖L3 ≤ Θ < 1,

then,

αmax + αmin

αmin

c(Ω)Lα‖uh‖L3 ≤ (1 +O(hs−
1
2 ))Θ.

If h is small enough, we obtain condition (3.31).

Let us study now the approximation of nonsingular solutions. With this purpose,

we introduce a final assumption on the function α, namely

α ∈ W 2
∞(R). (3.34)

As we have mentioned before, in the truncated case this is not restrictive for the

problem we are treating.
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Next, we complement (3.17)–(3.19) and (3.33) with an additional inverse in-

equality :

‖qh‖L∞ ≤ ch−1/2|qh|H1 , ∀qh ∈Mh. (3.35)

Both inverse inequalities (3.33) and (3.35) hold when the family of triangulations Th

is quasi-uniform (or uniformly regular) in the following sense (cf. [21]): In addition

to (3.20), there exists a constant τ > 0, independent of h, such that

hT ≥ τh, ∀T ∈ Th. (3.36)

We are now concerned with the approximation of nonsingular solutions to (3.10)

under the hypotheses (3.17)–(3.19), (3.33), and (3.35). In order to do that, let us

define the discrete solution operator to the linear Darcy equations Th : Y → Xh.

That is, for any η = (f , g) ∈ Y, Xh 3 xh = (uh, ph) = Thη = Th(f , g) solves
a(uh,vh) + b(vh, ph) =

∫
Ω

f ·vh, ∀vh ∈ Xh,

b(uh, qh) = 〈g, qh〉Γ, ∀qh ∈Mh,

where the bilinear form a : L2(Ω)× L2(Ω) is defined by

a(u,v) := ᾱ

∫
Ω

u·v.

It is a classical matter ([16, 27]) to show that, under assumption (3.17), this operator

is well-defined, injective, Th ∈ L(Y,Xh), and there is a constant c independent of h

such that

‖Th(f , g)‖X ≤ c‖(f , g)‖Y, ∀(f , g) ∈ Y. (3.37)

We can also define the discrete nonlinearity. This is an operator Gh : Xh → Xh ×

H
1/2
00 (Γ)′ ⊂ Y, such that if xh = (uh, ph) ∈ Xh, then Gh(xh) := (Fh,−g) , where
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Fh ∈ Xh is the unique solution to∫
Ω

Fh·vh =

∫
Ω

[(α(ph)− ᾱ) uh − f ] ·vh, ∀vh ∈ Xh.

Finally, define the operator Fh : Xh → Xh by

Fh(xh) := xh + ThGh(xh).

With this notation, problem (3.25) can be equivalently rewritten as:

Find xh ∈ Xh such that

Fh(xh) = 0. (3.38)

The approximation properties of the operator Th are the following.

Proposition 5. Assume that (3.17)–(3.19) hold. Let (f , g) ∈ Y be such that T (f , g) ∈

Hs(Ω) × H1+s(Ω) ⊂ X, for some 0 < s ≤ `. Then, there is a constant c > 0,

independent of h such that

‖(T − Th)(f , g)‖X ≤ chs‖T (f , g)‖Hs×H1+s . (3.39)

Proof. It is a direct consequence of assumptions (3.17)–(3.19), together with a basic

interpolation argument ([12]).

Corollary 2. Under the hypotheses of Proposition 5, the operator Th satisfies

lim
h→0
‖T − Th‖L(Y,X) = 0. (3.40)

Proof. Standard regularity results for the linear Darcy problem (3.8) imply that,

for sufficiently small s > 0, T (f , g) ∈ Hs(Ω) × H1+s(Ω) if (f , g) belongs to Ỹ :=

Hs(Ω) ×Hs−1/2(∂Ω), which is a dense subset of Y. The boundedness of operator T
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(see (3.9)), together with inequality (3.39) imply

sup
06=(f ,g)∈Y

‖(T − Th)(f , g)‖X
‖(f , g)‖Y

= sup
(f ,g)∈Ỹ

‖(T − Th)(f , g)‖X
‖(f , g)‖Y

≤ chs
‖T (f , g)‖X
‖(f , g)‖Y

≤ chs,

from which (3.40) clearly follows.

We are interested in approximating a nonsingular solution x = (u, p) ∈ X to

(3.10). For this, we must assume that there is a real number s > 1/2 such that

(u, p) ∈ Hs(Ω)×H1+s(Ω). (3.41)

Remark 10. Since s > 1/2, (3.41) implies that (u, p) ∈ L3(Ω)× C0(Ω̄), see [2].

To alleviate the notation, define

x0
h := (u0

h, p
0
h) = (πhu, Ihp) ∈ Xh, (3.42)

where πh and Ih are the interpolation operators of (3.18) and (3.19) respectively.

Important properties of the interpolant x0
h and the operator F ′h(x

0
h) are established

below.

Lemma 1. Let the function α satisfy conditions (3.1), (3.2) and (3.34). Let the

solution (u, p) ∈ X to problem (3.10) be nonsingular and satisfy the smoothness con-

dition (3.41). If the pair of spaces (Xh,Mh) satisfies assumptions (3.18), (3.19), then

there exists a constant c > 0 independent of h, such that

∥∥u− u0
h

∥∥
L2 ≤ chs‖u‖Hs , (3.43)

and ∣∣p− p0
h

∣∣
H1 ≤ chs‖p‖H1+s . (3.44)

Moreover, if the pair (Xh,Mh) also satisfies conditions (3.17), (3.33) and (3.35), then

there exists a h0 > 0 such that for every h ≤ h0 the operator F ′h(x
0
h) is an isomorphism
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of Xh and the norm of its inverse is bounded independently of h.

Proof. Inequalities (3.43) and (3.44) are a simple consequence of (3.18), (3.19) and

assumption (3.41) via interpolation ([12]).

To show that F ′h(x
0
h) is an isomorphism of Xh, notice that

I + ThG
′
h(x

0
h) = I + ThG

′(x) + Th
(
G′(x0

h)−G′(x)
)

+ Th
(
G′h(x

0
h)−G′(x0

h)
)
.

Let us consider each term separately.

(i) I + ThG
′(x). Notice, first of all, that if yh ∈ Xh, then (I + ThG

′(x)) yh ∈ Xh.

Moreover,

I + ThG
′(x)− F ′(x) = (Th − T )G′(x).

Since x is a nonsingular solution, F ′(x) is an isomorphism of X. Corollary 2 and an

application of the Theorem about the Perturbation of an Invertible Operator (see

[58, Theorem 4, p.207] for instance) imply that there is h
(1)
0 > 0 such that for all

h ≤ h
(1)
0 the operator I+ThG

′(x) is an isomorphism of X. Hence it is an isomorphism

of Xh. Thus, the result of the Lemma will be proved if we show that the remaining

two terms tend to zero (in the ‖ · ‖L(Xh)–norm) as h→ 0.

(ii) Th(G
′(x0

h) − G′(x)). Let yh = (vh, qh); using the definition of the derivatives, for

any w ∈ L2(Ω)

〈
(G′(x0

h)−G′(x))yh, (w, 0)
〉

=

∫
Ω

(
α(p0

h)− α(p)
)

vh·w

+

∫
Ω

(
α̇(p0

h)u
0
h − α̇(p)u

)
qh·w

=

∫
Ω

(
α(p0

h)− α(p)
)
vh·w

+

∫
Ω

(
α̇(p0

h)− α̇(p)
)
qhu·w

+

∫
Ω

α̇(p0
h)
(
u0
h − u

)
qh·w.
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Consider each term separately. By (3.2) and the inverse inequality (3.33)∫
Ω

(
α(p0

h)− α(p)
)
vh·w ≤ c(Ω)Lα

∣∣p− p0
h

∣∣
H1 ‖vh‖L3‖w‖L2

≤ ch−1/2
∣∣p− p0

h

∣∣
H1 ‖vh‖L2‖w‖L2 .

By (3.34) and the inverse inequality (3.35)∫
Ω

(
α̇(p0

h)− α̇(p)
)
qhu·w ≤ c‖qh‖L∞

∫
Ω

∣∣p− p0
h

∣∣ |u||w|
≤ ch−1/2

∣∣p− p0
h

∣∣
H1 |qh|H1‖u‖L3‖w‖L2 .

Finally, by (3.2) and the inverse inequality (3.35)∫
Ω

α̇(p0
h)
(
u0
h − u

)
qh·w ≤ Lα

∥∥u− u0
h

∥∥
L2 ‖qh‖L∞‖w‖L2

≤ ch−1/2
∥∥u− u0

h

∥∥
L2 |qh|H1‖w‖L2 .

Thus, by the stability property (3.37) of Th,

∥∥Th(G′(x0
h)−G′(x))

∥∥
L(Xh)

≤ c‖G′(x0
h)−G′(x)‖L(Xh,Y)

= c sup
0 6=yh∈Xh

‖(G′(x0
h)−G′(x))yh‖Y
‖yh‖X

= c sup
06=yh∈Xh

sup
06=w∈L2(Ω)

〈(G′(x0
h)−G′(x))yh,w〉
‖yh‖X‖w‖L2

≤ ch−1/2
(∣∣p− p0

h

∣∣
H1 +

∥∥u− u0
h

∥∥
L2

)
,

which by the approximation properties (3.43) and (3.44) of x0
h and the fact that

s > 1/2 implies that this last quantity tends to zero as h→ 0.

(iii) Th(G
′
h(x

0
h)−G′(x0

h)). It is sufficient to notice that for any wh ∈ Xh

〈
(G′h(x

0
h)−G′(x0

h))yh, (wh, 0)
〉

= 0.



37

Remark 11. In the example (3.21), (3.22), as in most finite element spaces, inverse

estimates such as (3.33) and (3.35) hold locally. Therefore they may be applied locally

when used in proving the interpolation Lemma 1, because interpolation properties are

also local. In this case, the statement of Lemma 1 is valid even if the triangulation

is not quasi-uniform. But of course intermediate results would have to be stated

differently. For instance the bound for∫
Ω

(
α(p0

h)− α(p)
)
vh·w

would read, for s > 1
2
:∫

Ω

(
α(p0

h)− α(p)
)
vh·w ≤ chs−1/2|p|H1+s‖vh‖L2‖w‖L2 .

However, this does not apply to inverse inequalities that are used in conjunction with

global error estimates, such as in Remark 9 or in Lemma 2 below, in which case some

restriction on the mesh cannot be avoided.

Once we know the main properties of the operator F ′h(x
0
h), it is possible to study

F ′h(yh) for yh close to x0
h.

Lemma 2. Under the assumptions of Lemma 1, there is a constant c0 > 0 indepen-

dent of h such that

‖G′h(yh)−G′h(x0
h)‖L(Xh,Y) ≤ c0h

−1/2
∥∥yh − x0

h

∥∥
X
, ∀yh ∈ Xh. (3.45)
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Proof. Let yh = (vh, qh), zh = (wh, rh) ∈ Xh. For an arbitrary th ∈ Xh

〈
(G′h(yh)−G′h(x0

h))zh, (th, 0)
〉

=

∫
Ω

(
α(qh)− α(p0

h)
)

wh·th +

∫
Ω

α̇(qh)
(
vh − u0

h

)
rh·th

+

∫
Ω

(
α̇(qh)− α̇(p0

h)
)
u0
hrh·th

≤ c
(∥∥p0

h − qh
∥∥
L∞
‖wh‖L2‖th‖L2

+
∥∥u0

h − vh
∥∥

L3 |rh|H1‖th‖L2

+
∥∥p0

h − qh
∥∥
L∞
‖u0

h‖L3|rh|H1‖th‖L2

)
,

hence

‖G′h(yh)−G′h(x0
h)‖L(Xh,Y) ≤ c

(∥∥p0
h − qh

∥∥
L∞

+
∥∥u0

h − vh
∥∥

L3

)
.

This estimate and the inverse inequalities (3.33), (3.35) imply (3.45).

Remark 12. Lemma 2 states that G′h is Lipschitz-continuous in a neighborhood of x0
h,

but this continuity is not uniform with respect to h. One more time, the absence of

regularizing properties for the nonlinearity G does not allow us to obtain uniform in

h bounds.

It is important to know whether the consistency error Fh(x
0
h) tends to zero as

h → 0, and if this is the case at which rate. The following Lemma shows that the

convergence is optimal given the regularity of the exact nonsingular solution x.

Lemma 3. Under the assumptions of the first part of Lemma 1, there is a constant

c > 0, independent of h such that

‖Fh(x0
h)‖X ≤ chs (‖u‖Hs + ‖p‖H1+s) . (3.46)

Proof. Since F (x) = 0,

Fh(x
0
h) = x0

h − x+ Th(Gh(x
0
h)−G(x)) + (Th − T )G(x),
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which implies

‖Fh(x0
h)‖X ≤ ‖x− x0

h‖X + ‖(T − Th)G(x)‖X + ‖Th(G(x)−Gh(x
0
h))‖X.

From (3.43) and (3.44),

‖x− x0
h‖X ≤ chs (‖u‖Hs + ‖p‖H1+s) .

Estimate (3.39) implies

‖(T − Th)G(x)‖X ≤ chs‖TG(x)‖Hs×H1+s = chs (‖u‖Hs + ‖p‖H1+s) .

Finally, since Th(Gh(x
0
h)−G(x)) belongs to Xh, by the stability property (3.37)

of Th we see that it is sufficient to control the difference of the first coordinate of

G(x)−Gh(x
0
h) when tested against an element of Xh. Let vh ∈ Xh, then using (3.43)

and (3.44) ∫
Ω

[
G(x)−Gh(x

0
h)
]

1
·vh ≤ (ᾱ + αmax)‖u− u0

h‖L2‖vh‖L2

+ c(Ω)Lα
∣∣p− p0

h

∣∣
H1 ‖u‖L3‖vh‖L2

≤ chs (‖u‖Hs + ‖p‖H1+s) ‖vh‖L2 .

According to the theory in [17, 34], Lemmas 1, 2, and 3 allow us to prove our

main result, namely, the existence of a nonsingular solution for the discrete problem

and optimal error estimates for it.

Theorem 3. Let α satisfy (3.1), (3.2) and (3.34). Assume that problem (3.10) has

a nonsingular solution x = (u, p) ∈ Hs(Ω) × H1+s(Ω) ⊂ X, for some s > 1/2. If

the pair of spaces (Xh,Mh) satisfies (3.17), (3.18), (3.19), (3.33), and (3.35), then

there is a h0 > 0 such that for all h ≤ h0 the discrete problem (3.38) has a unique
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nonsingular solution xh = (uh, ph) in a neighborhood of the interpolant x0
h = (u0

h, p
0
h)

of the exact nonsingular solution. Moreover, this solution satisfies the following error

estimate

‖x− xh‖X ≤ chs (‖u‖Hs + ‖p‖H1+s) , (3.47)

where the constant c > 0 does not depend on h.

Proof. Let us define

εh := ‖Fh(x0
h)‖X,

and

Mh(δ) := sup
yh∈Xh: ‖yh−x0

h‖X<δ
‖F ′h(yh)− F ′h(x0

h)‖X.

Lemma 1 implies that there is a h
(1)
0 > 0 such that for all h ≤ h

(1)
0 the operator F ′h(x

0
h)

is an isomorphism of Xh with inverse bounded independently of h. Denote this bound

by ∆. Inequalities (3.45) and (3.46) imply that

2∆Mh(2∆εh) ≤ chs−1/2,

hence there is a h
(2)
0 > 0 such that for all h ≤ h

(2)
0

2∆Mh(2∆εh) < 1.

Set h0 = min{h(1)
0 , h

(2)
0 } and consider h ≤ h0.

Since the operator F ′h(x
0
h) is an isomorphism, solving problem (3.38) is equivalent

to finding a fixed point of the map Φh : Xh → Xh defined by

Φh(yh) := yh −
[
F ′h(x

0
h)
]−1

Fh(yh).

Denote

S :=
{
yh ∈ Xh : ‖yh − x0

h‖X ≤ 2∆εh
}
.
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We shall show that Φh is a contraction from S to S.

If yh ∈ S,

Φh(yh)− x0
h =

[
F ′h(x

0
h)
]−1 (

F ′h(x
0
h)(yh − x0

h)−
(
Fh(yh)− Fh(x0

h)
)
− Fh(x0

h)
)
.

By the Mean Value Theorem

Fh(yh)− Fh(x0
h) =

∫ 1

0

F ′h
(
x0
h + θ(yh − x0

h)
)

(yh − x0
h)dθ,

from which follows

‖F ′h(x0
h)(yh − x0

h)−
(
Fh(yh)− Fh(x0

h)
)
‖X

≤
∫ 1

0

∥∥F ′h(x0
h)− F ′h(x0

h + θ(yh − x0
h))
∥∥
L(Xh)

‖yh − x0
h‖Xdθ ≤ 2∆εhMh(2∆εh).

And, by the choice of h

‖Φh(yh)− x0
h‖X ≤ ∆ (2∆εhMh(2∆εh) + εh) = ∆εh (2∆Mh(2∆εh) + 1) < 2∆εh,

which means that Φh(yh) ∈ S.

Let yh, zh ∈ S, then a similar computation shows that

‖Φh(yh)− Φh(zh)‖X ≤ ∆Mh(2∆εh) ‖yh − zh‖X <
1

2
‖yh − zh‖X,

which implies that Φh is a contraction and we can conclude that there is a unique

xh ∈ S such that xh = Φh(xh).

To realize that this solution is nonsingular, notice that

∥∥F ′h(x0
h)− F ′h(xh)

∥∥
L(Xh)

≤Mh(2∆εh) <
1

2∆
,

and apply the Theorem about the Perturbation of an Invertible Operator (see L.V. Kan-

torovich and G.P. Akilov [58, Theorem 4, p.207] for instance).
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Finally, to get the error estimate (3.47) it is sufficient to use (3.46), the triangle

inequality; and properties (3.43) and (3.44) of x0
h,

‖xh − x‖X ≤ ‖xh − x0
h‖X + ‖x0

h − x‖X

≤ 2∆εh + chs (‖u‖Hs + ‖p‖H1+s)

≤ chs (‖u‖Hs + ‖p‖H1+s) .

This concludes the proof.

Remark 13. From the proof of this Theorem we see that the discrete nonsingular

solution xh is unique in a ball larger than S. Namely, it is unique in the ball

S(δ̄) :=
{
yh ∈ Xh : ‖yh − x0

h‖X < δ̄
}
,

where δ̄ is such that ∆Mh(δ̄) < 1. Both radii tend to zero as h→ 0. But, according

to (3.46), the radius of S is O(hs), s > 1/2, whereas δ̄ = O(h1/2).

We have obtained that the discrete problem (3.38) has a unique nonsingular

solution in a neighborhood of the exact nonsingular solution. We now analyze the

application of Newton’s method to the solution of this discrete problem. The algo-

rithm is the following:

Given x
(0)
h ∈ Xh, for n ≥ 0 define x

(n+1)
h by

x
(n+1)
h = x

(n)
h −

[
F ′h

(
x

(n)
h

)]−1

Fh

(
x

(n)
h

)
.

For this method to make sense F ′h

(
x

(n)
h

)
must be an isomorphism of Xh for all

n. Let us introduce the following notation

S(xh, δ) := {yh ∈ Xh : ‖yh − xh‖X < δ} ,
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and,

K :=
1

4‖Th‖L(Y,Xh)c0∆
,

where the constant c0 is the constant in inequality (3.45), ∆ is such that for h small

enough ∥∥∥[F ′h(x0
h)
]−1
∥∥∥
L(Xh)

≤ ∆,

and x0
h is the interpolant of x defined in (3.42).

Lemma 4. There exists a real number h0 > 0 such that for all h ≤ h0, if δ = O(h1/2)

and yh ∈ S(xh, δ), then the linear operator F ′h(yh) is an isomorphism of Xh. Moreover,

the norm of the inverse of this operator is bounded independently of h.

Proof. Since

F ′h(yh) = F ′h(xh) + (F ′h(yh)− F ′h(xh)) ,

and, by Theorem 3, there exists h0 > 0 such that for all h ≤ h0, F
′
h(xh) is an

isomorphism of Xh, the result is obtained if we show that F ′h(yh) − F ′h(xh) is small

enough. We know that, ∥∥∥[F ′h(xh)]
−1
∥∥∥
L(Xh)

≤ 2∆.

A similar argument as in the proof of Lemma 2 gives us that

‖F ′h(yh)− F ′h(xh)‖L(Xh) ≤ c0h
−1/2‖Th‖L(Y,Xh)‖yh − xh‖X.

