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Abstract. Optical tomography attempts to determine a spatially variable coefficient

in the interior of a body from measurements of light fluxes at the boundary. Like

in many other applications in biomedical imaging, computing solutions in optical

tomography is complicated by the fact that one wants to identify an unknown number

of relatively small irregularities in this coefficient at unknown locations, for example

corresponding to the presence of tumors. To recover them at the resolution needed in

clinical practice, one has to use meshes that, if uniformly fine, would lead to intractably

large problems with hundreds of millions of unknowns.

Adaptive meshes are therefore an indispensable tool. In this paper, we will describe

a framework for the adaptive finite element solution of optical tomography problems.

It takes into account all steps starting from the formulation of the problem including

constraints on the coefficient, outer Newton-type nonlinear and inner linear iterations,

regularization, and in particular the interplay of these algorithms with discretizing the

problem on a sequence of adaptively refined meshes.

We will demonstrate the efficiency and accuracy of these algorithms on a set of

numerical examples of clinical relevance related to locating lymph nodes in tumor

diagnosis.

AMS classification scheme numbers: 65N21,65K10,35R30,49M15,65N50,78-05
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1. Introduction

Fluorescence enhanced optical tomography is a recent and highly active area in

biomedical imaging research. It attempts to reconstruct interior body properties using

light in the red and infrared range in which biological tissues are highly scattering
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but not strongly absorbing. It is developed as a tool for imaging up to depths of

several centimeters, which includes in particular important applications to breast and

cervix cancer detection and staging, lymph node imaging, but also imaging of the brain

of newborns through the skull. Compared to established imaging techniques, optical

tomography uses harmless radiation, and is a cheap and fast imaging technique. In

addition, it can be made specific to individual cell types by using dyes targeted at

certain molecules.

The idea behind optical tomography [4] is to illuminate the tissue surface with

a known laser source. The light will diffuse and be absorbed in the tissue. By

observing the light flux exiting the tissue surface, one hopes to recover the spatial

structure of absorption and scattering coefficients inside the sample, which in turn is

assumed to coincide with anatomical and pathological structures. For example, it is

known that hemoglobin concentration, blood oxygenation levels, and water content

affect optical tissue properties, all of which are correlated with the presence of tumors.

As a result diffuse optical tomography (DOT) can uniquely image the in vivo metabolic

environment [21, 33, 34, 65].

However, DOT has been recognized as a method that is hard to implement because

it does not produce a very large signal to noise ratio. This follows from the fact that a

relatively small tumor, or one that does not have a particularly high absorption contrast,

does not produce much dimming of the light intensity on the tissue surface, in particular

in reflection geometry. Another drawback of DOT is that it is non-specific: it detects

areas of high light absorption, but does not distinguish the reasons for absorption; for

example, it can not distinguish between naturally dark tissues as compared to invading

dark diseased tissues.

During the last decade, a number of approaches have therefore been developed that

attempt to avoid these drawbacks. One is fluorescence-enhanced optical tomography,

in which a fluorescent dye is injected that specifically targets certain tissue types, for

example tumor or lymph node cells. The premise is that it is naturally washed out

from the rest of the tissue. If the dye is excited using light of one wave length, then

we will get a fluorescent signal at a different wavelength, typically in the infrared, from

areas in which dye is present (i.e. where the tumor or a lymph node is). Since the

signal is the presence of fluorescent light, not only a faint dimming of the incident

light intensity, the signal to noise ratio of fluorescence optical tomography is much

better than in DOT. It is also much better than, for example, in positron emission

tomography (PET) because dyes can be excited millions or billions of times per second,

each time emitting an infrared photon. In addition, the specificity of dyes can be used

for molecularly targeted imaging, i.e. we can really image the presence of diseased cells,

not only secondary effects.

In the past, fluorescence tomography schemes have been proposed for pre-clinical

small animal imaging applications [28] as well as for the clinical imaging of large

tissue volumes [23, 25, 27, 35, 48, 49, 51, 56–58,60, 62, 64, 67]. Typical fluorescence optical

tomography schemes employ iterative image reconstruction techniques to determine
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the fluorescence yield or lifetime map in the tissue from boundary fluorescence

measurements. A successful clinically relevant fluorescence tomography system will

have the following attributes: (i) rapid data acquisition to minimize patient movement

and discomfort, (ii) accurate and computationally efficient modeling of light propagation

in large tissue volumes, and (iii) a robust image reconstruction strategy to handle the

ill-posedness introduced by the diffuse propagation of photons in tissue and the scarcity

of data.

From a computational perspective, the challenge in optical tomography – as in

many other nonlinear imaging modalities – is to reach the clinically necessary resolution

within acceptable compute times. To illustrate this, consider that the typical volume

under interrogation in imaging, for example a human breast or the axillar region, is of

the size of one liter. On the other hand, the desired resolution is about one millimeter.

A discretization of the unknown coefficient on a uniform mesh therefore leads to an

optimization problem with one million unknowns. In addition to this, we have to count

the number of unknowns necessary to discretize the state and adjoint equation in this

PDE-constrained problem; to guarantee basic stability of reconstructions we need a

mesh that is at least once more refined, i.e. would have 8 million cells. As will be

shown below, in optical tomography, we have four solution variables for states and

adjoints each, i.e. we already have some 64 million unknowns for the discretization of

each measurement. In practice, one makes 6–16 measurements, leading to a total size

of the problem of between 300 million and 1 billion unknowns. It is quite clear that

nonlinear optimization problems of this size can not be solved on today’s hardware

within the time frame acceptable for clinical use: 1–5 minutes.

We therefore consider the use of adaptive finite element methods indispensable to

reduce the problem size to one that is manageable while retaining the desired accuracy

in those areas where it is necessary to resolve features of interest. As we will see the

algorithms proposed here will enable us to solve problems of realistic complexity with

only up to a few thousand unknowns in the discretization of the unknown coefficient, and

a few ten or hundred thousand unknowns in the discretization of the forward problem

for each measurement. Utilizing a cluster of computers where each node deals with

the description of a single measurement, we are able to solve these problems in 10–20

minutes, only a factor of 5 away from our ultimate goal [7, 39,41].

Over the last decade, adaptive finite element methods have seen obvious success

in reducing the complexity of problems in the solution of partial differential equations

[3, 10, 20]. It is therefore perhaps surprising that they have not yet found widespread

use in solving inverse problems, although there is some interest for PDE-constrained

optimization in the very recent past [11–13,17,18,29–32,36,47,52,53]. Part of this may be

attributed to the fact that adaptive finite element schemes have largely been developed

on linear, often elliptic model problems. Conversely, the optimization community

that has often driven the numerical solution of inverse problems is not used to the

consequences of adaptive schemes, in particular that the size of solution vectors changes

under mesh refinement, and that finite dimensional norms are no longer equivalent to
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function space norms on locally refined meshes.

