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1 Summary

We present a new class of coarse spaces for two-level additive Schwarz pre-
conditioners that yield condition number bound independent of the contrast
in the media properties. These coarse spaces are an extension of the spaces
discussed in [3]. Second order elliptic equations are considered. We present
theoretical and numerical results. Detailed description of the results and nu-
merical studies will be presented elsewhere.

2 Introduction

Many problems in applied sciences occur in the media that contains multi-
ple scales and has high contrast in the properties. For example, it is very
common to have several orders of magnitude of variations in the permeabil-
ity field in natural porous formations. Domain decomposition preconditioners
are often used to solve the fine-scale system that arises from the discretiza-
tion of partial differential equations. The number of iterations required by
domain decomposition preconditioners is typically affected by the contrast in
the media properties that are within each coarse-grid block. It is known that
if high and low conductivity regions can be encompassed within coarse-grid
blocks such that the variation of the conductivity within each coarse region is
bounded, domain decomposition preconditioners result to a system with the
condition number independent of the contrast (e.g., [5, 6]). Because of complex
geometry of fine-scale features, it is often impossible to separate low and high
conductivity regions into different coarse-grid blocks. Thus, the contrast will
adversly affect the number of iterations required by domain decomposition
preconditioners.

The design and analysis of preconditioners that converge independent of
the contrast is important for many applications, such as porous media flows
where flow problems are solved multiple times. In [3], we introduce a coarse
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space based on local spectral problems (see also [1]). These spaces are moti-
vated by weighted Poincaré estimates that arise in the proofs of L2 approxima-
tion property of the coarse interpolation. In particular, the spectrum of local
eigenvalue problem contains eigenvalues that are small and asymptotically
vanish as the contrast increases, and thus, there is a gap in the spectrum. The
eigenvectors corresponding to these small (asymptotically vanishing) eigenval-
ues represent the high-conducting features. The number of these eigenvectors
is the same as the number of disconnected high-conductivity inclusions. The
coarse space is constructed such that the basis functions span the eigenfunc-
tions corresponding to these small (asymptotically vanishing) eigenvalues as
well as some nodal multiscale basis functions. In [3], we prove that if the coarse
space includes the basis functions associated to these eigenfunctions, then the
condition number of the two level additive method is bounded independent of
the contrast of the media.

In many applications where the flow equations are solved multiple times, it
is important to choose a coarse space with a minimal dimension. The coarse
spaces constructed in [3] represent both high-conductivity channels (high-
conductivity inclusions that connect the boundaries of a coarse-grid block)
and high-conductivity isolated inclusions. Consequently, these coarse spaces
can have a large dimension. In [3], we note that one only needs to represent
channels within coarse blocks and present a procedure for removing high-
contrast isolated inclusions. In this paper, we present a more general approach
that removes the inclusions. In fact, one can consider the proposed construc-
tion as an approach that complements the coarse spaces constructed using
partition of unity functions. In particular, starting with an initial partition of
unity functions, e.g., multiscale basis functions, one adds new basis functions
by using eigenvectors of weighted eigenvalue problem. In this eigenvalue prob-
lem, the weight is computed using the gradient of the initial partition of unity
functions, see (10) below. The eigenfunctions corresponding to small (asymp-
totically vanishing) eigenvalues are chosen and new basis functions that span
these eigenfunctions are added to the coarse space. With a correct choice of
partition of unity functions, one can remove the inclusions and obtain the
coarse space with a small dimension. We present a theoretical result that
states that the condition number of the preconditioned system is independent
of contrast. Numerical results are presented to demonstrate our theoretical
findings.

3 Problem setting and domain decomposition framework

Let D ⊂ R
2 (or R

3) be a polygonal domain which is the union of a disjoint
polygonal subregions {Di}

N
i=1. We consider the following problem. Find u∗ ∈

H1
0 (D) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (D). (1)
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Here the bilinear form a and f are defined by a(u, v) =
∫

D
κ(x)∇u(x)∇v(x)dx,

and f(v) =
∫

D
f(x)v(x)dx, for all u, v ∈ H1

0 (D).
We assume that {Di}

N
i=1 form a quasiuniform triangulation of D and de-

note H = maxi diam(Di).
Let T h be a fine triangulation which refine {Di}

N
i=1. We denote by V h(D)

the usual finite element discretization of piecewise linear continuous functions
with respect to the fine triangulation T h. Denote also by V h

0 (D) the subset
of V h(D) with vanishing values on ∂D. Similar notations, V h(Ω) and V h

0 (Ω),
are used for subdomains Ω ⊂ D.

