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Abstract

In this paper, we give an analysis and a general procedure for 4D
variational data assimilation (4D-Var). In functional partial differen-
tial equation setting, the adjoint equation method, sensitivity analysis,
and multicomponent operator splitting are discussed. Nonlinear opti-
mization methods and convergence analysis are also investigated for
4D-Var.
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1 Introduction

There is a steadily growing interest in variational data assimilation [1, 18, 22].
Data assimilation systems use the sources of data: observations, a recent
forecast (or “background”) true at a known time, and error statistics. In
many real life problems, observation sets are distributed in three dimen-
sional space plus time, corresponding to four dimensional variational data
assimilation (4D-Var). 4D-Var is a method of estimating a set of parameters
by optimizing the fit between the solution of a model and a set of observa-
tions. The unknown model parameters may be the model’s initial conditions
or boundary conditions. The problem of determining the model parameters
is very important and complex and has become a science in itself. The goal
of 4D-Var is to incorporate actual observations (e.g., satellite, radar, ship,
land surface, and so on) into mathematical and numerical models in order to
build the best approximation (in some sense) of the true state and to create
a unified model description of some substance (e.g., atmosphere or chemical
pollutant) arising from nature. This can be used by scientific communities
to study important phenomena associated with the substance. 4D-Var is a
process where a state forecast and observations are combined to produce a
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best (optimal) estimate or an analysis of the state or parameters of the model
(possibility included in an extended state) [18].

Typically, optimization of parameters in 4D-Var can be regarded as a
class of inverse problems and the parameters are often constrained by evo-
lution differential operators. 4D-Var can be reduced to a PDE-constrained
optimization problem. We will use a parameter which represents the initial
condition of a nonlinear evolution differential operator. Therefore the 4D-Var
problem (inverse problem) can be posted as, “what initial condition will seed
the model to best predict the known observations?” A practical implementa-
tion of the optimization process requires a fast and accurate evaluation of the
gradient of a optimization functional which may be provided by an adjoint
model. Generally the adjoint model relies on the existence of the forward
model itself which is run many times in an iterative procedure for numerical
implementation.

In this paper, we discuss some key issues in 4D-Var from a functional
perspective and a numerical perspective. We give an analysis for 4D-Var and
provide a general procedure for 4D-Var.

The paper is organized as follows. In Section 2, we introduce a func-
tional setting for 4D-Var, where the observation operator and constrained
differential operator are both nonlinear in vector spaces. An optimal con-
trol problem is derived and sensitivity analysis and multicomponent operator
splitting are carried out for the functional 4D-Var. In Section 3, we investi-
gate iterative descent algorithms and convergence analysis of Quasi-Newton
iterative methods for 4D-Var. In Section 4, we apply the analysis and the
general procedure to a 4D-Var chemical transport model.

2 4D Variational Data Assimilation in Func-

tional Setting

2.1 A Framework for 4D-Var

In this section, we discuss a framework for 4D-Var. 4D-Var is a generalization
of 3D-Var for observations that are distributed in time. We set the framework
using a nonlinear functional defined in vector spaces.

Let V be vector space with inner product (·, ·)V and U = {φ : [t0, T ] −→
V } be a time dependent vector space. Let uB ∈ V represent the background
of the initial values (the initial guess in the assimilation) and B : V →
V be an associated linear symmetric covariance operator of the estimated
background error. Let H be an observation operator which depends on time
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t (without specification, we always assume that H = H(t) in the paper)
and represents the process of interpolating the model solution u to available
observations. Basically, H maps space U into a vector space Uo, whose
dimension is often lower than the dimension of U . Let uobs ∈ Uo be the real
observations depending on time t. The linear symmetric covariance operator
R−1 : Uo → Uo accounts for observations and representativeness errors and
it depends on time. In its general form a cost function can be defined as

J(u0, u) =
1

2
(u0−uB, B−1(u0−uB))+

1

2
(Hu−uobs, R

−1(Hu−uobs))Uo , (2.1)

where u ∈ U , u0 ∈ V and

(·, ·)U0 =

∫ T

t0

(·, ·)(s)ds.

Here (·, ·) inside the integral represents the inner product of the space Uo(s)
(for fixed time s). In this paper, we will use (·, ·) to represent generic inner
products to avoid using many notations. Different spaces may have differ-
ent definitions for the (·, ·) (e.g., observations in Uo and the corresponding
inner product (·, ·) means (·, ·)Uo), but they can be easily distinguished in
the context. The cost functional measures the difference between the model
output u and the observation uobs and the deviation of the solution from the
background state uB.

Remark 2.1. In many real life situations, the observation uobs is not defined
continuously in a time interval [t0, T ], but is evaluated at a set of discrete time
moments {tk}N

k=0. For these cases, the cost functional is redefined as

J(u0, u) =
1

2
(u0 − uB, B−1(u0 − uB))

+
1

2

N∑

k=0

(Hku
k − uk

obs, R
−1
k (Hku

k − uk
obs)).

(2.2)

Remark 2.2. If the observation uobs is not defined continuously in domain Ω,
but is evaluated at a set of discrete locations {xl}L

l=0, then the cost functional
is redefined as

J(u0, u) =
1

2
(u0−uB, B−1(u0−uB))+

1

2
(Hu−uobs, R

−1(Hu−uobs)δ(x−xl)),

(2.3)
where δ(·) is the Dirac function.
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Remark 2.3. If the observation uobs is not defined continuously in a time in-
terval and domain, but is evaluated at a set of discrete time moments {tk}N

k=0

and of space locations {xl}L
l=0, then the cost functional is redefined as

J(u0, u) =
1

2
(u0 − uB, B−1(u0 − uB))

+
1

2

N∑

k=0

(Hku
k − uk

obs, R
−1
k (Hku

k − uk
obs)δ(x− xl)).

(2.4)

Remark 2.4. J(u0, u) is called a sensitivity functional in the adjoint opti-
mization.