The goal of this paper is therefore to review the numerical techniques necessary to

solve nonlinear inverse problems on adaptively refined meshes, using optical tomography

as a realistic testcase. The general approach to solving the problem is similar as

used in work by other researchers [1, 15, 16]. However, adaptivity is a rather intrusive

component of PDE solvers, and we will consequently have to re-consider all aspects of

the numerical solution of this inverse problem and modify them for the requirements

of adaptive schemes. To this end, we will start with a description of the method

and the mathematical formulation of the forward and inverse problems in Section

2. We will then discuss continuous and discrete Newton-type schemes in Section 3,

including practical methods to enforce inequality constraints on the parameter, for mesh

refinement, and for regularization. Section 4 is devoted to numerical results. We will

conclude and give an outlook in Section 5.

2. Mathematical formulation of the inverse problem

Optical tomography in most of its variants is a nonlinear imaging modality, i.e. the

equations that represent the forward model contain nonlinear combinations of the

parameters we intend to reconstruct and the state variables. Consequently, it is no

surprise that analytic reconstruction formulas are unknown, and it would be no stretch

to assume that they in fact do not exist.

In the absence of analytic methods, the typical approach to solve such problems is to

use numerical methods, and more specifically the framework known both as model-based

optimization or PDE-constrained parameter estimation. In this framework, one draws

up a forward model, typically represented by a partial differential equation (PDE), that

is able to predict the outcome of a measurement if only the internal material properties

(the parameters) of the body under interrogation were known. In a second step, one

couples this with an optimization problem: find that set of parameters for which the

predicted measurements would be closest to what we actually measured experimentally.

In other words, minimize (optimize) the misfit, i.e. the difference between prediction

and experiment, by varying the coefficient.

Model-based imaging therefore requires us to first formulate the inverse problem

with three main ingredients: a forward model, a description of what we can measure,

and a measure of difference between prediction and experiment. In the following, we

will discuss these building blocks for the fluorescence enhanced optical tomography

application mentioned in the introduction, and then state the full inverse problems.

This discussion is prefixed by a brief introduction into the physical background of this

imaging modality. Algorithms for the solution of the resulting inverse problem are given

in Section 3 and numerical results are given in Section 4.



Adaptive finite element methods for optical tomography 5

2.1. Background of fluorescence enhanced optical tomography

As mentioned in the introduction, optical tomography was invented as an approach for

biomedical imaging, in particular soft tissue tumor diagnosis such as for breast cancer,

in an attempt to overcome the drawbacks of the standard methods in the field: X-ray

mammography, ultrasound tomography, and magnetic resonance imaging (MRI). While

X-ray mammography uses ionizing radiation and is therefore harmful and potentially

cancer-inducing, all three methods suffer from one serious problem: they only image

secondary effects of tumors such as calcification of blood vessels (X-rays), density and

stiffness differences (ultrasound) or water content (MRI) of tissues. While such effects

are often associated with tumors, they are not always, and frequently lead to both false

positive and false negative assessments. What is required is a method that (i) does not

use harmful radiation, and (ii) is specific to tumors, preferably on the molecular level

distinguishing proteins and other molecules that are only expressed in certain tissues

we are interested in (for example tumor cells, or lymph nodes if the goal is to track the

spread of a tumor).

Optical tomography uses light in the red and near infrared (NIR) wave length range.

Too low-energetic to cause damage to tissue, its wave length is chosen in a window in

which light can propagate several centimeters in tissue without being absorbed. On the

other hand, it is scattered very frequently.

In its originally proposed form, optical tomography does not yield enough signal-to-

noise contrast for a practical method, and it is also not specific. Fluorescence enhanced

optical tomography was created to overcome these drawbacks. In this method, a

fluorescent dye (fluorophore) that is specific to certain cell types or molecules is injected.

After injection, it is naturally washed out of the rest of the tissue, but remains attached

to the cells we are interested in. If we illuminate the skin with a red laser, light will

travel into the tissue, be absorbed by the dye, and will be re-emitted at a different wave

length (in the infrared range) at a rate proportional to the local concentration of the

dye. This secondary light is then detected again at the skin: here, a bright infrared spot

on the surface indicates the presence of a high dye concentration underneath, which is

then indicative of the presence of the tissue kind the dye is specific to. The goal of the

inverse problem is the reconstruction of the three-dimensional dye concentration in the

tissue, and thereby the creation of a tissue type map.

2.2. The forward model

Fluorescence enhanced optical tomography is formulated in a model-based framework,

wherein a photon transport model is used to predict boundary fluorescence

measurements for a given dye concentration map in the tissue interior. For photon

propagation in large tissue volumes, the following set of coupled photon diffusion



Adaptive finite element methods for optical tomography 6

equations is an accurate model [63]:

−∇ · [Dx∇u] + kxu = 0, (1)

−∇ · [Dm∇v] + kmv = βxmu. (2)

Subscripts x and m denote the excitation (incident) and the emission (fluorescence)

light fields, and u, v are the photon fluence fields at excitation and emission wavelengths,

respectively. These equations can be obtained as the scattering limit of the full radiative

transfer equations [22] and have been shown to be an accurate approximation. Under the

assumption that the incident light field is modulated at a frequency ω (in experiments

around 100 MHz, i.e. much less than the oscillation period of the electromagnetic waves),

we can derive the following expressions for the coefficients appearing above:

Dx,m =
1

3(µax,mi + µax,mf + µ′
sx,m)

, kx,m =
iω

c
+ µax,mi + µax,mf , βxm =

φµaxf

1 − iωτ
,

Here, Dx,m are the photon diffusion coefficients; µax,mi is the absorption coefficient

due to endogenous chromophores; µax,mf is the absorption coefficient due to exogenous

fluorophore; µ′
sx,m is the reduced scattering coefficient; ω is the modulation frequency;

φ is the quantum efficiency of the fluorophore, and finally, τ is the fluorophore lifetime

associated with first order fluorescence decay kinetics. All these coefficients, and

in particular the fluences u, v and the absorption/scattering coefficients are spatially

variable.

Above equations are complemented by Robin-type boundary conditions on the

boundary ∂Ω of the domain Ω modeling the NIR excitation source:

2Dx

∂u

∂n
+ γu + S = 0, 2Dm

∂v

∂n
+ γv = 0, (3)

where n denotes the outward normal to the surface and γ is a constant depending on

the optical refractive index mismatch at the boundary. The complex-valued function

S = S(r) is the spatially variable excitation boundary source.