The Galerkin formulation of (1) is to find u∗ ∈ V h
0 (D) with a(u∗, v) = f(v)

for all v ∈ V h
0 (D), or in matrix form

Au∗ = b, (2)

where for all u, v ∈ V h(D) we have uTAv =
∫

D
κ∇u∇v, and vT b =

∫
D
fv.

It is sufficient to consider the case of piecewise constant coefficient κ. From
now on we will assume that κ is piecewise constant coefficient in T h with value
κ = κe on each fine triangulation element e ∈ T h.

We denote by {D′
i}

N
i=1 the overlapping decomposition obtained from the

original nonoverlapping decomposition {Di}
N
i=1 by enlarging each subdomain

Di to D′
i = Di ∪ {x ∈ D,dist(x,Di) < δi}, i = 1, . . . , N , where dist is some

distance function and let δ = max1≤i≤N δi. Let V i
0 (D′

i) be the set of finite
element functions with support in D′

i. We also denote by RT
i : V i

0 (D′
i) → V h

the extension by zero operator.
We will use a partition of unity {ξi}

N
i=1 subordinated to the covering

{D′
i}

N
i=1 such that

N∑

i=1

ξi = 1, ξi ∈ V h, and Supp(ξi) ⊂ D′
i, i = 1, . . . , N, (3)

where Supp(ξi) stands for the support of the function ξi. This will be the
partition of unity used to truncate global functions to local ones in the proof
of the stable decomposition.

Given a coarse triangulation T H we introduce Nc coarse basis functions
{Φi}

Nc

i=1
. We define the coarse space by

V0 = span{Φi}
Nc

i=1
, (4)

and the coarse matrix A0 = R0AR
T
0 where RT

0 = [Φ1, . . . , ΦNc
].

We use a two level additive preconditioner of the form

B−1 = RT
0 A

−1

0 R0 +

N∑

i=1

RT
i A

−1

i Ri, (5)

where the local matrices are defined by vAiw = a(v, w) for all v, w ∈ V i =
V h

0 (D′
i), i = 1, . . . , N . See [5, 6].
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We denote by {yi}
Nv

i=1
the vertices of the coarse mesh T H and define

ωi =
⋃

{K ∈ T H ; yi ∈ K}, ωK =
⋃

{ωj ; yj ∈ K}. (6)

We will use a partition of unity {χi}
Nv

i=1
subordinated to the covering

{ωi}
Nv

i such that

Nv∑

i=1

χi = 1, χi ∈ V h, and Supp(χi) ⊂ ωi, i = 1, . . . , Nc. (7)

4 Coarse-space-completing eigenvalue problem and

stability estimates

In this section we define the new local spectral multiscale coarse space us-
ing eigenvectors of high contrast eigenvalue problems. Fist we introduce the
notation for eigenvalue problems.

For any Ω ⊂ D define the matrix AΩ by

vTAΩw =

∫

Ω

κ∇v∇w for all v, w ∈ Ṽ h(Ω), (8)

and the modified mass matrix of same dimension MΩ by

vTMΩw =

∫

Ω

κ̃vw for all v, w ∈ Ṽ h(Ω), (9)

where Ṽh = Vh(Ω) if Ω ∩ ∂D = ∅ and Ṽh = {v ∈ Vh(Ω) : v = 0 on ∂Ω ∩ ∂D}
otherwise. Here κ̃ in (9) is a weight derived from the high contrast coefficient
κ and contains the relevant information we need for the construction of the
coarse basis functions. Several possible choices for κ̃ can be considered. We
refer to [3] for the case κ̃ = κ. Here we will consider only the case of the
piecewise constant κ̃ given by

κ̃ = max



κ

N∑

i=1

|∇ξi|
2, κ

Nv∑

j=1

|∇χj |
2



 , (10)

where {ξ}N
j=1 and {χi}

Nv

i=1
are the partition of unity introduced in (3) and

(7), respectively. From now on, we assume that overlapping decomposition is
constructed from the coarse mesh and ξi = χi for all i = 1, . . . , N = Nv. We
consider the finite dimensional symmetric eigenvalue problem

AΩφ = λ̃MΩφ (11)

and denote its eigenvalues and eigenvectors by {λ̃Ω
ℓ } and {ψΩ

ℓ }, respectively.

