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Abstract
The use of limited global information in multiscale simulations is needed when

there is no scale separation. Previous approaches entail fine-scale simulations in the
computation of the global information. The computation of the global information is
expensive. In this paper, we propose the use of approximate global information based
on partial upscaling. A requirement for partial homogenization is to capture long-
range (non-local) effects present in the fine-scale solution, while homogenizing some of
the smallest scales. The local information at these smallest scales is captured in the
computation of basis functions. Thus, the proposed approach allows us to avoid the
computations at the scales that can be homogenized. This results to coarser prob-
lems for the computation of global fields. We analyze the convergence of the proposed
method. Mathematical formalism is introduced which allows estimating the errors due
to small scales which are homogenized. The proposed method is applied to simulate
two-phase flows in heterogeneous porous media. Numerical results are presented for
various permeability fields including those generated using two-point correlation func-
tions and channelized permeability fields from SPE Comparative Project [14]. We con-
sider simple cases where one can identify the scales that can be homogenized. For more
general cases, we suggest the use of upscaling on the coarse grid with the size smaller
than the target coarse grid where multiscale basis functions are constructed. This
intermediate coarse grid renders a partially upscaled solution that contains essential
non-local information. Numerical examples demonstrate that the use of approximate
global information provides better accuracy than purely local multiscale methods.

1 Introduction

The high degree of variability and multiscale nature of formation properties such as hetero-
geneous permeability cause significant challenges for subsurface flow modeling. Geological
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characterizations that capture these effects are typically developed at scales that are too
fine for direct flow simulations. Typically, upscaled or multiscale models are employed for
such systems. The main idea of upscaling techniques is to form coarse-scale equations with
a prescribed analytical form that may differ from the underlying fine-scale equations. In
multiscale methods, the fine-scale information is carried throughout the simulation and the
coarse-scale equations are generally not expressed analytically, but rather formed and solved
numerically.

In the case of scale separation, one can localize the computation of effective parameters or
basis functions. However, these approaches do not perform well if there is no scale separation,
and some global information is needed for representing distant/non-local effects. The global
information is typically computed on the fine grid and is often computationally expensive.
To reduce the computational cost, approximate global information is used in this paper.
This becomes particularly helpful if the small scale features dynamically change.

The proposed method uses mixed multiscale finite element method (MsFEM) framework
(e.g., [22, 13, 1, 19, 5, 24, 25, 21]). The main idea of MsFEMs is to incorporate the small scale
information into finite element basis functions and couple them through a global formulation
of the problem. MsFEMs share some similarities with a number of multiscale numerical
methods [10, 31, 23]. We remark that special basis functions in finite element methods have
been used earlier in [9, 8].

It is known (e.g., [13, 22]) MsFEMs that use only local information suffer from resonance
errors. The resonance errors usually exhibit themselves as the ratio between the coarse mesh
size and the characteristic length scale. If the mesh size is close to a characteristic length
scale, multiscale methods that use only local information may not converge when the ratio
between the mesh size and the characteristic length scale is kept fixed. To develop multi-
scale methods which converge without resonance errors, some limited global information is
needed in the construction of basis functions. In the papers [1, 2, 12, 18, 30], limited global
information has been successfully used for developing MsFEMs that converge without reso-
nance errors. These methods are applicable for problems without scale separation. Previous
approaches involve fine-scale simulations for the computation of global fields that can be
computationally expensive.

The use of approximate global fields is not new in multiscale simulations. In [17], the
authors compute approximate global fields based on multiscale finite element solutions. This
procedure is repeated until convergence. In these simulations, the auxiliary global informa-
tion is computed iteratively. In this paper, we propose a different approach where limited
global information is computed by partial homogenization. Partial homogenization upscales
some of the smallest scales that can be captured through local computations of multiscale
basis functions (see Figure 1). Such global information can be computed inexpensively and is
less sensitive to the changes of the media properties at smallest scales. This is a compromise
between local MsFEMs and global MsFEMs where only important non-local information is
captured.

In the paper, we use a general framework of the mixed MsFEM with multiple global
information following [2]. In [2], the global fields are computed based on fine-scale solutions.
It is intuitively clear that the global information needs to contain non-local features of the
solution that can not be captured via local solves. We consider a mathematical framework,
where the media have both non-separable and separable scales. Separable scales are assumed
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to be much smaller and, thus, it is desirable to homogenize them. Our objective is to solve
the problem on the coarse grid that is larger than the separable scales. As for approximate
global fields, we homogenize the media properties over separable scales and compute the
global fields on the coarser grid. Detailed analysis for various cases are presented. We
consider two scenarios for the scales that are homogenized. In the first case, the scales,
which are homogenized, are periodic. For the second case, we use a general G-convergence
framework. We show that the mixed MsFEM is stable and the convergence only depends on
the small localizable scales, but it is independent of non-local scales.

In the numerical simulations, we introduce an intermediate grid where approximate global
fields are computed. This grid size is typically less than the coarse-grid size where multiscale
basis functions are constructed. In general, using non-uniform coarsening ([3]) one can
reduce the number of coarse grid blocks in the computation of approximate global fields.
We would like to note that approximate global fields are pre-computed. The basis functions
constructed employing approximate global information can be used to solve flow equations
with different source terms, boundary conditions or mobility (λ(x) in (1)) on the coarse grid.
Moreover, if media properties change at smallest scales that can be localized, one can still
use pre-computed approximate global fields.

In the paper, we present some numerical results for various media properties. We consider
permeability fields generated using two-point correlation functions ([15]) and channelized
permeability fields from SPE Comparative Project [14]. In our numerical results, we use
partial upscaling, where the media properties are upscaled to an intermediate coarse grid.
Both analytical and numerical upscaling are used depending on the small-scale features that
are homogenized. Our numerical results show that one can achieve higher accuracy compared
to the local methods when approximate global fields are used.

The paper proceeds as follows. In Section 2, we present mixed MsFEMs that use approx-
imate global fields. Section 3 is devoted to the analysis of the method. Numerical results
are presented in Section 4. Finally, some conclusions are made.

2 Mixed MsFEM using approximate global informa-

tion

2.1 General concept and motivation

In this paper, a mixed MsFEM that uses approximate global (or quasi-global, we may use
them interchangeably in the paper) information is studied. First, we briefly motivate the
use of global information following [2]. We consider

− div(λ(x)k(x)∇p) = f, (1)

where k(x) is a heterogeneous field and λ(x) is assumed to be a smooth field. This equation
is derived from two-phase flow equations when gravity and capillary effects are neglected (see
(54)). Here p denotes the pressure. Our goal is to construct multiscale basis functions on the
coarse grid (with grid size larger than the characteristic length scales of the problem) such
that these basis functions can be used for various source terms f(x), boundary conditions
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and mobilities λ(x). For this reason, one typically looks for functions (local or global)
which contain the essential information about the heterogeneities. For problems without
scale separation, these functions are often the solutions of global problems, and thus, these
methods are effective when Equation (1) is solved multiple times. The underlying assumption
for these global fields used in the paper is the following. There exists N global fields p1,...,
pN (with corresponding velocity fields ui = −k∇pi) and sufficiently smooth scalar functions
A1(x), ..., AN(x), such that the velocity corresponding to (1) (u = −λ(x)k(x)∇p) can be
written as

u ≈ A1(x)u1 + ... + AN(x)uN . (2)

Note that it is important that A1, ..., AN are smooth functions so that the multiscale basis
functions which span p1, ..., pN (or u1, ..., uN) can accurately approximate the global solution.
More details on the assumption on A1, ..., AN are formulated later. More discussions on the
use of global information can be found in [2].

