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Abstract

We show that recently studied discontinuous Galerkin discretizations in their
lowest order version are very similar to the MAC finite difference scheme. Indeed,
applying a slight modification, the exact MAC scheme can be recovered. There-
fore, the analysis applied to the DG methods applies to the MAC scheme as well
and the DG methods provide a natural generalization of the MAC scheme to higher
order and irregular meshes.

1 Introduction
Divergence-conforming discontinuous Galerkin schemes recently suggested by Cock-
burn, Kanschat and Schötzau (see [2, 3], abbreviated as CKS below) generate pointwise
divergence free solutions to the incompressible Navier-Stokes equations without using
a solenoidal basis; therefore, they are suitable for computations in three dimensions
and on domains with complicated topology. While we were concerned with higher
order approximations in [3], it is shown in this article that the version employing the
lowest order Raviart-Thomas space on rectangular meshes is algebraically equivalent
to the marker and cell (MAC) scheme of Harlow and Welch (see [8]).

The MAC scheme was introduced in 1965 as a stable finite difference scheme for
incompressible flow problems. Nevertheless, its error analysis was presented only in
1992 (see [10, 11]) by transforming it to a finite volume scheme. Further results have
been obtained by studying finite element methods yielding the same finite difference
stencil. First, an analogy to mixed finite element methods for the vorticity-velocity-
pressure formulation with divergence-conforming elements was already found by Gi-
rault and Lopez (see [6]) in 1996. There, it was shown that the MAC scheme can be
recovered by using a special numerical quadrature.

Han and Wu (see [7]) presented a finite element formulation of the MAC scheme
using different staggered finite element meshes and obtained optimal energy error es-
timates for the velocity and pressure. Nevertheless, extension of this method to higher
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Figure 1: The placement of velocity and pressure values of the cell Tij for the MAC
scheme

order elements suffers from the difficulty to handle three different meshes in two di-
mensions. Furthermore, a numerical quadrature rule is required to obtain the stencil of
the MAC scheme.

The interest in the MAC scheme is to some extend due to the fact that it lends itself
to the construction of efficient solvers for the discrete problem (see [4, 5, 13, 14]). For
that reason, a generalization of the MAC scheme to higher order and more general
meshes is desirable.

Once the algebraic equivalence of the MAC scheme and the Hdiv(Ω)-conforming
DG scheme is established, we exploit existing convergence results in order to derive
estimates for the DG scheme. On the other hand, the DG scheme lends itself to the
construction of higher order versions of the MAC scheme as well as the incorporation
of locally refined meshes. Furthermore, it shows a way to interpolate solutions obtained
by the MAC scheme to obtain a pointwise divergence free function in Hdiv(Ω).

In the remainder of this article, we first review the MAC scheme and the most im-
portant convergence result, followed by a description of the DG method. In Section 4,
we show the equivalence of the two methods.

2 The MAC scheme and the staggered grid
The MAC scheme as presented in [8] uses different, staggered grids for the pressure
and each velocity component. In order to simplify the presentation, we assume the
domain of computation is Ω = (0, 1)2 that the mesh consists of n2 squares Tij of
size h = 1/n, numbered by index i = 1, . . . , n in x-direction and j = 1, . . . , n in
y-direction. Note that the MAC scheme naturally extends to rectangular mesh cells
and three dimensional problems.

The distribution of degrees of freedom is shown in Figure 1. It shows the mesh cell
Tij with the pressure variable associated with the cell center and the velocity variables
associated with the midpoints of the cell edges. We assign the coordinates xij =
(ti, tj)T to the cell centers. Edge midpoints are offset in one direction and therefore
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are of the form xi− 1
2 ,j = (ti− 1

2
, tj)T and xi,j− 1

2
for vertical and horizontal edges,

respectively. The boundaries are at t 1
2

= 0 and tn+ 1
2

= 1. The spacing is ti+1−ti = h.
On this mesh, the gradient and divergence operators are discretized by