Equations (1)–(3) can be interpreted as follows: The incident light fluence u is

described by a diffusion equation that is entirely driven by the boundary source S,

and where the diffusion and absorption coefficients depend on a number of material

properties. On the other hand, there is no boundary source term for the fluorescence

fluence v: fluorescent light is only produced in the interior of the body where incident

light u is absorbed by a dye described by a coefficient µaxf that is proportional

to its concentration, and then re-emitted with probability φ/(1 − iωτ). It then

propagates through the tissue in the same way as the incident fluence, i.e. following

a diffusion/absorption process.

The goal of fluorescence tomography is to reconstruct the spatial map of coefficients

µaxf(r) and/or τ(r) from measurements of the complex emission fluence v(r) on the

boundary. In this work we will focus on the recovery of only µaxf (r), while all other

coefficients are considered known a priori. For notational brevity, and to indicate the
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special role of this coefficient as the main unknown of the problem, we set q = µaxf in

the following paragraphs. Note that q does not only appear in the right hand side of

the equation for v, but also in the diffusion and absorption coefficients of the domain

and boundary equations.

2.3. The inverse problem for multiple illumination patterns

Assume that we make W experiments, each time illuminating the skin with different

excitation light patterns Si(r), i = 1, 2, . . . , W and measuring the fluorescent light

intensities that result. For each of these experiments, we can predict fluences ui, vi

satisfying (1)–(3) with Si(r) as source terms if we assume knowledge of the yield

map q. In addition, we take fluorescence measurements on the measurement boundary

Γ ⊂ ∂Ω for each of these experiments that we will denote by zi. The fluorescence image

reconstruction problem is then posed as a constrained optimization problem wherein

an L2 norm based error functional of the distance between fluorescence measurements

z = {zi, i = 1, 2, . . . , W} and the diffusion model predictions v = {vi, i = 1, 2, . . . , W}

is minimized by variation of the parameter q; the diffusion model for each fluence

prediction vi is a constraint to this optimization problem. In a function space setting,

the mathematical formulation of this minimization problem reads as follows:

min
q,u,v

J(q,v) subject to Ai(q; [ui, vi])([ζ i, ξi]) = 0, i = 1, 2, . . . , W. (4)

Here, the error functional J(q,v) incorporates a least squares error term over the

measurement part Γ of the boundary ∂Ω and a Tikhonov regularization term:

J(q,v) =

W
∑

i=1

1

2

∥

∥vi − zi
∥

∥

2

Γ
+ βr(q), (5)

where β is the Tikhonov regularization parameter. The Tikhonov regularization term

βr(q) is added to the minimization functional to control undesirable components in the

map q(r) that result from a lack of resolvability. In our computations, we will choose

r(q) = 1
2
‖q‖2

L2(Ω). The constraint Ai(q; [ui, vi])([ζ i, ξi]) = 0 is the weak or variational

form of the coupled photon diffusion equations with partial current boundary conditions,

(1)–(3), for the ith excitation source, and with test functions [ζ, ξ] ∈ H1(Ω):

Ai(q; [ui, vi])([ζ i, ξi]) = (Dx∇ui,∇ζ i)Ω + (kxu
i, ζ i)Ω +

γ

2
(ui, ζ i)∂Ω +

1

2
(Si, ζ i)∂Ω

+ (Dm∇vi,∇ξi)Ω + (kmvi, ξi)Ω +
γ

2
(vi, ξi)∂Ω − (βxmui, ξi)Ω. (6)

Here, all inner products have to be considered as between two complex-valued functions.

This optimization problem is, so far, posed in function spaces. An appropriate

setting is ui, vi ∈ H1(Ω), q ∈ Qad = {χ ∈ L2(Ω) : 0 < q0 ≤ χ ≤ q1 < ∞ a.e.}. The

bilateral constraints on q are critically important to guarantee physical solutions: dye

concentrations must certainly be at least positive, but oftentimes both nonzero lower
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as well as upper bounds can be inferred from physiological considerations, and their

incorporation has been shown to greatly stabilize the inversion of noisy data [7].

In contrast to output least squares based techniques, we will not directly enforce

the dependence of the state variables u and v on the parameter q by solving the state

equations for a given parameter q and substituting these solutions in place of v in the

error functional. Rather, in the next subsection, we will adopt an all-at-once approach in

which this dependence is implicitly enforced by treating u,v, q as independent variables

and including the forward model as a constraint on the the error functional.

Note that in analogy to the Dirichlet-Neumann problem, one would expect that

infinitely many measurements (i.e. W = ∞) are necessary to recover q. In practice,

it has been shown that after discretization on finite-dimensional meshes, even W = 1

can lead to reasonably good reconstructions. Better resolution and stability is achieved

using more measurements, for example W = 16 or W = 32, see [41].

3. Solving the inverse problem

3.1. Continuous algorithm

The solution of minimization problem (4) is a stationary point of the following

Lagrangian combining objective functional, state equation constraints, and parameter

inequalities [55]:

L(x, µ0, µ1) = J(q,v) +
W
∑

i=1

Ai(q; [ui, vi])([λex
i , λem

i ]) + (µ0, q − q0)Ω + (µ1, q1 − q)Ω. (7)

Here, λ
ex = {λex

i , i = 1, 2, . . . , W}, λem = {λem
i , i = 1, 2, . . . , W} are the Lagrange

multipliers corresponding to the excitation and emission diffusion equation constraints

for the ith source, respectively, and we have introduced the abbreviation x =

{u,v, λex, λem, q} for simplicity; u = {ui, i = 1, 2, . . . , W} and v = {vi, i = 1, 2, . . . , W}

are excitation and emission fluences for the W experiments. µ0, µ1 are Lagrange

multipliers for the inequality constraints expressed by the space Qad, and at the solution

x∗ will have to satisfy the following conditions in addition to those already expressed

by stationarity of L(x): µ∗
k ≥ 0, k = 1, 2 and (q∗ − q0, µ

∗
0)Ω = (q1 − q∗, µ∗

1)Ω = 0.

In what follows we will adhere to the general framework laid out in [7] for

the solution of problems like the one stated above. Similar frameworks, albeit not

using adaptivity, are also discussed in [1, 15, 16]. To this end, we use a Gauss-

Newton-like iteration to find a stationary point of L(x, µ0, µ1), i.e. a solution of the

constrained minimization problem (4). In this iteration, we seek an update direction

δxk = {δuk, δvk, δλ
ex
k , δλem

k , δqk} that is determined by solving the linear system

Lxx(xk)(δxk, y) = −Lx(xk)(y) ∀y,

(δqk, χ)A = 0 ∀χ ∈ L2(A),
(8)

where Lxx(xk) is the Gauss-Newton approximation to the Hessian matrix of second

derivatives of L at point xk, and y denotes possible test functions. A ⊂ Ω is the active
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set where we expect qk+1 to be either at the upper or the lower bound at the end of the

iteration. We will comment on the choice of this set below in Section 3.3.