Let S(t) be a predefined forecast model (a nonlinear operator) from the
initial time t0 to time t. If the model solution u is the solution of such an
evolution equation as in (2.14), then S(t) is basically a semigroup. Generally,
4D variational assimilation is defined as the minimization problem,

û0 = arg min{J(u0, u) : u(t) = S(t)u0},

where the model states u(t) are subject to the forward model equation,

u(t) = S(t)u0. (2.5)

Let S̄(t) be the linearization of S(t). Corresponding to (2.5), a tangent linear
model is defined by

δu(t) = S̄(t)δu0. (2.6)

Let S̄∗(t) be the adjoint of S̄(t), H̄∗(t) the adjoint of H̄(t), and H̄(t) a
linearization of H(t). Let ∇u0 be the gradient operator defined on space V
with respect to u0 and ∇2

u0 the second derivative operator with respect to
u0. Since u(t) = S(t)u0, a direct calculation gives rise to

∇u0J = B−1(u0 − uB) +

∫ T

t0

S̄∗H̄∗R−1(Hu− uobs)(s)ds (2.7)

and

∇2
u0J(u0, u) = B−1 +

∫ T

t0

S̄∗H̄∗R−1H̄S̄ds. (2.8)

For the numerical approximation of (2.1) we need to discretize time.
Without loss of generality, we can discuss the cost functional defined in (2.2)
instead of the time discretization of (2.1) or (2.3). This is because the cost
functional is the same as in (2.2) in many real life problems and the time
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discretization of (2.1) is similar to (2.2). For example, a time discretization
approximation of (2.1) can be written for a time step length of τ = T−t0

N
as

J(u0, u) ≈ 1

2
(u0−uB, B−1(u0−uB))+

1

2

N∑

k=1

τ(Hku
k−uk

obs, R
−1
k (Hku

k−uk
obs)).

In this paper, we will use the cost functional in (2.1) to discuss the continuous
4D-Var and use the functional in (2.2) to discuss the numerical 4D-Var.

Hence, 4D-Var is just a nonlinear constrained optimization problem that
is very difficult to solve in the general case. For numerical approximation,
4D-Var can be simplified with two hypothesis:
Hypothesis 1: The forecast model can be expressed as the product of inter-
mediate forecast steps. Let S[t,t+τ ] be the forecast step from t to t + τ , i.e.,
u(t + τ) = S[t,t+τ ]u(t). Consequently, for tk = t0 + kτ ,

u(tk) = S[tk−1,tk] · · ·S[t1,t2]S[t0,t1]u
0.

Remark 2.5. Hypothesis 1 usually means that the forecast model is the in-
tegration of a numerical prediction model starting with u0 as the initial con-
dition. Hypothesis 1 is suitable for an operator splitting method for the PDE
problem.

Hypothesis 2: HSu0 has a first order Taylor expansion around uB at
any observation time, i.e.,

HSu0 = HSuB + H̄S̄(u0 − uB),

where we recall that H̄ = H̄(t) is the linearization of the observation operator
H(t) and S̄ = S̄(t) is the tangent linear model of S(t), i.e., the differential
(perturbation) of S(t).

Remark 2.6. Hypothesis 2 is a tangent linear hypothesis and implies that

∇u0HS(u0) = H̄S̄.

Let S̄[tk−1,tk] = ∇uS[tk−1,tk]u|t=tk−1
and S̄[t0,tk] = Πk

i=1S̄[ti−1,ti]. With Hy-
pothesis 1, it follows that

δu(tk) = S̄[tk−1,tk]δu(tk−1), δu(tk) = S̄[t0,tk]δu(t0).

Let H̄k = ∇uHu|t=tk . It is easy to verify that

∇u0(Hku
k − uk

obs) = H̄kS̄[t0,tk].
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Since adjoint problems are solved from end time to initial time, we use S̄∗[tk,t0]

to represent the linearization adjoint model from tk to t0. Consequently, it
follows that

∇u0J = B−1(u0 − uB) +
N∑

k=0

S̄∗[tk,t0]H̄
∗
kR−1

k (Hku
k − uk

obs) (2.9)

and

∇2
u0J = B−1 +

N∑

k=0

S̄∗[tk,t0]H̄
∗
kR−1

k H̄kS̄[t0,tk]. (2.10)

By Hypothesis 2, it follows that

HkS[t0,tk](u
0
g + δu0) = HkS[t0,tk]u

0
g + H̄kS̄[t0,tk]δu

0 = Hku
k
g + H̄kS̄[t0,tk]δu

0,

where u0
g is a guess of u0. Consequently, for dk = uk

obs −Hku
k
g ,

J(δu0) =
1

2
(δu0 − (uB − u0

g), B
−1(δu0 − (uB − u0

g)))

+
1

2

N∑

k=0

(H̄kS̄[t0,tk]δu
0 − dk, R−1

k (H̄kS̄[t0,tk]δu
0 − dk)).

(2.11)

Thus we obtain that û0 = u0
g + ˆδu0, which is called the incremental 4D-Var

formulation [9]. Rather than a complete minimization of the full nonlinear
cost function (2.2), the incremental method is an approximation of the full
cost function by a series of minimizations of the quadratic cost functions
(2.11) subject to a linear model, where the tangent linear model is used.

Let ∂uk−1J be the partial differential of J(u0, u) with respect to uk−1 for a
fixed first argument u0 and u = {u0, · · · , uN}. For the cost functional defined
in (2.2), a time-discrete adjoint problem is defined such that the solution w
to the adjoint model can be explicitly described by

wN = 0 and wk−1 = S̄∗[tk,tk−1]w
k + ∂uk−1J. (2.12)

Then we obtain the gradient of J with respect to u0 by the adjoint problem
(2.12). Thus, we have the following lemma:

Lemma 2.1. Let w be the solution of (2.12). Then

∇u0J(u0, u) = w0 + B−1(u0 − uB).
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Proof. Since ∂ukJ = H̄∗
kR−1

k (Hku
k − uk

obs), it follows from (2.9) that

∇u0J = B−1(u0 − uB) +
N∑

k=0

S̄∗[tk,t0]∂ukJ

= B−1(u0 − uB) +
N∑

k=0

S̄∗[t1,t0] · · · S̄∗[tk,tk−1]∂ukJ

= B−1(u0 − uB) + I∂u0J

+ S̄∗[t1,t0](∂u1J + S̄∗[t2,t1](∂u2J + · · ·+ S̄∗[tN−1,tN−2](∂uN−1J + S̄∗[tN ,tN−1]∂uN J))).

(2.13)

By the recurrence definition of w in (2.12), it follows that

∇u0J = w0 + B−1(u0 − uB).

Remark 2.7. By Lemma 2.1, we use the solutions of the adjoint equation
(2.12) to evaluate the gradient of the cost functional.

2.2 Constraint Specified by An Evolution Operator

We now discuss the case when the constraint u(t) = S(t)u0 is specified by a
nonlinear evolution operator A defined on a vector space U . The variational
data assimilation problem associated with A and J is essentially an opti-
mal control problem that can be formulated by the following minimization
problem: Find the solution φ ∈ U of





Dtφ = A(φ)
φ(t = t0) = u0

û0 = arg infu0 J(u0, φ),

(2.14)

where J(u0, φ) is defined in (2.1) if we substitute φ(t) for u(t) in (2.1). In
the paper, we assume that the nonlinear evolution equation in (2.14) has a
unique solution.

Remark 2.8. Since u0 is the initial condition, φ = φ(u0). Hence, it is

meaningful that û0 = arg infu0 J(u0, φ) in (2.14).