In a general setting, it was shown by Owhadi and Zhang [30] that for an arbitrary smooth
λ(x), the solution of (1) is a smooth function of d linearly independent solutions of single-
phase flow equations (N = d), where d is the space dimension. These results are shown
under some suitable assumptions for the case d = 2 and more restrictive assumptions for
the case d = 3. In [18], it was shown that for channelized permeability fields, p is a smooth
function of single-phase flow pressure (i.e., N = 1), where single-phase pressure equation
is described by div(k∇psp) = 0 with boundary conditions as those corresponding to two-
phase flow. Multiple global fields can be used for the system of equations or for the random
coefficients.

The computation of global fields is usually expensive. In many applications, the global
fields may need to be computed many times depending on changing (dynamic) hetero-
geneities. For this reason, some type of approximate global fields can be used to speed
up the computations. In this paper, we propose multiscale techniques where only essential
global information is used in computing basis functions. To obtain this information, we use
partial upscaling/homogenization of the fine-scale media properties. The upscaling provides
us with a coarse-scale solution which contains essential global information representing the
long-range effects. In particular, we use upscaling on coarse grids that are finer than the
target coarse grid where multiscale basis functions are computed. In general, one can use
non-uniform coarse grids to obtain more accurate global solutions. In Figure 1, we illustrate
the concept of partial upscaling. Note that if dynamic changes only affect the small scale
features of the permeability which can be captured via local basis functions, our proposed
approaches become more effective.

Next, we present an outline of the algorithm which will be presented in a more rigorous
mathematical way in Section 2.2. Denote by k̃∗ upscaled permeability field computed on an
intermediate coarse grid KI with the size hI , where hI ≤ h with h being the coarse grid
size where multiscale basis functions are computed. The effective coefficients in upscaling
methods are computed using the solution of the local problem in the intermediate coarse
grid block (or representative volume). Various boundary conditions can be used for solving
the local problems and, for simplicity, we consider

div(k(x)∇φe) = 0 in KI (3)
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Long range features requiring global information
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Figure 1: Illustration of partial upscaling.

with φe(x) = x · e on ∂KI , where e is a unit vector. The effective coefficients are computed
in each KI as

k̃∗e =
1

|KI |
∫

KI

k∇φedx. (4)

We note that k̃∗ (which is not the same as the homogenized coefficients) is a symmetric
matrix provided k is symmetric. One can use various boundary conditions, including periodic
boundary conditions as well as oversampling methods. We refer to [16, 32] for the discussion
on the use of various boundary conditions. Once the effective coefficients are calculated, the
coarse-scale equation

− div(k̃∗∇p∗i ) = 0 (5)

is solved over the entire region to obtain the approximate global fields needed for the com-
putation of multiscale basis functions. In particular, ui = −k∇p∗i are used as global fields
in constructing multiscale basis functions. The index i refers to the global fields and usually
obtained by imposing different boundary conditions, e.g., p∗i = xi on the global boundary.

Once the global fields are identified, multiscale basis functions are computed by solving
the local problems with boundary conditions which depend on p∗i . For the mixed MsFEM,
the basis functions are computed as

−div(k(x)∇φK
ij ) =

1

|K| in K

−k(x)∇φK
ij · nel

= δjl
u∗i · nel∫

el
u∗i · nel

ds
on ∂K,

where K is a target coarse grid block and u∗i = −k̃∗(x)∇p∗i . The basis functions for the
solution p is taken to be piece-wise constant functions. Mixed FEM framework is used to
couple these basis functions as discussed in the next section.
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2.2 Mathematical formalism

In this section, a more rigorous mathematical formalism is presented for the approximate
global mixed MsFEM. We introduce ε that represent the scales whose effects are homoge-
nized. We denote by δ> the scales which are non-separable and have long-range features.
The effects of these scales will be captured using global fields. Consider the following elliptic
problem with heterogenous coefficients

−div(kδ>,ε(x)∇pδ>,ε) = f(x) in Ω

pδ>,ε = g on ∂Ω,
(6)

where kδ>,ε(x) is a heterogeneous field with two significantly different physical scales δ> and
ε (δ> À ε). Without loss of generality, we assume kδ>,ε is symmetric and Ω ∈ R2. Let
uδ>,ε = −kδ>,ε∇pδ>,ε be the velocity defined in (6).

Let the homogenized equation corresponding to (6) be as following

−div(k∗δ (x)∇p∗δ) = f(x) in Ω

p∗δ = g on ∂Ω,
(7)

where k∗δ (x) is the usual homogenized tensor (defined via periodic homogenization or general
G− convergence theory) with parameter δ. We note that the homogenization in (7) is
a partial homogenization, i.e., the homogenization is made only for small ε scales. Let
u∗δ = −k∗δ∇p∗δ be the velocity defined in (7). The following assumption (cf. (2)) is used in
the analysis.

Assumption A1. There exist functions u∗δ,1, · · · , u∗δ,N and sufficiently smooth A1(x), · · · , AN(x)
such that

u∗δ(x) =
N∑

i=1

Ai(x)u∗δ,i, Ai(x) ∈ Cα(Ω), (8)

where uδ,i = −k∗δ∇p∗δ,i and p∗δ,i solves −div(k∗δ (x)∇p∗δ,i) = 0 in Ω with appropriate boundary
conditions.

Remark 2.1. As an example of the Assumption A1, we define u∗δ,i = −k∗δ∇p∗δ,i (i = 1, 2) to
be solution of the equation

−div(k∗δ∇p∗δ,i) = 0 in Ω

p∗δ,i = xi on ∂Ω,
(9)

where x = (x1, x2). In the harmonic coordinate (p∗δ,1, p
∗
δ,2), p∗δ = p∗δ(p

∗
δ,1, p

∗
δ,1) ∈ W 2,s (s ≥ 2)

[30]. Consequently, u∗δ = −k∗δ∇p∗δ = −∑2
i=1

∂p∗δ
∂p∗δ,i

k∗δ∇p∗δ,i :=
∑2

i=1 Ai(x)u∗δ,i, where Ai(x) =
∂p∗δ
∂p∗δ,i

∈ W 1,s(Ω).

We introduce a quasi-uniform finite element partition τh of Ω and let K be a representative
coarse element, h = maxK diamK∈τh

(K). We use the standard notations for Sobolev spaces,
and use ‖.‖ to denote norm, and |.| to denote semi-norm (depending on context, |.| sometimes
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refers to absolute value). We use multiscale velocity basis functions defined in the following
way

−div(kδ>,ε(x)∇φK
ij ) =

1

|K| in K

−kδ>,ε(x)∇φK
ij · nel

= δjl

u∗δ,i · nel∫
el

u∗δ,i · nel
ds

on ∂K

∫

K

φK
ij dx = 0,

(10)

where i = 1, ..., N , j = 1, 2, 3 (if K is a triangle), el is an edge of ∂K, and

δjj = 1, δjl = 0 if j 6= l.