Equations (8) represent one condition for each variable in δxk, i.e. they form a

coupled system of equations for the 4W + 1 variables involved: all W excitation and

emission fluences, excitation and emission Lagrange multipliers, and the parameter map

q. In addition, it ensures that iterates do not leave the admissible set q0 ≤ q ≤ q1. Once

the search direction is computed from Eq. (8), the actual update is determined by

calculating a safeguarded step length αk:

xk+1 = xk + αkδxk. (9)

The step-length αk can be computed from one of several methods, such as the Goldstein-

Armijo backtracking line search [55]. Merit functions for step length determination are

discussed in [6, 7] as well as in [16].

3.2. Discrete algorithm

The Gauss-Newton equations (8) form a coupled system of linear partial differential

equations. However, since the solution of the previous step appears as non-constant

coefficients in these equations, there is clearly no hope for analytic solutions. We

therefore need to discretize these equations to compute numerical approximations of

their solution.

For discretization, we use the finite element method: In Gauss-Newton iteration

k, state and adjoint variables u,v, λex, and λ
em and their Gauss-Newton updates are

discretized and solved for on a set of meshes {T
i
k}

W
i=1 with continuous elements, reflecting

the fact that solutions of the diffusion equations (1)-(2) are continuous. In addition,

the fact that we use different meshes for the discretization of variables corresponding

to different experiments i = 1, . . . , W follows the observation that if we illuminate the

body with different source patterns, the solutions may be entirely different. This will

become apparent from the numerical examples shown in Section 4.

On the other hand, we use yet another mesh, T
q
k to discretize the parameter map q

and Lagrange multipliers for upper and lower bounds in iteration k. Since (discretized)

inverse problems become ill-posed if the parameter mesh is too fine, we typically choose

T
q
k coarser than the state meshes T

i
k, and in particular adapt it to the parameter q,

i.e. we choose it fine where the parameter is rough, and coarse where q is smooth; note

that the smoothness properties of q do not necessarily coincide with those of the state

variables (see again Section 4) and it will therefore be beneficial to adapt all the meshes

independently. On the mesh T
q
k, discontinuous finite elements are employed, reflecting

the fact that both the parameters and the Lagrange multipliers will in general only be

in L2(Ω).

We will return to the question of how to choose all these meshes in Section 3.4

below. For the moment, let us assume that in iteration k we are given a set of meshes

T
i
k, T

q
k with associated finite element spaces. Discretizing the Gauss-Newton system (8)
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then leads to the following linear system for the unknowns of our discrete finite element

update δxk = {δpk, δqk, δdk} and the Lagrange multipliers for the bound constraints:











M 0 P T 0

0 R CT XT

P C 0 0

0 X 0 0





















δpk

δqk

δdk

δµk











=











F1

F2

F3

0











, (10)

where the updates for the primal and dual (Lagrange multiplier) variables are

abbreviated as δpk = [δuk, δvk]
T , δdk = [δλex

k , δλem
k ]T , and δµk are the Lagrange

multipliers enforcing δqk = 0 on the active set where parameters are at their bounds.

Since each of these 4W +2 variables is discretized with several ten or hundred thousand

unknowns on our finite element meshes, the matrix on the left hand side can easily have

a dimension of several millions to over 10 million. Furthermore, it is typically very badly

conditioned, with condition numbers easily reaching 1012 and above.

At first glance, it therefore seems infeasible or at least very expensive to solve

such a system. In the past, this has led researchers to the following approach: use one

experiment alone to invert for the fluorescence map, then use the result as the starting

value for inverting the next data set and so on; one or several loops over all data sets may

be performed. While this approach often works for problems that are only moderately

ill-posed, it is inappropriate for problems with the severe ill-posedness of the one at

hand. The reason is that if we scan the source over the surface, we will only be able to

identify the yield map in the vicinity of the illuminated area. Far away from it, we have

virtually no information on the map. We will therefore reconstruct invalid information

away from the source, erasing all prior information we have already obtained there in

previous steps.

Consequently, it is mandatory that we use all available information at the same time,

in a joint inversion scheme. Fortunately, we can make use of the structure of the problem:

because experiments are independent of each other, the joint Gauss-Newton matrix is

virtually empty, and in particular has no couplings between the entries corresponding

to primal and dual variables of different illumination experiments. The only thing that

keeps the matrix fully coupled is the presence of the yield map q on which all experiments

depend.

This structure is manifested in the fact that M , the second derivative of

the measurement error function with respect to state variables ui, vi for all the

excitation sources, is a block diagonal matrix {M1, M2, . . . , MW}. Likewise P =

blockdiag{P1, P2, . . . , PW} is the representation of the discrete forward diffusion model

for all the excitation sources. The matrix C = [C1, C2, . . . , CW ] is obtained by

differentiating the semi-linear form Ai in Eq. (6) with respect to the parameter q. Since

we choose different meshes for individual measurements, the individual blocks Mi, Pi, Ci

all differ from each other. Finally, the right hand side F denotes the discretized form

of −Lx(xk)(y). The detailed form of the individual blocks Mi, Pi, Ci and the right hand

side F is provided in [40] for a single excitation source measurement.
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Given these considerations, the block structure of the Gauss-Newton KKT

matrix (10) is used to form the Schur complement of this system with respect to the

R block, also called the reduced KKT matrix. This leads to the simpler sequence of

systems:

(

S XT

X 0

)(

δqk

δµk

)

=

(

F2 −
∑W

i=1 CT
i P−T

i (F i
1 − MiP

−1
i F i

3)

0

)

, (11)

Pi δpi
k = F i

3 −

W
∑

i=1

Ci δqk, (12)

P T
i δdi

k = F i
1 −

W
∑

i=1

Mi δpi
k, (13)

where

S = R +

W
∑

i=1

CT
i P−T

i MiP
−1
i Ci. (14)

Here, we first have to solve for the yield map updates δqk and Lagrange multipliers, and

then for updates of state and adjoint variables for all the experiments individually and

independently, a task that is obviously simpler than solving for the one big and coupled

matrix in (10).

The first system of equations can be further simplified. Let us denote by Q the

(rectangular) matrix that selects from a vector δqk of discretized parameter updates

those that are not in the active set A of the bound constraints. Then δqk = QT Qδqk

because (1 − QT Q)δqk = δqkχA = 0 where χA is the characteristic function of degrees

of freedom located in A. Consequently, equation (11) can also be written as

(

SQT Q XT

X 0

)(

δqk

δµk

)

=

(

F2 −
∑W

i=1 CT
i P−T

i (F i
1 − MiP

−1
i F i

3)

0

)

.