∂h
xpi+ 1

2 ,j =
1
h

(
pij − pi+1,j

)
(1)

∂h
y pi,j+ 1

2
=

1
h

(
pij − pi,j+1

)
(2)

∇h · uij =
1
h

(
ui+ 1

2 ,j − ui− 1
2 ,j + vi,j+ 1

2
− vi,j− 1

2

)
. (3)

We see that the gradient maps cell centers to edge midpoints and the divergence vice
versa. The Laplacian of the velocity components in each point is approximated by the
five point stencil. For the velocity component u in x-direction, this is

−∆hui+ 1
2 ,j = ∂h

xxui+ 1
2 ,j + ∂h

yyui+ 1
2 ,j

∂h
xxui+ 1

2 ,j =
2ui+ 1

2 ,j − ui− 1
2 ,j − ui+ 3

2 ,j

h2
,

∂h
yyui+ 1

2 ,j =
2ui+ 1

2 ,j − ui+ 1
2 ,j−1 − ui+ 1

2 ,j+1

h2
.

(4)

The Laplacian of the velocity component v in y-direction is defined accordingly. At
the Dirichlet boundary, which coincides with the cell boundaries, the velocity nodes on
the boundary are set to zero. This only affects the normal velocities.

While this scheme has been widely used in applications (see for example [15]), it
took until [10] to obtain optimal error estimates for the vorticity and pressure. These
were obtained by reinterpreting the MAC scheme in terms of the covolume method,
thus employing suitable interpolations of the point values.

In [7], a finite element method related to the MAC scheme is presented. It uses
separate rectangular finite element meshes for the variables u, v and p, respectively. It
yields the optimal error estimates for u and p of the form

‖∇u−∇uh‖+ ‖p− ph‖ = O(h). (5)

Remark 2.1 An error estimate for the velocities in L2 follows from this results by
standard duality arguments. This result also implies

1
n

√∑
ij

(
u2

i+ 1
2 ,j

+ v2
i,j+ 1

2

)
= O(〈∈) (6)

on uniform meshes.

Since the velocities are discretized by bilinear finite elements, a quadrature rule
must be applied in order to obtain the 5-point stencil of the MAC scheme. While this
does not change the properties of the equation in an essential way, it makes devising
higher order methods more difficult. Furthermore, a posteriori error estimates are more
difficult to obtain.
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3 The Divergence-free DG Method
The discontinuous Galerkin discretizations of CKS type are based onHdiv(Ω)-conforming
finite elements for the velocity. They were analyzed in [2, 3] for higher order spaces.
Here, we want to focus on the lowest order Raviart/Thomas space [12] RT0 and its
matching piecewise constant pressure space. In this space, the u-velocity is cellwise
constant and discontinuous in y-direction and cellwise linear and continuous in x-
direction. The v-velocity is vice versa.

Let us introduce the Lagrange interpolation polynomials on [0, 1] and [tk− 1
2
, tk+ 1

2
]

ϕ+(t) = t ϕ−(t) = 1− t,

ϕ+
k (t) = ϕ+

( t−t
k− 1

2
h

)
ϕ−k (t) = ϕ−

( t−t
k− 1

2
h

)
.

In order to ensure continuity of the normal component of the velocities over edges,
we choose the values in edge midpoints as node values (see e.g. [1]). These are the
support points for u and v of the MAC grid in Figure 1. Using the basis functions, the
velocity on the cell Tij has the form

uij(x, y) =

(
ui− 1

2 ,jϕ
−
i (x) + ui+ 1

2 ,jϕ
+
i (x)

vi,j− 1
2
ϕ−j (y) + ui,j+ 1

2
ϕ+

j (y)

)
(7)

for (x, y) in the mesh cell Tij .
On the boundary, we enforce the condition u · n = 0 strongly by restricting the

finite element space (see [3]). The boundary condition on the tangential component
will be enforced weakly in the momentum equation (10).