Here el denotes an edge of K and we omit the subscript el in n, if the integral is taken along
the edge. Note that for each edge, we have N basis functions and we assume that u∗δ,1,...,
u∗δ,N are linearly independent in order to guarantee that the basis functions are linearly
independent. To avoid the possibility that

∫
el

u∗δ,i · nds is zero or unbounded, we make the
following assumption for our analysis.

Assumption A2. There exist positive constants C such that
∫

el

|u∗δ,i · n|ds ≤ Chβ1 and ‖ u∗δ,i · n∫
el

u∗δ,i · nds
‖Lr(el) ≤ Ch−β2+ 1

r
−1

uniformly for all edges el, where β1 ≤ 1, β2 ≥ 0,and r ≥ 1.

Remark 2.2. The second part of Assumption A2 is to assure | ∫
el

u∗δ,i · nds| remains positive.

If u∗δ,i are bounded in L∞(el) for all el and | ∫
el

u∗δ,i · nds| remains positive uniformly for all

el, then β2 = 0. If | ∫
el

u∗δ,i · nds| ≥ Chβ1 and
∫

el
|u∗δ,i · n|ds ≤ Chβ1 for all el, then we can

conclude that β2 = 0 for r = 1 in Assumption A2.

Remark 2.3. If
∫

el
u∗δ,i · nds is zero along some edge el, then we can use constant boundary

condition in (10) instead, i.e.,
u∗δ,i · nel∫

el
u∗δ,i · nel

ds
is replaced by 1

|el| .

We define ψK
ij = −kδ>,ε(x)∇φK

ij and

Vh =
⊕
K

{ψK
ij }

⋂
H(div, Ω),

where H(div, Ω) = {v ∈ L2(Ω)|div(v) ∈ L2(Ω)}.
The mixed formulation for (6) is to find {uδ>,ε, pδ>,ε} ∈ H(div, Ω)× L2(Ω) such that

(k−1
δ>,εuδ>,ε, v)− (div(v), p) = −(v · n, g)∂Ω ∀v ∈ H(div, Ω)

−(div(uδ>,ε), q) = (f, q) ∀q ∈ L2(Ω),
(11)

where (·, ·) is the usual L2-inner product. Let Qh = ⊕KP0(K) ⊂ L2(Ω), i.e., piecewise
constants, be the basis function space for the pressure. The numerical mixed formulation
for (6) is to find {uh, ph} ∈ Vh ×Qh such that and

(k−1
δ>,εuh, vh)− (div(vh), ph) = −(vh · n, g)∂Ω ∀vh ∈ Vh

−(div(uh), qh) = (f, qh) ∀qh ∈ Qh.
(12)
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For analysis, we define φ∗,Kij to be the homogenization solution of the basis equation (10),
i.e.,

−div(k∗δ (x)∇φ∗,Kij ) =
1

|K| in K

−k∗δ (x)∇φ∗,Kij · nel
= δjl

u∗δ,i · nel∫
el

u∗δ,i · nel
ds

on ∂K

∫

K

φ∗,Kij dx = 0.

(13)

We define ψ∗,Kij = −k∗δ (x)∇φ∗,Kij and

V ∗
h =

⊕
K

{ψ∗,Kij }
⋂

H(div, Ω).

We note that V ∗
h can be a global multiscale basis space of velocity for equation (7) [2].

Let

X = {u|u =
N∑

i=1

ai(x)u∗δ,i}.

We define an interpolation operator Π∗
h : X −→ V ∗

h such that in each element K, for any
v =

∑
i ai(x)u∗δ,i ∈ X

Π∗
h|K(

∑
i

ai(x)u∗δ,i) =
∑
i,j

aK
ij ψ

∗,K
ij ,

where aK
ij =

∫

ej

ai(x)u∗δ,i · nds.

3 Convergence analysis

In this section, we present convergence analysis of the method. First, we will prove a stability
estimate for the method. Then, we will present the analysis for two cases: when ε-scales are
periodic; when ε-scales are not periodic.

Under some regularity assumptions for u∗δ,i (i = 1, · · · , N), we discussed the inf-sup con-
dition in [2] for the multiscale finite element defined in (13) that is only for the homogenized
equation (7). For any qh ∈ Qh, there exists a constant C∗ such that

sup
vh∈V ∗h \{0}

∫
Ω

div(vh)qhdx

‖vh‖H(div,Ω)

≥ C∗‖qh‖0,Ω. (14)

Here we assume that (14) holds. Then we can obtain the inf-sup condition for the finite
element defined in (10).

Lemma 3.1. Assume that inequality (14) holds, then for any qh ∈ Qh, there exists a constant
C such that

sup
vh∈Vh\{0}

∫
Ω

div(vh)qhdx

‖vh‖H(div,Ω)

≥ C‖qh‖0,Ω. (15)
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Proof. For any v∗h =
∑

ij aK
ij ψ

∗,K
ij ∈ span{ψ∗,Kij }, we define MKv∗h =

∑
ij aK

ij ψ
K
ij ∈ span{ψK

ij }.
Let M |K = MK . Then M : V ∗

h −→ Vh is a one to one map. It is easy to check for any
v∗h ∈ V ∗

h ,
div(Mv∗h) = div(v∗h) in K. (16)

Let v∗h =
∑

ij aK
ij ψ

∗,K
ij and zK =

∑
ij φK

ij . Then MKv∗h = −kδ>,ε∇zK and we have

‖MKv∗h‖2
0,K =

∫

K

kδ>,ε∇zK · kδ>,ε∇zKdx

≤ C

∫

K

kδ>,ε∇zK · ∇zKdx = −C

∫

K

MKv∗h · ∇zKdx

= C(

∫

K

div(MKv∗h)z
Kdx−

∫

∂K

(MKv∗h) · nzKds)

= C(

∫

K

div(v∗h)z
Kdx−

∫

∂K

v∗h · nzKds)

= −C

∫

K

v∗h · ∇zKdx = C

∫

K

v∗h · k−1
δ>,εMKv∗hdx

≤ C‖v∗h‖0,K‖MKv∗h‖0,K .

(17)

This yields that ‖MKv∗h‖0,K ≤ C‖v∗h‖0,K . Consequently, combining with (16) implies that
for any v∗h ∈ V ∗

h ,
‖Mv∗h‖H(div,Ω) ≤ C‖v∗h‖H(div,Ω). (18)

Hence, for any qh ∈ Qh

sup
vh∈Vh\{0}

∫
Ω

div(vh)qhdx

‖vh‖H(div,Ω)

≥ sup
v∗h∈V ∗h \{0}

∫
Ω

div(Mv∗h)qhdx

‖Mv∗h‖H(div,Ω)

≥ 1

C
sup

v∗h∈V ∗h \{0}

∫
Ω

div(v∗h)qhdx

‖v∗h‖H(div,Ω)

≥ C∗

C
‖qh‖0,Ω,

(19)

where we have used (18) in the second step and (14) in the last step. The proof is complete.

Because of Lemma 3.1, we use the standard argument (see [11, 13]) and have the following
approximation estimate

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C( inf
vh∈Vh

‖uδ>,ε − vh‖H(div,Ω) + inf
qh∈Qh

‖pδ>,ε − qh‖0,Ω), (20)

where {uδ>,ε, pδ>,ε} and {uh, ph} are the solutions of (11) and (12), respectively.
Let wK

δ>,ε(x) be the solution of the following equation

−div(kδ>,ε(x)∇wK
δ>,ε) = div(Π∗

hu
∗
δ) in K

−kδ>,ε(x)∇wK
δ>,ε · n = Π∗

hu
∗
δ · n on ∂K.