Theorem 2.2. The optimal control problem (2.14) is equivalent to the opti-
mal system




Dtφ = A(φ)
φ(t = t0) = u0

−Dtφ
∗ = (∇A(φ))∗φ∗ − H̄∗R−1(Hφ− φobs)

φ∗(t = T ) = 0
φ∗(t = t0) = B−1(u0 − uB),

(2.15)
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where φ ∈ U and φ∗ ∈ U .

Proof. Let u1 = u0 + εu′ for ε ∈ R and u′ ∈ V . We consider the problem
with initial condition u1,

{
Dtφ1 = A(φ1)

φ1(t = t0) = u1.
(2.16)

Let φ0 = φ−φ1

ε
. Then φ1 = φ+εφ0. Suppose that A is Gâteaux differentiable,

then the Taylor expansion yields

A(φ1) = A(φ) +∇A(φ)(εφ0) + O(ε). (2.17)

Substituting (2.17) into (2.16) with just the first order term (neglecting the
higher order term O(ε)) and subtracting the equation in (2.14) from (2.16),
we obtain an equation with corresponding solution φ0,

{
Dtφ0 = (∇A(φ))φ0

φ0(t = t0) = u′.
(2.18)

Since φ and u represent the optimal control problem (2.14), J(u0 + εu′) is
minimal when ε = 0. This implies that dJ

dε
|ε=0 = 0. By the definition of J in

(2.1), we have

dJ(u0 + εu′, φ + εφ0)

dε
= (u′, B−1(u0 − uB)) + ε(u′, u′)

+ (H̄φ0, R
−1(Hφ− φobs)) + ε(H̄φ0, R

−1H̄φ0).
(2.19)

Since dJ
dε
|ε=0 = 0, we have

(u′, B−1(u0 − uB)) + (H̄φ0, R
−1(Hφ− φobs)) = 0

or
(u′, B−1(u0 − uB)) + (φ0, H̄

∗R−1(Hφ− φobs)) = 0. (2.20)

Equation (2.20) contains φ0 which is a solution to (2.18). Let us use the
dual representation for (φ0, H̄

∗R−1(Hφ− φobs)), which is a linear functional
on φ0, through a solution of the adjoint problem of the perturbation problem
(2.18) of the form

{ −Dtφ
∗ = (∇A(φ))∗φ∗ − H̄∗R−1(Hφ− φobs)

φ∗(t = T ) = 0,
(2.21)

where operator (∇A(φ))∗ is the adjoint to the operator ∇A(φ) and satisfies
the Lagrange identity for each time t: (∇A(φ)ψ, ψ∗) = (ψ, (∇A(φ))∗ψ∗) for
any ψ ∈ D(∇A(φ)) and ψ ∈ D((∇A(φ))∗).
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Multiplying (2.18) by φ∗ and (2.21) by φ0 and subtracting them from
each other, we get

(u′, φ∗(t = t0)) = −(φ0, H̄
∗R−1(Hφ− φobs)). (2.22)

Then
(u′, φ∗(t = t0)) = (u′, B−1(u0 − uB)).

From here we have B−1(u0 − uB)− φ∗(t = t0) = 0 since u′ is arbitrary. This
completes the proof.

Remark 2.9. The fifth equation in (2.15) is the optimality condition.

Remark 2.10. Let SA(t) denote an operator semigroup with generator A.
By the notation of a semigroup,

φ(t) = SA(t)u0.

Hereafter we will use similar notations to denote semigroups. If A is a maxi-
mal dissipative operator on V , the exponential formula of the nonlinear semi-
group [2] is

SA(t)u0 = lim
n→∞

(1− t

n
A)−nu0,

where the limit is taken in the strong topology sense. Further,

φ∗(t) = −
∫ T

t

S−(∇A(φ))∗(t− s)(H̄∗R−1(Hφ− φobs))(s)ds, (2.23)

where S−(∇A(φ))∗t = e−(∇A(φ))∗t since the generator −(∇A(φ))∗ is a bounded
linear operator.

We can rewrite (2.15) as an operator system of equations. We introduce
operators G, S and Ḡ∗, where G = Dt − A denotes the forward transport
operator associated with the first equation in (2.15), S extends a spatial field
at initial time onto space-time, S̄∗ restricts a space-time field to a spatial field
at initial time, and Ḡ∗ = −Dt − (∇A(φ))∗ is the adjoint transport operator
associated with the third equation in (2.15). With these definitions, we can
rewrite (2.15) as




H̄∗R−1H 0 Ḡ∗

0 B−1 −S̄∗

G −S 0







φ
u0

φ∗


 =




H̄∗R−1φobs

B−1uB

0


 (2.24)

Hence we obtain the following proposition:

9



Proposition 2.3. Let H = B−1 + S̄∗(Ḡ∗)−1H̄∗R−1HG−1S and
g = S̄∗(Ḡ∗)−1H̄∗R−1φobs, where G, Ḡ∗, S, and S̄∗ are defined in (2.24).
Then the optimal solution of (2.14) is the solution of the equation

Hu0 = g. (2.25)

Proof. The optimal control problem (2.14) is equivalent to the system (2.24).
The third equation in (2.24) implies that

φ = G−1Su0.

Substituting φ = G−1Su0 into the first equation in (2.24) to eliminate φ gives
us

φ∗ = (Ḡ∗)−1H̄∗R−1(φobs −HG−1Su0).

After eliminating φ∗ in the second equation of (2.24), it follows immediately
that Hu0 = g.

Remark 2.11. The system (2.25) is the Schur complement system and H is
the reduced Hessian operator and maps V to U . The discrete form of (2.24)
can be computed by conjugate gradient methods. Given an initial guess v,
w = Hv can be computed through a matrix-free fashion [1].

Remark 2.12. Proposition 2.3 provides an idea of how to solve (2.14). Sup-
pose {Eν} is a sequence of invertible operators, {aν} is a sequence of real
numbers, and ν is the index of ν-th iteration. We define an iterative method
that is applied to Hu0 = g by

Eν
u0,(ν+1) − u0,(ν)

aν

= −(Hu0,(ν) − g). (2.26)

For Lν = I − aνE
−1
ν H and gν = aνE

−1
ν g, (2.26) can be rewritten as

u0,(ν+1) = Lνu
0,(ν) + gν .

When ‖Lν‖ < 1, the scheme in (2.26) converges. By Proposition 2.3, the
iterative process in (2.26) is equivalent to the following:





Dtφ
(ν) = A(φ(ν))

φ(ν)(t = t0) = u0,ν

−Dtφ
∗,(ν) = (∇A(φ(ν)))∗φ∗,(ν) − H̄∗R−1(Hφ(ν) − φobs)

φ∗,(ν)(t = T ) = 0

Eν
u0,(ν+1)−u0,(ν)

aν
= φ∗,(ν)(t = t0)−B−1(u0,(ν) − uB).