The discrete continuity equation is written in weak form as

bh(u, q) :=
∫

Ω

∇· u q dx = 0 ∀q ∈ Qh, (8)

where Qh is the space of cellwise constant pressure functions with mean value zero.
Integrating the form bh(., .) by parts on each cell, we obtain the discrete gradient

operator applied to p:

bh(Ψ, p) =
∑
Tij

(
−
∫

Tij

Ψ · ∇p dx+
∫

∂Tij

Ψ · np dx

)
=
∑

E∈EI

∫
E

Ψ · [[pn]] dx, (9)

where EI is the set of all interior edges.
It remains to consider the Laplacian in the momentum equation. In [3], feasibility

of the CKS discretization for any stable consistent and self-adjoint DG scheme for the
Laplacian is proven; even if we did not consider the case RT0 there, the arguments
are sufficiently abstract to extend to this case. Let us take the interior penalty method
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applied to each velocity component separately to start with. We choose Ψ = (ψ, 0)T .

ah(u,Ψ) = ah(u, ψ) =
∑
Tij

∫
Tij

∇u · ∇ψ dx+ jI(u, ψ) + jD(u, ψ)

−
∑

E∈EI

∫
E

({{∇u}}[[ψn]] + [[un]]{{∇ψ}}) ds−
∑

E∈ED

(ψ∂nu+ u∂nψ) ds, (10)

where

jI(u, ψ) =
∑

E∈EI

κ

hE

∫
E

[[un]][[ψn]] ds, jD(u, ψ) =
∑

E∈ED

2
κ

hE

∫
E

uψ ds (11)

This method simplifies considerably in our case, since the normal components of
the velocities are continuous, that is, [[un]] = 0 and [[ψn]] = 0 whenever n is parallel to
the x-axis. Therefore, the jump terms only apply on edges parallel to the x-axis, where
on the other hand the normal derivatives of u and ψ are zero. The same holds on the
boundary due to the strong enforcement of u · n = 0. Consequently,

ah(u, ψ) =
∑
Tij

∫
Tij

∇u · ∇ψ dx + jI(u, ψ) + jD(u, ψ) (12)

=
∑
Tij

∫
Tij

∇u · ∇ψ dx + jx
I (u, ψ) + jx

D(u, ψ) (13)

where the superscript x on the second line indicates that the sum is restricted to edges
parallel to the x-axis. In particular, since the indefinite part of the flux is missing this
bilinear form is stable for all positive values of κ (refer to e.g. [9] or the proof for the
modified form below).

4 The stencil of the DG Method and its relation to the
MAC scheme

In this section, we compute the finite difference stencils associated with the discon-
tinuous Galerkin method of the previous section. In order to do so, we compute rows
of the resulting matrix by applying the bilinear forms to single basis functions as test
functions.

4.1 Interior nodes
First, using the basis function qij , which is one on Tij and zero elsewhere in the conti-
nuity equation (8) yields

bh(u, qij) =
∫

Tij

∇· u = h2

(
ui+ 1

2 ,j − ui− 1
2 ,j

h
+
vi,j+ 1

2
− ui,j− 1

2

h

)
= h2∇h · uij .

(14)
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Now, choose Ψ in (9) such that its first component is one at xi+ 1
2 ,j and zero in all

other support points to obtain the discrete derivative of p in x-direction from (9):

bh(Ψi+ 1
2 ,j , p) = h

(
pij − pi+1,j

)
= h2∂h

xpi+ 1
2 ,j . (15)

The same way, we obtain

bh(Ψi,j+ 1
2
, p) = h

(
pij − pi,j+1

)
= h2∂h

y pi,j+ 1
2
. (16)

Thus, the divergence and gradient operators of the DG method and the MAC scheme
coincide up to a factor of h2.