(21)
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The homogenized equation of (21) is

−div(k∗δ (x)∇w∗K
δ ) = div(Π∗

hu
∗
δ) in K

−k∗δ (x)∇w∗K
δ · n = Π∗

hu
∗
δ · n on ∂K.

(22)

We note Assumption A1 and define Πhu
∗
δ|K :=

∑
ij(

∫
ej

Aiu
∗
δ,i ·nds)ψK

ij . Then we have the

following lemma.

Lemma 3.2. Let wK
δ>,ε and w∗K

δ be defined in (21) and (22), respectively. Then

−kδ>,ε(x)∇wK
δ>,ε = Πhu

∗
δ in K

−k∗δ (x)∇w∗K
δ = Π∗

hu
∗
δ in K.

(23)

Proof. By straightforward calculations, it follows that

div
∑
ij

(

∫

ej

Aiu
∗
δ,i · nds)(−kδ>,ε(x)∇φK

ij ) = divΠ∗
hu

∗
δ in K,

∑
ij

(

∫

ej

Aiu
∗
δ,i · nds)(−kδ>,ε(x)∇φK

ij ) · n = Π∗
hu

∗
δ · n on ∂K.

(24)

Consequently, Equation (21) and Equation (24) have the same solution up to a constant,
which verifies the first equation in the lemma.

By using the same argument as the proof of the first equation in the lemma, we have

− k∗δ (x)∇w∗K
δ = Π∗

hu
∗
δ . (25)

3.1 Convergence analysis for ε-periodic case

If the coefficient in (6) is ε-periodic, i.e.,

kδ>,ε(x) = k(Xδ>(x),
x

ε
),

where y → k(Xδ>(x), y) is a Y -periodic function and Xδ>(x) means k has hierarchy of scales
(not necessarily separable) larger than δ. In this case, we can compute k∗δ in the following
way. Let χ = {χ1, χ2} solve the following auxiliary equations,

−divy(k(Xδ>(x), y)∇χi) = divy(k(Xδ>(x), y)ei) in Y

〈χi(y)〉Y = 0.
(26)

Here ei (i = 1, 2) is the unit vector in R2. Then the homogenized tensor is defined as

k∗δ (x) = 〈k(∇χ + I)〉Y .

We define
p1

δ>,ε = p∗δ + εχ∇p∗δ and wK,1
δ>,ε = w∗K

δ + εχ∇w∗K
δ , (27)

where p∗δ and w∗K
δ are defined in (7) and in (22), respectively. In the analysis, we use the

following assumption.
Assumption A3. ‖∇2w∗K

δ ‖0,K = O(h
δ
).
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Remark 3.1. When |∇k∗δ (x)| is of order O(1
δ
), then classical PDE results (e.g. [20]) imply

‖∇2w∗K
δ ‖0,K = O(h

δ
) provided that the boundary condition of Equation (22) is sufficiently

smooth.

Lemma 3.3. Suppose Assumptions A1, A2, A3 hold. Let p1
δ>,ε and wK,1

δ>,ε be defined as above.
Then

|w∗K
δ − p∗δ|1,K ≤ C(

∑
i

‖Ai(x)‖Cα(Ω))h
α+β1−β2 (28)

|wK,1
δ>,ε − p1

δ>,ε|1,K ≤ C(hα+β1−β2 +
εh

δ
+ ε‖∇2p∗δ‖0,K) (29)

|w∗K
δ |1,∞,K ≤ C(hα+β1−β2−1 + h−1|u∗δ|0,K + ‖u∗δ‖0,∞,K). (30)

Proof. (1). By Lemma 3.2, we have

|w∗K
δ − p∗δ|1,K = ‖(k∗δ )−1Π∗

hu
∗
δ − (k∗δ )

−1u∗δ‖0,K

≤ C‖Π∗
hu

∗
δ − u∗δ‖0,K

≤ C(
∑

i

‖Ai(x)‖Cα(Ω))h
α+β1−β2 ,

(31)

where we have used Corollary 3.5 from [2].
(2). From the definition wK,1

δ>,ε and p1
δ>,ε, we have

|wK,1
δ>,ε − p1

δ>,ε|1,K

≤ |w∗K
δ − p∗δ|1,K + ε‖∇xχ∇(w∗K

δ − p∗δ)‖0,K + ε‖χ(∇2(w∗K
δ − p∗δ)‖0,K

≤ Chα+β1−β2 + ε‖χ∇2w∗K
δ ‖0,K + ε‖χ∇2p∗δ‖0,K

≤ C(hα+β1−β2 +
εh

δ
+ ε‖∇2p∗δ‖0,K),

(32)

where in the third step we have used Assumption A3 and the fact that χ and∇χ are bounded
in L∞.

(3). By Lemma 3.2, we have

|w∗K
δ |1,∞,K ≤ ‖Π∗

hu
∗
δ − 〈u∗δ〉K‖0,∞,K + ‖〈u∗δ〉K‖0,∞,K

≤ Ch−1‖Π∗
hu

∗
δ − 〈u∗δ〉K‖0,K + C‖u∗δ‖0,∞,K

≤ Ch−1‖Π∗
hu

∗
δ − u∗δ‖0,K + Ch−1‖u∗δ − 〈u∗δ〉K‖0,K + C‖u∗δ‖0,∞,K

≤ Chα+β1−β2−1 + Ch−1‖u∗δ‖0,K + Ch−1‖〈u∗δ〉K‖0,K + C‖u∗δ‖0,∞,K

≤ Chα+β1−β2−1 + Ch−1‖u∗δ‖0,K + C‖u∗δ‖0,∞,K ,

(33)

where we have used the inverse inequality in the second step and Jensen’s inequality in last
step.

Before we proceed with the convergence analysis, we need the following lemma.

Lemma 3.4. Let p1
δ>,ε and wK,1

δ>,ε be defined in (27). Then

|pδ>,ε − p1
δ>,ε|1,Ω ≤ C(ε‖p∗δ‖2,Ω +

√
ε|p∗δ|1,∞,Ω)

|wK
δ>,ε − wK,1

δ>,ε|1,K ≤ C(ε‖w∗K
δ ‖2,K +

√
ε|∂K||w∗K

δ |1,∞,K).
(34)
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The proof of the first estimate in (34) can be referred to [28] and the proof of the second
estimate can be referred to Theorem 3.1 in [13].

We have the following convergence theorem.

Theorem 3.5. Suppose Assumptions A1, A2, A3 hold. Let uδ>,ε and uh solve (11) and
(12), respectively. Then

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C(|pδ>,ε|1,Ω + |f |1,Ω)h + C(ε‖p∗δ‖2,Ω +
√

ε|p∗δ|1,∞,Ω)

+ C
ε

δ
+ Chα+β1−β2−1 + C(‖u∗δ‖0,Ω + ‖u∗δ‖0,∞,Ω)

√
ε

h
.

(35)

Proof. For the proof, it suffices to choose a proper qh and vh such that the right hand side
of (20) is small. Set qh|K = 〈pδ>,ε〉K . Then Poincaré-Friedrichs inequality implies

inf
qh∈Qh

‖pδ>,ε − ph‖0,Ω ≤ Ch|pδ>,ε|1,Ω. (36)

We choose vh =
∑

i,j cK
ij ψ

K
ij = Πhu

∗
δ in K on the right hand side of (20). Because

∫

K

∑
i

div(Ai(x)u∗δ,i)dx = f,

we get by the divergence theorem

∫

∂K

∑
i

Ai(x)u∗δ,i · nds = f.