Hence, if

2c0‖Th‖L(Y,Xh)‖yh − xh‖X∆h−1/2 < 1,

then the Theorem about the Perturbation of an Invertible Operator implies that

F ′h(yh) is an isomorphism of Xh. Moreover, from this inequality we see that it is

sufficient to set

δ ≤ Kh1/2,
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where K is a constant independent of h.

Theorem 4. There exists a real number h0 > 0 such that for all h ≤ h0, if

δ ≤ εKh1/2,

for some real number ε with 0 < ε < 1, and if the initial approximation of New-

ton’s method x
(0)
h belongs to S(xh, δ), then Newton’s method converges to the discrete

nonsingular solution xh and the following error estimate holds∥∥∥x(n+1)
h − xh

∥∥∥
X
≤ 1

K
h−1/2

∥∥∥x(n)
h − xh

∥∥∥2

X
.

Proof. Assume h is small enough. Let us show by induction that if x
(0)
h ∈ S(xh, δ),

then x
(n)
h ∈ S(xh, δ) for all n > 0. If x

(n)
h is in S(xh, δ) and δ is chosen as indicated,

then by the previous Lemma, K can be chosen independently of h, so that F ′h(x
(n)
h )

is an isomorphism of Xh, with∥∥∥∥[F ′h (x(n)
h

)]−1
∥∥∥∥
L(Xh)

≤ 4∆.

Furthermore with a similar argument as in the proof of Theorem 3 we obtain

x
(n+1)
h − xh =

[
F ′h

(
x

(n)
h

)]−1 (
F ′h

(
x

(n)
h

)(
x

(n)
h − xh

)
−
(
Fh

(
x

(n)
h

)
− Fh(xh)

))
=
[
F ′h

(
x

(n)
h

)]−1
∫ 1

0

[
F ′h

(
x

(n)
h

)
− F ′h

(
x

(n)
h − θ

(
x

(n)
h − xh

))](
x

(n)
h − xh

)
dθ.

Then, by the induction hypothesis, a similar argument as in Lemma 2 and the choice
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of δ and K imply∥∥∥x(n+1)
h − xh

∥∥∥
X
≤
∥∥∥∥[F ′h (x(n)

h

)]−1
∥∥∥∥
L(Xh)

‖Th‖L(Y,Xh)×

×
∫ 1

0

∥∥∥G′h (x(n)
h

)
−G′h

(
x

(n)
h − θ

(
x

(n)
h − xh

))∥∥∥
L(Y,Xh)

dθ
∥∥∥x(n)

h − xh
∥∥∥

X

≤ 4∆‖Th‖L(Y,Xh)c0h
−1/2

∥∥∥x(n)
h − xh

∥∥∥2

X

≤ ε
∥∥∥x(n)

h − xh
∥∥∥

X
.

On one hand, this shows that x
(n+1)
h ∈ S(xh, δ) and hence, by Lemma 4, that

F ′h(x
(n+1)
h ) is an isomorphism of Xh for all n ≥ 1, on the other hand this shows

the claimed error estimate.

Remark 14. As we can see, the initial guess in Newton’s method must be very close

to the discrete solution. Moreover, the convergence of the method deteriorates as

the discretization parameter h tends to zero. This is again related to the lack of

regularizing properties for the nonlinearity G, as is reflected by Lemma 2.

C. A Splitting Algorithm for Exponential Porosity

The preceding analysis does not apply to an exponential porosity α, since assumptions

(3.1) and (3.2) are not satisfied. So far, a rigorous analysis of this problem is beyond

our reach. Nevertheless, for the exponential case, we propose a split formulation

derived heuristically by taking the divergence of the first equation of (1.1) and making

a change of variable.

Thus, by precisely exploiting the exponential character of the porosity (1.2), we

are able to decompose the nonlinear Darcy problem into a linear elliptic equation and

a linear Darcy system. But this process is heuristic since we develop this method

without even knowing whether in general problem (1.1), with the porosity defined as
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(1.2), does have a solution.

This section is organized as follows. First, we present the motivation behind

the split formulation, next we study the properties of the solution to the auxiliary

problem, i.e., the linear elliptic equation. Finally, we discretize the split formulation

and we study the convergence of the resulting algorithm.

Let (u, p) be a solution of problem (1.1) with the porosity given by (1.2) and

assume that p belongs to L∞(Ω). Since α(p) > 0, we can divide the first equation

in (1.1) by α(p), take the divergence of the result, and make a suitable change in

variable. Using the second equation of (1.1), we obtain

0 = ∇·u = ∇·
(

1

α(p)
f − 1

α(p)
∇p
)
.

Since 1/α(p) = 1/α0e
−γp, then

1

α(p)
∇p =

1

α0

e−γp∇p = − 1

α0γ
∇e−γp,

and the above equation can be rewritten as

−∆e−γp = γ∇·
(
e−γpf

)
. (3.48)

Let us introduce the new variable

q = e−γp − 1. (3.49)

Since p = 0 on Γw,

q = e−γp|Γw − 1 = 0 on Γw.

From (3.48) and (3.49), this new variable satisfies a.e. in Ω

−∆q − γ∇· (qf) = γ∇·f ,
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α(p) =
α0

q + 1
. (3.50)

Assume that the right-hand side f is smooth enough so that it has a normal trace on

Γ. Then it is legitimate to multiply the first equation of (1.1) by n on Γ and obtain

α(p)g + ∂np = f ·n.

Denote F̃ := f ·n. By (3.49),

∂nq + γF̃ q = α0γg − γF̃ .

Thus, for the variable q, we have obtained the following boundary value problem
−∆q − γ∇·(qf) = γ∇·f , in Ω,

q = 0, on Γw,

∂nq + γF̃ q = α0γg − γF̃ , on Γ.

(3.51)

This motivates the following split formulation for problem (1.1):

1. Find q that solves (3.51),

2. In view of (3.50), define

α̃(x) =
α0

q(x) + 1
, x ∈ Ω. (3.52)

3. Find (U, P ) that solve 

α̃U +∇P = f , in Ω,

∇·U = 0, in Ω,

P = pw, on Γw,

U·n = g on Γ.

(3.53)
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Summing up, if (u, p) is a solution of problem (1.1) and p belongs to L∞(Ω), then

(q,U, p) solves (3.51)–(3.53). The converse is partially established in the next sub-

section.

Remark 15. This formulation requires only the solution of two linear problems.

Let us first examine the well-posedness of the boundary value problem (3.51).

For this, we write it in a variational form. Multiply the first equation of (3.51) by

a sufficiently smooth function r that vanishes on Γw, apply Green’s formula and use

the last equation of (3.51). We obtain∫
Ω

∇q·∇r + γ

∫
Ω

qf ·∇r = α0γ

∫
Γ

gr − γ
∫

Ω

f ·∇r.

In the case d = 3, the minimal smoothness requirements for these integrals to be

meaningful are q, r ∈ H1(Ω), f ∈ L3(Ω), and g ∈ H1/2
00 (Γ)′. Hence, the weak formula-

tion of problem (3.51) that we will consider is the following:

Given f ∈ L3(Ω) and g ∈ H1/2
00 (Γ)′, find q ∈ H1

w(Ω) such that∫
Ω

∇q·r + γ

∫
Ω

qf ·∇r = α0γ 〈g, r〉Γ − γ
∫

Ω

f ·∇r, ∀r ∈ H1
w(Ω). (3.54)

A sufficient condition for this problem to be well posed is the following.

Proposition 6. Assume there exists a constant χ < 1 such that

γc(Ω) ‖f‖L3 ≤ χ < 1. (3.55)

Then, problem (3.54) has a unique solution q ∈ H1
w(Ω).

Proof. Let q = r in (3.54); Hölder’s inequality and (3.55) give∣∣∣∣γ ∫
Ω

qf ·∇q
∣∣∣∣ ≤ γ‖q‖L6‖f‖L3‖∇q‖L2 ≤ γc(Ω)‖f‖L3|q|2H1 ≤ χ|q|2H1 .

Then Lax–Milgram’s Lemma implies that problem (3.54) is well-posed.
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Remark 16. Condition (3.55) is only sufficient for problem (3.51) to be well-posed.

We do not want to provide a thorough analysis of this problem, but only to show

that there are cases when the algorithm that we are developing is meaningful.

Next, we turn to problem (3.53). This problem is well-posed if α̃ defined by

(3.52) belongs to L∞(Ω) and is bounded away from zero. For this, it suffices that

there exists a constant q0 > 0 such that

q + 1 ≥ q0 > 0, a.e. in Ω, (3.56)

and

q ∈ L∞(Ω). (3.57)

Condition (3.57) can be regarded as a restriction on the smoothness of the data

and the domain. Sufficient conditions for assumption (3.56) to hold elude us at the

moment, but we have the following partial result, in the simpler case when Γw = ∂Ω.

Proposition 7. Assume that Γw = ∂Ω and condition (3.55) holds. Then q satisfies

q + 1 ≥ 0, a.e. in Ω.

Proof. Let us define the set

Ω− = {x ∈ Ω : q(x) + 1 ≤ 0} ,

and the function

r0(x) =


0, x 6∈ Ω−,

− (q(x) + 1) , x ∈ Ω−.

Clearly, r0 ∈ H1(Ω) and by definition r0 ≥ 0 almost everywhere in Ω. Moreover, since

q + 1|∂Ω = 1 > 0 then r0 ∈ H1
0 (Ω). By setting r = r0 in (3.54) and changing signs we
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obtain that ∫
Ω−
|∇r0|2 + γ

∫
Ω−
r0f ·∇r0 = 0. (3.58)

Owing to condition (3.55), equality (3.58) implies that

(1− χ)

∫
Ω

|∇r0|2 ≤ 0.

In other words ∇r0 = 0, a.e. in Ω. Since r0 ∈ H1
0 (Ω), we have r0 = 0, a.e. in Ω thus

implying the result.

Under restrictions (3.56), (3.57) and (3.55), we are able to show that the solution

(U, P ) to (3.53) solves (1.1).

Proposition 8. In addition to (3.55), assume that the solution q to problem (3.51)

is in L∞(Ω) and satisfies (3.56). Then problem (3.53) has a unique solution (U, P )

and this solution solves (1.1).

Proof. By (3.56), there is a unique P̃ such that a.e. in Ω,

e−γP̃ = q + 1.

The assumption that q ∈ L∞(Ω) together with (3.56) imply that P̃ ∈ H1(Ω). More-

over, since q = 0 on Γw, we obtain P̃ ∈ H1
w(Ω).

Define Ũ ∈ L2(Ω) by

α0γŨ := ∇q + γ(q + 1)f ;

by (3.51), this implies that

∇·Ũ = 0.

Moreover, by the definition of P̃ ,

α0γŨ = ∇(e−γP̃ − 1) + γe−γP̃ f = −γe−γP̃∇P̃ + γe−γP̃ f ;
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hence

α(P̃ )Ũ +∇P̃ = f .

The boundary condition on Ũ can be obtained in a similar way. This implies not

only that the pair (Ũ, P̃ ) solves (1.1), but also that

α0

q + 1
Ũ +∇P̃ = f .

Since the solution to (3.53) is unique (Ũ, P̃ ) = (U, P ).

Remark 17. In the case of Dirichlet boundary conditions on the whole boundary:

Γw = ∂Ω, if we slightly restrict the angles of the domain and assume that f is

smoother, for instance f ∈ L6(Ω) and ∇·f ∈ L2(Ω), then a bootstrap argument, and

regularity results for the Laplace equation, show that q ∈ W 1
r (Ω) for some r > 3 and

hence q is continuous. Therefore (3.57) is satisfied.

Let us now discretize (3.51)–(3.53). In order to approximate the linear Darcy

system (3.53) we use the spaces Xh and Mh introduced in Section B and assume that

they satisfy (3.17). We also introduce another finite dimensional space Wh ⊂ H1
w(Ω)

to discretize (3.51). Then, the discrete algorithm is the following:

1. Find qh ∈ Wh such that∫
Ω

∇qh·∇sh + γ

∫
Ω

qhf ·∇sh = α0γ

∫
Γ

gsh − γ
∫

Ω

f ·∇sh, ∀sh ∈ Wh. (3.59)

2. Compute the function

α̃h(x) =
α0

qh(x) + 1
, x ∈ Ω. (3.60)
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3. Find (ũh, p̃h) ∈ Xh ×Mh that solve the discrete linear Darcy system
∫

Ω
α̃hũh·vh +

∫
Ω

vh·∇p̃h =
∫

Ω
f ·vh, ∀vh ∈ Xh,∫

Ω
ũh·∇rh = 〈g, rh〉Γ, ∀rh ∈Mh.

(3.61)

Remark 18. Note that finding this approximate solution involves solving only two

consecutive linear problems.

Remark 19. Clearly, under assumption (3.55), problem (3.59) has a unique solution.

Then, for the discrete version of the splitting method to make sense we need assump-

tions analogous to (3.56) and (3.57). When Wh has the same structure as in (3.22),

(3.57) is always satisfied, although the upper bound may not be uniform with respect

to h. Furthermore, if qh(x) + 1 > 0 for all x in Ω̄, then since problem (3.61) is set

into finite dimension, it also has a unique solution. But of course, (3.56) is not guar-

anteed, although in the numerical experiments of Section D, we observe indeed that

the discrete solution satisfies qh + 1 > 0.

Now, we present an error analysis of the algorithm (3.59)–(3.61), but this analysis

is still heuristic because we must assume that the function qh satisfies uniformly

assumptions similar to (3.56) and (3.57). More precisely, we suppose that there are

constants qmin, qmax > 0 such that for every h > 0,

0 < qmin ≤ qh(x) + 1 ≤ qmax, ∀x ∈ Ω̄. (3.62)

With this, we can proceed in two directions: a straightforward analysis of (3.59)–

(3.61), or a comparison with (3.25). In both cases, we suppose that (3.55) holds, so

that (3.59) has a unique solution.

Let us proceed first with the second option, namely comparison with (3.25). We

do not know whether the nonlinear Darcy problem with exponential porosity has a
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solution or not; and if so, which are its properties. For this reason, we shall carry this

error analysis under the assumption that problem (1.1) with the function α defined

by (1.2) does have a solution. Moreover, we shall assume that the discrete problem

defined by (3.25), with α as in (1.2) has a unique solution for all h > 0.

Proposition 9. In addition to (3.17) and (3.55), assume that the solution qh to

problem (3.59) satisfies (3.62). If the pair (ũh, p̃h) ∈ Xh ×Mh solves (3.61), then

there exists a constant c > 0 independent of h such that

‖uh − ũh‖L2 + |ph − p̃h|H1 ≤ c sup
x∈Ω̄

|α(ph(x))− α̃h(x)|‖uh‖L2 , (3.63)

where (uh, ph) ∈ Xh ×Mh solves (3.25).

Proof. Let us take the difference of equations (3.25) and (3.61). We obtain
∫

Ω
(α(ph)uh − α̃hũh) ·vh +

∫
Ω

vh·∇(ph − p̃h) = 0, ∀vh ∈ Xh,∫
Ω

(uh − ũh)·∇rh = 0, ∀rh ∈Mh.

Let vh = uh − ũh; assumption (3.62) implies

α0

qmax

‖uh − ũh‖2
L2 ≤

∫
Ω

α̃h|uh − ũh|2

=

∣∣∣∣∫
Ω

(α(ph)− α̃h) uh·(uh − ũh)

∣∣∣∣ ,
whence

‖uh − ũh‖L2 ≤ c sup
x∈Ω̄

|α(ph(x))− α̃h(x)|‖uh‖L2 .
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By the inf–sup condition (3.17)

β|ph − p̃h|H1 ≤ sup
06=vh∈Xh

∫
Ω

(α(ph)uh − α̃hũh) ·vh
‖vh‖L2

= sup
06=vh∈Xh

∫
Ω
α̃h (uh − ũh) ·vh +

∫
Ω

(α(ph)− α̃h) uh·vh
‖vh‖L2

≤ c‖uh − ũh‖L2 + sup
x∈Ω̄

|α(ph(x))− α̃h(x)|‖uh‖L2

≤ c sup
x∈Ω̄

|α(ph(x))− α̃h(x)|‖uh‖L2 .

This estimate should be regarded as the basic one. If the exact solution is smooth

enough, it can easily be reduced, for instance, to max–norm error estimates for the

pressure p and the auxiliary variable q.

Corollary 3. In addition to (3.17) and (3.55), assume that the solution q to (3.54)

belongs to L∞(Ω) and satisfies (3.56). Assume, also, that the pair (u, p) that solves

(1.1) is such that p ∈ L∞(Ω). If qh satisfies (3.62) then there is a constant c > 0

independent of h such that

‖uh − ũh‖L2 + |ph − p̃h|H1 ≤ c (‖p− ph‖L∞ + ‖q − qh‖L∞) ‖uh‖L2 . (3.64)

Proof. Using (3.63) it is sufficient to bound the L∞ norm of the difference α(ph)− α̃h.

Then

‖α(ph)− α̃h‖L∞ ≤ ‖α(p)− α(ph)‖L∞ + ‖α(p)− α̃h‖L∞

≤ D‖p− ph‖L∞ + ‖α(p)− α̃h‖L∞ ,

where the constant D satisfies

D ≤ α0γ exp (γmax {‖p‖L∞ , ‖ph‖L∞}) .
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Comparing (3.50) and (3.60), we obtain for a.e. x in Ω

|α(p(x))− α̃h(x)| ≤ α0
|qh(x)− q(x)|

|(q(x) + 1)(qh(x) + 1)|

≤ α0

|(q(x) + 1)(qh(x) + 1)|
‖qh − q‖L∞ .

Assumptions (3.56) and (3.62) imply that there is a constant c > 0 independent of h

such that

|(q(x) + 1)(qh(x) + 1)| > c for a.e.x ∈ Ω,

whence (3.64).

Finally, to be able to provide an order of convergence, we must assume one

additional approximation property of the space Mh, and we must assume that the

space Wh has adequate approximation properties. More precisely,

1. There is a constant c > 0, independent of h, such that for every r ∈ W `
∞(Ω) the

interpolation operator Ih defined in (3.19) satisfies

‖r − Ihr‖L∞ ≤ ch`‖r‖W `
∞
. (3.65)

2. There exists an interpolation operator ρh : H1(Ω) → Wh, such that for all

1 ≤ s ≤ ∞, if r ∈ W `+1
s (Ω)

‖r − ρhr‖Ls + h|r − ρhr|W 1
s
≤ ch`+1‖r‖W `+1

s
, (3.66)

where the constant c > 0 does not depend on r or h.

3. There is a constant c > 0 independent of h, such that for every rh ∈ Wh the

following inverse inequality holds

‖rh‖L∞ ≤ ch−1/2|rh|H1 . (3.67)
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Remark 20. The space Mh defined in (3.22) has properties (3.65) and (3.66) with the

same interpolation operator Ih. Hence, the triple (Xh,Mh,Mh) with Xh defined in

(3.21) and Mh defined in (3.22) has all the desired properties for all k ≥ 1.

Under these assumptions, we first bound the error of the auxiliary problem.

Proposition 10. If (3.55) holds, the solution qh of (3.59) satisfies

|q − qh|H1 ≤ 2

(
1 +

γc(Ω)

1− χ
‖f‖L3

)
inf

rh∈Wh

|q − rh|H1 . (3.68)

Proof. By taking the difference between (3.59) and (3.54), inserting any function rh

in Wh and testing with sh = qh − rh, we obtain

|qh − rh|H1 (1− γc(Ω)‖f‖L3) ≤ |q − rh|H1 (1 + γc(Ω)‖f‖L3) .

By virtue of (3.55), this implies that

|qh − rh|H1 ≤
(

1 + 2
γc(Ω)‖f‖L3

1− γc(Ω)‖f‖L3

)
|q − rh|H1 .

Then (3.68) follows from (3.55) and the triangle inequality.

Now we are able to prove a convergence result.

Corollary 4. In addition to (3.55), assume that the solution q to problem (3.51)

belongs to H`+1(Ω)∩W `
∞(Ω) and satisfies (3.56). Moreover, assume that the solution

(u, p) to (1.1) is such that p ∈ H`+1(Ω) ∩ W `
∞(Ω). Then, if the space Mh satisfies

(3.19), (3.35) and (3.65), and the space Wh satisfies (3.66) and (3.67), and if qh

satisfies (3.62), there exists a constant c > 0 that does not depend on h, such that

‖uh − ũh‖L2 + |ph − p̃h|H1 ≤ ch`−1/2
(
|p|W `

∞
+ |p|H`+1 + |q|W `

∞
+ |q|H`+1

)
‖uh‖L2 .
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Proof. By property (3.65),

‖p− ph‖L∞ ≤ ‖p− Ihp‖L∞ + ‖Ihp− ph‖L∞ ≤ ch`|p|W `
∞

+ ‖Ihp− ph‖L∞ .