Let us now compute the stencil for the form ah(., .) in (12) for the test function
ψi+ 1

2 ,j with support point xi+ 1
2 ,j and consider interior cells only:

ah(u, ψi+ 1
2 ,j) =

∫
Tij

ui+ 1
2 ,j − ui− 1

2 ,j

h2
dx−

∫
Ti+1,j

ui+ 3
2 ,j − ui+ 1

2 ,j

h2
dx

+
∫ x

i+ 3
2

x
i+ 1

2

κ

h

(
∂h

yyui+ 3
2 ,jϕ

+
i+1(x) + ∂h

yyui+ 1
2 ,jϕ

−
i+1(x)

)
ϕ−i+1(x) dx

+
∫ x

i+ 1
2

x
i− 1

2

κ

h

(
∂h

yyui+ 1
2 ,jϕ

+
i (x) + ∂h

yyui− 1
2 ,jϕ

−
i (x)

)
ϕ+

i (x) dx.

= h2
(
∂h

xxui+ 1
2 ,j + κ∂h

yyui+ 1
2 ,j + κ

6∂
h
yyui− 1

2 ,j + κ
6∂

h
yyui+ 3

2 ,j

)
. (17)

This yields the difference stencil −κ
6 −κ −κ

6
κ
3 − 1 2 + 2κ κ

3 − 1
−κ

6 −κ −κ
6

 .
We will now apply a modification to the edge terms of ah(., .), such that the mod-

ified form is still stable, but the couplings to points offset diagonally vanish. To this
end, we introduce the second order Legendre polynomial on [ti− 1

2
, ti+ 1

2
], namely

`(t− ti− 1
2
) =

6h2t2 − 6ht+ 1
h

,

and modify the jump term in (11) to

j̃I(u, ψ) =
∑

E∈EI

κ

hE

∫
E

γ + `E
γ

[[un]][[ψn]] ds, (18)

where `E is the corresponding quadratic Legendre polynomial on the edge E. We
choose γ to eliminate the cross coupling term:∫ t

i+ 1
2

t
i− 1

2

`E(t)ϕ+
i (t)ϕ−i (t) dt = h

∫ 1

0

(6t2 − 6t+ 1)t(1− t) dt = − h

30∫ t
i+ 1

2

t
i− 1

2

ϕ+
i (t)ϕ−i (t) dt =

h

6
.
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Therefore, γ = 1/5 yields∫ t
i+ 1

2

t
i− 1

2

γ + `E
γ

ϕ+(t)ϕ−(t) dt = 0 (19)

The modified jump still defines a seminorm:

Lemma 4.1 The term

j̃E
I =

∫
E

γ + `

γ
[[un]]2 ds (20)

is nonnegative and it is zero if and only if u is continuous along E.

Proof: The jump of u is linear functions along E and can be written as

[[u(x)n]] = aϕ+(x) + bϕ−(x)

with suitable coefficients a and b. Then,

J̃E
I = h

∫ 1

0

γ + `(t)
γ

(
a2ϕ+(t)2 + b2ϕ−(t)2 + 2abϕ+(t)ϕ−(t)

)
dt

= h

∫ 1

0

γ + `(t)
γ

(
a2ϕ+(t)2 + b2ϕ−(t)2

)
dt

because of the choice of γ and `. We have∫ 1

0

`(t)ϕ+(t)2 dt =
1
30

=
∫ 1

0

`(t)ϕ−(t)2 dt

Accordingly,

j̃E
I =

7h
6

(a2 + b2),

which is zero only if a and b are zero. �

We introduce the modified boundary form

j̃D(u, ψ) = 2
∑

E∈ED

κ

hE

∫
E

γ + `

γ
uψ ds. (21)

By the same means as in the proof to the previous lemma, we obtain that j̃D(u, u) = 0
if and only if u = 0 on ∂Ω. Therefore, we have

Lemma 4.2 The bilinear form

ãh(u, ψ) =
∑
Tij

∫
Tij

∇u · ∇ψ dx + j̃I(u, ψ) + j̃D(u, ψ) (22)

is a positive definite, symmetric bilinear form on the space Vh with respect to the norm
‖.‖h =

