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Abstract. We study spatially semidiscrete and fully discrete finite volume el-
ement approximations of the heat equation with homogeneous Dirichlet bound-
ary conditions in a plane polygonal domain with one reentrant corner. We show
that, as a result of the singularity in the solution near the reentrant corner,
the convergence rate is reduced from optimal second order, similarly to what
was shown for the finite element method in the earlier work [5]. Optimal or-
der convergence may be restored by mesh refinement near the corners of the
domain.

1. Introduction

We shall consider the finite volume method, using continuous, piecewise linear
approximating functions, for the model parabolic initial boundary value problem

ut − ∆u = f(t) in Ω, with u(·, t) = 0 on ∂Ω, for t > 0,

u(·, 0) = v in Ω,
(1.1)

where Ω is a nonconvex polygonal domain in R
2. We assume for simplicity that

exactly one interior angle ω is reentrant, i.e., such that ω ∈ (π, 2π), and set β =
π/ω ∈ (1

2 , 1).

In [4] we showed an O(h2) error bound in L2 in the case of a convex Ω, and
in [5] we discussed the error in the nonconvex case for the finite element method.
In the latter case the error in L2 is reduced from O(h2) to O(h2β), as a result of
the singularity which is present in the solution of (1.1) at the reentrant corner.
In this paper we show the corresponding result for a finite volume method. We
also discuss error estimations in H1 and in the maximum–norm. The present work
can be considered as a continuation of [4] and [5], and we refer to these papers for
references to the literature.

The finite volume method relies on a local conservation property associated with
the differential equation. Namely, integrating (1.1) over any region V ⊂ Ω and
using Green’s formula, we obtain

∫

V

ut dx−

∫

∂V

∇u · n ds =

∫

V

f dx, for t > 0,(1.2)

where n denotes the unit exterior normal vector to ∂V .
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Figure 1. Left: A union of triangles that have a common vertex
z; the dotted line shows the boundary of the corresponding con-
trol volume Vz . Right: A triangle K partitioned into the three
subregions Kz.

There are various approximation strategies in the finite volume (control-volume)
method. For comprehensive presentations and references to existing results and
various applications we refer to the monographs [7, 9]. Here we shall study spatially
semidiscrete approximations of (1.1) by the finite volume element method, which
for brevity we will refer to as the finite volume method below. The approximate
solution will be sought in the space of piecewise linear finite elements

Sh ≡ Sh(Ω) = {χ ∈ C(Ω) : χ|K linear, ∀K ∈ Th; χ|∂Ω = 0},

where {Th}0<h<1 is a family of regular triangulations of Ω, with h denoting the
maximum diameter of the triangles of Th. In the sequel, for simplicity, we shall
suppress the index Ω in the notation for functional spaces.

The semidiscrete finite volume approximation uh(t) ∈ Sh, t ≥ 0, will satisfy the
relation (1.2) for V in a finite collection of subregions of Ω called control volumes,
the number of which will be equal to the dimension of the finite element space
Sh. These control volumes are constructed as follows. Let zK be the barycenter of
K ∈ Th. We connect zK with line segments to the midpoints of the edges of K,
thus partitioning K into three quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the
vertices of K. Then with each vertex z ∈ Zh = ∪K∈Th

Zh(K) we associate a control
volume Vz , which consists of the union of the subregions Kz, sharing the vertex z
(see Figure 1). We denote the set of interior vertices of Zh by Z0

h. The semidiscrete
finite volume method is then to find uh(t) ∈ Sh for t ≥ 0 such that, with vh ∈ Sh

a given approximation of v,
∫

Vz

uh,t dx−

∫

∂Vz

∇uh · n ds =

∫

Vz

f dx, ∀z ∈ Z0
h, t > 0, with uh(0) = vh.

This problem may also be expressed in a weak form. For this purpose we intro-
duce the finite dimensional piecewise constant space

Yh = {η ∈ L2 : η|Vz
= constant, ∀z ∈ Z0

h; η|Vz
= 0, ∀z ∈ ∂Ω}.

We now multiply the integral relation above by an arbitrary η(z), η ∈ Yh, and sum
over all z ∈ Z0

h to obtain the Petrov–Galerkin formulation

(1.3) (uh,t, η) + ah(uh, η) = (f, η), ∀η ∈ Yh, t > 0, with uh(0) = vh,
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where (v, w) =
∫

Ω
vw dx and the bilinear form ah(·, ·) : Sh × Yh → R is defined by

ah(v, η) = −
∑

z∈Z0
h

η(z)

∫

∂Vz

∇v · n ds, v ∈ Sh, η ∈ Yh.

Obviously, we can extend the definition of ah(v, η) for v in the fractional order
Sobolev space H1+s, s > 1/2, and using Green’s formula we easily see that

(1.4) ah(v, η) = −(∆v, η), ∀η ∈ Yh. v ∈ H2,

The stationary elliptic problem corresponding to (1.1) is the Dirichlet problem,

(1.5) −∆u = f in Ω, with u = 0 on ∂Ω.

For this problem, the reentrant corner O gives rise to a singularity in the solution
with a leading term of the form c(f)rβ sin(βθ), in polar coordinates centered at O,
even when f is smooth. This function is not in the space H1+s for any s ≥ β.

The finite volume method approximates the solution of (1.5) by uh ∈ Sh from

ah(uh, η) = (f, η), ∀η ∈ Yh,

and the error may be shown to satisfy

(1.6) ‖uh − u‖ ≤ Ch2β‖∆u‖H2β−1 , where ‖ · ‖ = ‖ · ‖L2
and 1

2 < β < 1.

For the corresponding finite element method,

a(uh, χ) = (f, χ), ∀χ ∈ Sh, where a(v, w) =

∫

Ω

∇v · ∇w dx,

we have an error bound of the same order, which requires less regularity, namely

(1.7) ‖uh − u‖ ≤ Csh
2β‖∆u‖H−1+s , for β < s ≤ 1.

As a guide to our analysis of (1.3) we use the corresponding finite element prob-
lem,

(1.8) (uh,t, χ) + a(uh, χ) = (f, χ), ∀χ ∈ Sh, t > 0, with uh(0) = vh.