By the inverse inequality (3.35) and by (3.19)

‖Ihp− ph‖L∞ ≤ ch−1/2|Ihp− ph|H1 ≤ ch−1/2 (|p− Ihp|H1 + |p− ph|H1)

≤ ch−1/2
(
h`‖p‖H`+1 + |p− ph|H1

)
.

To estimate the term |p− ph|H1 it is sufficient to recall Corollary 1 in the uniqueness

case, or (3.47) for nonsingular solutions (with s = `+ 1). We obtain

‖p− ph‖L∞ ≤ ch`|p|W `
∞

+ ch`−1/2|p|H`+1 .

Then we conclude the proof by applying (3.68) and the inverse inequality (3.67).

Remark 21. The above estimates are suboptimal, but they show heuristically that

the splitting algorithm does indeed converge. By using a more refined analysis,

for instance the method of weighted norms of Nitsche (see [21], S.C. Brenner and

L.R. Scott [15, Chapter 8], or V. Girault, R. Nochetto and L.R. Scott [33], for more

details) we may derive (again heuristically) optimal error estimates. The results of

Section D give examples where the errors have indeed optimal order.

Remark 22. If q belongs to H2(Ω)∩W 1
∞(Ω) and satisfies (3.56), then for all sufficiently

small h, qh also satisfies (3.62).

Now, let us estimate the error of (3.59)–(3.61) without reverting to (3.25). The

estimate (3.68) is rigorous because it is derived solely under assumptions on the

data. However, the remaining estimates are heuristic because we do not know how

to estimate the error on ũh without assuming that qh satisfies (3.62) and q satisfies

(3.56) and (3.57). Then we have the following result.
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Theorem 5. In addition to (3.17) and (3.55), suppose that the solution q to (3.54)

satisfies (3.56) and (3.57), the solution U of (3.53) belongs to L3(Ω), and the solution

qh of (3.59) satisfies (3.62). Then

‖U− ũh‖L2 ≤
(

1 +
qmax

qmin

)(
1 +

1

β

)
inf

vh∈Xh

‖U− vh‖L2 +
qmax

qmin

1

q0

c(Ω)‖U‖L3|q − qh|H1

+
qmax

α0

inf
rh∈Mh

|P − rh|H1 ,

(3.69)

and

|P − p̃h|H1 ≤
(

1 +
1

β

)
inf

rh∈Mh

|P − rh|H1 +
1

β

α0

qmin

(‖U− ũh‖L2

+
c(Ω)

q0

‖U‖L3 |q − qh|H1

)
.

(3.70)

Proof. First, the assumptions on q and qh imply that α̃ and α̃h are well-defined and

strictly positive. Next, by taking the difference between the first row of (3.61) and

(3.53) in weak form, and inserting any element vh of Xh and rh of Mh, we obtain for

any wh in Xh,∫
Ω

α̃h(ũh − vh)·wh +

∫
Ω

(α̃h − α̃)U·wh +

∫
Ω

∇(p̃h − rh)·wh =∫
Ω

α̃h(U− vh)·wh +

∫
Ω

∇(P − rh)·wh.

In order to eliminate p̃h, we proceed as in Theorem 2: owing to (3.17), there exists

vh in Xh such that wh := ũh − vh belongs to Vh (see (3.23)), and

‖U− vh‖L2 ≤
(

1 +
1

β

)
inf

vh∈Xh

‖U− vh‖L2 . (3.71)

This choice of test function eliminates the last term in the left-hand side of the above
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difference. Then by applying (3.62), we derive

‖ũh − vh‖L2 ≤ qmax

qmin

‖U− vh‖L2 +
qmax

α0

‖α̃h − α̃‖L6‖U‖L3 +
qmax

α0

|P − rh|H1 . (3.72)

There remains to estimate α̃h − α̃:

‖α̃h − α̃‖L6 ≤ α0

q0qmin

c(Ω)|q − qh|H1 . (3.73)

Then (3.69) follows by substituting this bound into (3.72) and using (3.71) and the

triangle inequality.

To obtain (3.70) notice that, by the discrete inf–sup condition (3.17), for any

rh ∈Mh

β|p̃h − rh|H1 ≤ sup
06=yh∈Xh

b(yh, p̃h − rh)
‖yh‖L2

≤ |P − rh|H1 + sup
06=yh∈Xh

b(yh, P − p̃h)
‖yh‖L2

,

which shows that it is sufficient to estimate b(yh, P − p̃h). By taking the difference of

the first equation in (3.53) in weak form and the first equation of (3.61) we obtain

b(yh, P − p̃h) =

∫
Ω

(α̃hũh − α̃U) ·yh =

∫
Ω

α̃h (ũh −U) ·yh −
∫

Ω

(α̃− α̃h) U·yh

≤ ‖α̃h‖L∞‖U− ũh‖L2‖yh‖L2 + ‖α̃− α̃h‖L6‖U‖L3‖yh‖L2 ,

which, by (3.73) and (3.17) implies

|p̃h − rh|H1 ≤ 1

β

(
|P − rh|H1 +

α0

qmin

(
‖ũh −U‖L2 +

c(Ω)

q0

‖U‖L3|q − qh|H1

))
.

(3.74)

The error estimate (3.70) follows from (3.74) and the triangle inequality.

Remark 23. Proposition 10 and Theorem 5 immediately yield straightforward orders

of convergence for (ũh, p̃h). We skip them for the sake of brevity.
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D. Numerical Experiments

To illustrate the theory of the previous Sections, we present a series of numerical ex-

periments, in two and three dimensions, which show the performance of the developed

methods in a series of testcases.

The numerical experiments in two dimensions were conducted using the package

FreeFem++ (see [53]). In this case, unless otherwise stated, the computational domain

is Ω = (0, 1)2, where the top and right sides are Γw and the other two sides are Γ.

The numerical experiments in three dimensions were carried out with the help of

the deal.II library (see [8, 7]). For the experiments in this dimension, the domain

is Ω = (0, 1)3, with Γw = {(x, y, z) ∈ ∂Ω : x = 1} ∪ {(x, y, z) ∈ ∂Ω : y = 1} and

Γ = ∂Ω \ Γ̄w.

To test the algorithm (3.30) developed in Section B we have conducted a series

of numerical experiments, the results of which we present below. We always initiate

the iterative process with p
(0)
h = 0 and use the stopping criterion√∥∥∥u(n+1)

h − u
(n)
h

∥∥∥2

L2
+
∣∣∣p(n+1)
h − p(n)

h

∣∣∣2
H1√∥∥∥u(n+1)

h

∥∥∥2

L2
+
∣∣∣p(n+1)
h

∣∣∣2
H1

< 10−10.

Small Porosity

To test the algorithm in the case when the porosity does not have high variations, we

define the porosity as

α(ξ) = 1 +
1

1 + ξ2
, ξ ∈ R.

Notice that 1 ≤ α(ξ) ≤ 2. We define the exact solution as

u(x, y) = (−y2, z2, x2)>, p(x, y) = sin(2πx) sin(2πy) sin(2πz).
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Table I. 3-D. Iterative Algorithm. Small Porosity. Q1dc–velocity, Q1–pressure.

Level h Velocity–L2 Rate Pressure–H1 Rate Iterations

1 0.5000 1.63E+000 — 3.25E+000 — 5

2 0.2500 9.35E-001 0.80 1.72E+000 0.92 9

3 0.1250 4.97E-001 0.91 8.66E-001 0.99 8

4 0.0625 2.53E-001 0.97 4.35E-001 0.99 8

5 0.0313 1.27E-001 0.99 2.18E-001 1.00 8

These functions determine the right-hand side and boundary data.

The results of the algorithm obtained using a discontinuous-Q1 approximation

of the velocity and a Q1 approximation of the pressure are reported in Table I. We

see that the number of iterations does not depend on the discretization parameter,

and the errors on the velocity and pressure have optimal order. We obtained similar

results in two dimensions, using spaces P0-P1 and P1dc-P2. For the sake of brevity,

we do not present them here.

Notice that for the last level the number of cells equals 32,768 and

dim Xh = 786, 432 dimMh = 35, 937.

Big Porosity

To illustrate the case when the porosity has high variations, but is still bounded we

consider

α(ξ) = 1 +
10

1 + ξ2
.
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Table II. 2-D. Iterative Algorithm. Big Porosity. P1dc–velocity, P2–pressure.

h Velocity–L2 Rate Pressure–H1 Rate Iterations

0.250000 2.07E+000 — 9.27E+000 — 14

0.125000 8.57E-001 1.33 2.64E+000 1.43 10

0.062500 2.66E-001 1.27 6.76E-001 1.81 9

0.031250 7.11E-002 1.69 1.69E-001 1.96 9

0.015625 1.81E-002 1.90 4.22E-002 2.00 10

Notice that 1 ≤ α(ξ) ≤ 11. We define the exact solution to be

u(x, y) = (−y2, x2)>, p(x, y) = 10 sin(2πx) sin(2πy).

These functions determine the right-hand side and boundary data.

The results of the algorithm obtained with a discontinuous–P1 approximation of

the velocity and a P2 approximation of the pressure are reported in Table II. We

see that the number of iterations does not depend on the discretization parameter,

and the errors on the velocity and pressure have optimal order. Using lower order

elements, i.e., a P0-P1 approximation, we obtain the same results.

Exponential Porosity

Finally, although the theory developed for algorithm (3.30) does not cover the case

of an unbounded (i.e., exponential) porosity, we nevertheless test this case. We set



63

Table III. 3D Iterative Algorithm. Exponential Porosity. Q1dc–velocity, Q1–pressure.

Level h Velocity–L2 Rate Pressure–H1 Rate Iterations

1 0.5000 3.26E+000 — 3.25E+000 — 8

2 0.2500 1.73E+000 0.91 1.72E+000 0.92 8

3 0.1250 8.93E-001 0.96 8.68E-001 0.98 7

4 0.0625 4.61E-001 0.95 4.39E-001 0.98 7

5 0.0313 2.50E-001 0.88 2.25E-001 0.96 7

the porosity to be defined as in (1.2) with

α0 = 1, γ =
1

4
,

and the exact solution

u(x, y) =
1

2
(−y2, z2, x2)>, p(x, y) = 2 + sin(2πx) sin(2πy) sin(2πz).

These functions determine the right-hand side and boundary data.

The results of the algorithm obtained using a discontinuous-Q1 approximation of

the velocity and a Q1 approximation of the pressure are reported in Table III. We see

that the number of iterations does not depend on the discretization parameter, and

the errors on the velocity and pressure have optimal order. In two dimensions, and on

a similar problem, we obtain similar results using P0-P1 and P1dc-P2 approximations.



64

Table IV. 3D Splitting Algorithm. (Q1dc,Q1,Q1) discretization.

Level h Velocity–L2 Rate Pressure–H1 Rate

1 0.5000 5.25E+000 — 3.25E+000 —

2 0.2500 2.80E+000 0.91 1.72E+000 0.92

3 0.1250 1.45E+000 0.95 8.70E-001 0.98

4 0.0625 7.73E-001 0.91 4.44E-001 0.97

5 0.0313 3.95E-001 0.97 2.35E-001 0.92

Splitting Method

To test the algorithm developed in Section C, let

α0 = 1, γ =
1

4
.

We define the exact solution to be

u(x, y) =
1

2
(−y2, z2, x2)>, p(x, y) = 2 + sin(2πx) sin(2πy) sin(2πz).

Notice that this is the same problem with exponential porosity that we solved using

the iterative algorithm. The following triple of finite element spaces was used: Xh–

discontinuous-Q1, Mh–Q1 and Wh–Q1. The obtained results can be seen in Table IV.

The velocity error in the L2-norm, and the pressure in the H1-norm asymptotically

have optimal order. Testing the method on a similar two-dimensional problem, we

can draw the same conclusions for the triples (P0,P1,P1), (P0,P1,P2), (P1dc,P2,P1)

and (P1dc,P2,P2).
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Table V. 2-D. Computational Time [s]. Exponential Porosity.

Iterative Splitting

h (P0, P1) (P1dc, P2) (P0, P1, P1) (P0, P1, P2) (P1dc, P2, P1) (P1dc, P2, P2)

5E-1 0.21 0.74 0.02 0.04 0.04 0.06

2.5E-1 0.40 1.13 0.08 0.09 0.10 0.13

1.25E-1 1.20 3.35 0.23 0.27 0.53 0.59

6.25E-2 4.71 23.16 0.95 1.08 5.15 5.25

3.13E-1 23.69 248.62 5.81 7.00 69.87 82.07

1.56E-2 167.36 3341.34 50.64 65.48 1366.66 1702.59

7.81E-3 1711.00 — 713.58 894.86 — —

Computational Time

In order to estimate the computational complexity of the proposed algorithms, we

compare the computational time involved in solving the following two dimensional

problem:

α(ξ) = eξ/2,

u = (−y3, x3)>, p(x, y) = 2 + sin(2πx) sin(2πy).

We compare the iterative algorithm (3.30) and the splitting method of Section C.

The obtained results are shown in Table V.

From the results shown in this Table we can clearly see that the splitting algo-

rithm of Section C outperforms the iterative algorithm (3.30) of Section B. This is

expected to be the case, since the splitting algorithm requires solving only two linear
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problems as opposed to the iterative algorithm; which although converges indepen-

dently of the discretization parameter, requires the assembly and solution of a linear

problem at each iterative step.

Finally, when comparing the computational times for the splitting algorithm

using a fixed velocity-pressure pair but different approximation spaces for the auxiliary

problem, we see that the computational times differ very little, their relative difference

is never greater than 20%. This suggests that the most time consuming procedure is

solving the linear Darcy problem (3.61). This is in agreement with the theory, as this

problem has more unknowns and its matrix is indefinite. A better approach for the

solution of this problem may reduce the time involved in solving this problem (see

the work of J. Schöberl and W. Zulehner [73] and W. Zulehner [87] for instance).

Numerical Investigation of the Convergence Condition for the Iterative Algorithm

In order to further investigate the properties of the iterative algorithm (3.30) and,

more precisely, the role of condition (3.31) we solve the following particular problem

in the domain

Ω =
{

(x, y) ∈ R2 : 1 <
√
x2 + y2 < 4

}
,

with

Γw =
{

(x, y) ∈ R2 :
√
x2 + y2 = 1

}
,

and Γ = ∂Ω \ Γw. In this domain we solve the nonlinear Darcy equations with expo-

nential porosity. We set the right-hand side that corresponds to the exact solution

u(x, y) = (xr,−yr)>, p(x, y) = r,

where r =
√
x2 + y2. In the numerical experiments that follow we use a (P0,P1,P1)

approximation of the velocity-pressure-auxiliary variable. We set α0 = 2 and vary
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the parameter γ. Experimentally we have obtained that if γ < 0.038 the iterative

algorithm converges independently of the initial guess, and it behaves the same way

as the cases considered before.

For bigger values of the parameter γ, the splitting algorithm of Section C per-

forms as before. However, the iterative algorithm does not converge anymore. More-

over, if we truncate the porosity function α setting, for instance,

α(ξ) =


α0, ξ < 0,

α0e
γξ, 0 ≤ ξ ≤ 4.5,

α0e
4.5γ, ξ > 4.5,

where the choice of truncation is dictated by 1 ≤ p(x, y) ≤ 4 ∀(x, y) ∈ Ω̄, the method

still diverges. For γ = 0.2, a history of the behavior of the approximate pressure is

shown in Figure 1.

From Figure 1 we can see that although the approximate solution diverges, it

does remain bounded, and it seems to be oscillating around more than one fixed

functions. A detailed analysis of the reasons behind these phenomena is a topic for

future research.
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IsoValue
0.748916
1.13947
1.39984
1.6602
1.92057
2.18094
2.4413
2.70167
2.96204
3.22241
3.48277
3.74314
4.00351
4.26388
4.52424
4.78461
5.04498
5.30535
5.56571
6.21663

0
IsoValue
-1.27562
-0.67323
-0.271634
0.129961
0.531556
0.933152
1.33475
1.73634
2.13794
2.53953
2.94113
3.34272
3.74432
4.14591
4.54751
4.9491
5.3507
5.7523
6.15389
7.15788

10
IsoValue
-30.2762
-24.5031
-20.6543
-16.8056
-12.9569
-9.10812
-5.25938
-1.41065
2.43808
6.28682
10.1356
13.9843
17.833
21.6818
25.5305
29.3792
33.228
37.0767
40.9254
50.5473

20
IsoValue
-99.2695
-86.9384
-78.7177
-70.4969
-62.2762
-54.0554
-45.8347
-37.6139
-29.3932
-21.1724
-12.9516
-4.73089
3.48986
11.7106
19.9314
28.1521
36.3729
44.5936
52.8144
73.3663

30
IsoValue
-87.0865
-74.3859
-65.9188
-57.4518
-48.9847
-40.5177
-32.0506
-23.5836
-15.1166
-6.64951
1.81754
10.2846
18.7516
27.2187
35.6857
44.1528
52.6198
61.0869
69.5539
90.7215

40

IsoValue
-82.2937
-69.8142
-61.4946
-53.175
-44.8553
-36.5357
-28.2161
-19.8964
-11.5768
-3.25717
5.06246
13.3821
21.7017
30.0214
38.341
46.6606
54.9803
63.2999
71.6195
92.4186

50
IsoValue
-79.7306
-67.4334
-59.2353
-51.0372
-42.839
-34.6409
-26.4428
-18.2447
-10.0466
-1.84845
6.34967
14.5478
22.7459
30.944
39.1421
47.3403
55.5384
63.7365
71.9346
92.4299

60
IsoValue
-78.7835
-66.6165
-58.5052
-50.3938
-42.2825
-34.1712
-26.0599
-17.9486
-9.83723
-1.72591
6.38541
14.4967
22.608
30.7194
38.8307
46.942
55.0533
63.1646
71.276
91.5543

70
IsoValue
-75.899
-63.9991
-56.0658
-48.1324
-40.1991
-32.2658
-24.3325
-16.3992
-8.46589
-0.532579
7.40073
15.334
23.2674
31.2007
39.134
47.0673
55.0006
62.9339
70.8672
90.7005

80
IsoValue
-75.4126
-63.4097
-55.4078
-47.4059
-39.404
-31.4021
-23.4001
-15.3982
-7.39631
0.605607
8.60752
16.6094
24.6114
32.6133
40.6152
48.6171
56.619
64.6209
72.6228
92.6276

90

IsoValue
-74.8272
-62.9189
-54.98
-47.041
-39.1021
-31.1632
-23.2243
-15.2854
-7.34648
0.592435
8.53135
16.4703
24.4092
32.3481
40.287
48.2259
56.1648
64.1037
72.0427
91.8899

100
IsoValue
-76.0479
-64.086
-56.1114
-48.1368
-40.1622
-32.1876
-24.213
-16.2384
-8.26377
-0.289166
7.68544
15.66
23.6346
31.6092
39.5838
47.5584
55.5331
63.5077
71.4823
91.4188

110
IsoValue
-75.2347
-63.2954
-55.3358
-47.3763
-39.4168
-31.4573
-23.4977
-15.5382
-7.5787
0.38082
8.34034
16.2999
24.2594
32.2189
40.1784
48.138
56.0975
64.057
72.0165
91.9153

120
IsoValue
-73.1165
-61.3238
-53.462
-45.6001
-37.7383
-29.8765
-22.0147
-14.1529
-6.29108
1.57073
9.43254
17.2944
25.1562
33.018
40.8798
48.7416
56.6034
64.4652
72.327
91.9816

130
IsoValue
-73.8404
-61.9978
-54.1027
-46.2076
-38.3125
-30.4174
-22.5223
-14.6272
-6.73214
1.16295
9.05804
16.9531
24.8482
32.7433
40.6384
48.5335
56.4286
64.3237
72.2187
91.9565

140

IsoValue
-73.0932
-61.3755
-53.5637
-45.7519
-37.9401
-30.1283
-22.3165
-14.5047
-6.69288
1.11892
8.93072
16.7425
24.5543
32.3661
40.1779
47.9897
55.8015
63.6134
71.4252
90.9547

150
IsoValue
-75.4097
-63.3785
-55.3578
-47.337
-39.3163
-31.2955
-23.2748
-15.254
-7.23328
0.787471
8.80822
16.829
24.8497
32.8705
40.8912
48.912
56.9327
64.9535
72.9742
93.0261

160
IsoValue
-74.0045
-62.1869
-54.3085
-46.4301
-38.5517
-30.6733
-22.7949
-14.9165
-7.03805
0.840358
8.71876
16.5972
24.4756
32.354
40.2324
48.1108
55.9892
63.8676
71.746
91.442