This gives rise to

‖div(uδ>,ε −
∑
i,j

cK
ij ψ

K
ij )‖0,K = ‖f −

∑
i,j

cK
ij

1

|K|‖0,K

= ‖f −
∑
i,j

∫

ej

Ai(x)u∗δ,i · nds
1

|K|‖0,K

= ‖f − 〈f〉K‖0,K

≤ Ch|f |1,K .

(37)

After making the summation over all K for (37), we have

‖div(uδ>,ε − vh)‖0,Ω ≤ Ch|f |1,Ω. (38)
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Now we apply Lemma 3.3 to estimate ‖uδ>,ε − vh‖0,K :

‖uδ>,ε − vh‖0,K

= ‖kδ>,ε∇pδ>,ε − kδ>,ε∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,K + C‖∇p1

δ>,ε −∇wK,1
δ>,ε‖0,K + C‖∇wK,1

δ>,ε −∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,K + C(hα+β1−β2 +

εh

δ
+ ε‖∇2p∗δ‖0,K)

+ C(ε‖w∗K
δ ‖2,K +

√
ε|∂K||w∗K

δ |1,∞,K)

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,K + C(hα+β1−β2 +

εh

δ
+ ε‖∇2p∗δ‖0,K)

+ C[
εh

δ
+

√
ε|∂K|(hα+β1−β2−1 + h−1‖u∗δ‖0,K + ‖u∗δ‖0,∞,K)].

(39)

Making the summation all over K, we have

‖uδ>,ε − vh‖0,Ω

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,Ω + C

ε

δ
+ C(hα+β1−β2−1 +

√
ε

h
hα+β1−β2−1)

+ Cε‖∇2p∗δ‖0,K + C

√
ε

h
‖u∗δ‖0,Ω + C

√
ε

h
‖u∗δ‖0,∞,Ω

≤ C(ε‖p∗δ‖2,Ω +
√

ε|p∗δ|1,∞,Ω) + C
ε

δ
+ Chα+β1−β2−1 + C(‖u∗δ‖0,Ω + ‖u∗δ‖0,∞,Ω)

√
ε

h
.

(40)

Therefore, invoking (20), (36), (38) and (40), we have

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C(|pδ>,ε|1,Ω + |f |1,Ω)h + C(ε‖p∗δ‖2,Ω +
√

ε|p∗δ|1,∞,Ω)

+ C
ε

δ
+ Chα+β1−β2−1 + C(‖u∗δ‖0,Ω + ‖u∗δ‖0,∞,Ω)

√
ε

h
.

(41)

This completes the proof.

Remark 3.2. The term
√

ε
h

comes from the partial homogenization with respect to ε-scales.
If we use the local mixed MsFEM (i.e., boundary conditions for velocity basis equations
are constants), then the proof in [13] implies that the convergence rate in Theorem 3.5

would contain the term
√

δ
h

(if kδ>,ε is also δ-periodic), which is larger than
√

ε
h
. This is

an accuracy improvement of the approximate global mixed MsFEM compared to the local
mixed MsFEM.

Instead of Assumption A3, the following alternative assumption can be used.
Assumption A3’. |(Πh − I)u∗δ|1,Ω ≤ C‖u∗δ‖1,Ω for the velocity u∗δ.
Under Assumption A3’, we have the following proposition.
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Proposition 3.6. Suppose Assumption A1, A2, A3’ hold. Let uδ>,ε and uh solve the equation
(11) and (12), respectively. Then

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C(|pδ>,ε|1,Ω + |f |1,Ω)h + C(‖p∗δ‖2,Ω + ‖u∗δ‖1,Ω)ε + C
√

ε|p∗δ|1,∞,Ω

+ Chα+β1−β2−1 + C(‖u∗δ‖0,Ω + ‖u∗δ‖0,∞,Ω)

√
ε

h
.

(42)

Proof. First, we can show the following estimate under Assumption A3’:

|wK,1
δ>,ε − p1

δ>,ε|1,K

≤ |w∗K
δ − p∗δ|1,K + ε‖∇xχ∇(w∗K

δ − p∗δ)‖0,K + ε‖χ(∇2(w∗K
δ − p∗δ)‖0,K

≤ Chα+β1−β2 + ε‖∇((k∗δ )
−1Π∗

hu
∗
δ − (k∗δ )

−1u∗δ)‖0,K

≤ Chα+β1−β2 + ε‖(∇(k∗δ )
−1) · (Π∗

hu
∗
δ − u∗δ)‖0,K + ε‖(k∗δ )−1∇(Π∗

hu
∗
δ − u∗δ)‖0,K

≤ Chα+β1−β2 + C
ε

δ
hα+β1−β2 + Cε‖u∗δ‖1,K ,

(43)

where “·” in the third step is the tensor dot product. Here we have used the assumption
|∇(k∗δ )

−1| = O(1
δ
). By the estimate (43) and Lemma 3.2, we have

‖uδ>,ε − vh‖0,K

≤ C‖∇pδ>,ε −∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,K + C‖∇p1

δ>,ε −∇wK,1
δ>,ε‖0,K + C‖∇wK,1

δ>,ε −∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,K + C(hα+β1−β2 + ε‖u∗δ‖1,K) + C(ε‖w∗K

δ ‖2,K +
√

ε|∂K||w∗K
δ |1,∞,K)

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,K + C(hα+β1−β2 + ε‖u∗δ‖1,K)

+ C[ε‖u∗δ‖1,K +
√

ε|∂K|(hα+β1−β2−1 + h−1‖u∗δ‖0,K + ‖u∗δ‖0,∞,K)].

(44)

The rest of the proof follows the proof of Theorem 3.5.

Corollary 3.7. Let k∗δ has periodicity with period δ and |p∗δ|L∞(Ω) ≤ C. If the boundary
condition g ∈ C1,ν(∂Ω) (ν > 0) in (7), then

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C(hmin(1,α+β1−β2−1) +
ε

δ
+

√
ε

h
).

(45)

Proof. If k∗δ is δ−periodic, then the asymptotic expansion for p∗δ implies that

‖p∗δ‖2,Ω ≤ Cδ−1.

Moreover, if the boundary condition g ∈ C1,ν(∂Ω), Lemma 20 in [7] implies that for any K

‖∇p∗δ‖L∞(K) ≤ C.

Consequently, (45) follows immediately by the proof of Theorem 3.5.
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In the proof of (33), if we use Poincaré-Friedrichs inequality in the third step, then we
obtain that

|w∗K
δ |1,∞,K ≤ C(hα+β1−β2−1 + C‖u∗δ‖1,K + C‖u∗δ‖0,∞,K). (46)

Using the estimate (46) and the proof of Theorem 3.5, we have

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C(|pδ>,ε|1,Ω + |f |1,Ω)h + C(ε‖p∗δ‖2,Ω +
√

ε|p∗δ|1,∞,Ω)

+ C
ε

δ
+ Chα+β1−β2−1 + C‖u∗δ‖1,Ω

√
εh + C‖u∗δ‖0,∞,Ω

√
ε

h
.

(47)

We note the resonance error term
√

ε
h

(as ε ≈ h) in the estimate (47). Actually, this
resonance error term comes from the term |w∗K

δ |1,∞,K in (39).