√
ãh(., .) for any κ > 0.
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Proof: Positive semi-definiteness and symmetry follow immediately from the def-
inition of the form. The definiteness follows from the fact, that if ãh(u, u) = 0,
the jump jI(u, u) enforces continuity, the boundary term jD(u, u) enforces homoge-
neous boundary conditions and the cell terms require that u is constant (for details see
e.g. [9]). �

Thus, the modified interior penalty formulation yields a stable DG finite element
method with respect to the norm ‖.‖h =

√
ãh(., .) and the analysis for the standard

interior penalty method applies. Inserting the expressions (20) and (19) for modified
jumps into (17), we obtain the stencil − 7

6κ
−1 2 + 14

6 κ −1
− 7

6κ

 ,
which for κ = 6/7 yields the 5-point-stencil used in the original MAC scheme in [8].

4.2 Boundary conditions
In order to yield strongly divergence free solutions, the CKS method requires that u ·
n = 0 on the boundary. This is nothing but the condition that the boundary nodes of
the MAC scheme are set to zero.

The boundary condition for the tangential component is obtained in [8] by mirror-
ing the value in the interior. Thus, we extend the mesh virtually by one layer of cells at
each of the sides of the square. For instance, at the left boundary, we would add a layer
of support points for v at (t0, tj− 1

2
) and let v0,j− 1

2
= −v1,j− 1

2
. Entering these values

into the numerical flux (20) now yields exactly the boundary flux (21), which proves
that the two formulations are algebraically equivalent at the boundary as well.

5 Convergence of the lowest-order DG scheme
The convergence analysis of the CKS scheme involves standard energy error arguments
in finite element analysis. A key ingredient there is an interpolation estimate of the form

‖∇u−∇Ihu‖T ≤ Chk‖∇2u‖T ,

where Ih is the interpolation operator into RTk, h is the mesh size and k is the degree
of the Raviart-Thomas element. This degree in our case is zero, such that this estimate
is of no use. Even more, since the derivative of the RT0 element in one space direction
is always zero, no approximation in a norm involving the gradient can be achieved and
therefore, standard finite element convergence analysis fails.

Nevertheless, the interpolation estimate in L2 reads

‖u− Ihu‖T ≤ Ch‖∇2u‖T , (23)

and we use it to obtain
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Theorem 5.1 The solution obtained by the CKS method using lowest order Raviart-
Thomas elements and piecewise constant pressures on uniform meshes admits the error
estimates

‖u− uh‖ ≤ Ch
(
‖∇2u‖+ ‖∇p‖

)
, (24)

‖p− ph‖ ≤ Ch
(
‖∇2u‖+ ‖∇p‖

)
. (25)

Proof: We employ the fact that the CKS method is algebraically equivalent to the
MAC scheme, and therefore to the finite element scheme by Han and Wu. Therefore,
the solution uHW coincides with uh in the support points of the RT0 element in Fig-
ure 1. Using the triangle inequality, we get

‖u− uh‖ ≤ ‖u− Ihu‖+ ‖Ihu− IhuHW ‖+ ‖IhuHW − uh‖.

Here, the first term is estimated by the interpolation estimate (24). The last term van-
ishes, since the values of uh and uHW coincide in the support points because of the
equivalence of both schemes with the MAC scheme. The second term is of order h2

by (6), taking into account that the support of all basis functions has the same size.
Since the pressure space is the same as in [7], estimate (25) follows immediately their
work. �

6 Conclusions
With a minor modification, we showed that the CKS scheme is algebraically equivalent
to the MAC scheme. The modified scheme is still a consistent discontinuous Galerkin
scheme. Therefore, it will enable us to develop a posteriori error estimates based on
Galerkin orthogonality. Furthermore, it defines a pointwise divergence free interpola-
tion for the point values obtained by the MAC scheme. On the other hand, we could
employ the convergence result for the MAC scheme to show first order convergence of
the lowest order CKS scheme. Finally, the CKS scheme in higher orders by the result
in this article can be seen as a natural extension of the MAC scheme.
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