170
IsoValue
-75.0995
-63.1859
-55.2434
-47.3009
-39.3585
-31.416
-23.4735
-15.5311
-7.58863
0.353834
8.2963
16.2388
24.1812
32.1237
40.0661
48.0086
55.9511
63.8935
71.836
91.6921

180
IsoValue
-71.3416
-59.7246
-51.9799
-44.2353
-36.4906
-28.7459
-21.0013
-13.2566
-5.51191
2.23276
9.97743
17.7221
25.4668
33.2114
40.9561
48.7008
56.4455
64.1901
71.9348
91.2965

190

IsoValue
-69.7935
-58.2757
-50.5973
-42.9188
-35.2403
-27.5618
-19.8833
-12.2048
-4.52633
3.15216
10.8306
18.5091
26.1876
33.8661
41.5446
49.2231
56.9016
64.5801
72.2586
91.4548

200
IsoValue
-67.3119
-56.0385
-48.5228
-41.0072
-33.4916
-25.976
-18.4603
-10.9447
-3.42909
4.08654
11.6022
19.1178
26.6334
34.149
41.6647
49.1803
56.6959
64.2116
71.7272
90.5162

210
IsoValue
-67.48
-56.239
-48.7451
-41.2511
-33.7571
-26.2631
-18.7691
-11.2752
-3.78119
3.71279
11.2068
18.7007
26.1947
33.6887
41.1827
48.6767
56.1706
63.6646
71.1586
89.8936

220
IsoValue
-65.2376
-54.1083
-46.6888
-39.2693
-31.8497
-24.4302
-17.0107
-9.59114
-2.17161
5.24792
12.6674
20.087
27.5065
34.926
42.3456
49.7651
57.1846
64.6041
72.0237
90.5725

230
IsoValue
-59.137
-48.5383
-41.4725
-34.4067
-27.3409
-20.2751
-13.2093
-6.14345
0.922357
7.98817
15.054
22.1198
29.1856
36.2514
43.3172
50.383
57.4488
64.5147
71.5805
89.245

240

IsoValue
-58.5291
-47.9816
-40.9499
-33.9181
-26.8864
-19.8547
-12.823
-5.79129
1.24043
8.27214
15.3039
22.3356
29.3673
36.399
43.4307
50.4624
57.4941
64.5259
71.5576
89.1369

250
IsoValue
-52.0244
-42.0896
-35.4664
-28.8433
-22.2201
-15.5969
-8.97373
-2.35056
4.27261
10.8958
17.519
24.1421
30.7653
37.3885
44.0117
50.6348
57.258
63.8812
70.5044
87.0623

260
IsoValue
-52.405
-42.2529
-35.4849
-28.7168
-21.9488
-15.1807
-8.41267
-1.64462
5.12343
11.8915
18.6595
25.4276
32.1956
38.9637
45.7317
52.4998
59.2678
66.0359
72.8039
89.724

270
IsoValue
-52.1682
-42.0823
-35.3584
-28.6344
-21.9105
-15.1865
-8.46256
-1.73861
4.98534
11.7093
18.4332
25.1572
31.8811
38.6051
45.329
52.053
58.7769
65.5009
72.2248
89.0347

280
IsoValue
-52.7597
-42.6251
-35.8688
-29.1124
-22.356
-15.5997
-8.84331
-2.08694
4.66942
11.4258
18.1821
24.9385
31.6949
38.4512
45.2076
51.964
58.7203
65.4767
72.2331
89.124

290

IsoValue
-51.214
-41.1963
-34.5177
-27.8392
-21.1607
-14.4822
-7.80365
-1.12513
5.55339
12.2319
18.9104
25.589
32.2675
38.946
45.6245
52.303
58.9816
65.6601
72.3386
89.0349

300
IsoValue
-51.896
-41.75
-34.986
-28.222
-21.458
-14.694
-7.92997
-1.16597
5.59803
12.362
19.126
25.89
32.654
39.418
46.182
52.946
59.7101
66.4741
73.2381
90.1481

310
IsoValue
-55.8666
-45.3683
-38.3694
-31.3705
-24.3716
-17.3727
-10.3738
-3.37495
3.62395
10.6228
17.6217
24.6206
31.6195
38.6184
45.6173
52.6162
59.6151
66.614
73.6129
91.1101

320
IsoValue
-53.7675
-43.5488
-36.7363
-29.9239
-23.1114
-16.2989
-9.48643
-2.67396
4.13852
10.951
17.7635
24.576
31.3884
38.2009
45.0134
51.8259
58.6383
65.4508
72.2633
89.2945

330
IsoValue
-53.1323
-42.9163
-36.1057
-29.2951
-22.4845
-15.6738
-8.86322
-2.0526
4.75803
11.5686
18.3793
25.1899
32.0005
38.8111
45.6218
52.4324
59.243
66.0536
72.8643
89.8908

340

IsoValue
-52.1154
-41.9874
-35.2353
-28.4833
-21.7313
-14.9792
-8.22719
-1.47515
5.27688
12.0289
18.781
25.533
32.285
39.0371
45.7891
52.5411
59.2932
66.0452
72.7972
89.6773

350
IsoValue
-54.6865
-44.3385
-37.4399
-30.5412
-23.6426
-16.7439
-9.84525
-2.9466
3.95206
10.8507
17.7494
24.648
31.5467
38.4453
45.344
52.2426
59.1413
66.04
72.9386
90.1853

360
IsoValue
-53.525
-43.2716
-36.436
-29.6004
-22.7648
-15.9292
-9.09359
-2.25799
4.57761
11.4132
18.2488
25.0844
31.92
38.7556
45.5912
52.4268
59.2624
66.098
72.9336
90.0227

370
IsoValue
-52.9465
-42.7126
-35.8899
-29.0673
-22.2446
-15.422
-8.59932
-1.77667
5.04598
11.8686
18.6913
25.5139
32.3366
39.1592
45.9819
52.8045
59.6272
66.4498
73.2725
90.3291

380
IsoValue
-52.9241
-42.6884
-35.8646
-29.0408
-22.217
-15.3932
-8.56936
-1.74556
5.07825
11.9021
18.7259
25.5497
32.3735
39.1973
46.0211
52.8449
59.6687
66.4925
73.3163
90.3759

390

IsoValue
-49.6581
-39.7404
-33.1286
-26.5168
-19.905
-13.2932
-6.68136
-0.0695497
6.54226
13.1541
19.7659
26.3777
32.9895
39.6013
46.2131
52.8249
59.4367
66.0485
72.6603
89.1898

400
IsoValue
-53.1025
-42.8389
-35.9965
-29.1541
-22.3117
-15.4693
-8.62686
-1.78444
5.05797
11.9004
18.7428
25.5852
32.4276
39.27
46.1125
52.9549
59.7973
66.6397
73.4821
90.5881

410
IsoValue
-51.958
-41.7514
-34.9471
-28.1427
-21.3383
-14.534
-7.72959
-0.925215
5.87916
12.6835
19.4879
26.2923
33.0966
39.901
46.7054
53.5097
60.3141
67.1185
73.9229
90.9338

420
IsoValue
-54.5327
-44.1672
-37.2568
-30.3464
-23.436
-16.5256
-9.61522
-2.70483
4.20556
11.116
18.0263
24.9367
31.8471
38.7575
45.6679
52.5783
59.4887
66.3991
73.3095
90.5854

430
IsoValue
-52.2468
-42.0815
-35.3046
-28.5277
-21.7508
-14.9739
-8.19703
-1.42014
5.35675
12.1336
18.9105
25.6874
32.4643
39.2412
46.0181
52.795
59.5719
66.3488
73.1256
90.0679

440

IsoValue
-52.5325
-42.3275
-35.5243
-28.721
-21.9177
-15.1144
-8.31115
-1.50787
5.29541
12.0987
18.902
25.7052
32.5085
39.3118
46.1151
52.9184
59.7216
66.5249
73.3282
90.3364

450
IsoValue
-53.5368
-43.2203
-36.3426
-29.4649
-22.5873
-15.7096
-8.83196
-1.95429
4.92337
11.801
18.6787
25.5564
32.434
39.3117
46.1894
53.067
59.9447
66.8224
73.7
90.8942

460
IsoValue
-56.5868
-46.0057
-38.9516
-31.8975
-24.8434
-17.7894
-10.7353
-3.68124
3.37283
10.4269
17.481
24.535
31.5891
38.6432
45.6972
52.7513
59.8054
66.8594
73.9135
91.5487

470
IsoValue
-55.499
-45.0114
-38.0197
-31.028
-24.0362
-17.0445
-10.0528
-3.06109
3.93063
10.9223
17.9141
24.9058
31.8975
38.8892
45.8809
52.8727
59.8644
66.8561
73.8478
91.3271

480
IsoValue
-59.7811
-48.8839
-41.6192
-34.3544
-27.0896
-19.8248
-12.56
-5.29521
1.96958
9.23437
16.4992
23.764
31.0287
38.2935
45.5583
52.8231
60.0879
67.3527
74.6175
92.7795

490

Fig. 1. Approximate pressure for the iterative algorithm. Shown every ten (10) itera-

tions.
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CHAPTER IV

THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VARIABLE

DENSITY ∗

In this chapter we consider the time-dependent variable density Navier-Stokes system

(1.3)–(1.4) on the finite time interval [0, T ] and in an open connected and bounded

domain Ω ⊂ Rd (d = 2 or 3) with boundary ∂Ω, which we assume to be sufficiently

smooth. More precisely, we assume that Ω is such that the Stokes operator pos-

sesses the usual regularization properties (see [19, 80]). Under these assumptions,

our objective is to construct a time and space discretization scheme which has op-

timal approximation properties and minimizes the computational cost. The space

discretization is carried out using Galerkin techniques. The novelty in our approach

is the fractional time-stepping technique that we use to discretize in time.

The original results in this chapter were originally presented in [49], [51] and [50].

The organization is as follows. In Section A we review the well known projection

schemes for constant density incompressible flows. This proves useful in understand-

ing the difficulties that arise in the case when the density is variable. Moreover, we

provide a new proof of a well known result. Namely, the stability of the so-called pres-

sure correction incremental scheme in standard form (see Theorem 9). The novelty

in this analysis is that we completely eliminate the projected velocity from the algo-

rithm. Section B presents novel first order schemes for the solution of variable density

∗ Part of the results in this chapter are reprinted with permission from:
A Fractional Step Method Based on a Pressure Poisson Equation for Incompressible
Flows with Variable Density by J.-L. Guermond and A. Salgado. C. R. Math.
Acad. Sci. Paris, Sér. I 346 (2008), 913–918. Copyright 2008 by Elsevier.
A Splitting Method for Incompressible Flows with Variable Density Based on a Pres-
sure Poisson Equation by J.-L. Guermond and A. Salgado. J. Comput. Phys.
228 (2009), 2834–2846. Copyright 2009 by Elsevier.
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incompressible flows. The stability and convergence of these schemes are studied in

Section C and Section D, respectively. In Section E a formally second order scheme

is introduced and we prove its stability. Finally, Section F presents several numerical

experiments that illustrate the performance of the introduced methods.

A. Projection Methods for Constant Density Flows

To understand the ideas and difficulties behind the approximation of variable density

flows, let us briefly review the heuristics behind the projection techniques that are

used for constant density incompressible flows. For a comprehensive description of

these methods we refer the reader to J.-L. Guermond, P.D. Minev and J. Shen [44].

As we stated in Section B of Chapter I, the main difficulty in the approximation

of incompressible flows is, in fact, the incompressibility constraint. Let us begin with

a technical result, which gives a description of the divergence-free vector fields. For

a proof see R. Temam [80, Theorem 1.4].

Theorem 6 (Helmholtz Decomposition). Let Ω ⊂ Rd be Lipschitz. The following

orthogonal decomposition holds

L2(Ω) = H⊕
{
v ∈ L2(Ω) : ∃q ∈ H1(Ω) : v = ∇q

}
,

where

H :=
{
v ∈ L2(Ω) : ∇·v = 0, v·n = 0

}
.

With this result at hand we can describe the projection methods. To simplify the

argumentation, for the time being, let us neglect the nonlinear terms. Moreover, as it

is customary in the description of these schemes, we use a semi-discrete setting, i.e.,

we will not discuss the space discretization. We begin by partitioning the time interval

[0, T ] into K subintervals, which for the sake of simplicity we take uniform. We then
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introduce the time step τ = T/N and the discrete times tk = kτ , for k ∈ {0, . . . , K}.

Let us start by reviewing the usual non-incremental Chorin/Temam algorithm for

constant density flows [20, 79, 71, 74]. This algorithm for solving the constant density

time-dependent Stokes equations consists of computing two sequences of approximate

velocities {ũk+1}k=0,...,K , {uk+1}k=0,...,K , and one sequence of approximate pressures

{pk+1}k=0,...,K as follows: First, set u0 = u0, then for all time steps tk+1, k ≥ 0, solve

ρ

τ
(ũk+1 − uk)− µ∆ũk = fk+1, ũk+1|∂Ω = 0, (4.1)

and

1

τ
(uk+1 − ũk+1) +

1

ρ
∇pk+1 = 0, ∇·uk+1 = 0, uk+1·n|∂Ω = 0, (4.2)

where we have set fk+1 := f(tk+1). One key observation is that, with the help of

Theorem 6, the second sub-step can be interpreted as a projection. Indeed, this

sub-step can be recast as follows:

uk+1 +
τ

ρ
∇pk+1 = ũk+1, ∇·uk+1 = 0, uk+1·n|∂Ω = 0, (4.3)

which is the Helmholtz decomposition of ũk+1 into a solenoidal part with zero normal

trace plus a gradient. The above decomposition can be equivalently rewritten uk+1 =

PHũk+1, where PH is the L2-projection onto H. This fact is the reason this method

together with its many avatars is often referred to as a projection algorithm. One

very interesting feature of (4.1)–(4.2) is that the pressure can be computed by solving

the following Poisson problem:

∆pk+1 =
ρ

τ
∇·ũk+1, ∂np

k+1|∂Ω = 0. (4.4)

The algorithm (4.1)–(4.2) is simple and can be proved to converge. See e.g.

[71, 74, 47] for a proof of the following result.
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Theorem 7. Assume that the solution (u, p) to system (1.3)–(1.4) is smooth enough.

Then, the sequences ũτ , uτ and pτ generated by (4.1)–(4.2) satisfy

‖uτ − ũτ‖`∞(L2) + ‖uτ − uτ‖`∞(L2) ≤ cτ,

‖uτ − ũτ‖`2(H1) + ‖pτ − pτ‖`2(L2) ≤ cτ 1/2.

It is important to note at this point that to infer (4.4) from (4.2) we used the fact

that the density is constant. When the density is not constant, most of the attempts

at splitting the pressure and the velocity that we are aware of so far are based on

strategies that are similar to that described above. The main idea always consists

of projecting a non-solenoidal provisional velocity onto H; in other words, most of

the currently known splitting algorithms consist of solving problems similar to (4.2).

When taking the divergence of the left-most equation in (4.2) one is then reduced to

solve a problem like the following:

−∇·
(

1

ρk+1
∇Φ

)
= Ψ, ∂nΦ|∂Ω = 0, (4.5)

where ρk+1 is an approximation of the non constant function ρ(tn+1). It seems that

all the algorithms that are more or less based on the Helmholtz decomposition (4.3)

always lead to problems like (4.5), which are hard to solve efficiently due to the 1/ρk+1

variable coefficient. The key conceptual leap proposed in this dissertation consists of

abandoning the projection point of view in favor of a penalty-like argument.

As emphasized in J.-L. Guermond [38] and J.-L. Guermond and L. Quartapelle

[46], the projected velocity uk+1 can be eliminated from (4.1)–(4.2). More precisely,

the two sub-steps in (4.1)–(4.2) can be equivalently recast as follows:

ρ

τ
(ũk+1 − ũk)− µ∆ũk+1 +∇pk = fk+1, ũk+1|∂Ω = 0, (4.6)



73

and

∆pk+1 =
ρ

τ
∇·ũk+1, ∂np

k+1|∂Ω = 0. (4.7)

Once uk+1 is eliminated, it is clear that the Chorin/Temam algorithm is a discrete

version of the following perturbation of the Navier-Stokes equations:
ρ(ut + u·∇u) +∇p− µ∆u = f , u|∂Ω = 0,

∇·u− ε
ρ
∆p = 0, ∂np|∂Ω = 0,

(4.8)

where ε := τ . Actually, this perturbation is nothing more than a penalty on the

divergence of the velocity as recognized by R. Rannacher in [71], since the momentum

equation can also be recast into

ρ(ut + u·∇u) + ρε−1∇∆−1∇·u− µ∆u = f , (4.9)

where ∆−1 is the inverse of the Laplace operator equipped with homogeneous Neu-

mann boundary conditions. That is, given Ψ ∈ L2(Ω), we denote by Φ = ∆−1Ψ ∈

H1(Ω) the function that has zero mean value and solves

〈∇Φ,∇r〉 = 〈Ψ, r〉 , ∀r ∈ H1(Ω). (4.10)

We shall show that adopting the penalty point of view stated in (4.8) yields

efficient splitting algorithms whether the density is constant or not. This point of

view is somewhat orthogonal to the current mainstream in the literature which mainly

focuses on the projection point of view.

Remark 24. Note that (4.9) is significantly different from standard penalty tech-

niques using −ε−1∇∇·u as penalty term, which are generally ill-conditioned. These

techniques penalize the divergence in L2 whereas the term ε−1∇∆−1∇·u penalize it

in a weak norm somewhat related to that of H−1 := (H1
0 )′.
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As we have seen from Theorem 7, the non-incremental pressure correction method

is low-order accurate. More precisely, the error is O(τ) for the velocity in the L2-norm

and O(τ
1
2 ) for the velocity in the H1-norm and the pressure in the L2-norm. However,

Chorin/Temam’s constant density algorithm can be improved by making the pressure

explicit in the viscous step and by correcting it in the projection step. This technique

is usually referred to as the incremental pressure-correction algorithm. This algo-

rithm consists of computing two sequences of approximate velocities {ũk+1}k=0,...,K ,

{uk+1}k=0,...,K , and one sequence of approximate pressures {pk+1}k=0,...,K as follows:

First, set u0 = u0, p0 = p(0), compute an approximation of u1 := u(τ), then for all

time steps tk+1, k > 1, solve

ρ

2τ
(3ũk+1 − 4uk + uk−1)− µ∆ũk+1 +∇pk = fk+1, ũk+1|∂Ω = 0, (4.11)

and

3

2τ
(uk+1 − ũk+1) +

1

ρ
∇φk+1 = 0, ∇·uk+1 = 0, uk+1·n|∂Ω = 0, (4.12)

pk+1 = pk + φk+1. (4.13)

Again, the so-called projected velocity (i.e., the solenoidal one) can be alge-

braically eliminated, thus we obtain the equivalent system

ρ

2τ
(3ũk+1 − 4ũk + ũk−1)− µ∆ũk+1 +∇p] = fk+1 ũk+1|∂Ω = 0, (4.14)

∆φk+1 =
3ρ

2τ
∇·ũk+1, ∂nφ|∂Ω = 0, (4.15)

and (4.13). Here

p] = pk +
4

3
φk − 1

3
φk−1. (4.16)

The works of J. Shen [74] and J. L. Guermond and L. Quartapelle [46] present an

analysis of this scheme. These results can be summarized in the following Theorem.
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Theorem 8. Assume that the solution (u, p) to system (1.3)–(1.4) is smooth enough.

Then, with proper initialization, the sequences ũτ , uτ and pτ generated by (4.11)–

(4.13) satisfy

‖uτ − ũτ‖`∞(L2) + ‖uτ − uτ‖`∞(L2) ≤ cτ 2,

‖uτ − ũτ‖`2(H1) + ‖pτ − pτ‖`2(L2) ≤ cτ.

Let us prove stability estimates for this algorithm. As we have seen, this result

per se is not new but the technique that we use to prove these estimates gives insight

on the way to proceed when the density is variable. The main novelty is that the

projected velocity is totally eliminated from the analysis. To the best of our knowledge

this proof technique has never been used before. This trick enables us to easily extend

the proof to the variable density case (see Section E). To avoid irrelevant technicalities

assume that f ≡ 0. We now prove that algorithm (4.14)–(4.15) and (4.13) is stable.

Theorem 9. Let ρ ≡ 1. The solution {(ũk, pk)}k≥0 to (4.14)–(4.15) and (4.13) sat-

isfies the following estimate:

‖ũk‖2
L2 + τ 2‖∇pk‖2

L2 + τ 2‖∇δpk−1‖2
L2 +

k∑
l=2

[
τ‖ũl‖2

H1 + τ 2‖∇δpl−1‖2
L2

]
≤ c

(
‖ũ0‖2

L2 + ‖ũ1‖2
L2 + τ 2‖∇p0‖2

L2 + τ 2‖∇p1‖2
L2

)
, ∀k ≥ 2.