On the other hand, if either (i) we use piecewise constant finite elements for δqk and δµk,

or (ii) we use piecewise polynomial elements that are discontinuous across cell faces and

the active set A contains only entire cells, then QXT = 0 since XT takes us from the

space of the constrained parameter to the space of all parameters, and Q projects onto

the unconstrained ones. Consequently, premultiplying the first line with Q yields an

equation for those degrees of freedom in δqk that are not constrained to zero, i.e. those

not located on the active set of the upper or lower bounds:

(QSQT )Q δqk = Q

[

F2 −
W
∑

i=1

CT
i P−T

i (F i
1 − MiP

−1
i F i

3)

]

. (15)

The remaining degrees of freedom not determined by this equation are the ones

constrained to zero.
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We note that the Schur complement matrix S is symmetric and positive definite.

This property is inherited by the reduced Schur complement Ŝ = QSQT . We can

therefore use the Conjugate Gradient (CG) method to efficiently invert it, and in practice

do so only approximately [14]. In each iteration of this method, one multiplication of

S and a vector is required. Given the structure of the matrix, this can be implemented

on separate computers or separate processors on a multiprocessor system, each of

which is responsible for one or several of the experiments (and corresponding matrices

Ci, Pi, Mi). Since multiplication of a vector with the matrices CT
i P−T

i MiP
−1
i Ci is

completely independent, a workstation cluster with W nodes is able to perform the

image reconstruction task in approximately the same time as a single machine requires

for inverting a single excitation source.

3.3. The active set strategy to enforce bound constraints

We have so far not commented on how we determine the active set A ⊂ Ω on which

either the lower bound q(r) ≥ q0(r) or the upper bound q(r) ≤ q1(r) is active. On the

other hand, determining A is necessary in order to properly define equations (8) and (10)

from which we determine Gauss-Newton search directions both on the continuous level

as well as after discretization. We note that for inverse problems operating on noisy

data, the incorporation of bounds on the parameter is crucially important: first, it

acts as an additional regularization using information available from physical reasoning.

For example, we know for the current application that dye concentrations can not be

negative; they can also not exceed a certain value. It is therefore not a surprise that

reconstructed parameters are much more accurate if bounds are enforced than when

they are not, see for example [7]. On the other hand, bound constraints also help

from a mathematical perspective: first, our forward model (1)–(2) is only well-posed

if Dx,m > 0, Re(kx,m) ≥ 0, which is only satisfied if q = µaxf is greater than a certain

lower bound. In addition, we can use weaker norms for the regularization term q(r)

if we enforce additional bounds on q; for example, we can use q(r) = 1
2
‖q‖2

L2(Ω) to

obtain a well-posed minimization problem, while we would need the far stronger form

q(r) = 1
2
‖q‖2

H2(Ω) if no bounds were available.

So how do we choose A? In finite-dimensional optimization, one starts a Newton

step by choosing an initial guess for A, and then solving the quadratic program (QP)

using the constraints indicated by this initial guess. One then finds those degrees of

freedom that would after updating the solution violate a constraint not already in A,

and add one of them to A. One may also drop a constraint that would actually be

inactive. With this modified set of constraints, the same QP is then solved again,

i.e. the Lagrangian is again linearized around the same iterate xk. This procedure is

repeated until the active set no longer changes, at which time we perform the update to

obtain xk+1. The last active set may then serve as a starting guess for the next Newton

iteration.

While this approach can be shown to guarantee convergence of solutions [55], it
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is clearly very expensive since we have to solve many QPs in each Newton iteration,

a costly approach in PDE-constrained optimization. On the other hand, it can be

expected that even if the set of active constraints is not ideal, the computed search

direction is still reasonably good. This is particularly true since the constraints are on

somewhat artificial variables: they result from discretization of a distributed function on

a presumably sufficiently fine mesh. Consequently, in the worst case, we have forgotten

some constraints (the updated parameter values may then lie outside the prescribed

bounds on a small part of the domain, but can be projected back at the end of the

Gauss-Newton step) or have some constraints in the active set that shouldn’t be there

(in which case the corresponding parameter will be stuck at the bound on a small part

of the domain, instead of being allowed to move back inside the feasible region).

In view of the artificiality of discretized parameters, we therefore opt for a cheaper

approach where we determine the active set A only once at the beginning of the step,

then solve the resulting QP, and immediately do the update, followed by a projection

onto [q0, q1] of those few parameters that had inadvertently been forgotten from A. This

appears to produce a stable and efficient algorithm. For Gauss-Newton iteration k we

then choose

A =
⋃

{K ∈ T
q
k : qk|K = q0 or qk|K = q1, and (qk + δqk)|K will likely be 6∈ [q0, q1]}.

As usual in active set methods [55], the determination whether a parameter will move

outside the feasible region [q0, q1] is done using the first order optimality conditions

Lq(x)(χ) = 0 for test functions χ ∈ Q. Consequently, considering only lower bounds,

we see that in the vicinity of the solution we have

Jq(qk,vk)(χ) +
W
∑

i=1

Ai
q(xk)(χ) + (µ0,k, χ)Ω ≈ 0,

from which get the following estimate for the Lagrange multiplier µ0,k:

(µ0,k, χ)Ω ≈ −Jq(qk,vk)(χ) −
W
∑

i=1

Ai
q(xk)(χ). (16)

Discretizing this equation with test and ansatz functions for µ0,k and χ, we can therefore

get an estimate for the Lagrange multiplier µ0,k from above equation by inverting the

mass matrix resulting from the scalar product on the left hand side. The right hand side

already needs to be computed anyway as the term F2 in equation (10) and is therefore

readily available. Because the optimality conditions require that µ0 > 0, we may suspect

that a qk which is already at the lower bound on a cell wants to move back into the

feasible region if µ0 < ε. Consequently, including again upper bounds as well, we use

A =
⋃

{K ∈ T
q
k : qk|K = q0 and µ0 ≥ ε, or qk|K = q1 and µ1 ≥ ε}.

We note that this scheme to determine A coincides with the usual strategy in active

set methods except that (16) implies that a mass matrix has to be inverted where the
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standard strategy would see the identity matrix. The main consequence of this difference

is that Lagrange multipliers are correctly scaled as functions, whereas otherwise they

would scale with the mesh size and comparisons against a fixed tolerance ε would become

meaningless.