Here, in the error analysis, it is customary to split the error into two terms by

uh(t) − u(t) = (uh(t) −Rhu(t)) + (Rhu(t) − u(t)) = ϑ(t) + %(t),

where Rh : H1
0 → Sh denotes the elliptic, or Ritz, projection defined by

(1.9) a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh.

As a result of (1.7), we immediately have

(1.10) ‖%(t)‖ ≤ Csh
2β‖∆u(t)‖H−1+s , for β < s ≤ 1, t > 0,

and we find that ϑ satisfies

(ϑt, χ) + a(ϑ, χ) = −(%t, χ), ∀χ ∈ Sh, t > 0.

This leads to an O(h2β) bound also for ‖ϑ‖, and thus of the total error.
For the error analysis of the semidiscrete method (1.3) it would seem more natu-

ral to split the error using the finite volume elliptic projection R̃h : H1+s∩H1
0 → Sh,

s > 1
2 , defined by

(1.11) ah(R̃hv, η) = ah(v, η), ∀η ∈ Yh,

and thus write

(1.12) uh(t) − u(t) = (uh(t) − R̃hu(t)) + (R̃hu(t) − u(t)) = ϑ̃(t) + %̃(t).
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The second term, %̃ then represents the error in an elliptic problem whose exact
solution is u, and by (1.6) this term may be bounded by

‖%̃(t)‖ ≤ Ch2β‖∆u(t)‖H2β−1 , for t > 0.

For the first term in (1.12), ϑ̃(t) ∈ Sh, we have

(1.13) (ϑ̃t, η) + ah(ϑ̃, η) = −(%̃t, η), ∀η ∈ Yh, t > 0.

and it follows easily that ‖ϑ̃(t)‖, and thus also the total error, are of order O(h2β).
However, as we shall see, these error bounds will require higher regularity assump-
tions and compatibility conditions on data than for the finite element method.

In an alternative analysis, proposed in [4], we split the error using the finite
element Ritz projection Rh, and thus write

(1.14) uh(t) − u(t) = (uh(t) −Rhu(t)) + (Rhu(t) − u(t)) = ϑ(t) + %(t).

We then have estimate (1.10) for %, whereas ϑ now satisfies the somewhat more
complicated equation

(1.15) (ϑt, η) + ah(ϑ, η) = −(%t, η) − ah(%, η), ∀η ∈ Yh, t > 0.

This equation also makes it possible to show an O(h2β) bound for ϑ and thus for
uh − u. It turns out that the regularity requirements using this method, although
still slightly higher than for the finite element method, are less stringent than what
is needed by using the finite volume elliptic projection R̃h.

Using the Ritz projection in the error splitting, i.e., (1.14), we also derive, as for
the finite element method in [5], an O(hβ) bound for the gradient of the error and
an almost O(hβ) global error estimate in maximum–norm. In maximum–norm, we
also show an O(h2β) error bound, away from the corners, and finally demonstrate
that an almost optimal order O(h2) error bound holds when the triangulations are
appropriately refined near the corners. The regularity requirements for these error
bounds, as in the L2 norm estimate, are higher than those needed for the finite
element method.

The following is an outline of the paper. In Section 2 we briefly recall from [5]
some definitions of function spaces, regularity results, and error bounds for finite
element approximations for elliptic and parabolic problems, that will be useful
subsequently. The main section of the paper is Section 3, where error bounds in
L2, and H1 are shown together with the three maximum–norm error estimates,
mentioned above. In Section 4 we derive similar error bounds for a fully discrete
scheme by discretizing also in time using the Backward Euler method.

As in [4] and [5], our error bounds will be expressed in terms of norms of data,
together with compatibility conditions at ∂Ω for t = 0. This should be interpreted
to mean that if these bounds are finite, and the compatibility conditions are satis-
fied, then the exact solution will have enough regularity to secure the convergence
rate stated, uniformly down to t = 0. Under weaker regularity assumptions, lower
convergence rates have to be expected. In the error bounds, C will denote constants
which may depend on Ω and on geometrical properties of Th, but are independent
of h and data. Several of the constants in our error and regularity bounds grow with
t, and in order to not to have to account for their precise growth, we will assume
throughout that t ≤ T , for some positive T , without indicating the dependence of
the constant on T . Also, in our analysis, sometimes norms in the spatial variable
of fractional order occur, and, for easier reading, we then often replace such norms
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with bigger norms of integral order in our statements. Further, for simplicity, we
shall choose the discrete initial values vh as the elliptic projection of the given v. By
the stability of (1.3), other natural choices of vh would give the same error bounds.

2. Review of the error analysis for finite element approximations

In this section we collect some material from [5] that we will need in our subse-
quent analysis, namely some definitions relating to fractional order Sobolev spaces,
regularity results for the Dirichlet problem (1.5) and the parabolic model problem
(1.1), and error bounds for the Ritz projection Rh. Also, in order to be able to
compare our new results for the finite volume solution of (1.1) with the correspond-
ing error bounds for the finite element solution, we include some of the latter. For
more details and references to the literature, we refer to [5].

Letting H−1 = (H1
0 )? denote the dual space of H1

0 , with respect to the L2 inner
product, we define the variational solution of (1.5) for f ∈ H−1 as the function
u ∈ H1

0 which satisfies

(2.1) (∇u,∇ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 ,

thus also defining the operator ∆ : H1
0 → H−1. It is well–known that this problem

has a unique solution, and that

‖∇u‖ ≤ ‖f‖H−1 .

In order to discuss further regularity results we shall need to use fractional order
Sobolev spaces. Let Hm with norm ‖ · ‖Hm denote the standard Sobolev spaces of
order m, with m integer. The space Hs, for s non integer, s = m+ σ, 0 < σ < 1,
is defined by the real interpolation method, Hs = [Hm, Hm+1]σ,2. Also, let Hs

0 ,
0 ≤ s ≤ 1, be the fractional order Sobolev space obtained by interpolation between
L2 andH1

0 . Note thatHs
0 = Hs for 0 < s < 1

2 , which meansHs
0 does not require any

boundary condition for small s. Further, we denote H−s = (Hs
0 )∗, for 0 < s < 1.