(2.27)

It is not easy to find both Eν and av in practice. So it is used mainly in
theoretical analysis. In the next section, we introduce iterative methods in
the setting of optimization, which are often used in numerical experiments.
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Next we discuss the sensitivity analysis in a functional analysis frame-
work. We still consider the nonlinear evolution equation

{
Dtφ = A(φ)

φ(t = t0) = u0 (2.28)

and a nonlinear functional J(u0, φ). We want to know how sensitive the
functional J is to the perturbation δφ. Let δφJ be the perturbation of J(u0, φ)
when δφ is nonzero.

Proposition 2.4. Let J and u0 be defined in (2.14). Then

δφJ = −(δu0, φ∗(t = t0)). (2.29)

Proof. By (2.18), we have

{
Dtδφ− (∇A(φ))δφ = 0

φ0(t = t0) = δu0.
(2.30)

By (2.21), we have

{ −Dtφ
∗ − (∇A(φ))∗φ∗ = −H̄∗R−1(Hφ− φobs)

φ∗(t = T ) = 0.
(2.31)

The proof of equation (2.22) implies that

(δu0, φ∗(t = 0)) = −(δφ, H̄∗R−1(Hφ− φobs)).

Since

δφJ =

∫ T

t0

(∇φJ)δφ(s)ds = (δφ, H̄∗R−1(Hφ− φobs)),

we have
δφJ = −(δu0, φ∗(t = t0)).

Equation (2.29) shows how the sensitivity of the functional J(u0, φ) is
related to initial condition u0. From the above analysis, we find that the
solution φ∗ of the adjoint problem (2.21) is responsible for the sensitivity
of the functional J to the initial condition. It is often called an influence
function or importance function [16].
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2.3 Operator Splitting Methods

In this subsection we show that Hypothesis 1 can be realized using a con-
structive process and error estimates are given.

If A(φ) in (2.28) has a complicated structure and consists of different
parts, e.g., A(φ) consists of an advection operator, a diffusion operator and
a reaction operator, then splitting methods are advocated for solving (2.28)
[12]. The basic idea behind operator splitting is to reduce a complicated
problem into smaller or simpler subproblems such that different parts can
be solved efficiently with appropriate integration formulas. Here we will use
the Marchuk-Strang symmetrical multi-component splitting [15, 21] to solve
(2.28).

Let A(φ) =
∑J

j=1 Aj(φ), where Aj is the Lie operator associated with
each operator Aj (A is associated with A). These Lie operators Aj (or A)
are linear operators on the space of operators acting on the solution space
U of (2.28). For any v ∈ U and any operator g on U , by definition of a Lie
operator [12], it follows that

Ag(v) = g′(v)A(v).

So for the solution φ(t) of (2.28),

Ag(φ(t)) = g′(φ(t))A(φ(t)) =
∂

∂t
g(φ(t)).

Let I be identity operator. Using Lie-Taylor series [8] gives us

φ(t + τ) = (eτAI)φ(t).

We split the problem (2.28) into J subproblems, Dtφj = Aj(φj), j = 1, · · · , J .
We apply the Marchuk-Strang symmetrical multi-component splitting over
time intervals [tk, tk+1], where tk+1 = tk + τ with constant time step length
τ , to obtain




Dtφ1 = A1(φ1), φ1(tk) = φ′1(tk), t ∈ [tk, tk + τ
2
]

· · ·
DtφJ−1 = AJ−1(φJ−1), φJ−1(tk) = φJ−2(tk + τ

2
), t ∈ [tk, tk + τ

2
]

DtφJ = AJ(φJ), φJ(tk) = φJ−1(tk + τ
2
), t ∈ [tk, tk + τ ]

Dtφ
′
J−1 = AJ−1(φ

′
J−1), φ′J−1(tk + τ

2
) = φJ(tk+1), t ∈ [tk + τ

2
, tk+1]

· · ·
Dtφ

′
1 = A1(φ

′
1), φ1(tk + τ

2
) = φ′2(tk+1), t ∈ [tk + τ

2
, tk+1].

(2.32)

Let Sj, 1
2
τ = e

1
2
τAj , SJ,τ = eτAJ , and φk be approximations of φ(tk), k =

1, · · · , N . Applying the Baker-Campbell-Hausdorf formula of a Lie operator
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[12] gives us

φ(tk+1) = S1, 1
2
τ · · · SJ−1, 1

2
τSJ,τSJ−1, 1

2
τ · · · S1, 1

2
τIφ(tk) + O(τ 3) (2.33)

and
φk+1 = S1, 1

2
τ · · · SJ−1, 1

2
τSJ,τSJ−1, 1

2
τ · · · S1, 1

2
τIφk. (2.34)

Let S[tk,tk+1] = S1, 1
2
τ · · · SJ−1, 1

2
τSJ,τSJ−1, 1

2
τ · · · S1, 1

2
τ be the operator splitting

procedure over [tk, tk+1]. Then

φN = ΠN−1
k=0 S[tk,tk+1]Iφ0. (2.35)

Remark 2.13. By means of the Lie operator formalism, we transform a
nonlinear splitting into the compositions of linear operators and so Hypothesis
1 is realized.

Remark 2.14. The term O(τ 3) in (2.33) represents the leading term of the
local splitting error. It is a second order splitting scheme in the time because
τ−1‖φ(tk+1) − φ(tk)‖ = O(τ 2). The symmetrical operator splitting scheme
has second order consistency. When Aj(φ) and Al(φ) commute each other,
i.e., for any j 6= l, A′

jAl = AjA
′
l, where A′

j is the derivative with regard to φ,
then no splitting error occurs [12].

Remark 2.15. In fact, (2.35) gives rise to the formula

lim
n→∞

[e
t

2n
A1 · · · e t

2n
AJ−1e

t
n
AJ e

t
2n
AJ−1 · · · e t

2n
A1 ]nIu0 = etAIu0.

This generalizes Strang’s product formula [14].

We can also use operator splitting to solve the perturbation equation
(2.30).

We split the problem (2.31) into J subproblems, −Dtφ
∗
j = (∇Aj(φ))∗φ∗j ,

j = 1, · · · , J . We apply the Marchuk-Strang symmetrical multi-component
splitting over a time interval [tk+1, tk] to get





−Dtφ
∗
1 = (∇A1(φ))∗φ∗1, φ∗1(tk+1) = φ∗

′
1 (tk+1), t ∈ [tk+1, tk + τ

2
]

· · ·
−Dtφ

∗
J−1 = (∇AJ−1(φ))∗φ∗J−1, φ∗J−1(tk+1) = φ∗J−2(tk+1 − τ

2
),

t ∈ [tk+1, tk + τ
2
]

−Dtφ
∗
J = (∇AJ(φ))∗φ∗J , φJ(tk+1)

∗ = φ∗J−1(tk+1 − τ
2
), t ∈ [tk+1, tk]

−Dtφ
∗′
J−1 = (∇AJ−1(φ))φ∗

′
J−1, φ∗

′
J−1(tk + τ

2
) = φ∗J(tk), t ∈ [tk + τ

2
, tk]

· · ·
−Dtφ

∗′
1 = (∇A1(φ))∗φ∗

′
, φ∗

′
1 (tk + τ

2
) = φ∗

′
2 (tk), t ∈ [tk + τ

2
, tk].