3.4. Mesh refinement

As discussed in Section 3.2, we discretize Gauss-Newton step k on a set of distinct

meshes {T
i
k}

W
i=1 for state and adjoint variables of the W different experiments, and T

q
k

for the parameter. In this section, we first explain the algorithm we use to determine

whether these meshes shall be refined between the current and the next Gauss-Newton

iteration. Subsequently, we discuss mesh refinement criteria determining which of the

cells shall be refined.

When to refine meshes. The first decision that has to be made is when to refine the

meshes we use. In words, our strategy can be described as follows: we refine if either

(a) we consider progress on the current mesh sufficient, or (b) we believe that iterations

on the current mesh are “stuck” and things can be accelerated by moving on to the next

mesh. The actual implementation of these rules is, not surprisingly, largely heuristic

and also has to treat special cases that we won’t discuss in detail here. However, let us

illuminate above two rules some more.

Rule (a) essentially means the following: since we discretize Gauss-Newton steps

anyway, there is no need to drive the nonlinear iteration to levels where the discretization

error is much larger than the remaining nonlinear error in the discretized error. We

therefore monitor the nonlinear residual, i.e. the norm of the residual in the discretized

form of the optimality conditions Lx(xk) = 0 to track progress (concerning the question

of computing this residual see [7]). If this residual norm has been reduced by a certain

factor, say 103 since the first iteration we performed on the currently used mesh, then

we consider progress sufficient and force mesh refinement.

Rule (b) above is in a sense the opposite of the first rule. To this end, we would

like to determine whether iterations on the current mesh are “stuck”. This can happen

if the current iterate xk happens to lie in an area of exceptionally large nonlinearity

of the Lagrangian L(x). We characterize this by monitoring the step length chosen by

our line search procedure: if it is below a certain limit, say 0.1, then we force mesh

refinement as well. This rule is based on the practical observation that if we don’t

do so, iterations may eventually recover speed again, but only after several very short

steps that hardly help to move iterates to greener pastures. On the other hand, we

observe that refining the mesh in this case adds a certain number of dimensions to the

discrete search space along which the problem appears to be less nonlinear, and the first

iteration after mesh refinement almost always has large step lengths around 1. Enlarging

the search space by mesh refinement is therefore a particularly successful strategy to

get iterations “unstuck”.
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How to refine meshes. Once we have decided that we want to refine meshes, we have

to determine which cells to refine and which to coarsen. Ideally, one would base this

on rigorously derived error estimates for the current problems. Such estimates can

be derived using the dual weighted residual (DWR) framework [6, 10] or using more

traditional residual based estimates [30, 31, 46, 47]. In either case, the formulas for the

fluorescence enhanced optical tomography problem become long and cumbersome to

implement.

Although we acknowledge that this is going to lead to suboptimal, though still

good, adaptive meshes, we therefore opt for a simpler alternative. Inspecting the error

estimates derived in the publications referenced above, and using that the residual of

the diffusion equations is related to the second derivatives of the respective solution

variables, one realizes that the traditional error estimates yield refinement criteria for

cell K of the state mesh T
i
k of the form

ηi
K = C1hK‖∇2

hu
i
k‖K + C2hK‖∇2

hv
i
k‖K , (17)

where C1, C2 are constants of usually unknown size and size relation, hK is the diameter

of cell K, and ∇2
h is some discrete approximation of the second derivatives of the finite

element solutions ui
k, v

i
k in iteration k, for example the jump of the gradient across cell

faces [26]. The important point to notice is that without knowledge of the constants it

is impossible to determine how to weigh the two terms; because v is typically orders of

magnitude smaller than u, such weighting is important, however.

On the other hand, dual weighted residuals typically have a form similar to

ηi
K = C

(

hK‖∇2
hu

i
k‖K ‖∇2

hλ
ex,i
k ‖K + hK‖∇2

hv
i
k‖K ‖∇2

hλ
em,i
k ‖K

)

, (18)

see [6,10]. Such a formula has two advantages: first, it has only one unknown constant

and only the absolute size of refinement indicators is unknown; the relative order of the

ηK is known, however, and consequently we can pick those cells with the largest error.

Secondly, the terms are properly weighted. To this end note that because λex, λem satisfy

adjoint equations, the size relationships between them is on the order λex/λem ≈ v/u.

The two terms above are therefore properly balanced. Finally, these terms ensure that

those cells are refined in which both the forward model as well as the adjoint model

are inadequately resolved (i.e. there are large primal and dual residuals). On the other

hand, cells on which, for example, the forward model is badly resolved (i.e. a large

primal residual) but that do not contribute significantly to the measurement functional

(indicated by the fact that the adjoints λex, λem are small) are not going to be refined.

This intuitively immediately leads to more efficient meshes than the use of the residual-

based estimates indicated in (17).

While above criterion is used to refine the forward meshes T
i
k, we need a different

criterion for the parameter mesh T
q
k. Although DWR estimates also provide refinement

indicator for this mesh [6, 10], we typically rather refine using a simple criterion based

on the interpolation estimate ‖f − fh‖ ≤ Ch‖∇f‖ if fh is a discretized version of f

using piecewise constant elements. Consequently, we use ηq
K = hK‖∇hqk‖∞,K, where

K ∈ T
q
k and ∇h is a discrete approximation of the gradient operator.
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3.5. Regularization

In the definition (5) of the objective function, we have added a regularization term βr(q).

Such a term is commonly added to penalize undesirable components of the solution q

that are not or insufficiently constrained by the data, and thereby making the problem

well-posed. On the other hand, its addition is not physically motivated and means

that we solve a different problem. Both the choice of the functional r(q) as well as of

the parameter β is therefore important to ensure that the found solution is practically

meaningful.

Choice of r(q). The functional r(q) can be used to penalize components of the solution

for which we do not have enough data [24,43,44]. In the optical tomography application

under consideration, we want to suppress unphysically large values deep inside the

tissue where hardly any light reaches potentially present dyes. On the other hand, we

want to avoid the smoothing effect commonly associated with H1 seminorm or similar

regularization terms. Consequently we choose r(q) = 1
2
‖q‖2

L2(Ω). This choice is in a sense

arbitrary: in the real optical tomography application, we have very little actual prior

information on the coefficient. In particular we know that it is a discontinuous function

(large inside a tumor or lymph node, for example, and small outside) and may have

natural background variability in the form of oscillations. Consequently, we consider

regularization a band aid to make the problem better posed, rather than an injection of

prior information as advocated in the Bayesian inversion literature [54,66] and elsewhere

in the literature [32].