For the error analysis of (1.8) and (1.3) we also use the Hilbert spaces Ḣs defined
by the norms

‖v‖Ḣs =
(

∞
∑

j=1

λs
j(v, ϕj)

2
)1/2

, for s ≥ −1, v ∈ H−1,

where {ϕj}
∞
j=1 are the orthonormal eigenfunctions and {λj}

∞
j=1 the corresponding

eigenvalues of −∆ in Ω.
Since both Ḣ−s and H−s are the uniquely defined interpolation space between

L2 and H−1, we have Ḣ−s = H−s for 0 ≤ s ≤ 1, and for 1 ≤ s ≤ 2, Ḣs consists
of the functions u ∈ H1

0 such that ∆u is in the space Hs−2. Further it is obvious

that −∆ gives an isomorphism between Ḣ1+s and Ḣ−1+s. Thus,

‖∆u‖H−1+s ≤ C‖∆u‖Ḣ−1+s = C‖u‖Ḣ1+s , for 0 ≤ s ≤ 1.

It is well–known that the nonconvex corner of Ω bounds the regularity of the
solution u of (1.5). Thus u ∈ H1+s for 0 ≤ s < β for f smooth enough, and
‖u‖H1+s ≤ Cs‖f‖H−1+s , but u /∈ H1+β . A somewhat more sophisticated regularity
result makes it possible to show the following error bounds in L2 and energy norms,
for the Ritz finite element projection Rh, defined by (1.9).

Lemma 2.1. For u the solution of (1.5) or (2.1), we have, for β < s ≤ 1,

(2.2) ‖Rhu− u‖ + hβ‖∇(Rhu− u)‖ ≤ Csh
2β‖∆u‖H−1+s ≤ Csh

2β‖u‖Ḣ1+s .



6

Further,

(2.3) ‖Rhu− u‖ ≤ Chβ‖u‖H1 .

In the maximum–norm ‖v‖C = supx∈Ω |v(x)| the following almost O(hβ) error
estimate holds.

Lemma 2.2. Let u be the solution of (1.5). If the triangulations Th are such that

hmin ≥ Chγ for some γ > 0, where hmin = minTh
diam(τ), then

‖Rhu− u‖C ≤ Cs,s1
hs‖u‖Ḣ1+s1

, for 0 ≤ s < s1 < β.

We recall that for quasiuniform triangulations the logarithmic stability estimate

‖Rhv‖C ≤ C`h‖v‖C, where `h = max(log(1/h), 1),

may be used to improve the maximum–norm convergence rate to O(hβ`h).
Away from the corners of the domain Ω, the convergence in maximum–norm is

of the same order O(h2β) as in the global L2 error estimate. For this we quote the
following lemma, where we denote the norm in Cs by ‖ · ‖Cs .

Lemma 2.3. Let u be the solution of (1.5). If Ω0 ⊂ Ω1 ⊂ Ω is such that Ω1

does not contain any corner of Ω and the distance between ∂Ω1 ∩Ω and ∂Ω0 ∩Ω is

positive and if the Th are quasiuniform in Ω1, then we have, for β < s ≤ 1,

‖Rhu−u‖C(Ω0) ≤ Csh
2β

(

‖u‖C2s(Ω1) +‖∆u‖H−1+s

)

≤ Csh
2β

(

‖u‖C2s(Ω1) +‖u‖Ḣ1+s

)

.

Optimal order O(h2) and O(h) convergence in L2 and H1, respectively, and
almost optimal O(h2) convergence in the maximum–norm, may be obtained by
systematically refining the triangulations toward the corners of Ω. In the case of
the maximum-norm, to which we shall restrict ourselves here, such triangulations
can be described as follows. It is known, cf. [8], that a corner Pi of Ω gives rise
to singularities, expressed in terms of polar coordinates centered at Pi, of the form
crmβi sin(βiθ), with βi = π/ωi ∈ (0, 2), where ωi is the interior angle, 1

2π < ωi < 2π,
andm is a positive integer. Assuming that the triangulations are quasiuniform away
from the corners, the refinement near Pi has the ‘local mesh-size’ h(x) at x ∈ Ω
with h(x) ≈ min(hdi(x)

1−βi/2+ε, h2/βi), with di(x) the distance from x to Pi, thus
with mesh-sizes smaller near Pi the bigger the ωi. This may be done in so that
dimSh ≤ Ch−2. The condition on Th of Lemma 2.2 is satisfied. For details, see
[5]; below we shall simply refer to such triangulations Th as appropriately refined.

Lemma 2.4. Let u be the solution of (1.5), and let the triangulations Th be ap-

propriately refined. Then we have

(2.4) ‖Rhu− u‖ + h‖∇(Rhu− u)‖ ≤ Ch2‖∆u‖ = Ch2‖f‖.

Further, for any s < 2 and p <∞ sufficiently large, we have with C = Cs,p,

(2.5) ‖Rhu− u‖C ≤ Chs‖∆u‖Lp
= Chs‖f‖Lp

.

We turn now to the parabolic problem. A basic weak solution of (1.1) is such
that u ∈ L2(0, T ;H1

0 ), with ut ∈ L2(0, T ;H−1), for any T > 0, and a unique such
solution exists if v ∈ L2 and f ∈ L2(0, T ;H−1). However, in our search for maximal
order convergence, the following stronger regularity results, expressed in terms of
the data v and f , will be needed. We will use the notation

(2.6) g0 = ut(0) = ∆v + f(0), for v ∈ Ḣ2, f(0) ∈ L2.
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Note that v ∈ Ḣ2 contains the compatibility condition v = 0 on ∂Ω between initial
data and the boundary condition in (1.1).

Lemma 2.5. Let u be the solution of (1.1) and assume v = 0 on ∂Ω. Then we

have, for t ≤ T ,

(2.7)

∫ t

0

‖ut‖
2
H1dτ ≤ C

(

‖g0‖
2 +

∫ t

0

‖ft‖
2
H−1 dτ

)

,

and, if in addition g0 = 0 on ∂Ω, then

(2.8)

∫ t

0

(‖∆ut‖
2 + ‖utt‖

2)dτ ≤ C
(

‖g0‖
2
H1 +

∫ t

0

‖ft‖
2dτ

)

.

Further,

(2.9)

∫ t

0

(‖ut‖Ḣ1+s + ‖utt‖Ḣ−1+s) dτ ≤ Cs

(

‖g0‖ +

∫ t

0

‖ft‖ dτ
)

, for 0 ≤ s < 1,

and, if g0 ∈ Hε,

(2.10)

∫ t

0

(‖ut‖Ḣ2 + ‖utt‖)dτ ≤ Cε

(

‖g0‖Hε +

∫ t

0

‖ft‖Hε dτ
)

, 0 < ε < 1
2 .