Proof. We proceed in two steps:

(i) Initialization: We consider the steps k = 1, 2 separately as they involve the initial

quantities. Let us begin by noticing that the definition of p] involves only terms from

the previous time steps. For k = 1 or 2 multiply (4.14) by 4τ ũk+1. Using the identity

2ak+1
(
3ak+1 − 4ak + ak−1

)
=
∣∣ak+1

∣∣2+
∣∣2ak+1 − ak

∣∣2+
∣∣δ2ak+1

∣∣2−∣∣ak∣∣2−∣∣2ak − ak−1
∣∣2 ,
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and the Cauchy-Schwarz inequality we obtain

1

2
‖ũk+1‖2

L2 +‖2ũk+1− ũk‖2
L2 + 4τ‖ũk+1‖2

H1 ≤ ‖ũk‖2
L2 +‖2ũk− ũk−1‖2

L2 + 8τ 2‖∇p]‖2
L2 ,

which implies

‖ũk+1‖2
L2 + τ‖ũk+1‖2

H1 ≤ c
(
‖ũ0‖2

L2 + ‖ũ1‖2
L2 + τ 2‖∇p0‖2

L2 + τ 2‖∇p1‖2
L2

)
,

for k = 1 or 2. The estimate on the pressure is obtained by eliminating φk+1 from

(4.15) using (4.13), multiplying by δpk+1 and integrating by parts. Again, the Cauchy-

Schwarz inequality implies

4τ 2

9
‖∇δpk+1‖2

L2 ≤ ‖ũk+1‖2
L2 .

The triangle inequality and the estimates obtained above imply the claimed estimate

for the first two steps k = 1, 2.

(ii) General Step: For k ≥ 3 notice that, by (4.13)

p] =
7pk − 5pk−1 + pk−2

3
=

3pk+1 − 3δ2pk+1 + δ2pk

3
.

Multiply (4.14) by 4τ ũk+1 and integrate. Using the identity

2ak+1
(
3ak+1 − 4ak + ak−1

)
= 3

∣∣ak+1
∣∣2 − 4

∣∣ak∣∣2 +
∣∣ak−1

∣∣2
+ 2

∣∣δak+1
∣∣2 − 2

∣∣δak∣∣2 +
∣∣δ2ak+1

∣∣2 ,
we obtain

3‖ũk+1‖2
L2 − 4‖ũk‖2

L2 + ‖ũk−1‖2
L2

+ 2‖δũk+1‖2
L2 − 2‖δũk‖2

L2 + ‖δ2ũk+1‖2
L2 + 4τ‖ũk+1‖2

H1

+ 4τ
〈
∇pk+1, ũk+1

〉
− 4τ

〈
∇δ2pk+1, ũk+1

〉
+

4τ

3

〈
∇δ2pk, ũk+1

〉
= 0.
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From the projection equation (4.15) and the pressure update equation (4.13) we

deduce that 〈
∇r, ũk+1

〉
=

2τ

3

〈
∇r,∇δpk+1

〉
, ∀r ∈ H1(Ω).

Using this property together with the identity 2a(a− b) = a2 − b2 + (a− b)2 we infer

3‖ũk+1‖2
L2 − 4‖ũk‖2

L2 + ‖ũk−1‖2
L2 + 2‖δũk+1‖2

L2 − 2‖δũk‖2
L2

+ ‖δ2ũk+1‖2
L2 + 4τ‖ũk+1‖2

H1 +
4τ 2

3

[
‖∇pk+1‖2

L2 − ‖∇pk‖2
L2

+‖∇δpk‖2
L2 − ‖∇δ2pk+1‖2

L2

]
+

8τ 2

9

〈
∇δ2pk,∇δpk+1

〉
= 0.

Now we use the following identity:

‖δũ‖2
L2 = ‖δũ− 2τ

3
∇δ2p‖2

L2 +
4τ 2

9
‖∇δ2p‖2

L2

which we apply at time steps tk+1 and tk (note that it is critical to have k ≥ 3 here)

and we obtain

3‖ũk+1‖2
L2 − 4‖ũk‖2

L2 + ‖ũk−1‖2
L2 + ‖δ2ũk+1‖2

L2 + 4τ‖ũk+1‖2
H1

+ 2‖δũk+1 − 2τ

3
∇δ2pk+1‖2

L2 − 2‖δũk − 2τ

3
∇δ2pk‖2

L2

+
4τ 2

3

[
‖∇pk+1‖2

L2 − ‖∇pk‖2
L2 + ‖∇δpk‖2

L2

]
− 4τ 2

9
‖∇δ2pk+1‖2

L2 −
8τ 2

9
‖∇δ2pk‖2

L2 +
8τ 2

9

〈
∇δ2pk,∇δpk+1

〉
= 0.

We observe from this inequality that we need to control the last three terms. We

rewrite these as follows:

− 4τ 2

9
‖∇δ2pk+1‖2

L2 −
8τ 2

9
‖∇δ2pk‖2

L2 +
8τ 2

9

〈
∇δ2pk,∇δpk+1

〉
=

− 4τ 2

9
‖∇δ3pk+1‖2

L2 −
4τ 2

9

〈
∇δ2pk,∇

(
δ2pk + 2δ2pk+1 − 2δpk+1

)〉
.

Use (4.13) to eliminate φk+1 from (4.15). Applying δ2 to the result, multiplying it by
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δ3pk+1, integrating and using the Cauchy-Schwarz inequality we obtain, for k ≥ 3

4τ 2

9
‖∇δ3pk+1‖2

L2 ≤ ‖δ2ũk+1‖2
L2 .

Observing that δ2pk + 2δ2pk+1 − 2δpk+1 = −δpk − δpk−1 and using the inequality

above, we obtain the following bound:

− 4τ 2

9
‖δ2pk+1‖2 − 8τ 2

9
‖δ2pk‖2 +

8τ 2

9

〈
∇δ2pk,∇δpk+1

〉
≥

− ‖δ2ũk+1‖2
L2 +

4τ 2

9

[
‖δpk‖2 − ‖δpk−1‖2

]
,

from which we finally deduce the following energy estimate:

3‖ũk+1‖2
L2 − 4‖ũk‖2

L + ‖ũk−1‖2
L2 + 4τ‖ũk+1‖2

H1

+ 2‖δũk+1 − 2τ

3
∇δ2pk+1‖2

L2 − 2‖δũk − 2τ

3
∇δ2pk‖2

L2

+
4τ 2

3

[
‖∇pk+1‖2

L2 − ‖∇pk‖2
L2 + ‖∇δpk‖2

L2

]
+

4τ 2

9

[
‖∇δpk‖2

L2 − ‖∇δpk−1‖2
L2

]
≤ 0.

(4.17)

We are now going to use the stability estimates proved in Appendix A. Let us

define the quantities

as := ‖ũs‖2
L2 ,

bs := 4τ‖ũs‖2
H1 +

4τ 2

3
‖∇δps−1‖2

L2 ,

ds := 2‖δũs − 2τ

3
∇δ2ps‖2

L2 +
4τ 2

3
‖∇ps‖2

L2 +
4τ 2

9
‖∇δps−1‖2

L2 .

Then (4.17) can be rewritten as

3ak+1 − 4ak + ak−1 ≤ −
(
bk+1 + dk+1 − dk

)
, k ≥ 3

Setting gk+1 := −
(
bk+1 + dk+1 − dk

)
this three-term recursion inequality satisfies the
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hypotheses of Corollary 6 (see Appendix A) for k ≥ 3. Hence

aν ≤ c
(
a1 + a2

)
−

ν∑
l=3

1

3ν+1−l

l∑
s=3

(
bs + ds − ds−1

)
, ν ≥ 3

or

aν +
ν∑
l=3

1

3ν+1−ld
l +

ν∑
l=3

1

3ν+1−l

l∑
s=3

bs ≤ c
(
a1 + a2 + d2

)
, ν ≥ 3.

Dropping some positive terms in the left-hand side we deduce

aν +
1

3
dν +

1

3

ν∑
s=2

bs ≤ c
(
a1 + a2 + d2

)
.

Given the bounds obtained in the initialization step, this inequality implies the

claimed result.

If, in (4.14)–(4.15), the difference quotients are replaced by time derivatives and

the remaining τ ’s are replaced by ε, the above algorithm reduces to the following

perturbation of the Navier-Stokes equations:
ρ(ut + u·∇u) +∇p− µ∆u = f , u|∂Ω = 0,

∇·u− ε
ρ
∆φ = 0, ∂nφ|∂Ω = 0,

εpt = φ.

(4.18)

Formally, (4.18) is a O(ε2) perturbation of the constant density incompressible

Navier-Stokes equations. The system (4.18) serves as the starting point for the new

algorithm for variable density flows developed in Section E.

Remark 25. L.J.P. Timmermans et al. [82] proposed another version of this scheme

which, following the terminology of [44] is called rotational. In this version, the

pressure update step (4.13) is replaced by

pk+1 = pk + φk+1 − µ∇·ũk+1. (4.19)
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In this case, we can see that the scheme corresponds to the following perturbation of

the Navier-Stokes equations:
ρ(ut + u·∇u) +∇p− µ∆u = f , u|∂Ω = 0,

∇·u− ε
ρ
∆φ = 0, ∂nφ|∂Ω = 0,

εpt = φ− µ
ρ
∇·u.

Moreover, J.L Guermond and J. Shen have shown (cf. [52]) that this divergence

correction significantly improves the pressure approximation. To be more precise, the

velocity error in the `2(H1)-norm and the pressure in the `2(L2)-norm are O(τ 3/2).

This is the best convergence result known so far.

B. Description of the First Order Schemes

On the basis of the observations of the previous section, we are going to construct a

fractional time-stepping technique for incompressible flows with variable density. Let

us begin by describing the space discretization. To construct a Galerkin approxima-

tion of (1.3)–(1.4) we introduce three sequences of finite-dimensional spaces {Wh}h>0,

{Xh}h>0, {Mh}h>0, for h > 0, with Wh ⊂ H1(Ω), Xh ⊂ H1
0(Ω) and Mh ⊂ H1(Ω).

We use Wh, Xh, and Mh to approximate the density, the velocity, and the pres-

sure, respectively. With these spaces we can now describe the first-order fractional

time-stepping schemes.

Initialization Given the initial data (ρ0,u0), we construct the approximate data

(ρ0
h,u

0
h, p

0
h) ∈ Wh×Xh×Mh. The initial pressure p0

h can be computed from the

pair (ρ0,u0), see [44] for more details.

Time-Stepping Technique Given (ρkh,u
k
h, p

k
h) ∈ Wh × Xh ×Mh we now describe

how to obtain the next approximations (ρk+1
h ,uk+1

h , pk+1
h ) ∈ Wh×Xh×Mh. The
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algorithm proceeds in three steps: density update, velocity update, pressure

update.

Density Update The density update is computed using the mass conservation equa-

tion, which we recall is hyperbolic. It is well known that Galerkin techniques

are not well suited for the solution of hyperbolic problems (see for instance

[27]). The list of techniques aiming at addressing this issue is endless; among

these methods one can cite Galerkin-Least Squares [57], Discontinuous-Galerkin

[57, 85], subgrid viscosity [40], method of characteristics [25], edge stabilization

[18], entropy viscosity [45] and many others. We assume that the sequence of ap-

proximate densities {ρkh}k=0,...,K ⊂ Wh is obtained by one of these stabilization

techniques. More precisely, we assume that given the pair (ρkh,u
k
h) ∈ Wh ×Xh,

the approximation technique that is used to approximate the mass conservation

returns ρk+1
h and that this algorithm satisfies the following stability hypothesis:

χ ≤ min
x∈Ω̄

ρk+1
h , sup

x∈Ω̄

ρk+1
h ≤ %, ∀k ≥ 1. (4.20)

Note that this is a natural assumption since, owing to the incompressibility of

the velocity field, the density field ρ satisfies the following property:

ρ(t) ∈
[
min
x∈Ω̄

ρ0(x), sup
x∈Ω̄

ρ0(x)

]
,

for all t ≥ 0, cf. [61]. For instance, first-order monotone schemes satisfy (4.20)

with χ = minx∈Ω̄ ρ0(x) and % = supx∈Ω̄ ρ0(x).

Velocity Update Having obtained an approximate density, we define

ρ?h :=
1

2

(
ρk+1
h + ρkh

)
, (4.21)

p]h := pkh + γδpkh, γ ∈ {0, 1}. (4.22)
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The parameter γ is user-dependent. We say that the method is non-incremental

if γ = 0 and incremental if γ = 1. The incremental version of the algorithm is

more accurate that the non-incremental one. We consider the non-incremental

version of the algorithm for historical reasons. As we have seen above, the orig-

inal algorithm of Chorin and Temam for constant density incompressible flows

is non-incremental. When γ = 1, we take δp0
h = 0. The next approximation of

the velocity field uk+1
h ∈ Xh is computed by solving the following problem:〈

ρ?hu
k+1
h − ρkhukh
τ

,vh

〉
+
〈
ρk+1
h ukh·∇uk+1

h ,vh
〉

+
〈

1
2
∇·
(
ρk+1
h ukh

)
uk+1
h ,vh

〉
+ µ

〈
∇uk+1

h ,∇vh
〉

+
〈
∇p]h,vh

〉
=
〈
fk+1,vh

〉
, ∀vh ∈ Xh. (4.23)

Penalty We let φ[h ∈Mh be the solution of:

〈
∇φ[h,∇rh

〉
=
χ

τ

〈
uk+1
h ,∇rh

〉
, ∀rh ∈Mh, (4.24)

Pressure Update Finally, we define the pressure approximation pk+1
h ∈Mh by

pk+1
h = φ[h + γpkh, γ ∈ {0, 1}. (4.25)

Remark 26. The term 1
τ
[ρ?hu

k+1
h −ρkhukh]+ 1

2
∇·(ρk+1

h ukh)u
k+1
h in (4.23) is asymptotically

consistent with the equation. Notice that if the involved functions are sufficiently

smooth

1
2
(ρk+1
h + ρkh)u

k+1
h − ρkhukh

τ
+

1

2
∇·
(
ρk+1
h ukh

)
uk+1
h = ρkh

uk+1
h − ukh
τ

+
(ρk+1
h − ρkh)

2τ
uk+1
h +

1

2
∇·(ρk+1

h ukh)u
k+1
h

= [ρh(uh)t]
k+1 +O(τ),

The purpose of this particular way of discretizing the quantity ρut will become clear
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once we do the stability analysis.

Remark 27. Let us introduce the auxiliary space Yh := Xh+∇Mh. In view of (4.24),

the quantity

ūkh := ukh −
τ

χ
∇φ[h ∈ Yh,

is discretely divergence free (in the sense that 〈ūkh,∇rh〉 = 0 for all rh ∈ Mh) and

could be used as a solenoidal approximation of the velocity. This particular choice of

Yh fits into the commutative diagram framework described in [37, 38, 47]. Therefore,

it could be possible to develop a much more general theory about fractional time-

stepping techniques for variable density incompressible flows that would include our

method as a particular instance. More specifically, let us assume that one has at

hand a space Yh so that Xh ⊂ Yh. Let Bh : Xh → Mh be the operator defined

by 〈Bhvh, qh〉 := 〈∇·vh, qh〉 for all vh ∈ Xh and all qh in Mh. Assume that one can

construct an extension of Bh over Yh, say Ch : Yh → Mh. The operator Ch being

an extension of Bh over Yh means that Bh = Chih, where ih is the natural injection

ih : Xh −→ Yh. Then, in this setting, our theory will work by replacing (4.24) by

ChC
T
h φ

[
h =

χ

τ
Bhu

k+1
h . (4.26)

For the sake of clarity, we shall not pursue this direction. However, the reader can

easily verify that the arguments presented here extend to this situation.

C. Stability of the First-Order Schemes

To obtain stability estimates we henceforth assume that minx∈Ω̄ ρ0(x) > 0 (i.e., that

there is no vacuum), and that the sequence of approximate density fields {ρkh} satisfies

property (4.20). Moreover, to avoid irrelevant technicalities, we assume that there

is no driving force, i.e., f ≡ 0. Under this assumptions the stability of the non-
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incremental scheme is given by the following Theorem.

Theorem 10. Assume that (4.20) holds. Then, for any τ > 0 the solution uh,τ ⊂ Xh

and ph,τ ⊂Mh to the scheme of Section B with γ = 0 satisfies the following inequality:

‖σKh uKh ‖2
L2 + 2µτ

K∑
k=1

‖∇ukh‖2
L2 +

τ 2

χ

K∑
k=0

‖∇pkh‖2
L2 ≤ ‖σ0

hu
0
h‖2

L2 ,

where σkh :=
√
ρkh.

Proof. We begin by setting vh = 2τuk+1
h in the momentum equation (4.23). Notice

then that

2
〈

1
2
(ρk+1
h + ρkh)u

k+1
h − ρkhukh,uk+1

h

〉
= ‖σk+1

h uk+1
h ‖

2
L2 + ‖σkhδuk+1

h ‖
2
L2 − ‖σkhulh‖2

L2 .

Moreover, given the boundary conditions

〈
ρk+1
h ukh·∇uk+1

h + 1
2
∇·(ρk+1

h ukh)u
k+1
h ,uk+1

h

〉
= 0.

Thus, we obtain

‖σk+1
h uk+1

h ‖
2
L2−‖σkhukh‖2

L2+‖σkhδuk+1
h ‖

2
L2+2µτ‖∇uk+1

h ‖
2
L2+2τ〈∇pkh,uk+1

h 〉 = 0. (4.27)

Since we are analyzing the non-incremental method, γ = 0 and φ[h = pk+1
h .

Apply the operator δ to (4.24) and set rh = δpk+1
h in the result. The Cauchy-Schwarz

inequality and Hypothesis (4.20), imply that

τ 2

χ
‖∇δpk+1

h ‖
2
L2 ≤ ‖σkhδuk+1

h ‖
2
L2 (4.28)

Setting rh = 2τ 2pkh in (4.24), we derive

2τ〈uk+1
h ,∇pkh〉 = 2τ2

χ
〈∇pk+1

h ,∇pkh〉 = τ2

χ

[
‖∇pk+1

h ‖
2
L2 + ‖∇pkh‖2

L2 − ‖∇δpk+1
h ‖

2
L2

]
.

(4.29)
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Adding (4.27) and (4.29), and using (4.28), we obtain

‖σk+1
h uk+1

h ‖
2
L2 + 2µτ‖∇uk+1

h ‖
2
L2 +

τ 2

χ
‖∇pk+1

h ‖L2 ≤ ‖σkhukh‖2
L2

which when we add up over k = 0, . . . , K − 1 gives the desired stability result.

Remark 28. The quantity 1
2
‖σkhukh‖2

L2 is the kinetic energy of the flow. Hence it is

more natural to establish bounds in terms of this quantity than on the velocity itself;

see also Lions [61].

Let us now prove stability estimates for the incremental scheme.

Theorem 11. Assume that (4.20) holds. Then, for any τ > 0 the solution uh,τ ⊂ Xh

and ph,τ ⊂Mh to the scheme of Section B with γ = 1 satisfies the following inequality:

‖σKh uKh ‖2
L2 + 2µτ

K∑
k=1

‖∇ukh‖2
L2 +

τ 2

χ
‖∇pKh ‖2

L2

+
τ 2

χ

K−1∑
k=1

‖∇δpkh‖2
L2 ≤ ‖σ0

hu
0
h‖2

L2 +
τ 2

χ
‖∇p0

h‖2
L2 ,

where σkh =
√
ρkh.

Proof. In this case, γ = 1 and φ[h = δpk+1
h . Proceeding as in the proof of Theorem 10

we obtain the similar to (4.27) identity

‖σk+1
h uk+1

h ‖
2
L2−‖σkhukh‖2

L2+‖σkhδuk+1
h ‖

2
L2+2µτ‖∇uk+1

h ‖
2
L2+2τ〈∇p]h,u

k+1
h 〉 = 0. (4.30)

By (4.22), we infer

−2τ〈∇p]h,u
k+1
h 〉 = −2τ〈∇(2pkh − pk−1

h ),uk+1
h 〉

= 2τ〈∇δ2pk+1
h ,uk+1

h 〉 − 2τ〈∇pk+1
h ,uk+1

h 〉. (4.31)
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Now, in (4.24), set rh = 2τ
χ
δ2pk+1

h . We obtain

−2τ 2

χ
〈∇δpk+1

h ,∇δpk+1
h −∇δpkh〉+ 2τ〈uk+1

h ,∇δ2pk+1
h 〉 = 0.