We note that r(q) is frequently chosen so that we can show that the resulting

problem is well-posed. In three space dimensions, this typically means that we have

to choose r(q) = 1
2
|q|2

H2(Ω), a functional that ensures that the solution lies in the

function space H2(Ω). Because this introduces strong nonphysical smoothing, we deem

such a term unacceptable (and certainly not justified by any prior information on

the parameter to be recovered) and therefore ignore this motivation. On the other

hand, discretization on a finite mesh plus enforcement of bounds plus L2 regularization

together can be thought of as equivalent to H2 regularization, as can be seen from

inverse norm equivalences.

Choice of β. Since what we really want is minimize the misfit functional, we would

like to choose β as small as possible. On the other hand, only a large β leads to a

stable problem and in addition makes the linear subproblems better conditioned and

consequently simpler to solve. We therefore choose a heuristic where we start with a

large regularization parameter β0 and decrease it as Newton iterations proceed once the

regularization becomes too large relative to the misfit. In particular, in iteration k we

choose it as

βk = min

{

βk−1, γ

∑W

i=1
1
2

∥

∥vi
k−1 − zi

∥

∥

2

Γ

r(qk−1)

}

.
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This form is chosen to ensure that, based on the previous iteration’s solution vi
k−1, qk−1,

the regularization term never dominates the misfit term in the definition of the objective

functional (5). In other words, we want to achieve that βr(q) ≤ γ
∑W

i=1
1
2

∥

∥vi
k−1 − zi

∥

∥

2

Γ
.

We typically choose γ = 1
3
.

In the presence of noise, the misfit term is not going to converge to zero, and

consequently the strategy above will lead to a finite regularization parameter as k → ∞.

The limit β∞ is adaptively chosen based on how far we can reduce the misfit. It can

therefore be argued that we have a finite regularization β∞ and that we only temporarily

use a larger regularization parameter in earlier iterations to make the problem simpler

to solve. While we have no proof that this iteration in βk converges, it yields a rather

stable method that leads to reasonable solutions independent of the initial choice β0, an

important aspect in practically useful methods.

4. Numerical results

In this section, we show results based on an implementation of the mathematical

algorithms outlined above for the optical tomography problem. This program is based

on the Open Source deal.II finite element library [8,9] and provides the base not only

for fluorescence optical tomography but also for some other applications [7].

The fluorescence tomography application considered here is motivated by the need

for imaging lymph nodes marked with molecularly targeting fluorescent agents to track

the spread of cancer since lymph nodes are typically the first to be affected by metastases.

Since locations and numbers of lymph nodes are a priori unknown, it is typically

insufficient to only illuminate only a small area of the skin, as the amount of excitation

light reaching a lymph node may be too small to be detected. Consequently, the

recovery of the true interior fluorophore distribution is contingent on the use of boundary

excitation sources and detectors that cover a large area of the skin. Traditionally this

is performed by using multiple optical fibers for delivering excitation light via direct

contact with tissue, or by mechanically raster scanning a focused laser [50,61], and taking

fluorescence measurements at different locations on the tissue boundary. However, point

illumination based tomography systems suffer from overly sparse measurement data sets,

and inadequate amount of excitation light penetration in the tissue interior, especially

for imaging clinically relevant tissue volumes of about 10 × 10 × 10cm3.

The task of reaching large tissue areas can be achieved by using widened laser

beams instead of fiber optics to illuminate the skin. The first systems simply widened a

laser beam with a Gaussian profile to a diameter of 4–6 cm. However, even better and

complementary data sets can be produced by scanning a patterned laser source over the

surface and measuring excitation light at each location [37].

Here, we present numerical experiments employing synthetically generated data

for image reconstructions to demonstrate the utility and efficiency of the techniques

developed in the previous sections to practical lymph node imaging. Results for

experimentally obtained measurement data can be found in [38, 42].



Adaptive finite element methods for optical tomography 18

(a) (b) (c)

Figure 1. The geometry for the synthetic fluorescence tomography experiments: (a)

The actual tissue surface from the groin region of a female Yorkshire swine from which

geometry data was acquired with a photogrammetric camera to generate the volume

used for simulations. (b) Initial forward simulation mesh T
i
0 with 1252 nodes used in

the first iteration for all experiments i = 1, . . . , N . (c) Coarser initial parameter mesh

with 288 elements used for T
q
0
.

We perform experiments in a geometry constructed from a surface geometry scan of

the groin region of a Yorkshire Swine acquired by a photogrammetric camera, see Fig. 1.

The top surface of a 10.8cm x 7.4cm x 9.1cm box was projected to the acquired swine

groin surface to create the domain for our computations. On this geometry, we generated

synthetic frequency domain fluorescence measurements by simulating the scanning of

a 0.2cm wide and 6cm long NIR laser source across the top surface of the domain.

16 synthetic measurements corresponding to 16 different positions of the scanning line

source were generated. Fig.s 1 and 2 show initial forward and parameter meshes, and

forward meshes after several adaptive refinement steps, respectively. The latter also

shows the excitation light intensity resulting from the scanning incident light source

diffusing throughout the tissue.

On this geometry, we consider two cases of practical importance: (i) the

determination of location and size of a single target, e.g. a lymph node, and (ii) the

ability to resolve several, in our case three, lymph nodes in close proximity. These two

cases will be discussed in the following subsections.

4.1. Single target reconstruction

In this first study, a single spherical fluorescence target with a diameter of 5mm was

positioned approximately 2cm deep from the top surface with a center at r = (4, 4, 6).

We simulated 100:1 uptake of fluorescent dye Indocyanine Green (ICG) in the target,

i.e. the true value of the parameter q is 100 times higher inside the target than in

the background medium. ICG has a lifetime of τ = 0.56ns and a quantum efficiency of

φ = 0.016. We used the absorption and scattering coefficients of 1% Liposyn solution [37]
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(a) (b) (c)

Figure 2. Final adaptively refined forward simulation meshes T
i corresponding to

sources 1 (left), 8 (center), and 16 (right). The meshes are from the three target

reconstruction discussed in Section 4.2.

(a) (b) (c)

(d) (e) (f)

Figure 3. Evolution of the parameter mesh T
q

k as Gauss-Newton iterations k progress.

Top row: Meshes and recovered unknown parameter for the single target reconstruction

on the initial mesh, after two adaptive refinements, and on the final mesh. Bottom

row: Analogous results for the three target image reconstruction.

for background optical properties, which are similar to the human breast tissue.