For comparison with the finite volume results to be shown in Section 3 we state
some error estimates for the spatially semidiscrete finite element approximation
(1.8) of the solution of (1.1).

Theorem 2.1. Let uh and u be the solutions of (1.8) and (1.1) with v = 0 on ∂Ω
and let g0 be defined by (2.6). Then if vh = Rhv, we have, for t ≤ T ,

‖uh(t) − u(t)‖ ≤ Ch2β
(

‖∆v‖ + ‖g0‖ +

∫ t

0

‖ft‖ dτ
)

and

‖∇uh(t) −∇u(t)‖ ≤ Chβ
(

‖∆v‖ + ‖g0‖ +

∫ t

0

‖ft‖ dτ +
(

∫ t

0

‖ft‖
2
H−1 dτ

)1/2
)

.

Also, we have the following maximum–norm error estimates.

Theorem 2.2. Under the assumptions of Theorem 2.1, if the triangulations Th are

such that hmin ≥ Chγ for some γ > 0, we have, for 0 < s < β and t ≤ T .

‖uh(t) − u(t)‖C ≤ Csh
s
(

‖v‖Cβ + ‖f(0)‖ +

∫ t

0

‖ft‖ dτ +
(

∫ t

0

‖ft‖
2
H−1 dτ

)1/2
)

.

Further if Ω0 ⊂ Ω1 ⊂ Ω is such that Ω1 does not contain any corner of Ω and the

distance between ∂Ω1 ∩ Ω and ∂Ω0 ∩ Ω is positive and if the triangulations Th are

quasiuniform in Ω1 and g0 = 0 on ∂Ω, then we have, for β < s < 1 and t ≤ T ,

‖uh(t)−u(t)‖C(Ω0) ≤ Csh
2β`

1/2
h

(

‖u(t)‖C2s(Ω1)+‖∆v‖+‖g0‖H1 +
(

∫ t

0

‖ft‖
2dτ

)1/2
)

.

Note that the first term in the parenthesis is finite provided v and f are smooth
in the interior of Ω.

In the presence of the appropriate refinements the convergence is almost O(h2).

Theorem 2.3. Under the assumptions of Theorem 2.1, if the triangulations Th are

appropriately refined, and g0 = 0 on ∂Ω, then we have, for any s < 2 and t ≤ T ,

‖uh(t) − u(t)‖C ≤ Csh
s
(

‖g0‖H1 + ‖f(0)‖C +

∫ t

0

‖ft‖C dτ +
(

∫ t

0

‖ft‖
2dτ

)1/2
)

.
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3. The semidiscrete finite volume method for the parabolic problem

We begin this section by recalling some basic material concerning the finite
volume method, cf. [1, 2, 6, 7, 9], and then proceed with our error bounds.

We shall first rewrite the Petrov-Galerkin method (1.3) as a Galerkin method.
For this purpose, we introduce the interpolation operator Jh : C 7→ Yh by

Jhu(x) =
∑

z∈Z0
h

u(z)Ψz(x),

where the set {Ψz : z ∈ Z0
h}, with Ψz the characteristic function of the finite

volume Vz , is a basis of Yh. We recall that the bilinear form (χ, Jhψ) is symmetric,
positive definite on Sh, thus an inner product, and that the corresponding discrete
norm is equivalent to the L2 norm, uniformly in h, i.e., with C ≥ c > 0,

(3.1) c‖χ‖ ≤ |||χ||| ≤ C‖χ‖, ∀χ ∈ Sh, where |||χ||| ≡ (χ, Jhχ)
1/2
.

It is well–known, cf., e.g., [1], that

(3.2) a(χ, ψ) = ah(χ, Jhψ), ∀χ, ψ ∈ Sh,

and it follows that there exists c > 0, such that

(3.3) ah(χ, Jhχ) ≥ c‖∇χ‖2, ∀χ ∈ Sh.

With this notation, (1.3) may equivalently be written in Galerkin form as

(uh,t, Jhχ) + ah(uh, Jhχ) = (f, Jhχ), ∀χ ∈ Sh, t > 0, with uh(0) = vh.

In the analysis we shall need the error functional εh(·, ·), defined by

εh(f, χ) = (f, Jhχ) − (f, χ), ∀f ∈ Hs, − 1
2 < s ≤ 1, χ ∈ Sh,

and recall the following bound, cf. [2, Lemma 5.1]:

Lemma 3.1. Let f ∈ Hs, with 0 ≤ s ≤ 1. Then we have

|εh(f, χ)| ≤ Chi+s‖f‖Hs ‖χ‖Hi , ∀χ ∈ Sh, i = 0, 1.

Our next purpose is to derive an L2 norm error estimate for the semidiscrete
finite volume method (1.3), using the finite volume elliptic projection R̃h defined
in (1.11). The proof is based on the following error bound. Note that (3.5) requires
more regularity than the corresponding result for the Ritz projection in (2.2).

Lemma 3.2. Let u be the solution of (1.5). Then we have

(3.4) ‖∇(R̃hu− u)‖ ≤ Csh
β‖∆u‖H−1+s ≤ Csh

β‖u‖Ḣ1+s , for β < s ≤ 1.

Further

(3.5) ‖R̃hu− u‖ ≤ Ch2β‖∆u‖H2β−1 .

Proof. The estimate (3.4) is shown in [3, Theorem 5.2]. For the proof of (3.5) we

employ a duality argument. For ψ ∈ H1
0 satisfying −∆ψ = R̃hu− u, we have

‖R̃hu− u‖2 = a(R̃hu− u, ψ −Rhψ) + a(R̃hu− u,Rhψ) = I + II.