(2.36)
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Thus, we obtain

S̄∗
j, 1

2
τ

= e−
1
2
τ(∇Aj(φ))∗ , (j = 1, · · · , J − 1), S̄∗J,τ = e−τ(∇AJ (φ))∗ (2.37)

and

φ∗k = S̄∗[tk+1,tk]φ
∗
k+1 + ∂φk

J(u0, φ)

= S̄∗
1,− 1

2
τ
· · · S̄∗

J−1,− 1
2
τ
S̄∗J,−τ S̄∗J−1,− 1

2
τ
· · · S̄∗

1,− 1
2
τ
φ∗k+1 + ∂φk

J(u0, φ).
(2.38)

Let ∇τ
u0J(u0, φ(u0)) be the approximation of ∇u0J(u0, φ(u0)) by the op-

erator splitting method. Then we have the following theorem:

Theorem 2.5. Let φ∗ be defined in (2.38), the Marchuk-Strang operator
splitting gives rise to

∇τ
u0J(u0, φ(u0)) = φ∗0 + B−1(u0 − uB),

where φ∗0 is the operator splitting solution at t0 defined in (2.38).

The proof is similar to the one for Lemma 2.1.
From Theorem 2.5 and the operator splitting procedure, we compute

J(u0) by solving an adjoint problem that depends on the forward trajectory.
As for stability of the operator splitting scheme, if we have

‖e 1
2
τAj‖ ≤ e

1
2
τωj , j = 1, · · · , j − 1, and ‖eτAJ‖ ≤ eτωJ , (2.39)

then ‖φk+1‖ ≤ eτω‖φk‖, where ω =
∑J

j=1 ωj. Hence, the stability holds on
any finite time interval [t0, T ] if ω > 0. It also holds for an arbitrary large
time interval if ω ≤ 0. In practice the operator splitting scheme is stable
if each sub-step is stable. By Lax’s equivalence theorem [14], consistency
and stability together imply convergence, and higher order consistency yields
faster convergence. In particular, we have the following theorem for the global
splitting error:

Theorem 2.6. Let µ(∇A(φ)) := limh→0+
‖I+h∇A(φ)‖−1

h
≤ λ, then

‖φ(tn)− φn‖ ≤ Cτ 3(enλτ − 1)(eλτ − 1)−1,

where C is a positive number independent of τ .

Proof. If the perturbation of the initial condition of (2.28) is δu0, then by
the perturbation equation (2.30) and using a semigroup expression, we have

δφ(t) = et∇A(φ)δu0.
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Consequently,

‖δφ(t)‖ ≤ ‖et∇A(φ)‖‖δu0‖ ≤ eµ(∇A(φ))‖δu0‖ ≤ eλt‖δu0‖, (2.40)

where we have used Proposition 2.1 in [20] in the second step. By (2.33), the
local splitting errors do not exceed Cτ 3 for some constant C. In computing φ2

there is an error of Cτ 3 in the initial condition, and by (2.40), the effect of this
error at t2 is Cτ 3eλτ . Thus, the global splitting error at t2 is Cτ 3 + Cτ 3eλτ .
Similarly the global splitting error at t3 is

Cτ 3 + (Cτ 3 + Cτ 3eλτ )eλτ .

Repeating the procedure in the same way we find that the global splitting
error at tn is

n∑

k=1

Cτ 3e(n−k)λτ = Cτ 3

n−1∑

k=0

ekλτ = Cτ 3(enλτ − 1)(eλτ − 1)−1.

Remark 2.16. The µ(∇A(φ)) defined in Theorem 2.6 is called a logarithmic
norm [20] of the bounded linear operator ∇A(φ).

Remark 2.17. Since ez−1 = O(z), we find that (enλτ−1)(eλτ−1)−1 = O( 1
τ
),

and so ‖φ(tn) − φn‖ = O(τ 2). Hence, the global Marchuk-Strang splitting
error is second order for a time step of length τ .

By utilizing Theorem 2.6 and Remark 2.17, the following proposition
follows immediately.

Proposition 2.7. Let∇τ
u0J(u0, φ(u0)) be the approximation of ∇u0J(u0, φ(u0))

by the Marchuk-Strang operator splitting method. If µ(∇A(φ)) and µ((∇A(φ))∗)
are bounded, then

‖∇u0J(u0, φ(u0))−∇τ
u0J(u0, φ(u0))‖ ≤ Cτ 2,

where C is a positive number independent of τ .

3 Iterative Descent Algorithm

When solving the optimal control problem (2.14), gradient based iterative
methods are often utilized. Since the solution φ of the evolution equation in

15



(2.14) depends on u0, we can rewrite J(u0) = J(u0, φ(u0)) and consider the
minimizer of

min{J(u0)|Dtφ = A(φ), φ(t = 0) = u0}.
We still define ∇J(u0) = ∇u0J(u0) and use an iterative procedure of the
form

u0,(ν+1) = u0,(ν) + aνdν

to obtain the convergence u0,(ν) −→ û0, where aν is the step length parameter
and dν = d(u0,(ν)) is the search direction. Generally dν can be written as

dν = −Eν∇J(u0,(ν))

for some suitable positive operator Eν . At each step ν, we choose

aν = arg min
a∈R

J(u0,(ν) + adν), (3.41)

which is a one dimensional optimization problem in R. We use one dimen-
sional searches (e.g., Fibonacci, golden section, polynomial interpolation,
etc.) to find aν . Different choices of dν lead to different iterative methods.
The three major iterative methods are listed as follows:

• Gradient and conjugate gradient type iterative methods. These methods
use the first derivative ∇J to determine the search direction. For ex-
ample, dν = −∇J(u0,(ν)) gives rise to the Steepest Descent Method. dν

generated as ∇2J-conjugate directions leads to the Conjugate Gradient
Method (or Fletcher Reeves Method) [10].

• Newton type iterative methods. These methods use the first deriva-
tive ∇J and second derivative ∇2J (Hessian of J) to determine the
search direction. For example, dν = −(∇2J(u0,(ν)))−1∇J(u0,(ν)) leads
to Newton’s method.