Remark 3.3. The mixed MsFEM presented here is an extension of Chen and Hou’s mixed
MsFEM proposed in [13] and of the global mixed MsFEM proposed in [2]. If we choose
only one global field u∗δ,1 in Assumption A1 and set u∗δ,1 to be constant field globally or in
span{RK

j } locally, where RK
j is a lowest Raviart-Thomas finite element basis function, then

the method presented in the paper reduces to the local method in [13]. If kδ>,ε(x) does not
have ε-scale, then the method in the paper is the global method presented in [2] and the
convergence rate depends on coarse mesh size h only.

Remark 3.4. We note there is a resonance error O(
√

ε
h
) in Theorem 3.5 (or the estimate

(47)). This is because we have only used the homogenization information about ε-scale in
(10) when we construct multiscale velocity basis functions. In order to remove this resonance
error, we can use the global mixed MsFEM [2], but this will be computationally expensive.

Remark 3.5. The basis functions in (10) define a conforming mixed MsFEM. If the equation
(10) is solved in block S larger than K and the interior information of ψS

ij is taken to
construct the basis functions in K, then this is the oversampling technique introduced in
[13]. Following the outline in [13] and using the estimate (46), we can obtain the following
convergence estimate

‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ C(|pδ>,ε|1,Ω + |f |1,Ω)h + Cε‖p∗δ‖2,Ω + C
ε

δ

+ C|u∗δ|1,Ω

√
εh + Chα+β1−β2−1 + C(

ε

h
+
√

ε)‖u∗δ‖0,∞,Ω.

(48)

Consequently, the resonance error O(
√

ε
h
) in Theorem 3.5 reduces to O( ε

h
).

Remark 3.6. If there is strong scale separation, one can use smaller regions (smaller than
K) to construct multiscale basis functions.

3.2 Convergence analysis in G−convergence

In Section 3.1, we investigated the case when kδ>,ε in (6) is ε periodic. However, the mixed
MsFEM defined in (10) can be applied to non-periodic problems. In this section we will
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discuss the convergence for non-periodic case within the framework G−convergence theory
(e.g. [26]).

A sequence of matrices kδ>,ε (kδ>,ε is symmetric and δ scale is fixed) is G−convergent to
k∗δ if for any open set ω ⊂ Ω and any right hand side f ∈ H−1(ω) in (6), if the sequence of
the solutions pδ>,ε in (6) satisfies

pδ>,ε ⇀ p∗δ weakly in H1(ω) as ε → 0,

where p∗δ is the solution of the equation (7), in which k∗δ is the homogenized matrix in the
sense of G−convergence. The G−convergence implies that

kδ>,ε∇pδ>,ε ⇀ k∗δ∇p∗δ weakly in L2(ω) as ε → 0.

There is no explicit formula for the matrix k∗δ , which is defined as a limit in the distributional
sense, i.e.,

kδ>,ε∇N i
δ>,ε ⇀ k∗δei in D′(ω;R2),

where the auxiliary functions N i
δ>,ε (i = 1, 2) satisfy

N i
δ>,ε ⇀ xi weakly in H1(ω) as ε → 0.

The auxiliary functions are not explicit. They are unique up to an additional sequence
converging strongly to 0 in H1(ω). As an option, we can define them as the solution of the
following equation

−div(kδ>,ε∇N i
δ>,ε) = −div(k∗δei) in ω

N i
δ>,ε = xi on ∂ω.

(49)

We define the corrector matrix ∇Nδ>,ε = (
∂N i

δ>,ε

∂xj
)i,j=1,2. Then, we have the following

lemma.

Lemma 3.8. [29] Let kδ>,ε be a sequence G−converging to k∗δ as ε → 0. Then

∇pδ>,ε = ∇Nδ>,ε · ∇p∗δ + Rω
δ>,ε,

where Rω
δ>,ε → 0 strongly in L1(ω) as ε → 0. Moreover, if ∇Nδ>,ε is bounded in Lr(ω) for

some r such that 2 ≤ r ≤ ∞, and ∇p∗δ ∈ Ls(ω) for some s such that 2 ≤ s < ∞, then
Rω

δ>,ε → 0 strongly in Lt(ω), as ε → 0, where t = min{2, rs
r+s
}.

Theorem 3.9. Suppose Assumptions A1 and A2 hold. Let uδ>,ε and uh solve (11) and (12),
respectively. If ∇Nδ>,ε ∈ L∞(K) for any K and p∗δ ∈ H1(Ω), then

lim
h→0

lim
ε→0

(‖uδ>,ε − uh‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω) = 0. (50)

Proof. Let vh and qh be defined as the same as in the proof of Theorem 3.5. We have

‖div(uδ>,ε − vh)‖0,Ω + ‖pδ>,ε − qh‖0,Ω ≤ Ch(|pδ>,ε|1,Ω + |f |1,Ω).
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Now we apply Lemma 3.8 to estimate ‖uδ>,ε − vh‖0,K :

‖uδ>,ε − vh‖0,K

= ‖kδ>,ε∇pδ>,ε − kδ>,ε∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇wK
δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇Nδ>,ε · ∇p∗δ‖0,K + C‖∇Nδ>,ε · (∇p∗δ −∇w∗K
δ )‖0,K

+ C‖∇Nδ>,ε · ∇w∗K
δ −∇wK

δ>,ε‖0,K

≤ C‖∇pδ>,ε −∇Nδ>,ε · ∇p∗δ‖0,K + Chα+β1−β2 + C‖RK
δ>,ε‖0,K .

(51)

Let ∇p1
δ>,ε = ∇Nδ>,ε · ∇p∗δ . Making the summation all over K, we have

‖uδ>,ε − vh‖0,Ω

≤ C‖∇pδ>,ε −∇p1
δ>,ε‖0,Ω + Chα+β1−β2−1 + C

∑
K

‖RK
δ>,ε‖0,K

≤ C‖RΩ
δ>,ε‖0,Ω + Chα+β1−β2−1 + C

∑
K

‖RK
δ>,ε‖0,K .

(52)

Consequently, we have by (20)

‖uδ>,ε − uh)‖H(div,Ω) + ‖pδ>,ε − ph‖0,Ω

≤ Ch(|pδ>,ε|1,Ω + |f |1,Ω) + C‖RΩ
δ>,ε‖0,Ω + Chα+β1−β2−1 + C

∑
K

‖RK
δ>,ε‖0,K . (53)

The proof is completed by taking ε → 0, h → 0 and applying Lemma 3.8.

Remark 3.7. From Lemma 3.8, it follows that in any open set ω ⊂ Ω

uδ>,ε ≈ kδ>,ε∇Nδ>,ε · ∇p∗δ in L2(ω),

for sufficiently small ε. This is the motivation of the mixed MsFEM proposed in [2] for the
G−convergence homogenization case.

By Theorem 2.4 in [4], we can obtain the following result.

Proposition 3.10. Let the G−limit p∗δ ∈ W 2,∞(Ω) and Nδ>,ε = {N1
δ>,ε, N

2
δ>,ε} be uniformly

bounded in Lq(Ω) for any 2 ≤ q < ∞. Then

lim
ε→0

‖uδ>,ε − kδ>,ε∇Nδ>,ε · (∇p∗δ) ◦Nδ>,ε‖0,Ω = 0,

where ◦ denotes the composition of functions.