For the first term we obtain, using (3.4) and (2.2) for s = 1, since 2β − 1 > 0,

|I| ≤ ‖∇(R̃hu− u)‖ ‖∇(Rhψ − ψ)‖ ≤ Ch2β‖∆u‖ ‖∆ψ‖

≤ Ch2β‖∆u‖H2β−1‖R̃hu− u‖.
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To bound now the second term we note that by (3.2), (1.11) and (1.4), we get

a(R̃hu,Rhψ) = ah(R̃hu, JhRhψ) = ah(u, JhRhψ) = −(∆u, JhRhψ),

so that II = −εh(∆u,Rhψ), and hence, by Lemma 3.1,

|II| ≤ Ch2β‖∆u‖H2β−1‖∇Rhψ‖ ≤ Ch2β‖∆u‖H2β−1‖∇ψ‖

≤ Ch2β‖∆u‖H2β−1‖R̃hu− u‖.

Together these estimates show

‖R̃hu− u‖2 ≤ Ch2β‖∆u‖H2β−1‖R̃hu− u‖,

which completes the proof. �

We are now ready for our L2 norm error estimate for (1.3). Here and below we
denote

(3.6) g1 = utt(0) = ∆g0 + ft(0) for g0 ∈ Ḣ2, ft(0) ∈ L2.

Theorem 3.1. Let uh and u be the solutions of (1.3) and (1.1), respectively, and

assume v = g0 = 0 on ∂Ω. Then, if vh = R̃hv, we have, for t ≤ T ,

‖uh(t) − u(t)‖ ≤ Ch2β
(

‖∆v‖H1 + ‖g1‖ +

∫ t

0

(‖ftt‖ + ‖ft‖H1)dτ
)

.

Proof. Writing uh − u = ϑ̃+ %̃ as in (1.12), we find by (3.5)

‖%̃(t)‖ ≤ ‖%̃(0)‖ +

∫ t

0

‖%̃t‖ dτ ≤ Ch2β
(

‖∆v‖H2β−1 +

∫ t

0

‖∆ut‖H2β−1 dτ
)

≤ Ch2β
(

‖∆v‖H1 +

∫ t

0

(‖utt‖H1 + ‖ft‖H1)dτ
)

,

(3.7)

where in the last step we have used the fact that 2β − 1 ≤ 1 and ∆ut = utt − ft.
Since ut satisfies (1.1), with f and v replaced by ft and ut(0) = g0, respectively,
the regularity estimate (2.9) with s = 0 shows

(3.8)

∫ t

0

‖utt‖H1 dτ ≤ C
(

‖g1‖ +

∫ t

0

‖ftt‖ dτ
)

,

which applied to (3.7) bounds %̃ as desired. We now turn to ϑ̃, which satisfies (1.13).

Choosing η = Jhϑ̃ we find

(ϑ̃t, Jhϑ̃) + ah(ϑ̃, Jhϑ̃) = −(%̃t, Jhϑ̃),

and hence by standard energy arguments we obtain

‖ϑ̃(t)‖ ≤ C

∫ t

0

‖%̃t‖ dτ.

In view of (3.7) and (3.8), this completes the proof. �

We now show an L2 norm error estimate for (1.3), using instead the finite element
Ritz projectionRh in the analysis. Note that in this case the regularity requirements
on data are weaker than in Theorem 3.1.

Theorem 3.2. Let uh and u be the solutions of (1.3) and (1.1), respectively, and

assume v = 0 on ∂Ω. Then, if vh = Rhv, we have, for t ≤ T ,

‖uh(t) − u(t)‖ ≤ Ch2β
(

‖∆v‖ + ‖g0‖ +
(

∫ t

0

(‖ft‖
2

+ ‖f‖
2
H1 ) dτ

)1/2
)

.
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Proof. We write uh − u = ϑ+ %, as in (1.14). Then (2.2) with β < s < 1 and (2.9)
give

‖%(t)‖ ≤ ‖%(0)‖ +

∫ t

0

‖%t‖ dτ ≤ Ch2β
(

‖v‖Ḣ1+s +

∫ t

0

‖ut‖Ḣ1+s dτ
)

≤ Ch2β
(

‖∆v‖ + ‖g0‖ +

∫ t

0

‖ft‖ dτ
)

,

(3.9)

which yields the desired estimate for %.
We turn to the estimation of ϑ, which satisfies the equation (1.15). In view of

(3.2), (1.4) and (1.9), we have

(3.10) ah(%, Jhχ) = a(Rhu, χ) + (∆u, Jhχ) = εh(∆u, χ), ∀χ ∈ Sh.

Using this, (1.15) with η = Jhϑ is transformed into

(ϑt, Jhϑ) + ah(ϑ, Jhϑ) = −(%t, Jhϑ) − εh(∆u, ϑ).

By the symmetry of (χ, Jhψ) on Sh, this shows, in view of Lemma 3.1,

1

2

d

dt
|||ϑ|||2 + ah(ϑ, Jhϑ) ≤ C‖%t‖‖ϑ‖ + Ch2β‖∆u‖H2β−1‖ϑ‖H1

≤ C‖%t‖‖ϑ‖ + Ch2β
(

‖ut‖H1 + ‖f‖H1

)

‖∇ϑ‖.

Using (3.3) to kick back ‖∇ϑ‖, and integrating, we obtain, since ϑ(0) = 0, and in
view of (3.1) and (2.7), that

‖ϑ(t)‖2 ≤ C

∫ t

0

‖%t‖‖ϑ‖ dτ + Ch4β

∫ t

0

(‖ut‖
2
H1 + ‖f‖2

H1) dτ

≤ C

∫ t

0

‖%t‖‖ϑ‖ dτ + Ch4β
(

‖g0‖
2 +

∫ t

0

(‖ft‖
2
H−1 + ‖f‖2

H1) dτ
)

.

Setting Θ(t) ≡ sup0<s≤t ‖ϑ(s)‖, this shows

‖ϑ(t)‖2 ≤ Θ(t)2 ≤ C
(

∫ t

0

‖%t‖ dτ
)

Θ(t) + Ch4β
(

‖g0‖
2 +

∫ t

0

(‖ft‖
2
H−1 + ‖f‖2

H1) dτ
)

,

which, together with (3.9), gives the desired bound for ϑ. �

Next, we show an O(hβ) estimate for the gradient of the error.

Theorem 3.3. Under the assumptions of Theorem 3.2, we have

‖∇(uh(t) − u(t))‖ ≤ Chβ
(

‖∆v‖ + ‖g0‖ +
(

∫ t

0

‖ft‖
2 dτ

)1/2
)

, for tn ≤ T.