Using the identity 2a · (a− b) = a2 − b2 + (a− b)2 we obtain

τ 2

χ

[
−‖∇δpk+1

h ‖
2
L2 + ‖∇δpkh‖2

L2 − ‖∇δ2pk+1
h ‖

2
L2

]
+ 2τ〈uk+1

h ,∇δ2pk+1
h 〉 = 0. (4.32)

Set rh = 2τ2

χ
pk+1
h in (4.24). We get

τ 2

χ

[
‖∇pk+1

h ‖
2
L2 − ‖∇pkh‖2

L2 + ‖∇δpk+1
h ‖

2
L2

]
= 2τ〈uk+1

h ,∇pk+1
h 〉, (4.33)

where we used the identity mentioned before. Finally, apply the operator δ to (4.24).

Using the lower bound Hypothesis (4.20), we derive the following estimate

τ 2

χ
‖∇δ2pk+1

h ‖
2
L2 ≤ χ‖δuk+1

h ‖
2
L2 ≤ ‖σkhδuk+1

h ‖
2
L2 . (4.34)

Adding (4.30), (4.31), (4.32), (4.33) and (4.34), we obtain

‖σk+1
h uk+1

h ‖
2
L2 − ‖σkhukh‖2

L2 + 2µτ‖∇uk+1
h ‖

2
L2

+
τ 2

χ

[
‖∇pk+1

h ‖
2
L2 − ‖∇pkh‖2

L2 + ‖∇δpkh‖2
L2

]
≤ 0.

The desired result is obtained by adding up these relations for n = 0, . . . , N − 1.

Remark 29. The above algorithm is an improvement over the second-order algorithm

described [69, Algorithm 2], which requires a very strong (somewhat unrealistic)

compatibility condition between the density and velocity spaces.

Remark 30. As usual for fractional time stepping techniques for the Stokes and

Navier-Stokes equations, the stability property from Theorems 10 and 11 does not

explicitly require the pair of spaces (Xh,Mh) to satisfy the LBB condition. This

impression is misleading, since the estimates given by these Theorems do not give a
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realistic stability on the pressure (unless τ ≥ ch). When going through the details

one eventually realizes that the LBB condition must be invoked to prove stability on

the pressure in L2(Ω), we refer the reader to e.g. [38, 39, 44] for more details on this

issue.

D. Error Estimates for the First-Order Scheme

The purpose of this section is to obtain error estimates for the algorithm (4.21)–(4.25).

In order to do so, we must assume that the pair of spaces (Xh,Mh) satisfies a discrete

inf–sup condition (cf. [34, 27]), i.e., there is c > 0 independent of h such that

inf
qh∈Mh

sup
vh∈Xh

∫
Ω

vh · ∇qh
‖qh‖L2‖vh‖H1

≥ c.

Moreover, we assume that the following approximation properties hold (cf. [34, 27]):

There is l ∈ N such that for all ` ∈ [0, l]

inf
rh∈Wh

‖r − rh‖L2 ≤ ch`+1‖r‖H`+1 , ∀r ∈ H`+1(Ω). (4.35)

inf
vh∈Xh

{‖v − vh‖L2 + h‖v − vh‖H1} ≤ ch`+1‖v‖H`+1 , ∀v ∈ H`+1(Ω) ∩H1
0(Ω),

(4.36)

inf
qh∈Mh

‖q − qh‖L2 ≤ ch`‖q‖H` , ∀q ∈ H`(Ω) ∩ L2
0(Ω). (4.37)

Remark 31. The references cited above provide several examples of spaces with these

properties. A simple example is the following. Let Th be a regular triangulation of Ω̄

composed of triangles in two dimensions (tetrahedra in three dimensions). Then, for
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any l ≥ 1 the spaces

Wh =
{
rh ∈ C0(Ω̄) : rh|T ∈ Pl, ∀T ∈ Th

}
,

Xh =
{
vh ∈ CCC0(Ω̄) : vh|T ∈ Pl+1, ∀T ∈ Th

}
,

Mh =
{
qh ∈ C0(Ω̄) : qh|T ∈ Pl, ∀T ∈ Th

}
,

satisfy all the hypotheses given above. If the triangulation consists of quadrilaterals

(rectangular prisms) the same definitions with the polynomial space P replaced by Q

also satisfy the hypotheses.

For any t in [0, T ] we define the Stokes projection of the solution (u(t), p(t)) of

(1.3)–(1.4) as the pair (wh(t), qh(t)) ∈ Xh ×Mh that solves
〈∇wh(t),∇vh〉+ 〈∇qh(t),vh〉 = 〈∇u(t),∇vh〉 − 〈p(t),∇·vh〉 , ∀vh ∈ Xh,

〈wh(t),∇rh〉 = 0, ∀rh ∈Mh.

(4.38)

Owing to the regularization properties of the Stokes operator, the following estimates

hold:

Lemma 5. If u ∈ Lβ
(
Hl+1(Ω) ∩H1

0(Ω)
)

and p ∈ Lβ
(
H l(Ω)

)
for 1 ≤ β ≤ ∞, then

there exists c > 0 such that

‖u−wh‖Lβ(L2) + h
[
‖u−wh‖Lβ(H1) + ‖p− qh‖Lβ(L2)

]
≤ chl+1

[
‖u‖Lβ(Hl+1) + ‖p‖Lβ(Hl)

]
. (4.39)

Moreover, if u ∈ Lβ (H2(Ω) ∩H1
0(Ω)) and p ∈ Lβ (H1(Ω))

‖wh‖Lβ(L∞∩W1,3) + ‖qh‖Lβ(H1) ≤ c
[
‖u‖Lβ(H2) + ‖p‖Lβ(H1)

]
. (4.40)

Concerning the initial approximations obtained in the Initialization step, we must
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assume that

‖ρ0 − ρ0
h‖L∞ + ‖u0 − u0

h‖L2 + h‖u0 − u0
h‖H1 + h‖p0 − p0

h‖L2 ≤ chl+1. (4.41)

We begin by carrying out a consistency analysis of the schemes. To simplify the

notation, we introduce the following functions to represent the errors:
η(t) := u(t)−wh(t), µ(t) := p(t)− qh(t),

ekh := wk
h − ukh, εkh := qkh − pkh,

(4.42)

The functions η(t) and µ(t) can be regarded as the interpolation errors, whereas the

functions ekh and εkh represent the approximation errors. In addition to (4.41), we

make the following regularity assumptions on the exact solution of problem (1.3):

ρ ∈ W 1,∞ (W 1,∞(Ω)
)
, u ∈ W 1,∞ (H1

0(Ω) ∩Hl+1(Ω)
)
, p ∈ W 1,∞ (H l(Ω)

)
.

(4.43)

Let us now determine the equations that control the errors. By taking the dif-

ference between the first equation of (4.38) and (4.23) we obtain the equation that

controls ekh:〈
ρ?he

k+1
h − ρkhekh
τ

,vh

〉
+ µ

〈
∇ek+1

h ,∇vh
〉

+
〈
∇
(
qk+1
h − p]h

)
,vh

〉
= Rk+1(vh), ∀vh ∈ Xh, (4.44)

where the residual Rk+1(vh) is decomposed as follows

Rk+1(vh) = Rk+1
0 (vh) +Rk+1

1 (vh) +Rk+1
nl (vh), (4.45)



90

and

Rk+1
0 (vh) :=

〈
ρkh

wk+1
h −wk

h

τ
− ρk+1uk+1

t ,vh

〉
, (4.46)

Rk+1
1 (vh) :=

1

2

〈ρk+1
h − ρkh
τ

wk+1
h − ρk+1

t uk+1,vh

〉
, (4.47)

Rk+1
nl (vh) :=

〈
ρk+1
h ukh·∇uk+1

h − ρk+1uk+1·∇uk+1,vh
〉

(4.48)

+
1

2

〈
∇·(ρk+1

h ukh)u
k+1
h −∇·(ρk+1uk+1)uk+1,vh

〉
. (4.49)

To obtain the equation that controls the quantity εkh we use (4.24) along with

the property that 〈wh,∇rh〉 = 0 for all rh ∈Mh,

〈
∇ε[h,∇rh

〉
=
χ

τ

〈
ek+1
h ,∇rh

〉
+
〈
∇q[h,∇rh

〉
, (4.50)

where for any sequence ψτ we henceforth denote

ψ[ = ψk+1 − γψk, and ψ] = ψk + δψk. (4.51)

The two equations (4.44)–(4.50) will be used repeatedly in the error analysis.

The error analysis is based on energy arguments similar to those used to obtain

stability in Section C. The first of these arguments consists of testing (4.44) with

vh := 2τek+1
h . Then, as in the proof of Theorem 10,

2ek+1
h ·(ρ

?
he

k+1
h − ρkhekh) = ρk+1

h |e
k+1
h |

2 + ρkh|δek+1
h |

2 − ρkh|ekh|2.

Testing (4.44) with vh := 2τek+1
h gives

‖σk+1
h ek+1

h ‖
2
L2 − ‖σkhekh‖2

L2 + ‖σkhδek+1
h ‖

2
L2 + 2µτ

∥∥ek+1
h

∥∥2

H1

+ 2τ
〈
∇ε]h, e

k+1
h

〉
= 2τ

〈
∇(q]h − q

k+1
h ), ek+1

h

〉
+ 2τRk+1(ek+1

h ), (4.52)

where, as before, σh :=
√
ρh.

We finish the consistency analysis by giving an estimate on the consistency resid-
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ual 2τRk+1(ek+1
h ). The following Lemma provides this estimate.

Lemma 6. Assume that the solution to (1.3)-(1.4) satisfies (4.43) and that the se-

quence of approximate densities {ρkh} satisfies (4.20). Then

|Rk+1(ek+1
h )| ≤ c

[
τ + hl+1 + ‖ρkh − ρk‖L2 +

∥∥∥∥1

τ
δρk+1

h − ρk+1
t

∥∥∥∥
L2

+‖ρk+1
h − ρk+1‖H1

]2
+

1

2
µ‖ek+1

h ‖
2
H1 + c‖σkhekh‖2

L2 . (4.53)

Proof. We estimate separately each of the terms that compose Rk+1(ek+1
h ). For the

first term

Rk+1
0 (ek+1

h ) =

〈
ρkh

1

τ
δwk+1

h − ρk+1uk+1
t , ek+1

h

〉
=

〈
ρkh

(
1

τ
δwk+1

h − uk+1
t

)
, ek+1

h

〉
+
〈
(ρkh − ρk)uk+1

t , ek+1
h

〉
−
〈
δρk+1uk+1

t , ek+1
h

〉
≤ c‖ek+1

h ‖L6

(
‖ρkh‖L∞

∥∥∥∥1

τ
δwk+1

h − uk+1
t

∥∥∥∥
L2

+ (‖ρkh − ρk‖L2 + ‖δρk+1‖L2)‖uk+1
t ‖L3

)
≤ c‖ek+1

h ‖H1

(
τ + hl+1 + ‖ρkh − ρk‖L2

)
,

where we used (4.39), (4.20), and (4.43) to derive the last inequality.

We proceed similarly for the second term,

Rk+1
1 (ek+1

h ) =
1

2

〈
1

τ
δρk+1

h wk+1
h − ρk+1

t uk+1, ek+1
h

〉
=

1

2

〈(
1

τ
δρk+1

h − ρk+1
t

)
wk+1
h , ek+1

h

〉
+

1

2

〈
ρk+1
t (wk+1

h − uk+1), ek+1
h

〉
≤ c‖ek+1

h ‖L6

(∥∥∥∥1

τ
δρk+1

h − ρk+1
t

∥∥∥∥
L2

‖wk+1
h ‖L3 + ‖ρk+1

t ‖L3‖wk+1
h − uk+1‖L2

)
≤ c‖ek+1

h ‖H1

(
hl+1 +

∥∥∥∥1

τ
δρk+1

h − ρk+1
t

∥∥∥∥
L2

)
,
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where we used (4.39), (4.40), and (4.43) to derive the last inequality.

The derivation of an estimate for the nonlinear advection component of the resid-

ual is done by repeating an argument from [39]; we slightly modify the argument

though to account for the fact that the density is not constant. We begin by notic-

ing that, for functions that are smooth enough for the integrals to make sense, the

following identity holds:

〈ρu·∇v,v〉+
1

2
〈∇·(ρu)v,v〉 = 0.

Then, using the above identity with v = eh, we rewrite the term Rk+1
nl (ek+1

h ) as follows

Rk+1
nl (ek+1

h ) = −
〈
ρk+1
h ekh·∇wk+1

h + 1
2
∇·(ρk+1

h ekh)w
k+1
h , ek+1

h

〉
+

〈
(ρk+1
h − ρk+1)wk

h·∇wk+1
h +

1

2
∇·((ρk+1

h − ρk+1)wk
h)w

k+1
h , ek+1

h

〉
+
〈
ρk+1

(
wk
h·∇wk+1

h − uk+1·∇uk+1
)

+
1

2

(
∇·(ρk+1wk

h)w
k+1
h −∇·(ρk+1uk+1)uk+1

)
, ek+1

h

〉
:= A1 + A2 + A3

Since the approximate density sequence {ρkh} satisfies (4.20) and the approximate

velocity sequence {wk
h} satisfies (4.40), we infer

A1 ≤ c‖σkhekh‖L2‖ek+1
h ‖H1 ,

where we estimated the second term after integrating it by parts, which is possible

given the smoothness of wk+1
h and ek+1

h . Using (4.40) we obtain

A2 ≤ c‖ρk+1
h − ρk+1‖H1‖ek+1

h ‖H1 ,

where, again, we integrated by parts the second term. Finally, given the smoothness

of ρk+1, an estimate of A3 is obtained by proceeding as in the constant density case,
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see e.g. [39, 55]:

A3 ≤ c(τ + hl+1)‖ek+1
h ‖H1 .

The estimate (4.53) is obtained by combining the results above.

As stated the results of Section C show, the stability of the algorithm that we are

analyzing only marginally depends on the method which is used to approximate the

density; the only assumption we make to achieve stability is that the algorithm that

solves the mass conservation equation satisfies (4.20). Of course (4.20) is not sufficient

to obtain error estimates. Performing the full error analysis would require to analyze

the nonlinear coupling between the mass conservation equation and the momentum

conservation equation. This would require to be specific on the type of approximation

which is used to compute the approximate density field and would probably lead to

lengthy technicalities of little interest. We are not going to do the full convergence

analysis to avoid technicalities and to remain as general as possible on the way the

mass conservation equation is approximated. We assume instead that, in some way,

we are capable of computing an approximate density sequence {ρkh} ⊂ Wh from the

knowledge of the approximated velocity sequence {ukh} ⊂ Xh. To be more specific we

assume that the following holds:

‖(ρ− ρh)τ‖2
`∞(H1) +

∥∥∥∥(ρt − δρh
τ

)
τ

∥∥∥∥2

`∞(L2)

≤ c(λ)(τ + hl+1)2

+ λ‖ek+1
h ‖

2
H1 + c(λ)‖σkhekh‖2

L2 , (4.54)

where λ ≥ 0 can be chosen as small as necessary. Given this assumption, the residual

term R(ek+1
h ) simplifies as follows:

Corollary 5. Assume that (4.54) holds. Then, the following estimate holds under
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the regularity assumptions of Lemma 6:

2τ |Rk+1(ek+1
h )| ≤ cτ(τ + hl+1)2 + µτ‖ek+1

h ‖
2
H1 + cτ‖σkekh‖2

L2 . (4.55)

Proof. Use (4.53) where all the terms that involve differences of ρh and ρ can be

majored by (4.54). The parameter λ is chosen so that λ = εµ, where ε is chosen

small enough.

We now consider the non-incremental and the incremental versions the algorithm

separately.

As we have stated before, the non-incremental version of the method is obtained

by setting γ = 0. Under assumption (4.54), the main error estimate for this algorithm

is the following.

Theorem 12. Assume that the solution to (1.3)–(1.4) satisfies (4.43), and that (4.20)

hold for all 0 ≤ k ≤ K. Let (uh)τ be the solution of (4.23)–(4.24) with γ = 0 and

assume that (4.41) and (4.54) hold. Then

‖uτ − (uh)τ‖`∞(L2) ≤ c
(
hl+1 + τ 1/2

)
, ‖uτ − (uh)τ‖`2(H1) ≤ c

(
hl + τ 1/2

)
. (4.56)

Conjecture 1. We expect that further regularity assumptions combined with a stan-

dard duality argument, e.g. multiplying the error equation by Sek+1
h , where S is the

solution operator to the time-independent Stokes problem, should allow us to con-

clude that the following estimate holds in addition to (4.56):

‖uτ − (uh)τ‖`2(L2) ≤ c
(
hl+1 + τ

)
.

The reader is referred to [52, 39] for more details.

Remark 32. The error estimate (4.56) shows that, at least under assumption (4.54),

the non-incremental fractional time-stepping technique for variable density fluid flows
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performs as well as the analogous non-incremental pressure-correction scheme for

constant density flows (see Theorem 7).

Proof. [Theorem 12] In this case p]h = pkh and φ[h = pk+1
h . Setting rh := 2τ 2εkh/χ in

(4.50) we obtain

τ 2

χ

[∥∥∇εk+1
h

∥∥2

L2 +
∥∥∇εkh∥∥2

L2 −
∥∥∇δεk+1

h

∥∥2

L2

]
− 2τ

〈
∇εkh, ek+1

h

〉
=

2τ 2

χ

〈
∇qk+1

h ,∇εkh
〉
.

(4.57)

Next, apply δ to (4.50) and set rh := τδεk+1
h . The Cauchy-Schwarz inequality implies

τ 2
∥∥∇δεk+1

h

∥∥2

L2 ≤
∥∥χδek+1

h + τ∇δqk+1
h

∥∥2

L2 =

χ2
∥∥δek+1

h

∥∥2

L2 + τ 2
∥∥∇δqk+1

h

∥∥2

L2 + 2χτ
〈
∇δqk+1

h , δek+1
h

〉
,

which, by (4.20), implies

τ 2

χ

∥∥∇δεk+1
h

∥∥2

L2 ≤
∥∥σkhδek+1

h

∥∥2

L2 +
τ 2

χ

∥∥∇δqk+1
h

∥∥2

L2 + 2τ
〈
∇δqk+1

h , δek+1
h

〉
. (4.58)

Adding up (4.53), (4.57) and (4.58) and using Corollary 5, we obtain,

‖σk+1
h ek+1

h ‖
2
L2 + µτ‖ek+1

h ‖
2
H1 +

τ 2

χ

[
‖∇εk+1

h ‖
2
L2 + ‖∇εkh‖2

L2

]
≤

cτ(τ+hl+1)2+(1+cτ)‖σkhekh‖2
L2−2τ

〈
∇δqk+1

h , ekh
〉

+
τ 2

χ
‖δqk+1

h ‖2+
2τ 2

χ

〈
∇qk+1

h ,∇εkh
〉
.

We estimate the last three terms in the right-hand side separately. Integrating

by parts and using (4.40), the first one can be estimated as follows:

−2τ
〈
∇δqk+1

h , ekh
〉
≤ 2τ‖δqk+1

h ‖L2‖ekh‖H1 ≤ cτ 3 +
µτ

2
‖ekh‖2

H1 .

Similarly, the second term is estimated as follows:

τ 2

χ
‖∇δqk+1

h ‖2
L2 ≤ cτ 3.
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For the last term, using again (4.40) we obtain

2τ 2

χ

〈
∇qk+1

h ,∇εkh
〉
≤ c

τ 2

χ
‖∇εkh‖L2 ≤ cτ 2 +

τ 2

χ
‖∇εkh‖2

L2 .

Notice that this term is responsible for the loss of optimality, i.e., full first-order

accuracy is lost at this point.

Combining the above observations, we finally obtain

‖σk+1
h ek+1

h ‖
2
L2 + µτ‖ek+1

h ‖
2
H1 ≤ (1 + cτ)‖σkhekh‖2

L2 +
µτ

2
‖ekh‖2

H1 + cτ(τ 1/2 + hl+1)2,

which, by the discrete Grönwall lemma implies

‖(σheh)τ‖`∞(L2) + ‖(eh)τ‖`2(H1) ≤ c(τ 1/2 + hl+1).

The claimed error estimates follow from the triangle inequality, the definition

uk − ukh = ηk + ekh,

and (in the case of the `∞(L2)-norm) assumption (4.20). Notice that it is only at

this point that the interpolation error in the H1-norm, which is of order O(hl), is

introduced. This a well-known super-convergence effect induced by our particular

choice for the pair (wh, qh), see (4.38) and [86].

