Data Structures and Requirements/prFinite
Element Software

W. BANGERTH

Texas A&M University

and

0. KAYSER-HEROLD

Harvard School of Public Health

Finite element methods approximate solutions of partiidintial equations (PDES) by restricting the problem
to a finite dimensional, discrete function space. In kpeadaptive version of the finite element method, one
defines these discrete spaces by choosing different polghatagrees for the shape functions defined on a
locally refined mesh.

Although this basic idea is quite simple, its implementatio algorithms and data structures is challenging.
It has apparently not been documented in the literatures im@st general form. Rather, most existing implemen-
tations appear to be for special combinations of finite etemer for discontinuous Galerkin methods which do
not entail many of the complications of the general case.

In this paper, we discuss the generic data structures amditalgs necessary to implement the finite
element method for arbitrary elements, and the complicatand pitfalls one encounters with such an imple-
mentation. As part of this process, we describe what pietegamation a description of a finite element has
to provide to the generic algorithms for it to be used inhancontext. We support our claim that the generic
algorithms and data structures are efficient using numegiGmples that test our reference implementation in
2d and 3d, and demonstrate that thespecific parts of the algorithm do not dominate the total cating time.
This reference implementation is also made available @p#te Open Source deal.ll finite element library.

Categories and Subject Descriptors: GMlaihematical Software]: Finite element software-gata structures
hp finite element method&.1.8 Numerical Analysis]: Partial Differential Equations-finite element method.

General Terms: Algorithms, Design

Additional Key Words and Phrases: object-orientationfvearfe design

1. INTRODUCTION

The hp finite element method was proposed more than two decadesyaBatiuSka and
Guo [BabuSka 1981; Guo and Babuska 1986a; 1986b] as anatite to either (i) mesh
refinement (i.e. decreasing the mesh paranieter finite element computation) or (ii) in-
creasing the polynomial degrpaused for shape functions. It is based on the observation
that increasing the polynomial degree of the shape funstieduces the approximation
error if the solution is sufficiently smooth. On the other tait is well known [Ciarlet

Author’s addresses: W. Bangerth, Department of Mathesaliexas A&M University, College Station, TX
77843, USA; O. Kayser-Herold, Department of Environmehkaalth, Harvard School of Public Health, Boston,
MA 02115, USA.

Permission to make digital/hard copy of all or part of thistenal without fee for personal or classroom use
provided that the copies are not made or distributed forfpwoiommercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appead aotice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on serversto redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY, Pages 1-».

2 : W. Bangerth and O. Kayser-Herold

1978; Gilbarg and Trudinger 1983] that even for the gengvedill-behaved class of elliptic
problems, higher degrees of regularity can not be guardmetbe vicinity of boundaries,
corners, or where coefficients are discontinuous; consglythe approximation can not
be improved in these areas by increasing the polynomiakdegout only by refining the
mesh, i.e. by reducing the mesh size These differing means to reduce the error have
led to the notion ofp finite elements, where the approximating finite elementspace
adapted to have a high polynomial degge@herever the solution is sufficiently smooth,
while the mesh width is reduced at places wherever the solution lacks reguldrityas
already realized in the first papers on this method kipdtnite elements can be a powerful
tool that can guarantee that the error is reduced not only sdtme negative power of the
number of degrees of freedom, but in fact exponentially.

Since then, some 25 years have passed and whifmite element methods are subject
of many investigations in the mathematical literatureythee hardly ever used outside
academia, and only rarely even in academic investigatiarisyde element methods such
as on error estimates, discretization schemes, or soleisa common perception that
this can be attributed to two major factors: (i) There is mope and widely accepted a
posteriori indicator applicable to an already computedtsmh that would tell us whether
we should refine any given cell of a finite element mesh or emedhe polynomial degree
of the shape functions defined on it. This is at least true émtinouous elements, though
there are certainly ideas for discontinuous elements, ldeadton et al. 2007; Houston
et al. 2007] and in particular [Houston and Suli 2005] areréferences cited therein. The
major obstacle here is not the estimation of the error ondaeklk rather, it is to decide
whetherh-refinement op-refinement is preferable. (ii) Thigp finite element method is
hard to implement. In fact, a commonly heard myth in the fiedttlh that it is “orders of
magnitude harder to implement” than simpl@daptivity. This factor, in conjunction with
the fact that most software used in mathematical researbbrigegrown, rarely passed
on between generations of students, and therefore of tinttemplexity, has certainly
contributed to the slow adoption of this method.

In order to improve the situation regarding the second patioive, we have undertaken
the task of thoroughly implementing support figy finite element methods in the freely
available and widely used Open Source finite element litdtes).ll [Bangerth et al. 2007b;
2007a] and to thereby making it available as a simple to useareh tool to the wider
scientific community. deal.ll is a library that supports adivariety of finite element
types in 1d, 2d (on quadrilaterals) and 3d (on hexahedrelyding the usual Lagrange
elements, various discontinuous elements, Raviart-Tlsoslements [Brezzi and Fortin
1991], Nedelec elements [Nedelec 1980], and combinatibtigese for coupled problems
with several solution variables.