Proof. In view of (2.2) we have, with β < s < 1,

(3.11) ‖∇%(t)‖ ≤ ‖∇%(0)‖ +

∫ t

0

‖∇%t‖ dτ ≤ Chβ
(

‖v‖Ḣ1+s +

∫ t

0

‖ut‖Ḣ1+s dτ
)

,

and (2.9) then gives the desired bound for ∇%. To bound ∇ϑ we choose η = Jhϑt

in (1.15), and using (3.10) with the fact that ah(ϑ, Jhϑt) = 1
2

d
dt a(ϑ, ϑ), we get

(3.12) |||ϑt|||
2

+
1

2

d

dt
a(ϑ, ϑ) = −(%t, Jhϑt) − εh(∆u, ϑt).

Substituting −∆u = f − ut yields

|||ϑt|||
2 +

1

2

d

dt
a(ϑ, ϑ) = −(%t, Jhϑt) − εh(ut, ϑt) +

d

dt
εh(f, ϑ) − εh(ft, ϑ).
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Integrating, using ϑ(0) = 0, together with (3.1) and Lemma 3.1, we find
∫ t

0

‖ϑt‖
2dτ +

1

2
‖∇ϑ(t)‖2 ≤ Ch‖f(t)‖ ‖∇ϑ(t)‖

+

∫ t

0

(‖%t‖ ‖ϑt‖ + Ch(‖ut‖H1‖ϑt‖ + ‖ft‖ ‖∇ϑ‖)) dτ.

After kicking back
∫ t

0
‖ϑt‖

2dτ , this together with (2.3) implies, since β < 1, that

‖∇ϑ(t)‖2 ≤ Ch2β
(

‖f(t)‖2 +

∫ t

0

(‖ut‖
2
H1 + ‖ft‖

2)dτ
)

+ C

∫ t

0

‖∇ϑ‖2dτ.

Using Gronwall’s lemma, the estimate

‖f(t)‖2 ≤ C
(

‖∆v‖2 + ‖g0‖
2 +

∫ t

0

‖ft‖
2 dτ

)

,

and (2.7), we finally find

(3.13) ‖∇ϑ(t)‖2 ≤ Ch2β
(

‖∆v‖2 + ‖g0‖
2 +

∫ t

0

‖ft‖
2 dτ

)

,

which shows the desired bound for ϑ. �

By a slight modification of the above analysis of ∇ϑ, we can show the following
“super”–closeness of the gradients of uh and Rhu.

Lemma 3.3. Under the assumptions of Theorem 3.2, let g0 = 0 on ∂Ω and g1 be

defined by (3.6). Then we have, for t ≤ T ,

‖∇ϑ(t)‖ ≤ Ch2β
(

‖∆v‖H1 + ‖g1‖ +
(

∫ t

0

(‖ft‖
2
H1 + ‖ftt‖

2
H−1) dτ

)1/2
)

.

Proof. Rewriting the right hand side of equation (3.12) in the form

|||ϑt|||
2
+

1

2

d

dt
a(ϑ, ϑ) = −(%t, Jhϑt) −

d

dt
εh(∆u, ϑ) + εh(∆ut, ϑ),(3.14)

integrating, using ϑ(0) = 0, together with Lemma 3.1, and (3.1), we find
∫ t

0

|||ϑt|||
2
dτ +

1

2
‖∇ϑ(t)‖2 ≤ Ch2β‖∆u(t)‖H2β−1‖∇ϑ(t)‖

+

∫ t

0

(‖%t‖ |||ϑt||| + Ch2β‖∆ut‖H2β−1‖∇ϑ‖) dτ.

Together with (2.2) for s = 1 and the fact that 2β − 1 ≤ 1, this gives

‖∇ϑ(t)‖2 ≤ Ch4β
(

‖∆v‖2
H1 +

∫ t

0

(‖utt‖
2
H1 + ‖ft‖

2
H1)dτ

)

+ C

∫ t

0

‖∇ϑ‖2 dτ.

Since ut satisfies (1.1), with f and v replaced by ft and ut(0) = g0, respectively,
the regularity estimate (2.7) shows

(3.15)

∫ t

0

‖utt‖
2
H1 ≤ C

(

‖g1‖
2 +

∫ t

0

‖ftt‖
2
H−1 dτ

)

.

Using this together with Gronwall’s lemma, we obtain the desired estimate. �

We now turn to error estimates in maximum–norm, and begin with global such
estimate of order almost O(hβ), cf. Theorem 2.2 for the corresponding result for
the finite element method, under almost the same regularity assumptions.
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Theorem 3.4. Under the assumptions of Theorem 3.2, if the triangulations Th are

such that hmin ≥ Chγ for some γ > 0, then we have, for s ∈ (0, β) and t ≤ T ,

‖uh(t) − u(t)‖C ≤ Csh
s
(

‖∆v‖ + ‖g0‖ +
(

∫ t

0

‖ft‖
2dτ

)1/2
)

.

Proof. We have by Lemma 2.2, with s1 ∈ (s, β),

‖%(t)‖C ≤ Cs,s1
hs‖u(t)‖Ḣ1+s1

≤ Cs,s1
hs

(

‖v‖Ḣ1+s1
+

∫ t

0

‖ut‖Ḣ1+s1
dτ

)

,

which is bounded as desired by (2.9).
In [5] we showed that the following discrete Sobolev type inequality, is valid for

triangulations satisfying the condition assumed in this theorem

(3.16) ‖χ‖C ≤ C`
1/2
h ‖∇χ‖, ∀χ ∈ Sh.

Hence, in view of (3.13) we get

‖ϑ(t)‖C ≤ Chβ`
1/2
h

(

‖∆v‖ + ‖g0‖ +
(

∫ t

0

‖ft‖
2
dτ

)1/2
)

,

which implies the desired estimate for ϑ. �

We note that under the stronger assumption γ = 1, i.e., when the Th are globally
quasiuniform, one can show an O(hβ`h) maximum–norm estimate, under slightly
weaker regularity assumptions on data, cf. the comment after Lemma 2.2.

Next, we derive an almost O(h2β) error estimate away from the corners of Ω, cf.
Theorem 2.2 for the finite element method.