• Quasi-Newton type methods. These methods use the first derivative∇J
and an approximating operator (or matrix) H−1 to the Hessian inverse
(∇2J(u0,(ν)))−1 to generate search direction, which is of the form dν =
−H−1

ν ∇J(u0,(ν)). For example, the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method and the DFP (Davidon-Fletcher-Powell) method [17].

By either Lemma 2.1 or Theorem 2.5,∇J(u0,(ν)) = φ∗0(u
0,(ν))+B−1(u0,(ν)−

uB), where

φ∗0(u
0,(ν)) = −

∫ T

t0

es(∇A(φ))∗(H̄∗R−1(HesAIu0,(ν) − φobs))ds, (3.42)

which is a direct result of (2.23). As for the step length defined in (3.41), we
have the following proposition.
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Proposition 3.1. Let aν be defined as in (3.41). Then aν satisfies

−(φ∗0(u
0,(ν) + aνdν), dv)− aν(B

−1dν , dν) = B−1(u0,(ν) − uB, dν), (3.43)

where φ∗0(u
0,(ν) + aνdν) is defined in (3.42), but evaluated at (u0,(ν) + aνdν).

In particular, if operator A is bounded and linear and H is linear, then

aν =
(B−1(u0,(ν) − uB), dν)− (

∫ T

t0
esA∗H∗R−1(HesAu0,(ν) − φobs)ds, dν)

(
∫ T

t0
esA∗H∗R−1HesAdsdν , dν)− (B−1dν , dν)

.

(3.44)

Proof. Let `(a) = J(u0,(ν)+adν). Since aν satisfies equation (3.41), `′(a) = 0.
Theorem 2.5 and straightforward calculation lead to (3.43). If A is bounded
and linear and H is linear, then ∇A(φ) = A and H̄ = H. Consequently,
(3.43) implies that

(
∫ T

t0
(esA)∗H∗R−1(HesAu0,(ν) − φobs)ds, dν) + aν(

∫ T

t0
(esA)∗H∗R−1HesAdsdν , dν)

−aν(B
−1dν , dν) = (B−1(u0,(ν) − uB), dν),

which is equivalent to (3.44).

Convergence of gradient and conjugate gradient type iterative methods
is slow in many cases. Newton type methods need to use the Hessian of J ,
which is very expensive computationally. In the following, we discuss Quasi-
Newton methods, which are often used in 4D-Var, particularly when u0 is in
a high dimensional space for a real life problem.

For the Quasi-Newton method, we introduce the following notations:

∆u0,(ν) = u0,(ν+1) − u0,(ν), ∆gν = ∇J(u0,(ν+1))−∇J(u0,(ν)).

Let a sequence {Hν} have the secant property: at each stage ν, Hν+1 satisfies
the equation

H−1
ν+1∆g(i) = ∆u0,(i), 0 ≤ i ≤ ν.

Quasi-Newton Iterative Algorithm
Step 1. Set ν = 0, H0 = I and initialize u0,(0).
Step 2. Set the search direction dν = −H−1

ν gν , where gν = ∇J(u0,(ν)).
Step 3. Solve aν = Arg mina∈R J(u0,(ν) +adν) and set u0,(ν+1) = u0,(ν) +aνdν .
Step 4. Set ν = ν + 1 and go to Step 2.

Remark 3.1. The proof of Proposition 3.1 implies

(gν+1, dν) = 0. (3.45)
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Let Q := ∇2J(u0) = B−1 +
∫ T

t0
S̄∗H̄∗R−1H̄S̄ds. If H and A are linear,

then (2.7) and (2.8) imply that

Q∆u0,(ν) = ∆gν . (3.46)

If H and A are linear and in a numerical setting, then they are matrices.
The finite dimensional and linear property of A also implies that S is linear
and finite dimensional. Hence, Q is linear and finite dimensional (i.e., can
be represented as a matrix). For this case, we have the following theorem.

Theorem 3.2. If H and A are linear and further Q is symmetric, positive
and definite, then the Quasi-Newton Iterative method has the following prop-
erties:
(1). {dν} are Q-conjugate.
(2). (di, gν) = 0 for i = 0, · · · , ν − 1.

(3). u0,(n) = û0 for u0 ∈ V if dim V = n.
(4). Hn = Q for u0 ∈ V if dim V = n.

Proof. (1). We prove (1) by induction. The result is true for i = 0. In fact,

(Qd0, d1) = −(Qd0,H−1
1 g1) = −(Q(

∆u0,(0)

a0

),H−1
1 g1)

= −(
∆g0

a0

,H−1
1 g1) = −(

H−1
1 ∆g0

a0

, g1)

= −(
∆u0,(0)

a0

, g1) = −(d0, g1)

= 0,

(3.47)

where we have used (3.45) and (3.46). Assume that it holds for i ≤ ν. We
need to show it holds for i = ν +1. By straightforward computation, we have

(Qdi, dν+1) = −(di, gν+1), i = 0, 1, · · · , ν.

Since u0,(ν+1) = u0,(i+1) +
∑ν

j=i+1 ajdj, the linearity of H and A and (2.7)-
(2.8) give rise to

gν+1 = gi+1 +
ν∑

j=i+1

ajQdj, 0 ≤ i ≤ ν − 1.

Consequently,

(gν+1, di) = (gi+1, di) +
ν∑

j=i+1

aj(Qdj, di) = 0, 0 ≤ i ≤ ν − 1,
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where we have used (3.45) and the assumption for the induction. It is trivial
that (gν+1, dν) = 0. Hence it holds for i = ν + 1 and the proof of (1) is
complete.
(2). By the proof of (1), (2) follows immediately.
(3). By (1), {dν}n−1

0 are linearly independent. Hence ∇J(u0,(n)) = 0 if and
only if is

(∇J(u0,(n)), di) = 0, i = 0, · · · , n− 1.

This is the same as (2).
(4). Since {Hν} has the secant property and (3.46) holds, it follows that

H−1
ν+1Q(∆u0,(i)) = ∆u0,(i), 0 ≤ i ≤ ν,

which is equivalent to

H−1
ν+1Qdi = di, 0 ≤ i ≤ ν.

This implies (4) because {di}n−1
0 forms a basis for domain of Hn and Q.