There are currently not many implementations of dipdinite element method that are
accessible to others in some form. Of these, the codes bek&zmkowicz [Demkowicz
2006] and Concepts [Frauenfelder and Lage 2002] may be athengest known and in
addition to most other libraries also include fully anisgtic refinement. Others, such as
for example libMesh [Kirk et al. 2007] and hpGEM [Pesch e&l07] claim to be in the
process of implementing the method, but the current stateeafsoftware appears unclear.
Most importantly, most of these libraries seem to focus oplémenting the method for
one particular family of elements, most frequently eithierérchical Lagrange elements
(for continuous ansatz spaces) or for the much simpler dedis@ntinuous spaces.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software : 3

In contrast, we wanted to implemely support as general as possible, so that it can be
applied to all the elements supported by deal.ll, i.e. iditlg continuous and discontinuous
ones, without having to change again the parts of the liltteatare agnostic to what finite
element is currently being used. For example, the mainetaissdeal.ll only require to
know how many degrees of freedom a finite element has on eatsxyedge, face, or cell,
to allocate the necessary data. Consequently, the aim oftody was to find out what
additional data finite element classes have to provide twathe element-independent
code to deal with thép situation.

This led to a certaiour-de-forcein which we had to learn the many corner cases that
one can find when implementirg elements in 2d and 3d, using constraints to enforce
the continuity requirements of any given finite element spdte current paper therefore
collects what we found are the requirements the implemientaf »p methods imposes
on code that describes a particular finite element spacé.llde&If already has a library
of such finite element space descriptions, but there are stffevare libraries whose sole
goal is to completely describe all aspects of finite elempatss (see, e.g., [Castillo et al.
2005]). The current contribution then essentially listsatybieces of information an imple-
mentor of a finite element class would have to provide to thdetging implementation
in deal.ll, and show how this information is used in the math#cal description. We also
comment on algorithmic and data structure questions mémgato the necessity to imple-
menthp algorithms in an efficient way, and will support our claimsefficiency using a
set of numerical experiments solving the Laplace equati@diand 3d and measuring the
time our implementation spends in the various parts of trezadl/solution scheme.

We believe that our observations are by no means specificaidid©ther implemen-
tations of thehp method will choose different interfaces between finite eatyspecific
and general classes, but they will require the same infoomaFurthermore, although all
our examples will deal with quadrilaterals and hexahetieasame issues will clearly arise
when using triangles and tetrahedra. (For lack of compfewie will not discuss the 1d
case, although of course our implementation supports ispeeial case.) The algorithms
and conclusions described here, as well as the results aflouerical experiments, are
therefore immediately applicable to other implementatias well.

The rest of the paper is structured as follows: In Sectioneédwil discuss general strate-
gies forh, p, andhp-adaptivity and explain our choice to enforce conformitydafcrete
spaces through hanging nodes. In Section 3, we introduogeetffidata structures to store
and address global degree of freedom information on thetsiral objects from which a
triangulation is composed, whereas Section 4 containsahieal part of the paper, namely
what information finite element classes have to provideltmetor hp finite element im-
plementations. Section 5 then deals with the efficient hagdif constraints. Section 6
shows practical results, and Section 7 concludes the paper.

2. HP-ADAPTIVE DISCRETIZATION STRATEGIES

Adaptive finite element methods are used to improve theioeldtetween accuracy and
the computational effort involved in solving partial diféatial equations. They compare
favorably with the more traditional approach of using umifity refined meshes with a
fixed polynomial degree by exploiting one or both of the faliog observations:

—for most problems the solution is not uniformly complexahghout the domain, i.e. it
may have singularities or be “rough” in some parts of the dama

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

4 : W. Bangerth and O. Kayser-Herold

Fig. 1. Refinement of a mesh consisting of four triangles. Left: i@aignesh. Center: Mesh with rightmost cell
refined. Right: The center cell has been converted to a ttianstell.

—the solution does not always need to be known very accyratelrywhere if, for exam-
ple, only certain local features of the solution such astpgitues, boundary fluxes, etc,
are of interest.

In either case, computations can be made more accurate stedl fy choosing finer
meshes or higher polynomial degrees of shape functionsrits p&the domain where
an “error indicator” suggests that this is necessary, wadgethe mesh is kept coarse and
lower degree shape functions are used in the rest of the domai

A number of different and (at least faradaptivity) well-known approaches have been
developed in the past to implement schemes that employ igitapin the following sub-
sections, we briefly review these strategies and explainieave will follow in this paper
as well as in the implementation of our ideas in the deal.ildialement library.