The incremental version of the algorithm is obtained by setting γ = 1. Under

assumption (4.54), the main error estimate for this algorithm is stated as follows.

Theorem 13. Assume that the solution to (1.3)–(1.4) satisfies (4.43), and that (4.20)

hold for all 0 ≤ k ≤ K. Let (uh)τ be the solution of (4.23)–(4.24) with γ = 1 and
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assume that (4.41) and (4.54) hold. Then

‖uτ − (uh)τ‖`∞(L2) ≤ c
(
τ + hl+1

)
, (4.59)

‖uτ − (uh)τ‖`2(H1) ≤ c
(
τ + hl

)
. (4.60)

Remark 33. The error estimates from Theorem 13 show that, under the given assump-

tions on the density approximation, the incremental pressure-correction algorithm for

variable density fluid flows performs as well as the analogous incremental projection-

type pressure-correction scheme for constant density flows (cf. [44]).

Proof. [Theorem 13] In this case p]h = 2pkh − pk−1
h and φ[h = δpk+1

h . Setting rh :=

−2τ 2δ2εk+1
h /χ in (4.50), we obtain

− τ 2

χ

[
‖∇δεk+1

h ‖
2
L2 − ‖∇δεkh‖2

L2 + ‖∇δ2εk+1
h ‖

2
L2

]
+ 2τ

〈
ek+1
h ,∇δ2εk+1

h

〉
= −2τ 2

χ

〈
∇δqk+1

h ,∇δ2εk+1
h

〉
.

Setting rh := 2τ 2εk+1
h /χ in (4.50), we obtain

τ 2

χ

[
‖∇εk+1

h ‖
2
L2 − ‖∇εkh‖2

L2 + ‖∇δεk+1
h ‖

2
L2

]
= 2τ

〈
ek+1
h ,∇εk+1

h

〉
+

2τ 2

χ

〈
∇δqk+1

h ,∇εk+1
h

〉
Adding these two equations we arrive at

τ 2

χ

[
‖∇εk+1

h ‖
2
L2 − ‖∇εkh‖2

L2 + ‖∇δεkh‖2
L2

]
− τ 2

χ
‖∇δ2εk+1

h ‖
2
L2

− 2τ
〈
ek+1
h ,∇ε]h

〉
=

2τ 2

χ

〈
∇δqk+1

h ,∇ε]h
〉
. (4.61)

Now we apply δ to (4.50) and we set rh := τδ2εk+1
h . The Cauchy-Schwarz in-
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equality implies

τ 2‖∇δ2εk+1
h ‖

2
L2 ≤

∥∥χδek+1
h + τ∇δ2qk+1

h

∥∥2

L2 =

χ2‖δek+1
h ‖

2
L2 + τ 2‖∇δ2qk+1

h ‖2
L2 + 2τχ

〈
∇δ2qk+1

h , δek+1
h

〉
,

and owing to (4.20) we infer

τ 2

χ
‖∇δ2εk+1

h ‖
2
L2 ≤ ‖σkδek+1

h ‖
2
L2 +

τ 2

χ
‖∇δ2qk+1

h ‖2
L2 + 2τ

〈
∇δ2qk+1

h , δek+1
h

〉
. (4.62)

Adding (4.52), (4.61) and (4.62), and using Corollary 5, we arrive at

‖σk+1
h ek+1

h ‖
2
L2 + µτ‖ek+1

h ‖
2
H1 +

τ 2

χ
[‖∇εk+1

h ‖
2
L2 + ‖∇δεk+1

h ‖
2
L2 ] ≤

(1 + cτ)‖σkhekh‖2
L2 +

τ 2

χ
‖∇εkh‖2

L2

+ cτ(τ + hl+1)2 +
τ 2

χ
‖∇δ2qk+1

h ‖2
L2 − 2τ

〈
∇δ2qk+1

h , ekh
〉

+
2τ 2

χ

〈
∇δqk+1

h ,∇ε]h
〉
.

Let us estimate the last three terms separately. Clearly,

τ 2/χ‖∇δ2qk+1
h ‖2

L2 ≤ cτ 3.

The second term is bounded from above as follows:

−2τ
〈
∇δ2qk+1

h , ekh
〉
≤ cτ 3 +

µτ

2
‖ekh‖2

H1 .

Finally, for the third term we have

2τ 2

χ

〈
∇δqk+1

h ,∇ε]h
〉
≤ cτ 3 + τ 3‖∇εkh‖2

L2 + τ 3‖∇δεkh‖2
L2 .

We obtain the estimate (4.59)-(4.60) by finishing as in the proof of Theorem 12.



99

E. A Second-Order Fractional Time-Stepping Method

We have established in the previous section that the incremental version of the scheme

(4.20)–(4.25) is first-order accurate in time both for the L2- and the H1-norm of the

velocity. However, as shown in [39], we expect that the splitting error of the algorithm

is second-order since the pressure term

p]h = 2pkh − pk−1
h , (4.63)

that appears in the approximate momentum equation is a second-order extrapolation

of the pressure pk+1
h . This observation is the main motivation for our introducing a

variant of the incremental method using a second-order approximation of the time

derivative of the velocity.

Keeping the same notation as in the previous sections, the second-order variant

of the algorithm is composed of the following steps:

Initialization First, we choose a penalty parameter χ as in the Initialization step

of Section B. Next, we define (ρ0
h,u

0
h, p

0
h, φ

0
h = 0) ∈ Wh×Xh×Mh×Mh to be a

suitable approximation of the initial data of the problem. Then we compute

an approximation of the exact solution at time t = τ , say (ρ1
h,u

1
h, p

1
h, φ

1
h =

p1
h − p0

h) ∈ Wh×Xh×Mh×Mh.

Time-Stepping Given (ρkh,u
k
h, p

k
h, φ

k
h) ∈ Wh×Xh×Mh×Mh for 1 ≤ k ≤ K − 1, we

compute the next time-step approximation as follows:

Density Update We are not specific on the way ρk+1
h ∈ Wh is computed, but we

assume that (4.20) holds and that there is a uniform constant M so that

max
0≤k≤K−1

∥∥∥∥ρk+1
h − ρkh
τ

∥∥∥∥
L∞
≤Mχ. (4.64)
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Velocity Update Similarly to the Velocity Update step of Section B we define

ρ?h :=
3

2
ρk+1
h − 2

3
ρkh +

1

6
ρk−1
h = ρk+1

h +
1

6
(3ρk+1

h − 4ρkh + ρk−1
h ), (4.65)

p]h := pkh +
4

3
φkh −

1

3
φk−1
h . (4.66)

Then we compute uk+1
h ∈ Xh so that the following holds:〈

3ρ?hu
k+1
h − 4ρk+1

h ukh + ρk+1
h uk−1

h

2τ
,vh

〉
+

〈
ρk+1
h u?h·∇uk+1

h +
1

2
uk+1
h ∇·(ρ

k+1
h u?h),vh

〉
+ µ

〈
∇uk+1

h ,∇vh
〉

+
〈
∇p]h,vh

〉
=
〈
fk+1,vh

〉
, ∀vh ∈ Xh, (4.67)

where

u?h := 2ukh − uk−1
h , (4.68)

is a second-order extrapolation of the velocity.

Penalty We compute the pressure correction φk+1
h ∈Mh so that the following holds:

〈
∇φk+1

h ,∇rh
〉

=
3χ

2τ

〈
uk+1
h ,∇rh

〉
, ∀rh ∈Mh. (4.69)

Pressure Update Finally, the pressure is updated by setting

pk+1
h = pkh + φk+1

h . (4.70)

Remark 34. The quantities (ρ1
h,u

1
h, p

1
h, φ

1
h) can be computed by using one step of the

incremental first-order scheme described in Section B.

Remark 35. The term
〈

1
2
∇·(ρk+1

h u?h)u
k+1
h ,vh

〉
has been added to the equation to obtain

unconditional stability with respect to the advection term. As in the proof of Lemma 6
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we are going to use the following identity:〈
ρk+1
h u?h·∇uk+1

h +
1

2
∇·(ρk+1

h u?h)u
k+1
h ,uk+1

h

〉
=∫

Ω

ρk+1
h u?h·∇uk+1

h · uk+1
h +

1

2

∫
Ω

∇·(ρk+1
h u?h)|uk+1

h |
2 = 0.

Remark 36. The term

3ρ?hu
k+1
h − 4ρk+1

h ukh + ρk+1
h uk−1

h

2τ
+

1

2
∇·(ρk+1

h u?h)u
k+1
h ,

is a second-order approximation of [ρhuh,t](t
k+1). Indeed, if the involved functions

are smooth enough in time, we infer from the definition of ρ?h that

3ρ?hu
k+1
h − 4ρk+1

h ukh + ρk+1
h uk−1

h

2τ
+

1

2
∇·(ρk+1

h u?h)u
k+1
h =

ρk+1
h

2τ
(3uk+1

h − 4ukh + uk−1
h ) +

1

2

(
3ρk+1

h − 4ρkh + ρk−1
h

2τ
+∇·(ρk+1

h u?h)

)
uk+1
h =

[ρhuh,t]
k+1 +

1

2
[ρh,t +∇·(ρhuh)]k+1 uk+1

h +O(τ 2) = [ρhuh,t]
k+1 +O(τ 2),

which proves the claim.

We now establish stability for the algorithm (4.67)-(4.69)-(4.70). Again, to avoid

irrelevant technicalities, assume that f ≡ 0. The stability of the scheme is given by

the following Theorem.

Theorem 14. Assume that the sequence of approximate densities {ρkh}k≥0 ⊂ Wh

satisfies (4.20) and (4.64). Then, for τ small enough, the sequence {(ukh, pkh)}k≥0 ⊂

Xh×Mh obtained by the algorithm (4.67)-(4.69)-(4.70) satisfies the following estimate:

‖σkhukh‖2
L2 + µτ‖ukh‖2

H1 +
τ 2

χ
‖∇pkh‖2

L2 +
τ 2

χ
‖∇δpk−1

h ‖
2 ≤

K(1 + ecT )
(
‖σ0

hu
0
h‖2

L2 + ‖σ1
hu

1
h‖2

L2 + ‖∇p0
h‖2

L2 + ‖∇p1
h‖2

L2

)
, ∀k ≥ 2, (4.71)

for some constants c and K.
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Proof. Note first that, as already mentioned in Remark 36, the time derivative can

be re-written as follows:

3ρ?hu
k+1
h − 4ρk+1

h ukh + ρk+1
h uk−1

h

2τ
= ρk+1 3uk+1

h − 4ukh + uk−1
h

2τ

+
1

2
uk+1
h

3ρk+1 − 4ρk + ρk−1

2τ
,

which is an approximation of ρut + 1
2
uρt. Once tested with u, the expression (ρut +

1
2
uρt)u gives (1

2
ρu2)t, and after integration over Ω and over the time interval (0, T ) this

yields kinetic energy conservation. We have been able to reproduce this argument at

the discrete level for the first-order time stepping described in Section B, see (4.52).

Unfortunately, we have not yet figured out how to repeat this argument with BDF2.

We are going to content ourselves with a sub-optimal stability analysis which will

yield the growth constant (1 + ecT ) in (4.71).

Using Assumption (4.64), we have the following estimate

〈(
3ρk+1

h − 4ρkh + ρk−1
h

)
uk+1
h ,uk+1

h

〉
= 3

∫
Ω

(
ρk+1
h − ρkh

)
|uk+1
h |

2

−
∫

Ω

(
ρkh − ρk−1

h

)
|uk+1
h |

2

≥ −
(

3

∥∥∥∥ρk+1
h − ρkh
χ

∥∥∥∥
L∞

+

∥∥∥∥ρkh − ρk−1
h

χ

∥∥∥∥
L∞

)
‖σk+1

h uk+1
h ‖

2
L2

≥ −4Mτ‖σk+1
h uk+1

h ‖
2
L2 .

A similar treatment gives

2
〈
ρk+1
h

(
3uk+1

h − 4ukh + uk−1
h

)
,uk+1

h

〉
≥ 3‖σk+1

h uk+1
h ‖

2
L2 − (4 + 8Mτ)‖σkhukh‖2

L2

+ (1− 6Mτ)‖σk−1
h uk−1

h ‖
2
L2 + 2‖σk+1

h δuk+1
h ‖

2
L2 − 2‖σkhδukh‖2

L2 + ‖σk+1
h δ2uk+1

h ‖
2
L2 .
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Combining the above two inequalities gives

2
〈
3ρ?hu

k+1
h − 4ρk+1

h ukh + ρk+1
h uk−1

h ,uk+1
h

〉
≥ (3− 4Mτ)‖σk+1

h uk+1
h ‖

2
L2

− (4 + 8Mτ)‖σkhukh‖2
L2 + (1− 6Mτ)‖σk−1

h uk−1
h ‖

2
L2

+ 2‖σk+1
h δuk+1

h ‖
2
L2 − 2‖σkhδukh‖2

L2 + ‖σk+1
h δ2uk+1

h ‖
2
L2 . (4.72)

This estimate will be used repeatedly.

Now we proceed in two steps, as in the proof of Theorem 9: First we investigate

the time steps k = 1, 2, then we investigate the cases k ≥ 3.

(i) Initialization: Let k ∈ {1, 2} and set vh := 4τuk+1
h in (4.67). Using (4.72) and the

Cauchy-Schwarz inequality we get,

(3− 4Mτ)‖σk+1
h uk+1

h ‖
2
L2 + 4µτ‖uk+1

h ‖
2
H1 ≤

8τ 2

χ
‖∇p]h‖

2
L2 +

χ

2
‖σk+1

h uk+1
h ‖

2
L2 ,

which by (4.20) implies that if τ small enough

‖σk+1
h uk+1

h ‖
2
L2 + 4µτ‖uk+1

h ‖
2
H1 ≤ c

(
‖σ0

hu
0
h‖2

L2 + ‖σ1
hu

1
h‖2

L2

+
τ 2

χ
‖∇p0

h‖2
L2 +

τ 2

χ
‖∇p1

h‖2
L2

)
.

The estimate on the pressure is obtained mutatis mutandis the argument in the

initialization step of the proof of Theorem 9. Hence

‖σk+1
h uk+1

h ‖
2
L2 + 4µτ‖uk+1

h ‖
2
H1 +

τ 2

χ
‖∇pk+1

h ‖
2
L2 +

τ 2

χ
‖∇δpk+1

h ‖
2
L2 ≤

c

(
‖σ0

hu
0
h‖2

L2 + ‖σ1
hu

1
h‖2

L2 +
τ 2

χ
‖∇p0

h‖2
L2 +

τ 2

χ
‖∇p1

h‖2
L2

)
, k = 1, 2.

(ii) General Step: For k ≥ 3 we proceed as in the general step for the constant density
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case. Using (4.72) we obtain the estimate

(3− 4Mτ)‖σk+1
h uk+1

h ‖
2
L2 − (4 + 8Mτ)‖σkhukh‖2

L2 + (1− 6Mτ)‖σk−1
h uk−1

h ‖
2
L2

+ 2‖σk+1
h δuk+1

h ‖
2
L2 − 2‖σkhδukh‖2

L2 + ‖σk+1
h δ2uk+1

h ‖
2
L2+

4µτ‖uk+1
h ‖

2
H1 +

4τ 2

3χ

[
‖∇pk+1

h ‖
2
L2 − ‖∇pkh‖2

L2 + ‖∇δpkh‖2
]

− 4τ 2

3χ
‖∇δ2pk+1

h ‖
2
L2 +

8τ 2

9χ
〈∇δ2pkh,∇δpk+1

h 〉 ≤ 0.

Add and subtract to this inequality the terms 2χ‖δuh‖2
L2 taken at time steps tk+1

and tk. Now, as in the constant density case, use the identity

χ ‖δuh‖2
L2 =

∥∥∥∥χ1/2δuh −
2τ

3χ1/2
∇δ2ph

∥∥∥∥2

L2

+
4τ 2

9χ

∥∥∇δ2ph
∥∥2

L2 ,

to deduce

(3− 4Mτ)‖σk+1
h uk+1

h ‖
2
L2 − (4 + 8Mτ)‖σkhukh‖2

L2 + (1− 6Mτ)‖σk−1
h uk−1

h ‖
2
L2

+ ‖σk+1
h δ2uk+1

h ‖
2
L2 + 4µτ‖uk+1

h ‖
2
H1

+ 2
∥∥(ρk+1

h − χ)1/2δuk+1
h

∥∥2

L2 − 2
∥∥(ρkh − χ)1/2δukh

∥∥2

L2

+ 2

∥∥∥∥χ1/2δuk+1
h − 2τ

3χ1/2
∇δ2pk+1

h

∥∥∥∥2

L2

− 2

∥∥∥∥χ1/2δukh −
2τ

3χ1/2
∇δ2pkh

∥∥∥∥2

L2

+
4τ 2

3χ

[
‖∇pk+1

h ‖
2
L2 − ‖∇pkh‖2

L2 + ‖∇δpkh‖2
L2

]
− 4τ 2

9χ
‖∇δ2pk+1

h ‖
2
L2 −

8τ 2

9χ
‖∇δ2pkh‖2

L2 +
8τ 2

9χ
〈∇δ2pkh,∇δpk+1

h 〉 ≤ 0, (4.73)

where we used assumption (4.20).

By assumption (4.20), the control on the last three pressure terms is obtained in
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a similar way as in the proof of Theorem 9, thus giving

− 4τ 2

9χ
‖∇δ2pk+1

h ‖
2
L2 −

8τ 2

9χ
‖∇δ2pkh‖2

L2 +
8τ 2

9χ
〈∇δ2pkh,∇δpk+1

h 〉 ≥

− ‖σk+1
h δ2uk+1

h ‖
2
L2 +

4τ 2

9χ

[
‖∇δpkh‖2

L2 − ‖∇δpk−1
h ‖

2
L2

]
.

Applying this estimate to (4.73) we arrive at the energy estimate

(3− 4Mτ)‖σk+1
h uk+1

h ‖
2
L2 − (4 + 8Mτ)‖σkhukh‖2

L2 + (1− 6Mτ)‖σk−1
h uk−1

h ‖
2
L2

+ 4µτ‖uk+1
h ‖

2
H1

+ 2
∥∥(ρk+1

h − χ)1/2δuk+1
h

∥∥2

L2 − 2
∥∥(ρkh − χ)1/2δukh

∥∥2

L2

+ 2

∥∥∥∥χ1/2δuk+1
h − 2τ

3χ1/2
∇δ2pk+1

h

∥∥∥∥2

L2

− 2

∥∥∥∥χ1/2δukh −
2τ

3χ1/2
∇δ2pkh

∥∥∥∥2

L2

+
4τ 2

3χ

[
‖∇pk+1

h ‖
2
L2 − ‖∇pkh‖2

L2 + ‖∇δpkh‖2
L2

]
+

4τ 2

9χ

[
‖∇δpkh‖2

L2 − ‖∇δpk−1
h ‖

2
L2

]
≤ 0. (4.74)

Introducing the notation

A := 3− 4Mτ, B = −(4 + 8Mτ), C = 1− 6Mτ,

ak := ‖σkhukh‖2
L2 , k ≥ 0,

bk := 4µτ‖ukh‖2
L2 +

4τ 2

3χ
‖∇δpk−1

h ‖
2
L2 , k ≥ 1,

dk := 2
∥∥∥(ρkh − χ)1/2

δukh

∥∥∥2

L2
+ 2

∥∥∥∥χ1/2δukh +
2τ

3χ1/2
∇δ2pkh

∥∥∥∥2

L2

+
4τ 2

3χ
‖∇pkh‖2

L2 +
4τ 2

9χ
‖∇δpk−1

h ‖
2
L2 , k ≥ 2,

inequality (4.74) can be rewritten as

Aak+1 +Bak + Cak−1 ≤ −
(
bk+1 + dk+1 − dk

)
, k ≥ 3.

Define gk+1 := −(bk+1 + dk+1 − dk). If τ is small enough, this three-term recursion
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inequality satisfies the assumptions of Proposition 12 of Appendix A. The roots of

the characteristic polynomial are

r1 :=
2 + 4Mτ −

√
1 + 38Mτ − 8Mτ 2

3− 4Mτ
=

1

3

(
1− 41Mτ

3
+O(τ 2)

)
,

r2 :=
2 + 4Mτ +

√
1 + 38Mτ − 8Mτ 2

3− 4Mτ
= 1 + 9Mτ +O(τ 2).