One of the Quasi-Newton methods is BFGS [10, 17], where Hν are gen-
erated iteratively by

Hν+1 = Hν +
∆gν∆gT

ν

(∆u0,(ν), ∆gν)
− (Hν∆u0,(ν))(Hν∆u0,(ν))T

(Hν∆u0,(ν), ∆u0,(ν))
. (3.48)

Generally BFGS will produce local q-superlinear convergence: there exists

a positive sequence {cν} such that cν −→ 0 and ‖u0,(ν+1)−û0‖
‖u0,(ν)−û0‖ ≤ cν for any

ν ∈ N . If we choose step size aν to be the Armijo step size [17], then

aν = max
k∈N

{βk|J(u0,(ν) + βkdν)− J(u0,(ν)) ≤ αβk(∇J(u0,(ν)), dν)},

where parameters α ∈ (0, 1
2
) and β ∈ (0, 1) are given. With the Armijo

step size and (3.48), it produce the BFGS-Armijo method. There is another
modified BFGS method advocated for 4D-Var [22], the L-BFGS (Limited-
memory BFGS) method. In L-BFGS, the method is identical to the BFGS
method in the first m (m is given) iterations . For ν > m, Hν is obtained
by applying m BFGS updates to H0 using information from the m previous
iterations. L-BFGS is an extension of the BFGS-Armijo method. In L-BFGS,
additional storage is used to accelerate convergence. It is suitable for large
scale problems because the amount of storage required by the algorithms can
be controlled by the user. For details of L-BFGS, see [11].

To describe the convergence rate of the modified BFGS, we need to make
the following assumption for J(u0):
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Assumption J. (1) The level set D = {v ∈ V : J(v) ≤ J(u0,(0))} is con-
vex. (2) There exist two positive constants M1 and M2 such that M1 ≤
λ(Q) ≤ M2, where λ(Q) denotes the eigenvalue of Q and Q = B−1 +∫ T

t0
S̄∗H̄∗R−1H̄S̄ds.

Remark 3.2. Assumption J assures that J has a unique minimizer û0 in
the convex set D. The first part of Assumption J implies a proper choice for
initial guess u0,(0) and the second part implies that J is a convex functional
and its conditional number is bounded.

Utilizing the standard optimization techniques [10, 11, 17], we can obtain
the following theorem:

Theorem 3.3. (1) Let Q be positive definite. If there exists δ > 0 such that

‖u0,(0) − û0‖ ≤ δ and ‖H0 −Q‖ ≤ δ,

then the u0,(ν) produced by BFGS converges q-superlinearly to û0.
(2) Let Assumption J hold and H0 is symmetric positive and definite. Then

u0,(ν) produced by BFGS-Armijo converges q-superlinearly to û0 globally.
(3) Let Assumption J hold and H0 is symmetric positive and definite. Then

the u0,(ν) produced by L-BFGS converges r-linearly to û0 globally: there exist
κ > 0 and r ∈ (0, 1) such that ‖u0,(ν) − û0‖ ≤ κrν.

Remark 3.3. By Theorem 3.3, choosing proper initial data u0,(0) and H0 will
play important roles for convergence. If we know the conditional number for
Q is not far away from 1, then we choose H0 = I. If J is uniformly convex,
i.e., Assumption J holds, then BFGS-Armijo and L-BFGS generate a global
convergent sequence {u0,(ν)}.

If J(u0) is defined as in (2.2), then we get a nonlinear least square problem

J(u0) =
1

2
‖f(u0)‖2 =

1

2
f(u0)T f(u0),

where

f(u0) =




B− 1
2 (u0 − uB)

R
− 1

2
0 (H0u

0 − u0
obs)

...

R
− 1

2
N (HNS[t0,tN ]u

0 − uN
obs)




.

This implies that the Gauss-Newton iteration method [10] can be applied to
the 4D-Var problem. As for applying Gauss-Newton to the 4D-Var incre-
mental formulation (2.11), see [13].
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4 An Example of Nonlinear 4D-Var

In this section, we use a regional atmospheric chemical transport model [3]
as an example. This model simulates the pollutants behavior by taking emis-
sions, meteorology (wind, temperature, humidity, precipitation, etc.) and a
set of chemical initial and boundary conditions as input. Let c = {c1, · · · , cs}
denote a high dimension vector (dim(c) = O(106)) and represents the mole-
fraction concentration of many chemical species. Let u denote the wind field
vector, K the turbulent diffusivity tensor, ρ the air density, V dep the depo-
sition velocity of species, Q the rate of surface emissions, and E the rate of
elevated emissions for this species. Let f be the rate of chemical transfor-
mations and it depends on absolute concentration values, the rate at which
mole-fraction concentrations change is f(ρc)

ρ
. Let the domain Ω cover a region

of the atmosphere and n be the outward normal vector on the boundary of
Ω, defined by ∂Ω = Γin

⋃
Γout

⋃
Γgr, where Γin = {x ∈ ∂Ω|u(x) · n ≤ 0} is

the inflow part of ∂Ω, Γout = {x ∈ ∂Ω|u(x) ·n > 0} is the outflow part of ∂Ω
and Γgr is the ground level portion of ∂Ω. To avoid introducing many more
notations, we use c to denote the concentration of representative chemical
species. The governing equation is defined by





Dtc = −u · ∇c + 1
ρ
div(ρK∇c) + 1

ρ
f(ρc) + E, t0 ≤ t ≤ T

c(t0, x) = c0(x)
c(t, x) = cin(t, x) on Γin

K ∂c
∂n

= 0 on Γout

K ∂c
∂n

= V depc−Q on Γgr.

(4.49)

By direct computation, we obtain the tangent linear model equation of
(4.49) as





Dtδc = −u · ∇δc + 1
ρ
div(ρK∇δc) + F (ρc)δc, t0 ≤ t ≤ T

δc(t0, x) = δc0(x)
δc(t, x) = 0 on Γin

K ∂δc
∂n

= 0 on Γout

K ∂δc
∂n

= V depδc on Γgr,

(4.50)

where F is the Jacobian of { ∂fi

∂cj
}.

Integration by parts implies the adjoint model is defined by




∂λ
∂t

= −[div(uλ) + div(ρK∇λ
ρ
) + F T (ρc)λ]− (∇ckJ(c0, c)), t = tk

λ(T, x) = 0
λ = 0 on Γin

(λu + ρK∇(λ
ρ
)) · n = 0 on Γout

(ρK∇(λ
ρ
)) · n = V depλ on Γgr,

(4.51)
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where J is defined as in (2.2) by

J(c0) =
1

2
(c0 − cB)T B−1(c0 − cB) +

1

2

N∑

k=0

(Hkc
k − ck

obs)
T R−1

k (Hkc
k − ck

obs).

(4.52)
The adjoint model contains the term F (ρc). The adjoint problem (4.51) de-
pends on the states of the forward model (4.49). The adjoint initial condition
is posed at the final time T so that the forward model must first be solved
forward in time, then the adjoint model is integrated backward from T to t0.