Theorem 3.5. Under the assumptions of Theorem 3.4, let g0 = 0 on ∂Ω and g1 be

defined by (3.6). If Ω0 ⊂ Ω1 ⊂ Ω is such that Ω1 does not contain any corner of Ω
and the distance between ∂Ω1 ∩Ω and ∂Ω0 ∩Ω is positive, and if the triangulations

Th are quasiuniform in Ω1, then we have, for t ≤ T ,

‖uh(t) − u(t)‖C(Ω0) ≤ Ch2β`
1/2
h

(

‖∆v‖H1 + ‖g1‖ + (

∫ t

0

(‖ft‖
2
H1 + ‖ftt‖

2) dτ)1/2
)

.

Proof. By Lemma 2.3 we have, with β < s < 1,

(3.17) ‖%(t)‖C(Ω0) ≤ Ch2β
(

‖u(t)‖C2s(Ω1) + ‖∆u(t)‖
)

≤ Ch2β‖∆u(t)‖H1 .

Here we have used that by Sobolev’s inequality, an interior regularity estimate, and
‖u‖ ≤ C‖∆u‖ ≤ C‖∆u‖H1 , we have

‖u‖C2s(Ω1) ≤ C‖u‖H3(Ω1) ≤ C(‖∆u‖H1 + ‖u‖) ≤ C‖∆u‖H1 .

We now bound the last term in (3.17), using ∆ut = utt − ft and (3.8), as

‖∆u(t)‖H1 ≤ ‖∆v‖H1 +

∫ t

0

(‖utt‖H1 + ‖ft‖H1) dτ(3.18)

≤ C
(

‖∆v‖H1 + ‖g1‖ +

∫ t

0

(‖ftt‖ + ‖ft‖H1) dτ
)

,

so that % is estimated as stated. Using the supercloseness result of Lemma 3.3
together with (3.16), ϑ as bounded as desired, which completes the proof. �

We finally show the following almost O(h2) convergence result in the presence
of the appropriate refinements, cf. Theorem 2.3.
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Theorem 3.6. Under the assumptions of Lemma 3.3, with the triangulations Th

appropriately refined, we have, for s < 2 and t ≤ T ,

‖uh(t) − u(t)‖C ≤ Chs
(

‖∆v‖H1 + ‖g1‖ +
(

∫ t

0

(‖ft‖
2
H1 + ‖ftt‖

2)dτ
)1/2

)

.

Proof. To bound % we use (2.5) for p sufficiently large, and a standard Sobolev
inequality, to obtain, with C = Cs,p,

‖%(t)‖C ≤ Chs‖∆u(t)‖Lp
≤ Chs‖∆u(t)‖H1

and hence (3.18) gives the desired bound for %.
We next derive a superconvergent O(h2) order estimate for ‖∇ϑ‖ based on the

L2 norm error bound of (2.4). For this we follow the proof of Lemma 3.3, and
obtain this time, after the application of Gronwall’s lemma,

‖∇ϑ(t)‖2 ≤ Ch4
(

‖∆v‖2
H1 +

∫ t

0

(‖utt‖
2
H1 + ‖ft‖

2
H1)dτ

)

,

which, in view of the regularity estimate (3.15) and (3.16) completes the proof. �

We note that under somewhat weaker assumptions on the refinements of the Th

than those introduced before Lemma 2.4, one can show optimal order O(h2) and
O(h) convergence, in L2 and H1 norm, respectively, for the error uh − u, cf. [5] for
a corresponding result for the finite element approximation uh.

4. The backward euler fully discrete scheme

In [5], in addition to the semidiscrete finite element problem (1.8), also fully
discrete methods were considered. These were obtained by discretizing (1.8) in
time by the backward Euler and Crank-Nicolson methods. The time discretization
resulted in slightly higher regularity requirements on data than those summarized
in Section 2 above, and we refer to [5] for details.

In this section, by application of our analysis of the semidiscrete finite volume
problem (1.3) to a fully discrete scheme, we will show some error estimates for the
discretization in time by the Backward Euler method. Letting k denote the time
step, t = tn = nk, Un the approximation in Sh of un, where ϕn = ϕ(tn) for ϕ
defined in [0, T ], and ∂̄Un = (Un − Un−1)/k, we consider the fully discrete scheme

(4.1) (∂̄Un, η) + ah(Un, η) = (fn, η), ∀η ∈ Yh, with U0 = vh = Rhv.

We first show the following error estimate in L2, with g0 defined in (2.6).

Theorem 4.1. Let Un and u(tn) be the solutions of (4.1) and (1.1), respectively,

and assume v = 0 on ∂Ω. Then we have, for tn ≤ T and ε ∈ (0, 1
2 ), with C = Cε,

‖Un − u(tn)‖ ≤ C(h2β + k)
(

‖∆v‖ + ‖g0‖Hε +
(

∫ tn

0

(‖f‖2
H1 + ‖ft‖

2
H1)dτ

)1/2
)

.

Proof. Analogously to (1.14) we write

Un − u(tn) = (Un −Rhu(tn)) + (Rhu(tn) − u(tn)) = ϑn + %n.

Here %n is bounded as desired by (3.9). To bound ϑn we note that

(∂̄ϑn, η) + ah(ϑn, η) = −(∂̄%n, η) + (un
t − ∂̄un, η) − ah(%n, η)

= −(ωn, η) − ah(%n, η), ∀η ∈ Yh,
(4.2)
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where

(4.3) ωn = ωn
1 + ωn

2 = (Rh − I)∂̄u(tn) + (∂̄u(tn) − ut(tn)).

Choosing η = Jhϑ
n in (4.2) we obtain, in view of (3.10),

1

2k
(|||ϑn|||

2
− |||ϑn−1|||

2
) +

1

2k
|||ϑn − ϑn−1|||

2
+ ah(ϑn, Jhϑ

n)

= −(ωn, Jhϑ
n) − εh(un

t − fn, ϑn)

= −(ωn
1 , Jhϑ

n) − (ωn
2 , ϑ

n) − εh(∂̄un − fn, ϑn).

Multiplying this by 2k, employing Lemma 3.1 and (3.1), and kicking back ‖∇ϑn‖,
we get

|||ϑn|||
2
≤ |||ϑn−1|||

2
+ Ck(‖ωn

1 ‖ + ‖ωn
2 ‖)|||ϑ

n||| + Ckh4(‖∂̄un‖2
H1 + ‖fn‖2

H1).