Both roots are positive, the first one is strictly less than one third, and the second is

greater but close to one. Hence, for ν ≥ 3

aν ≤ c(a1 + a2)(rν1 + rν2)− 1

3− 4Mτ

ν∑
l=3

rν−l1

l∑
s=3

rl−s2 (bs + ds − ds−1),

which, since τ is small, can be rewritten as

aν +
1

3
bν ≤ K(1 + ecT )(a1 + a2)− 1

3− 4Mτ

ν∑
l=3

rν−l1

l∑
s=3

rl−s2 (ds − ds−1), (4.75)

for some constants c and K.

Notice that

l∑
s=3

rl−s2 (ds − ds−1) = dl + (r2 − 1)
l−1∑
s=3

rl−s−1
2 ds.

Hence (4.75) implies

aν +
1

3
bν +

1

3
dν ≤ K(1 + ecT )(a1 + a2).

This inequality combined with the estimates obtained at the initialization step imply

the result.

Conjecture 2. As numerical experiments show (see Section F) the algorithm (4.67)-

(4.69)-(4.70) performs as well as its constant density counterpart. This leads us to
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believe that the following error estimates hold:

‖(σu)τ − (σhuh)τ‖`∞(L2) ≤ c(τ 2 + hl+1),

and

‖uτ − (uh)τ‖`2(H1) ≤ c(τ + hl).

The techniques presented here, together with those of [39] may provide a proof of

these facts.

Remark 37. In full analogy with the constant density case, it is possible to construct

a rotational version (see [52, 82]) of the algorithm introduced above by replacing the

pressure update (4.70) by the following: Find pk+1
h ∈Mh so that,

〈
pk+1
h , rh

〉
=
〈
pkh + φk+1

h , rh
〉

+ µ
〈
uk+1
h ,∇rh

〉
. (4.76)

The numerical experiments reported in Section F show that the algorithm (4.67)-

(4.69)-(4.76) is stable and accurate.

F. Numerical Experiments

Convergence Tests

To test the accuracy of the second-order algorithm proposed in this paper, both

in standard and rotational forms, we solve problem (1.3)-(1.4) using an analytical

solution defined on the unit disk

Ω = {(x, y) ∈ R2 : x2 + y2 < 1}. (4.77)
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The exact solution is

ρ(r, t) = 2 + r cos(θ − sin t), (4.78)

u(r, t) = (−y, x)> cos t, (4.79)

p(r, t) = sinx sin y sin t, (4.80)

and the corresponding right-hand side in the momentum equation is

f(r, t) =

 (y sin t− x cos2 t)ρ(r, t) + cos x sin y sin t

−(x sin t+ y cos2 t)ρ(r, t) + sin x cos y sin t

 . (4.81)

The computations are performed using the library deal.II (cf. [8, 7]). We use

a (Q2,Q2,Q1) approximation for the density, the velocity, and the pressure, respec-

tively. We perform the accuracy tests with respect to τ on a mesh consisting of 5120

quadrangular cells. The dimensions of the vector spaces Wh, Xh, and Mh are as

follows:

dimWh = 20609, (4.82)

dim Xh = 41218, (4.83)

dimMh = 5185. (4.84)

We measure the maximum over the time interval [0, 10] of the errors measured in

various norms. This mesh is chosen, so that the discretization error in space is

significantly smaller than that induced by the time discretization. The convergence

with respect to τ is verified in the range 5.10−3 ≤ τ ≤ 1.10−1.

We test the second-order standard formulation described in Section E. The

results are shown in Table VI. As expected, the error on the velocity and the density

in the L2-norm is of O(τ 2) and the error on the velocity in the H1-norm and on the
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Table VI. Error in Time for Standard Scheme

τ ρ–L2 Rate u–L2 Rate u–H1 Rate p–L2 Rate

0.1 9.15E-003 — 6.93E-003 — 3.29E-002 — 4.34E-002 —

0.05 1.27E-003 2.84 1.70E-003 2.03 9.93E-003 1.73 1.21E-002 1.84

0.03 2.10E-004 2.60 4.20E-004 2.02 3.20E-003 1.64 3.62E-003 1.74

0.01 4.18E-005 2.33 1.05E-004 2.00 1.11E-003 1.52 1.19E-003 1.60

0.01 8.65E-006 2.27 2.61E-005 2.00 3.63E-004 1.62 3.78E-004 1.66

pressure in the L2-norm is of O(τ).

Next we test the rotational version of the method which consists of using the

pressure update (4.76), introduced in Remark 37, instead of (4.70). The results are

shown in Table VII. We observe that all the errors are fully second-order with respect

to τ . It is likely that there is a super-convergence effect due to the regularity of the

domain. We recall that a similar super-converge effect is observed for the rotational

variant of the pressure-correction algorithm for constant density flows (see [52]). We

conjecture that in general domains the error on the velocity measured in the L2-norm

is O(τ 2), and the error on the velocity in the H1-norm and on the pressure in the

L2-norm is O(τ 3/2).

The Rayleigh–Taylor Instability

We now illustrate the performance of the method on a realistic problem. We compute

the development of a Rayleigh–Taylor instability in the viscous regime as documented

by Tryggvason in [83]. This problem consists of two layers of fluid initially at rest
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Table VII. Error in Time for Rotational Scheme

τ ρ–L2 Rate u–L2 Rate u–H1 Rate p–L2 Rate

0.1 3.70E-003 — 3.90E-003 — 1.59E-002 — 1.12E-002 —

0.05 6.38E-004 2.54 1.18E-003 1.73 4.89E-003 1.70 3.31E-003 1.76

0.03 1.35E-004 2.24 3.34E-004 1.82 1.43E-003 1.78 9.34E-004 1.83

0.01 3.21E-005 2.07 9.03E-005 1.89 4.03E-004 1.82 2.53E-004 1.88

0.01 7.85E-006 2.03 2.37E-005 1.93 1.12E-004 1.84 6.71E-005 1.92

in the rectangular domain Ω = (−d/2, d/2)× (−2d, 2d). The transition between the

two fluids is regularized as follows

ρ(x, y, t = 0)

ρmin
0

= 2 + tanh

(
y − η(x)

0.01d

)
, (4.85)

where the initial position of the perturbed interface is η(x) = −0.1d cos(2πx/d). The

heavy fluid is above and the density ratio is 3, so that the Atwood number

At =
(
ρmax

0 − ρmin
0

)
/
(
ρmax

0 + ρmin
0

)
, (4.86)

equals 0.5, according to Tryggvason’s definition, where we set ρmax
0 := maxx∈Ω ρ0(x).

For t > 0 the system evolves under the action of a vertical downward gravity field of

intensity g; the source term in the momentum equation is downward and equal to ρg.

The equations are non-dimensionalized using the following references: ρmin
0 for

the density, d for lengths, and d1/2/g1/2 for time, where g is the gravity field. Then,

the reference velocity is d1/2g1/2, and the Reynolds number is defined by Re =

ρmin
0 d3/2g1/2/µ. The computational domain can be restricted to (0, d/2) × (−2d, 2d)
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Fig. 2. Rayleigh-Taylor Instability. Re = 1000; density ratio 3. The interface is shown

at times 1, 1.5, 1.75, 2, 2.25, and 2.5

since we assume that the symmetry of the initial condition is maintained during the

time evolution. The no-slip condition is enforced at the bottom and top walls and

symmetry is imposed on the two vertical sides.

The mass conservation equation is stabilized by adding a nonlinear viscosity

proportional to the residual of the conservation equation for ρ2 in the spirit of the

entropy viscosity of [45].

The time evolution of the density field at Re = 1000 is shown in Fig. 2 at times

1, 1.5, 1.75, 2, 2.25, and 2.5 in the time scale of Tryggvason, which is related to ours

by tTryg = t
√
At. The mesh is such that there are 466573 degrees of freedom for each

component of the velocity. The mesh size is of order 0.025 in the refined regions. The

time step is τ = 0.00125
√
At.

To further assess the sensitivity of the method to spatial resolution and to verify

that the numerical viscosity is significantly smaller than the physical viscosity we

solve the same problem using the same mesh for Re = 5000. The results are shown
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Fig. 3. Rayleigh-Taylor Instability. Re = 5000; density ratio 3. The interface is shown

at times 1, 1.5, 1.75, 2, 2.25, and 2.5

in Fig. 3.

The above results are in good agreement with those from [31]. Since the algorithm

of Section E only requires solving a Poisson equation, computing the above test cases

was significantly faster (one order of magnitude) than when doing the computations

reported in [31]. This time saving allowed us to use finer space resolution.

Next, we perform the test case reported in [11]. The geometry is the same as

above. The density ratio is 7 so that At = 0.75, using Tryggvason’s definition (4.86)

(using the definition from [11] the Atwood number is 0.875). The initial density field

is regularized as follows:

ρ(x, y, t = 0)

ρmin
0

= 4 + 3 tanh

(
y − η(x)

0.01d

)
, (4.87)

where the perturbation of the interface is given by η(x) = −0.01d cos(2πx/d). The

Reynolds number is Re = 1000.

The results using the same mesh and same time step as in for the low density ratio
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Fig. 4. Rayleigh-Taylor Instability. Re = 1000; density ratio 7. The interface is shown

at times 1, 1.5, 2, 2.5, 3, 3.5, and 3.75

are reported in Fig. 4 for times 1, 1.5, 2, 2.5, 3, 3.5, and 3.75 (using d1/2/g1/2 as time

scale). Although the locations of the falling and rising bubbles are similar to those

reported in [11], the details of the flow differ from those in [11]. This unexplained

discrepancy was already noted in [48].

A Lighter Bubble Rising in a Heavier Medium

Let us consider another realistic example. In a rectangular domain Ω = (−3d, 3d)×

(0, 9d) there is initially a bubble of fluid of radius d (with density ρ1 and viscosity µ1)

immersed in a heavier medium (with density ρ2 and viscosity µ2). The system evolves

under the action of a gravity field pointing downward and of intensity g. We non-

dimensionalize the equations with the following references: ρ1 for the density,
√
d/g

for time and d for lengths. The reference velocity is
√
dg and the non-dimensional

viscosities are computed as

µ̂ =
µ

ρ1d3/2g1/2
.



114

To properly model the relevant physics of the system it is necessary to include the

surface tension effects. This, being a force that acts only on the interface between the

two fluids, is quite complicated to properly handle numerically since it requires a good

representation of the interface boundary. Several approaches have been proposed to

handle such difficulty. Without being exhaustive, we can mention grid alignment

techniques [9], moving mesh methods [75], level set methods [64, 65, 84], surface

tracking [68] and phase field [10, 14, 56, 62] and [76]. Here we adopt the phase field

approach of [76].

The idea of the phase field model is to replace the sharp interface between the

fluids by a smooth transition layer of thickness η. Then it turns out that the evolution

of the phase variable φ, which serves as a marker for each one of the phases, is given

by the Cahn-Hillard equation

φt + u·∇φ = −γ∆(∆φ− f(φ)),

where f = F ′ and F is the Ginzburg-Landau double well potential

F (φ) =
1

4η2

(
φ2 − 1

)2
.

However, the Cahn-Hillard equation involves fourth order derivatives, which are dif-

ficult to handle using finite elements. Therefore, the evolution law for the phase

variable is usually replaced by the Allen-Cahn equation

φt + u·∇φ = γ(∆φ− f(φ)).

Then, the surface tension appears as a volume term in the momentum equation

ρut + ρu·∇u− µ∆u +∇p + λ∇· (∇φ⊗∇φ) = f ,

where λ is the mixing energy density. For details, the reader is referred to the sources
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Fig. 5. Rising Bubble. Re = 1000; density ratio 100. The interface is shown at times

0, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5

cited above.

Let us consider the case where the density ratio ρ2/ρ1 = 100 and the two fluids

have the same viscosity µ = 10−3. The space discretization of the problem is done

using (Q2,Q2,Q1) elements for the density, velocity and pressure, respectively. The

mesh is uniform and it has 4480 rectangular cells, so that there are 18193 Q2-degrees

of freedom and 4617 Q1-degrees of freedom. The time step is τ = 10−3. The interface

thickness is taken equal to the mesh size. The results are shown in Figure 5, where we

can see the interface at times 0, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5. The results are in good
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agreement with similar ones obtained using different techniques (see the references

cited above).

A Falling Drop

As a final example, let us consider a falling drop. The geometry is the same as

before but, in this case, the subdomain Ωpool = (−3d, 3d) × (0, 3d) is filled with a

heavy medium of density ρ2. There is a circular drop of this same medium of radius d

located at (0, 6d). The rest of the domain is filled with a lighter medium of density ρ1.

The system is at rest initially and we follow its evolution under the action of gravity.

We non-dimensionalize the equations using the same references as in the previous

example and consider the case ρ2/ρ1 = 100, with µ2 = µ1 = 10−3. The mesh is as in

the rising bubble and the time step is τ = 10−3.

To take into account the surface tension effects, we use the phase field method

described above. The parameters are the same as for the rising bubble experiment.

A plot of the interface, together with the velocity field can be seen in Figure 6.

Although the results are far from depicting all the details of the real phenomena

(see [81], for instance), at least we are able to capture some of the most significant

features of the phenomenon. It is possible that a combination of this method with

more sophisticated schemes to take care of the interface will provide more accurate

results. We leave this study for further investigation.



117

Fig. 6. Falling Drop. Re = 1000; density ratio 100. The interface is shown at times 0,

1.5, 2, 2.25, 2.5, 2.75, 2.9, 3, 3.1, 3.2, 3.3 and 3.35
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CHAPTER V

CONCLUSION

During the course of this dissertation we have studied two models that arise in the

study of complex fluid flow phenomena. For each one of them we have proposed

effective discretization techniques and proved that they converge to the solution. Let

us briefly review the obtained results.

For the nonlinear Darcy equations of Chapter III, in the case where the per-

meability is a bounded from above and a strictly positive function of the pressure,

we have obtained sufficient conditions for a solution to be nonsingular. In the case

of a unique solution, we have proposed a discretization scheme and we have proved

optimal error estimates for this scheme. Moreover, we proposed an algorithm for the

solution of this discrete system and we proved that this algorithm converges indepen-

dently of the discretization parameter. In the case where there is no unique solution,

we have proposed a discretization scheme for the approximation of nonsingular so-

lutions. We have shown that this discretization scheme has optimal error estimates.

Finally, we studied the convergence of a Newton type algorithm for the solution of the

discrete system that approximates a nonsingular solution. We have shown that this

method converges quadratically, but not uniformly with respect to the discretization

parameter. This type of deterioration has been observed in several other problems.

In the case when the dependence of the drag coefficient on the pressure is ex-

ponential, we proposed a splitting scheme which requires the solution of two linear

problems for the determination of the unknowns. Although the complete mathemati-

cal analysis the problem in this case remains an open question, under the assumption

that there is a solution, we have showed that this splitting scheme converges to the so-

lution. The obtained estimates are suboptimal, but the numerical experiments show
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that this method is indeed optimal. A more refined analysis may provide a proof of

this fact.

Concerning the approximation of incompressible viscous flows with variable den-

sity (see Chapter IV) we have proposed a new fractional time-stepping technique

which decouples the diffusion and incompressibility constraint. The main novelty of

this scheme lies in the fact that for the determination of the pressure one has to

solve a Poisson equation, as opposed to a variable-coefficient second-order elliptic

equation. This simplification greatly reduces the overall computational cost of the

scheme, which allows for the use of finer meshes and smaller time steps.

We have proposed a family of first order schemes, and have shown that these

schemes are stable, convergent and perform at least as good as their well-known coun-

terparts used in the solution of constant density flows. Moreover, we have proposed

a formally second order scheme and we proved its stability. Numerical experiments

show that this scheme is indeed second order accurate. The techniques developed

in this dissertation may enable us to prove this. However, we have not pursued this

direction. Finally, as a byproduct of our analysis, we have provided a new proof of

an old result. Namely, the stability of the so-called pressure correction incremental

fractional time-stepping scheme in standard form. The novelty in our proof tech-

nique is that we have completely removed the solenoidal velocity from the analysis.

This new family of methods has already proved useful in the development of new

and simpler fractional time-stepping schemes for incompressible flows. For instance,

[76] uses these ideas to introduce numerical methods for a phase-field model for two-

phase flows. Moreover, the ideas and techniques that we have here introduced, have

served as a basis for the development of a new class of methods for the Navier-Stokes

equations based on direction splitting. The reader is referred to [42, 41, 43] for details.
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APPENDIX A

THREE TERM RECURSION INEQUALITIES

Let us prove auxiliary results regarding three term recursion inequalities. These

results will be needed to prove stability of the algorithms (4.14)–(4.15)–(4.13) and

(4.65)–(4.70).

Proposition 11. Assume that the characteristic polynomial of the three term recur-

sion equation

Axk+1 +Bxk + Cxk−1 = gk+1, k ≥ 2 (A.1)

has two (not necessarily distinct) nonzero real roots r1 and r2. Then, the generic

solution to this equation has the form

xν = c1r
ν
1 + c2r

ν
2 +

1

A

ν∑
l=2

rν−l1

l∑
s=2

rl−s2 gs, c1, c2 ∈ R.

Proof. It is sufficient to show that

x̄ν =
1

A

ν∑
l=2

rν−l1

l∑
s=2

rl−s2 gs, ν ≥ 2,

with x̄1 = x̄0 = 0 is a particular solution of (A.1).

Let n ≥ 1. Multiply (A.1) by r2n−k−2
2 and add all the results for k = 1, . . . , n.

Setting x1 = x0 = 0, we obtain

Arn−2
2 xn+1 + rn−2

2 (Ar2 +B)xn +
n−1∑
k=2

[
(Ar2n−k−1

2 +Br2n−k−2
2 + Cr2n−k−3

2 )xk
]

=
n+1∑
s=2

r2n−s−1
2 gs,
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which, since r2 is a root of the characteristic polynomial, implies

Axn+1 + (Ar2 +B)xn =
n+1∑
s=2

rn+1−s
2 gs, n ≥ 2. (A.2)

Let ν ≥ 1. Multiply (A.2) by rν−n1 and add all the results for n = 1, . . . , ν. We

obtain

Axν+1 +
ν∑
l=2

[
rν−l1 (A(r1 + r2) +B)xl

]
=

ν+1∑
l=2

rν+1−l
1

l∑
s=2

rl−s2 gs, ν ≥ 1.

Since r1, r2 are roots of the characteristic polynomial of the recursion equation, we

have B = −(r1 + r2)A, which implies

xν+1 =
1

A

ν+1∑
l=2

rν+1−l
1

l∑
s=2

rl−s2 gs, ν ≥ 1.

Hence, x̄ν is a particular solution of (A.1).

Proposition 12. Assume that the coefficients of the three term recursion inequality

Ayk+1 +Byk + Cyk−1 ≤ gk+1, k ≥ 1, (A.3)

satisfy

A > 0, C ≥ 0, A+B + C ≤ 0.

Let {yk}k≥0 be a solution to (A.3) with initial data y0 and y1. If {xk}k≥0 solves (A.1)

with initial data x0 = y0 and x1 = y1, then the following estimate holds

yν ≤ xν , ∀ν ≥ 0.

Proof. This is a comparison argument à la Grönwall. Let {zk}k≥0 be the sequence

defined by zν = yν −xν . Let us prove by induction that zk ≤ zk−1, for all k ≥ 1. The

claim holds true for k = 1 since 0 = z1 ≤ z0 = 0. Assume now that zν ≤ zν−1 for all
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1 ≤ ν ≤ k. The definition of {xk}k≥0 implies

Azk+1 +Bzk + Czk−1 ≤ 0, ∀k ≥ 1.

Hence

Azk+1 ≤ Azk − (A+B + C)zk + C(zk − zk−1) ≤ Azk,

which proves the claim.

The following corollary is a specialization of the two previous results which will

be needed in Section A of Chapter IV.

Corollary 6. The three term recursion equation

3xk+1 − 4xk + xk−1 = gk+1, k ≥ 1, (A.4)

has the following general solution

xν = c1 +
c2

3ν
+

ν∑
l=2

1

3ν+1−l

l∑
s=2

gs, c1 ∈ R, c2 ∈ R.

Let {yk}k≥0 be the solution to the three term recursion inequality

3yk+1 − 4yk + yk−1 ≤ gk+1, k ≥ 1,

with initial data y0 and y1. If {xk}k≥0 is the solution to (A.4) with initial data x0 = y0

and x1 = y1, then the following estimate holds

yν ≤ xν , ∀ν ≥ 0.

Proof. To obtain the generic solution, it is sufficient to notice that the roots of the

characteristic polynomial of the equation are r2 = 1 and r1 = 1/3. To obtain the

estimate it is sufficient to notice that A = 3 > 0, C = 1 > 0 and A + B + C =

3− 4 + 1 = 0 ≤ 0.
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