Note that the eigenvectors {ψΩ
ℓ } form an orthonormal basis of Ṽ h(Ω) with
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respect to the MΩ inner product. Assume that λ̃Ω
1 ≤ λ̃Ω

2 ≤ · · · ≤ λ̃Ω
i ≤ . . . ,

and note that λ̃Ω
1 = 0. In particular, ψωi

ℓ denotes the ℓ-th eigenvector of the
matrix associated to the neighborhood of yi, i = 1, . . . , Nv.

In general, when κ̃ = κ and for the Neumann boundary case, if there are
n inclusions and channels, then one can observe n small (asymptotically van-
ishing) eigenvalues. The eigenvectors corresponding to these eigenvalues will
be used to construct the coarse space V0. In this case, the term κ̃ = κ on
the right hand side of the eigenvalue problem results to eigenvectors that are
nearly constant inside each high conductivity inclusion/channel. When κ̃ is
chosen based on (10), then the number of asymptotically small eigenvalues
is the same as the number of high-conductivity inclusions in κ̃. In particu-
lar, if the partition of unity functions are piecewise linear polynomials then κ̃
and κ have the same high-contrast structure. We are interested in partition of
unity functions that can “eliminate” isolated high-conductivity inclusions and
thus reduce the size of the coarse space. This can be achieved by minimizing
high-conductivity components in κ̃. In particular, by choosing multiscale finite
element basis functions or energy minimizing basis functions, we can elimi-
nate all isolated high-conductivity inclusions, while preserving the channels.
This can be observed in our numerical experiments. In Figure 1 (below) and
Figure 2 (on page 7), we depict κ (middle picture) and κ̃ (right picture) using
multiscale basis functions on the coarse grid. The coarse grid is depicted on
the left pictures. One can observe that isolated inclusions are removed in κ̃,
and consequently, the coarse space contains only long channels that connect
boundaries of the coarse grid.

Fig. 1. Left: Coarse mesh. Center: Original coefficient. Here η = 109. Right: Coef-
ficient eκ computed as in (10) using (linear) multiscale basis functions.

We note that for the proposed methods, we only need to specify the eigen-
vectors based on the quantities {1/λ̃ωi

l } in each ωi, i = 1, . . . , Nv. These
eigenvectors are used to construct the coarse space.

We assume that the elements of T h contained in Ω form a triangulation of
Ω. Let nh(Ω) denote the number of degrees of freedom in Ω. Given an integer
L and v ∈ V h(Ω) define
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IΩ
L v =

L∑

ℓ=1

(∫

Ω

κ̃vψΩ
ℓ

)
ψΩ

ℓ . (12)

Let {χi}
Nv

i=1
be a partition of unity (3). Define the coarse basis functions

Φi,ℓ = Ih(χiψ
ωi

ℓ ) for 1 ≤ i ≤ Nv and 1 ≤ ℓ ≤ Li, (13)

where Ih is the fine-scale nodal value interpolation and Li is an integer number
for each i = 1, . . . , Nv. Denote by V0 the local spectral multiscale space

V0 = span{Φi,ℓ : 1 ≤ i ≤ Nv and 1 ≤ ℓ ≤ Li}. (14)

Define also the coarse interpolation I0 : V h(D) → V0 by

I0v =

Nv∑

i=1

Li∑

ℓ=1

(∫

ωi

κ̃vψωi

ℓ

)
Ih(χiψ

ωi

ℓ ) =

Nv∑

i=1

Ih
(
(Iωi

Li
v)χi

)
, (15)

where Ih is the fine-scale nodal value interpolation and Iωi

Li
is defined in (12).

We have the following weighted L2 approximation and weighted H1 sta-
bility properties.

Lemma 1. For all coarse element K we have∫

K

κ̃(v − I0v)
2 �

1

λ̃K,L+1

∫

ωK

κ|∇v|2 (16)

∫

K

κ|∇I0v|
2 � max{1,

1

λ̃K,L+1

}

∫

ωK

κ|∇v|2 (17)

where λ̃K,L+1 = minyi∈K λ̃ωi

Li+1
and ωK is the union of the elements that

share common edge with K defined in (6).

The proof of this lemma follows from the results presented in [3] and will be
presented elsewhere.