Let now Θn = max0≤j≤n ‖ϑj‖. Then, since ϑ0 = 0 and using again (3.1),

(4.4) ‖ϑn‖
2
≤ (Θn)2 ≤ Ck

n
∑

j=1

(‖ωj
1‖ + ‖ωj

2‖)Θ
n + Ckh4

n
∑

j=1

(‖∂̄uj‖2
H1 + ‖f j‖2

H1).

To bound the first term on the right, we employ the case p = 1 of the inequality

(4.5) k

n
∑

j=1

|∂̄gj |p ≤ Ck

n
∑

j=1

(

k−1

∫ tj

tj−1

|gt|dτ
)p

≤ C

∫ tn

0

|gt|
p
dτ, 1 ≤ p <∞,

where | · | is a norm in a linear space, and (2.2) with s = 1, to find

Ck
n

∑

j=1

(‖ωj
1‖ + ‖ωj

2‖) ≤ Ck
n

∑

j=1

(

h2β‖∂̄uj‖Ḣ2 +

∫ tj

tj−1

‖utt‖dτ
)

≤ Ch2β

∫ tn

0

‖ut‖Ḣ2dτ + Ck

∫ tn

0

‖utt‖dτ.

(4.6)

For the last term in (4.4), we use the inequality

k

n
∑

j=1

|gj |2 ≤ tn max
τ≤tn

|g(τ)|2 ≤ C

∫ tn

0

(|g|2 + |gt|
2
)dτ

and (4.5) with p = 2 to obtain

(4.7) k

n
∑

j=1

(‖∂̄uj‖2
H1 + ‖f j‖2

H1) ≤ C

∫ tn

0

(‖ut‖
2
H1 + ‖f‖2

H1 + ‖ft‖
2
H1)dτ.

Altogether, (4.4), (4.6) and (4.7) give

‖ϑn‖
2
≤ Ch4β

(

(

∫ tn

0

‖ut‖Ḣ2dτ
)2

+

∫ tn

0

(‖ut‖
2
H1 + ‖f‖2

H1 + ‖ft‖
2
H1)dτ

)

+ Ck2
(

∫ tn

0

‖utt‖dτ
)2

.

In view of (2.7) and (2.10) this completes the proof. �

Next, we will show the following error estimate for the gradient.
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Theorem 4.2. Under the assumptions of Theorem 4.1, let g0 = 0 on ∂Ω. Then

we have, for tn ≤ T ,

‖∇(Un − u(tn))‖ ≤ C(hβ + k)
(

‖∆v‖ + ‖g0‖H1 +
(

∫ tn

0

‖ft‖
2 dτ

)1/2
)

.

Proof. Here ∇%n is bounded as desired by (3.11) and (2.9). To estimate ∇ϑn, we
choose η = Jh∂̄ϑ

n in (4.2). Using (3.2) together with the identity 2a(ϑn, ∂̄ϑn) =
∂̄‖∇ϑn‖2 + k‖∇∂̄ϑn‖2, and (3.10), we then obtain

|||∂̄ϑn|||
2

+
1

2
(∂̄‖∇ϑn‖2 + k‖∇∂̄ϑn‖2) = −(ωn, Jh∂̄ϑ

n) − εh(∆un, ∂̄ϑn).

Multiplying by 2k, using (3.1), eliminating |||∂̄ϑn|||
2
, and summing in time, we find

(4.8) ‖∇ϑn‖2 ≤ Ck
n

∑

j=1

‖ωj‖2 − k
n

∑

j=1

εh(∆uj , ∂̄ϑj).

Since ϑ0 = 0, the last term can be rewritten as

−k
n

∑

j=1

εh(∆uj , ∂̄ϑj) = −εh(∆un, ϑn) + k
n

∑

j=1

εh(∂̄∆uj , ϑj−1).

Thus, employing this identity and Lemma 3.1 (with i = 1, s = 0) in (4.8), we get

‖∇ϑn‖2 ≤Ck
n

∑

j=1

(‖ωj
1‖

2 + ‖ωj
2‖

2)(4.9)

+ Ch2
(

‖∆un‖2 + k

n
∑

j=1

‖∂̄∆uj‖2
)

+ Ck

n−1
∑

j=0

‖∇ϑj‖2.

The last term is eliminated by using the discrete version of Gronwall’s lemma, and
using (4.5) with p = 2 we easily find

‖∆un‖2 + k

n
∑

j=1

‖∂̄∆uj‖2 ≤ C
(

‖∆v‖2 +

∫ tn

0

‖∆ut‖
2dτ

)

.

Hence by (2.8), the second to last term in (4.9) is bounded as desired. Using (2.3)
and again (4.5) with p = 2, we obtain

k

n
∑

j=1

(‖ωj
1‖

2 + ‖ωj
2‖

2) ≤ Ck

n
∑

j=1

(

h2β‖∂̄uj‖2
H1 +

(

∫ tj

tj−1

‖utt‖dτ
)2

)

≤ Ch2β

∫ tn

0

‖ut‖
2
H1 dτ + Ck2

∫ tn

0

‖utt‖
2dτ,

which is bounded as desired by (2.7) and (2.8). This completes the proof. �

We finally demonstrate the following time discrete version of the maximum–norm
error estimate of Theorem 3.4.

Theorem 4.3. Under the assumptions of Theorem 4.2, if the triangulations Th are

such that hmin ≥ Chγ for some γ > 0, then we have, for 0 ≤ s < β and tn ≤ T ,

‖Un − u(tn)‖C ≤ Cs(h
s + k`

1/2
h )

(

‖∆v‖ + ‖g0‖H1 +
(

∫ tn

0

‖ft‖
2dτ

)1/2
)

.
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Proof. The term %n is bounded as stated in the proof of Theorem 3.4. For ϑn we
have, using (3.16) and the bound for ∇ϑn of the proof of Theorem 4.2,

‖ϑn‖C ≤ `
1/2
h ‖∇ϑn‖ ≤ C(hβ + k)`

1/2
h

(

‖∆v‖ + ‖g0‖H1 +
(

∫ tn

0

‖ft‖
2dτ

)1/2
)

,

which completes the proof. �

We refrain from stating and proving the straight–forward analogues of Theorems
3.5 and 3.6.
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