Remark 3.8. uδ>,ε ≈ kδ>,ε∇Nδ>,ε · (∇p∗δ) ◦ Nδ>,ε in L2(Ω) implies that approximate global
fields can be used in (2) (or Assumption A1).

Remark 3.9. Since k∗δ is not explicit when kδ>,ε is not ε−periodic, we can not solve N i
δ>,ε in

(49) and p∗δ,i in Assumption A1 directly. However, we can use upscaling method to obtain

an upscaled k̃∗δ in coarse block, which is approximated to k∗δ .
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4 Numerical results

In this section, we present numerical results for permeability fields from SPE Comparative
Solution Project [14] (also known as SPE 10) and two point correlation permeability fields
[15]. Because of channelized structure of SPE 10 permeability fields, the localized approaches
do not perform well. We will show that if one uses an approximate global field based on
single-phase flow information in constructing multiscale basis functions, then the numerical
approximation on the coarse grid becomes more accurate.

In our numerical simulations, we will perform two-phase flow and transport simulations.
The equations are given (in the absence of gravity and capillary effects) by flow equations

div(λ(S)k∇p) = f, (54)

where the total mobility λ(S) is given by λ(S) = λw(S) + λo(S) and f is a source term.
Here, λw(S) = krw(S)/µw and λo(S) = kro(S)/µo where µo and µw are viscosities of oil and
water phases, correspondingly, and krw(S) and kro(S) are relative permeabilities of oil and
water phases, correspondingly. The saturation is governed by

∂S

∂t
+ div(F ) = 0, (55)

where F = vfw(S), with fw(S), the fractional flow of water, given by fw = λw/(λw + λo),
and the total velocity v by:

v = vw + vo = −λ(S)k∇p. (56)

In our simulations, we take krw(S) = S2 and kro(S) = (1− S)2. In the presence of capillary
effects, an additional diffusion term is present in (55). In the simulations, we solve the
pressure equation on the coarse grid and re-construct the fine-scale velocity field which is
used to solve the saturation equation. The basis functions are constructed at time zero and
not changed throughout the simulations.

We compare the saturation fields and water-cut data as a function of pore volume injected
(PVI). The water-cut is defined as the fraction of water in the produced fluid and is given
by qw/qt, where qt = qo + qw, with qo and qw being the flow rates of oil and water at the
production edge of the model. In particular, qw =

∫
∂Ωout f(S)v ·nds, qt =

∫
∂Ωout v ·nds, where

∂Ωout is the outer flow boundary. Pore volume injected, defined as PV I = 1
Vp

∫ t

0
qt(τ)dτ ,

with Vp being the total pore volume of the system, provides the dimensionless time for
the displacement. We consider a traditional quarter five-spot problem (e.g., [1]), where the
water is injected at left left top corner and oil is produced at the right lower corner of
the rectangular domain. In all numerical simulations, mixed multiscale basis functions are
constructed once at the beginning of the computations. In the discussions, we refer to the
grid where multiscale basis functions are constructed as a coarse grid, and to the grid that
is used to compute global fields as an upscaling grid.

For our first numerical example, we choose kδ>,ε = kδkε, where kδ is (volume) averaged
SPE 10 permeability (layer 60) on 50 × 50 grid (uniform in each direction), and kε is a
checkerboard permeability with values 10 or 1 on the fine grid, 300×300. We depict the fine-
scale (300×300) permeability kδ>,ε and the homogenized permeability k∗δ of kδ>,ε on 50×50 in
Figure 2. Note that the homogenization does not affect kδ and the homogenized permeability
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is k∗δ =
√

10kδ (see the bottom plot in Figure 2). This example is suitable to the analysis
presented in Section 2.2. In particular, the partial homogenization (homogenization with
respect to ε only) can be computed analytically. Figure 3 depicts the reference (fine-scale)
saturation, the saturation field using the quasi-global mixed MsFEM and the saturation
field using the local mixed MsFEM, respectively. Here 10 × 10 coarse grid is taken for
both the quasi-global mixed MsFEM and the local mixed MsFEM and the viscosity ratio is
µw/µo = 1/10. In the quasi-global mixed MsFEM, the homogenized velocity u∗δ is taken to
construct boundary conditions for the basis functions. The corresponding relative saturation
error and water-cut curve are shown in Figure 4. More detailed numerical comparisons are
presented in Tables 1 and 2, where the grid size for kδ is fixed at 50× 50 and different coarse
grids are used for the mixed MsFEM implementation. From Tables 1 and 2, we can observe:
(1) the quasi-global mixed MsFEM provides several times better accuracy than the local
mixed MsFEM; (2) as the coarse grid size decreases, errors also decrease.

Table 1: Relative Errors (kδ defined on 50× 50 grid, µw

µ0
= 1/10)

Coarse Grid Water-Cut Error Saturation Error Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM Local MsFEM Local MsFEM

10 × 10 0.0051 0.0511 0.1164 0.2497
20 × 20 0.0019 0.0249 0.0996 0.2005
30 × 30 0.0018 0.0185 0.0557 0.1094
60 × 60 0.0008 0.0095 0.0164 0.0434

Table 2: Relative Errors (kδ defined on 50× 50 grid, µw

µ0
= 1/3)

Coarse Grid Water-Cut Error Saturation Error Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM Local MsFEM Local MsFEM

10 × 10 0.0101 0.0473 0.1595 0.2451
20 × 20 0.0042 0.0241 0.1359 0.1972
30 × 30 0.0031 0.0170 0.0788 0.1115
60 × 60 0.0014 0.0096 0.0219 0.0430

In our next numerical example, the permeability field (SPE 10, layer 60) is interpolated
to 220× 220 fine grid. Various coarse grids are used in two-phase flow simulations without
updating basis functions in the numerical experiments. We depict the fine-scale SPE 10
permeability and 55× 55 upscaled permeability in Figure 5. Figure 6 depicts the fine-scale
saturation, the saturation using the quasi-global mixed MsFEM and the saturation using the
local mixed MsFEM, respectively, where 11× 11 coarse grid is taken for the mixed MsFEM
and the viscosity ratio is µw/µo = 1/10. Here 55× 55 grid is taken for upscaling to produce
the upscaled velocity that is used to construct boundary conditions of the basis functions.
The corresponding relative saturation error and water-cut curve are shown in Figure 7. We
observe that the use of approximate global information in the mixed MsFEM reduces the
error about 2 times compared to purely local methods. Table 3 shows the numerical errors
for different coarse grids. As we observe from this table that as the coarse-grid size decreases,
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Figure 2: Top: Logarithm of kδ>,ε permeability. Bottom: Logarithm of homogenized perme-
ability k∗δ .