The top row of Fig. 3 shows the parameter mesh T
q
k in Gauss-Newton iterations

k = 5, 10 and 12 with 288, 1331, and 2787 unknowns, respectively. The mesh was refined

after iterations 5, 8, 10. Local refinement around and identification of the single target

can clearly be seen. In the vicinity of the target, the mesh approximates the suspected
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(a) (b)

(c) (d)

Figure 4. Left column: Volume rendering of reconstructed parameters qk at the end

of iterations. Right column: Those cells where qk(r) ≥ 50%maxr
′∈Ω qk(r′) are shown

as blocks, whereas the actual location and size of the targets are drawn as spheres. In

addition, the mesh on three cut planes through the domain is shown. Top row: Single

target reconstruction. Bottom row: Three target reconstructions.

lymph node with a resolution of around 1.5mm.‡ On the other hand, it is obvious

that the mesh is coarse away from the target, in particular at depth where only little

information is available due to the exponential decay of light intensity with depth. If

we had not chosen an adaptively refined mesh, the final mesh would have some 150, 000

unknowns, or more than 50 times more than the adaptively refined one used here. Since

the forward meshes have to be at least once more refined, we would then end up with

an overall size of the KKT system (10) of around 1.5 · 108, compared to some 4 · 106 for

our adaptive simulation. It is clear that computations on uniformly refined meshes are

not feasible with today’s technology at the same accuracy.

The top row of Fig. 4 shows a volume rendering of the reconstructed parameter

together with the mesh T
q at the end of computations, as well as a selection of those

cells on which the parameter value is larger than 50% of the maximal parameter value.

The right panel also shows the location and size of the spherical target that was used

to generate the synthetic data. As can be seen, location and size of this target are

reconstructed quite well.

‡ The diffusion length scale for light in the chosen medium is around 2mm. Any information on scales

smaller than this can therefore not be recovered within the framework of the diffusion approximation

(1)–(2). Our mesh is consequently able to resolve all resolvable features.
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Figure 5. Total number of unknowns accumulated over all experiments (i.e. the size of

the KKT matrix (10)), number of unknowns in the parameter mesh T
q

k, and number of

parameters that are actively constrained by bounds q0 ≤ qk ≤ q1 for the single target

reconstruction (left) and three target reconstruction experiments (right).

Finally, the left panel of Fig. 5 shows some statistics of computations. The curves

show how refinement between iterations increases the total number of degrees of freedom

from initially some 104 per experiment to around 2.5 · 105 per experiment. At the same

time, the number of parameters discretized on T
q increases from 288 to 2,787. In this

example, only a negligible number of unknowns in qk are constrained by bounds.

4.2. Three target reconstruction

In a second experiment, we attempt to reconstruct with synthetic data generated from

three closely spaced targets with centers at r1 = (3, 2, 6), r2 = (4, 5, 6), r3 = (7, 3, 6)

and diameters of again 5mm. As for the first example, the bottom row of Fig. 3

shows a sequence of meshes T
q
k, whereas Fig. 4 shows a closer look at the reconstructed

parameter. Again, the location of the reconstructed targets is mostly correct, but the

two targets closest together are blured – a well-known phenomenon in diffusive imaging.

The right panel of Fig. 5 shows statistics about this computation. Most noteworthy

is that in this example the number of constrained parameter degrees of freedom is much

more significant than in the first one: after the first few iterations, between 40 and

60% of all parameters are constrained. As mentioned in Section 3.2, the bounds do not

only help to stabilize the problem, but also make the solution of the Schur complement

simpler since constrained degrees of freedom are eliminated from the system.

Fig. 6 demonstrates progress in reducing the two parts (misfit and regularization)

of the objective function
∑W

i=1
1
2
‖ui

k−zi‖Γ+βr(qk) during Gauss-Newton iterations, and

our strategy to choose the regularization parameter βk. We start with a regularization

parameter β0 = 10−12, but as the misfit drops it comes close to the regularization term.

Consequently, βk is reduced in the next iteration to avoid that regularization dominates

the reconstruction process.
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Figure 6. Reduction of misfit and regularization terms in the objective functional

during Gauss-Newton iterations, and the effect on adjusting the regularization

parameter β.

5. Conclusions and outlook

In this contribution, we have reviewed an adaptive finite element method approach to

fluorescence optical tomography, a recent addition to the arsenal of biomedical imaging

techniques that is currently undergoing first clinical studies. We have explained why

uniformly refined meshes can not deliver clinically necessary resolutions because they

lead to nonlinear optimization problems that are orders of magnitude too large for

today’s hardware to solve within clinically acceptable time scales. Our solution to this

problem was the introduction of adaptively refined meshes. They not only are able

to focus numerical effort to regions in the domain where high resolution is actually

necessary, but also regularize the inverse problem and in particular make the initial

Gauss-Newton iterations extremely cheap since we can compute on coarse meshes while

we are still far away from the solution.

Using a sequence of meshes that change adaptively as iterations proceed requires

adjusting some of the techniques traditionally known from optimization methods since

the dimensionality of the problem changes between iterations, and continuous and

discrete norms are no longer equivalent under adaptive mesh refinement. For example,

nonlinear iterations and mesh refinement algorithms have to be interconnected to achieve

efficient methods, and active set strategies for inequality constraints need to be modified

for locally refined meshes.

We have therefore presented a comprehensive framework for the solution of optical

tomography problems with adaptive finite element methods. The workings and efficiency

of this framework have been demonstrated with two practically relevant numerical

examples.

However, although we are able to efficiently solve this inverse problem to practically

necessary resolution, it would be a mistake to believe that there is no need to improve

it. In particular, we believe that further progress is necessary in the following areas:

• Linear solvers: Because the Schur complement S defined in (14) is only known
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through its action on vectors, it is complicated to derive preconditioners for the

reduced system (15) in which our solvers spend 75% of the compute time on fine

meshes. It is therefore important to think about viable ways to precondition this

equation. One approach would be to use BFGS or LM-BFGS approximations of

S−1 (see [55]) as used in [15]. However, they would have to be integrated with

adaptivity since they expect the parameter space to remain fixed.

• Multigrid: Another approach is to use multilevel algorithms for the Schur

complement or the whole KKT system. Methods in this direction have already

been explored in [2, 5, 19, 45].

• Systematic characterization of results: For practical usability, numerical methods

do not only have to work in simple situations like the ones shown in Section 4,

but also in the presence of significant background heterogeneity, unknown or

large noise levels, systematic measurement bias, and other practical constraints.

Systematic testing of reconstructions for statistically sampled scenarios with

Objective Assessment of Image Quality (OAIQ) methods [59] will be necessary

to achieve clinical use.

• Optimal experimental design techniques should enable us to improve our

experimental setups to make them more sensitive to the quantities we intend to

recover. However, they lead to non-convex optimization problems with the inverse

problem as a subproblem, and therefore to computationally extremely complex

problems.

Despite our belief that the algorithms we have presented are powerful tools in

making fluorescence optical tomography a valuable imaging tool of the future, above

list indicates that much research is left in this and related problems.
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