Using Lemma 1, we can estimate the condition number of the precondi-
tioned operator B−1A with B−1 defined in (5) using the coarse space V0 in
(14). From the abstract domain decomposition theory we only need to prove
the stable decomposition property; see [5, 6]. From this stable decomposition
property, one has the following Lemma.

Lemma 2. The condition number of the preconditioned operator B−1A with
B−1 defined in (5) is of order

cond(B−1A) � C2
0 � 1 +

1

λ̃L+1

where λ̃L+1 = min
1≤i≤Nv

λ̃ωi

Li+1
.

It can be easily shown that the eigenvalues of the local problem scale as
O(1) assuming ξi = χi, i = 1, . . . , N = Nv, in (10). The dependency of the
condition number of overlapping decomposition (δ) and coarse grid size (H)
is controlled by the partition of unity {ξi} and {χi} in (10).
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5 Numerical results

In this section, we present representative numerical results for the additive pre-
conditioner (5) with the local spectral multiscale coarse space defined in (14).
We take D = [0, 1]× [0, 1] that is divided into 8× 8 equal square subdomains.
Inside each subdomain we use a fine-scale triangulation where triangular ele-
ments constructed from 10 × 10 squares are used.

In our first numerical example, we choose a simple permeability field that
only has isolated inclusions, see middle picture of Figure 1. The coarse grid
is demonstrated in the left picture. Multiscale finite element basis functions
with linear boundary conditions are chosen as a partition of unity functions
in (10). The purpose of this example is to demonstrate that κ̃ does not have
any high-conductivity components with this choice of partition of unity func-
tions. As a result, we have only one eigenfunction (constant) per coarse grid.
Thus, there is no need to complement the space of multiscale basis functions
with linear boundary conditions. Note that if we use the eigenvalue problem
with the weight function κ, then there will be four basis functions per node
that represent inclusions. One can choose any κ̃ that is larger than the one
defined by (10). In our simulations, we add a positive constant to κ̃ to avoid a
numerical instability. In our numerical results, we observed that the number
of iterations with the weight κ̃ = κ and the weight κ̃ defined in (10) (which
results in the multiscale finite element basis functions) does not change for the
contrast η = 104, 105, 106, 108, 108. The number of iterations is 22 iterations.
Due to space limitation, we do not present detailed numerical results.

Fig. 2. Left: Coarse mesh. Center: Original coefficient. Right: Coefficient eκ com-
puted as in (10) using (linear) multiscale basis functions. The numerical results are
presented in Table 1.

In the second example, we test our approach on a more complicated per-
meability field that contains inclusions and channeles (see middle picture of
Figure 2). As before we use multiscale finite element basis functions as the ini-
tial partition of unity. From the right picture of Figure 2 we see that the mod-
ified weight κ̃ does not contain any isolated inclusions and only contains long
channels connecting boundaries of the coarse-grid block. This is achieved au-
tomatically from the choice of the partition of unity functions. There are fewer
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small (asymptotically vanishing) eigenvalues when local eigenvalue problem
is solved with the modified weight κ̃. Thus, with a good choice of partition of
unity functions in (10), there are fewer new multiscale basis functions needed
to achieve an optimal, in terms of the contrast, convergence. Numerical results
are presented in Table 1. We observe that using the proposed coarse spaces,
the number of iterations is independent of contrast. In Table 1 we also show
the dimension of the coarse spaces. The dimension of the local spectral coarse
space is smaller if we use κ̃ in (10) instead of κ̃ = κ as in [3].

η MS EMF LSM (eκ = κ) LSM( eκ in (10))

104 98(2490.75) 62(257.86) 27(6.19) 28(7.34)
105 123(24866.24) 62(283.29) 28(6.19) 29(7.35)
106 144(248621.33) 62(286.12) 29(6.19) 29(7.35)
107 174(2486172.35) 63(286.41) 29(6.19) 30(7.35)

Dim 49 49 102 69

Table 1. Number of iterations until convergence and estimated condition number
for the PCG and different values of the contrast η with the coefficient depicted in
Figure 2. We set the tolerance to 1e-10. Here H = 1/8 with h = 1/80. The notation
MS stands for the (linear boundary condition) multiscale coarse space, EMF is the
energy minimizing coarse space, see e.g., [7], and LSM is the local spectral multiscale
coarse space defined in (14).
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