For simplicity, we set the forward model differential nonlinear operator
to be

A(c) = −u · ∇c +
1

ρ
div(ρK∇c) +

1

ρ
f(ρc) + E (4.53)

and the adjoint model differential nonlinear operator as

(∇A(c))∗λ = div(uλ) + div(ρK∇λ

ρ
) + F T (ρc)λ. (4.54)

By Theorem 2.2, the optimal control problem (2.14) with constraint de-
fined in (4.51) reduces to





Dtc = A(c), t0 ≤ t ≤ T
c(t = t0) = c0

−Dtλ = (∇A(c))∗λ− H̄∗R−1
k (Hkc

k − ck
obs), t = tk

λ(t = T ) = 0
λ(t = t0) = B−1(c0 − cB),

(4.55)

where the boundary conditions of c and λ are described in (4.49) and (4.51),
respectively.

For numerical computation, we can use a finite difference, i.e., Crank-
Nicholson scheme, for time t and operator splitting methods for advection,
diffusion, and reaction part:

Dtc1 = A1c1, Dtc2 = A2c2, and Dtc3 = A3(c3),

where A1c1 = −u · ∇c1 is the advection part (linear), A2c2 = 1
ρ
div(ρK∇c2)

is the diffusion part (linear) and A3(c3) = 1
ρ
f(ρc3) + E is the reaction part

(nonlinear stiff term). The advantage of the operator splitting method is that
different parts can be treated by different numerical schemes. As an example
[19], a third order upwind finite difference scheme is applied to advection
and a second order central difference scheme is applied to the horizontal
and vertical diffusion. An s-stage Rosenbrock method is applied to chemical

22



reaction, which has proven successful for many different stiff ODE and PDE
applications [8]. For convenience, we use a stiff ODE, Dtc(t) = r(c(t)), to
describe the s-stage one step Rosenbrock method. The process is defined by

{
cn+1 = cn +

∑s
i=1 biki

ki = τr(cn +
∑i−1

j=1 αijkj) + τGn

∑i
j=1 γijkj,

(4.56)

where Gn = r′(cn) (Jacobian matrix) and coefficients bi, αij and γij are
chosen to obtain a desired order of consistency and stability. For a detailed
introduction of the Rosenbrock method, see [8].

Repeating the Marchuk-Strang splitting method introduced in Section
2.3 to the forward model (4.49) over the time interval [tk, tk+1], we have





Dtc1 = A1c1, c1(tk) = c′1(tk)
Dtc2 = A2c2, b.c., c2(tk) = c1(tk + ∆t

2
)

Dtc3 = A3(c3), c3(tk) = c2(tk + ∆t
2

)
Dtc

′
2 = A2c

′
2, b.c., c2(tk + ∆t

2
) = c3(tk+1)

Dtc
′
1 = A1c

′
1, c′1(tk + ∆t

2
) = c′2(tk+1).

(4.57)

We denote the above procedure by

ck+1 = S[tk,tk+1]c
k,

where S[tk,tk+1] = S1,∆t
2
S2,∆t

2
S3,∆tS2,∆t

2
S1,∆t

2
, and the Si are associated to the

operators Dt − Ai, i = 1, 2, 3. Consequently,

cN = ΠN−1
k=0 S[tk,tk+1]c

0.

Let S̄∗
[tk+1,tk]

= S̄∗
1,−∆t

2

S̄∗
2,−∆t

2

S̄∗3,−∆tS̄
∗
2,−∆t

2

S̄∗
1,−∆t

2

, and the S̄∗i be associated

with the operators Dt + (∇A(c))∗i , i = 1, 2, 3, and (∇A(c))∗1λ = div(uλ),
(∇A(c))∗2λ = div(ρK∇λ

ρ
), and (∇A(c))∗3λ = F T (ρc)λ. Similarly, the split-

ting method for adjoint problem (4.51) leads to

λk = S̄∗[tk+1,tk]λ
k+1 + H̄∗

kR−1
k (Hck − ck

obs).

Consequently, λ0 can be computed by the following iterative algorithm.
Algorithm for λk

Step 1: Initial Lambda=0.
Step 2: for k = N − 1, 0,−1 do Lambda=S̄∗

[tk+1,tk]
(Lambda + H̄∗

kR−1
k (Hck −

ck
obs)).

step 3: λ0 = Lambda.

23



From Algorithm for λk, we need to compute S̄∗
[tk+1,tk]

v from an arbitrary

seed vector. Since S̄∗1 and S̄∗2 are linear, the products S̄∗1v and S̄∗2v can be
efficiently computed by automatic adjoint compilers [4, 7]. However, S̄∗3 is
highly nonlinear, and the computation of S̄∗3 needs special consideration.
The performance of the adjoint model is dominated by the implementation
of the direct and adjoint methods used in the chemistry integration which in
practice takes as much as 90% of the CPU time [5]. The s-stage (i.e., s = 2, 3)
Rosenbrock method is an efficient method to solve the chemical reaction part
because it provides an efficient implementation for computing S̄∗3v [5, 6].
Once we have obtained λ0, then we evaluate ∇J(c0) by Theorem 2.5, which
is important in solving the 4D-Var problem by an iterative optimization.

Remark 4.1. From the operator scheme in (4.57), there exist two errors
theoretically. One arises from the Marchuk-Strang operator splitting method
itself, which always leads to a second order approximation in time unless
advection, diffusion and reaction commute with each other. The second error
arises from inconsistencies between the boundary conditions and the initial
values prescribed in the intermediate steps, the second equation in (4.57)
and the forth equation in (4.57). This may be reduced or removed by using
the Rosebrock method with approximation factorization [12]. The same will
happen to the splitting process of adjoint problem.

Numerical results for the 4D-Var chemical transport model can be found
in [5, 19, 22]. Authors in [22] have applied L-BFGS, nonlinear conjugate gra-
dient and Hessian free Newton method to implement the chemical transport
model. Their numerical results show that L-BFGS converges the fastest of
these three methods.

5 Conclusions

In this paper, we presented a framework and an analysis for 4D variational
data assimilation. The proposed analysis stems from the rapid theoretical
advance of 4D-Var and the desire to translate it into real life applications.

First, we investigated a general framework of 4D-Var in the setting of
functional operators. Constructing and solving an adjoint problem gives rise
to an efficient approach to evaluate the gradient of the cost functional with
respect to an unknown parameter. This framework helps us understand 4D-
Var theoretically.

Second, we explored some numerical techniques: symmetrical operator
splitting and Quasi-Newton iterative methods, which are used to implement
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a 4D-Var problem in practice. It concluded that a large and complicated 4D-
Var problem can be split into many subproblems and the Marchuk-Strang
symmetrical multi-component splitting method gives rise to a second order
splitting error for time step. Nonlinear optimization iterative methods (e.g.,
Quasi-Newton) lead to fast convergence of the numerical solution in 4D-Var
nonlinear optimal problems.

Finally, we used a chemical transport example to demonstrate the proce-
dure of 4D-Var. Rosenbrock method is an efficient method to solve the chem-
ical reaction part when the Marchuk-Strang symmetrical splitting method is
applied.
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