20



Reference saturation at PVI=1
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Figure 3: Top: Reference saturation at PVI=1 µw/µ0 = 1/10, permeability kδ>,ε. Middle:
Saturation at PVI=1 by the quasi-global mixed MsFEM. Bottom: Saturation at PVI=1 by
the local mixed MsFEM.
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Figure 4: The saturation error (left) and water-cut curve (right), permeability kδ>,ε, µw/µ0 =
1/10.
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Logarithm of SPE 10 permeabilty of layer 60
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Figure 5: Top: Logarithm of SPE 10 fine-scale permeability (layer 60). Middle: Logarithm
of upscaling the SPE 10 fine-scale permeability (layer 60) in x-direction (55× 55). Bottom:
Logarithm of upscaling the SPE 10 fine-scale permeability (layer 60) in y-direction (55×55).

the error also decreases. Note that this is not the case when purely local methods are used
(see Table 3). In Table 4, we show the numerical errors when the coarse grid for the mixed
MsFEM is fixed and different upscaling grids are used for the construction of boundary
conditions of multiscale basis functions. We note from this table that the error decreases
as the upscaling grid becomes finer. Indeed, as we refine the upscaling grid, more precise
global information is passed to the multiscale basis functions. This improves the accuracy
of the method. The water-cut as well as saturation errors are depicted in Figure 8. We note
that if the coarse grid is the same as upscaling grid, then the quasi-global mixed MsFEM
reduces to the local mixed MsFEM. This result is illustrated at the intersection point (in
Figure 8) of the red solid line (local mixed MsFEM) and the blue dashed line (quasi-global
mixed MsFEM), where the upscaling grid and the coarse grid are the same, i.e., 11× 11. If
the upscaling grid is taken to be the fine grid, then the quasi-global mixed MsFEM becomes
the global mixed MsFEM as proposed in [2].

For our next simulation results, we choose a realization of the permeability field generated
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Reference saturation at PVI=1
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Figure 6: Top: Reference saturation at PVI=1 µw/µ0 = 1/10, SPE 10 permeability. Middle:
Saturation at PVI=1 by the quasi-global mixed MsFEM. Bottom: Saturation at PVI=1 by
the local mixed MsFEM.
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Figure 7: The saturation error (left) and water-cut curve (right), SPE 10 permeability,
µw/µ0 = 1/10.

Table 3: Relative Errors (55× 55 upscaling grid, µw

µ0
= 1/10)

Coarse Grid Water-Cut Error Saturation Error Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM Local MsFEM Local MsFEM

5 × 5 0.1260 0.4057 0.1982 0.4086
10 × 10 0.0853 0.2704 0.1177 0.3426
22 × 22 0.0482 0.2240 0.1053 0.3644
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Table 4: Relative Errors (11× 11 coarse grid, µw

µ0
= 1/10)

Upscaling Grid Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM

11 × 11 0.1302 0.3549
22 × 22 0.0977 0.3019
55 × 55 0.0562 0.2145

110 × 110 0.0355 0.1219
220 × 220 0.0032 0.0650
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Figure 8: Water-cut error and saturation error vs. different upscaling grids.
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using a two-point correlation function with correlation lengths in x1-direction L1 = 0.4 and
in x2-direction L2 = 0.05. Exponential variogram is selected (see e.g., [15]). We depict
200× 200 fine-grid permeability field and 40× 40 upscaled permeability in Figure 9. Figure
10 depicts the fine-scale saturation, the saturation using the quasi-global mixed MsFEM
and the saturation using the local mixed MsFEM, respectively, where 10× 10 coarse grid is
taken for both the quasi-global mixed MsFEM and the local mixed MsFEM and the viscosity
ratio is µw/µo = 1/3. In the quasi-global mixed MsFEM, 40 × 40 coarse grid is taken for
the upscaling of the permeability field to produce the upscaled velocity, which is used to
construct boundary conditions for multiscale basis functions. The corresponding relative
saturation errors and water-cut curves at different times are plotted in Figure 11. First,
we note that the errors due to MsFEMs are smaller compared to the cases when SPE 10
permeability fields are used. The errors due to the local mixed MsFEM in the saturation field
are about 5 % at PV I > 0.5. We observe that the mixed MsFEM using approximate global
information produces errors which are lower consistently over the time. These errors are are
shown in Tables 5 and 6 for different viscosity ratios. We observe from these tables that the
quasi-global mixed MsFEM provides better accuracy compared to the local mixed MsFEM.
Moreover, as the coarse-grid size decreases, the errors due to the quasi-global mixed MsFEM
decreases, while the errors for the local mixed MsFEM do not change on average. In Table
7, we fix the coarse-grid size and change the upscaling grid. We can observe from this table
that as the intermediate coarse-grid size (that is used for the upscaling) decreases, the quasi-
global mixed MsFEM becomes more accurate. As we noted earlier, when the upscaling grid
becomes finer, the global information is more accurate. Consequently, the mixed MsFEM
using approximate global information becomes more accurate.

Table 5: Relative Errors (40× 40 upscaling grid, µw

µ0
= 1/10)

Coarse Grid Water-Cut error Saturation Error Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM Local MsFEM Local MsFEM

8 × 8 0.0137 0.0166 0.0229 0.0397
10 × 10 0.0124 0.0136 0.0203 0.0485
20 × 20 0.0060 0.0107 0.0222 0.0243

Table 6: Relative Errors (40× 40 upscaling grid, µw

µ0
= 1/3)

Coarse Grid Water-Cut Error Saturation Error Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM Local MsFEM Local MsFEM

8 × 8 0.0353 0.0195 0.0414 0.0457
10 × 10 0.0269 0.0158 0.0467 0.0579
20 × 20 0.0093 0.0117 0.0377 0.0254
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Figure 9: Top: Logarithm of two-point correlation permeability with Lx = 0.4 and Ly = 0.05.
Bottom: Logarithm of upscaling the two-point correlation permeability in x-direction.

Table 7: Relative Errors (10× 10 coarse grid, µw

µ0
= 1/10)

Upscaling Grid Water-Cut Error Saturation Error
Q.-Glob. MsFEM Q.-Glob. MsFEM

10 × 10 0.0191 0.0491
20 × 20 0.0170 0.0209
40 × 40 0.0124 0.0136
50 × 50 0.0122 0.0129
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Reference saturation at PVI=1
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Figure 10: Top: Reference saturation at PVI=1 µw/µ0 = 1/3, two-point correlation perme-
ability. Middle: Saturation at PVI=1 by the quasi-global mixed MsFEM. Bottom: Satura-
tion at PVI=1 by the local mixed MsFEM.
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Figure 11: The saturation error (left) and water-cut curve (right), two-point correlation
permeability, µw/µ0 = 1/3.
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5 Conclusions

In this paper, we study the use of approximate global information in multiscale simulations.
Previous approaches involve fine-scale simulations in the computation of the global informa-
tion. In these cases, the computation of global fields can be expensive. In this paper, we
propose the use of partial homogenization in constructing approximate global fields. The
main idea of this approach is to upscale the media properties to some intermediate coarse
grid that is larger than the fine-mesh size, while it is finer than the target coarse-grid block.
The objective is to homogenize the small scales whose effects can be captured with mul-
tiscale basis functions. The use of non-uniform coarsening will further help to reduce the
degrees of freedoms involved in the computation of approximate global fields. We present
mathematical analysis of the method by introducing a formalism for having both separable
and non-separable scales in the coefficients. The proposed method is applied to simulate
two-phase flows in heterogeneous porous media. Numerical results are presented for various
permeability fields including those generated using two-point correlation functions and chan-
nelized permeability fields from SPE Comparative Project [14]. We consider simple cases
where one can identify the scales which can be homogenized. For more general cases, we sug-
gest the use of upscaling on the coarse grid with the size smaller than the target coarse grid
where multiscale basis functions are constructed. This intermediate coarse grid renders a
partially homogenized solution that contains essential non-local information. Numerical ex-
amples demonstrate that the use of approximate global information provides better accuracy
than purely local multiscale methods.
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