2.1 h-adaptivity

In the course of an adaptive finite element procedure, am estonator indicates at which
cells of the spatial discretization the error in the solntfeeld is highest. These cells
are then usually flagged to be refined and, in fheersion of adaptivity, a new mesh is
generated that is finer in the area of the flagged cells (he.ntesh size functioh(z) is
adapted to the error structure). This could be achieved bgm¢ing a completely new
mesh using a mesh generation program that honors preseriloeddensities. However, it
is more efficient to create the new mesh out of the old one biacem the flagged cells
with smaller ones, since it is then simpler to use the satutio the previous mesh as a
starting guess for the solution on the new one.

This process of mesh refinement is most easily explainedywsimesh consisting of
triangles! see Fig. 1: If the error is largest on the rightmost cell, thanrefine it by
replacing the original cell by the four cells that arise bywecting the vertices and edge
midpoints of the original cell, as is shown in the middle o figure.

In the finite element method shape functions are associaitbdthe elements from
which triangulations are composed. Taking the lowestHofjespace as an example, one
would have shape functions associated with the verticemadsh. As can be seen in the
central mesh of Fig. 1, mesh refinement results in an unbethwertex at the center of
the face separating a refined and an unrefined cell, a sa¢hbemging node”. There are
two widely used strategies to deal with this situation: seceatment of the degree of

LFor simplicity, we illustrate mesh refinement concepts husiag triangles. However, the rest of the paper will
deal with quadrilaterals and hexahedra because this is eramplementation supports. On the other hand,
triangular and tetrahedral meshes pose very similar pmobbnd the techniques developed here are applicable to
them as well.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software : 5

Fig. 2. Degrees of freedom o+ and p-adaptive meshes. Left: Dots indicate degrees of freedorf?fglinear)
elements on a mesh with a hanging node. Center: Resolutidtheohanging node through introduction of
transition cells. Right: A mixture aP; and P; elements on the original mesh.

freedom associated with this vertex through introductibeanstraints [Rheinboldt and
Mesztenyi 1980; Carey 199%plin et al. 2006], and converting the center cell to a irans
tion cell using strategies such esl-green refinemeii€Carey 1997], as shown in the right
panel of the figure. (An alternative strategy is to use Rigaafgorithm [Rivara 1984].)
The left and center panel of Fig. 2 show the locations of degyod freedom for these two
cases for the commaR; element with linear shape functions.

For pureh-refinement, both approaches have their merits, though wesehthe first. If
we use piecewise linear shape functions in the depictedt®ty continuity of the finite
element functions requires that the value associated Wwithanging node is equal to the
average of the value at the two adjacent vertices along thefinad side of the interface.
We will explain this in more detail in Section 4.4.

2.2 p-adaptivity

Inthep version of adaptivity, we keep the mesh constant but chdregedlynomial degrees
of shape functions associated with each cell. The rightlpafrieig. 2 shows this for the
situation that the rightmost cell of the original mesh isoassted with aP; (cubic) element,
whereas the other elements still use linear elements.

As is seen from the figure, we again have two “hanging node#tierform of the two
P5 degrees of freedom associated with the edge separatingitheetls. There are again
two widely used strategies to deal with this situation: adtrction of constraints for the
hanging nodes (explained in more detail in Section 4.3),atting or removing degrees
of freedom from one of the two adjacent cells. In the lattese¢@ne would, for example,
not use the fullP; space on the rightmost cell, but use a reduced space thasssgithe
two shape functions associated with the line, and uses reddsfiape functions for the
degrees of freedom associated with the vertices of the canfa®. Alternatively, one
could use the fullP; space on the rightmost cell, and augment the finite elemetespf
the middle cell by the twd’; shape functions defined on the common face.

2.3 hp-adaptivity

The hp version of adaptivity combines both of the approaches dsedi in the previous
subsections. One quickly realizes that the use of trams#iements is not usually possible
to avoid hanging nodes in this case, and that the only optiwasagain, constraints or
enriched/reduced finite element spaces on the adjacest cell

As above, in our approach we opt to use constraints to dealhgibging nodes. This is
not to say that the alternative is not possible: it has in ffi@etn successfully implemented
in numerical codes, see for example [Demkowicz 2006]. Hawev is our feeling that

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

6 : W. Bangerth and O. Kayser-Herold

our approach is simpler in many ways: finite element codesstimlways do operations
such as integrating stiffness matrices and right hand sédéovs on a cell-by-cell basis.
It is therefore advantageous if there is a simple descriptibthe finite element space
associated with each cell. When using constraints, it isjuivecally clear that a cell is, for
example, associated withRa , P, or P; finite element space and there is typically a fairly
small number (for example less than 10) of possible spacegh®other hand, there is a
proliferation of spaces when enriching or reducing finieneént spaces to avoid hanging
nodes. This is especially true in 3-d, where each of the feighbors of a tetrahedron may
or may not be refined, may or may not have a different spaceciassd with it, etc. To
make things worse, in 3-d not only the space associated witthbor cells has to be taken
into account, but also the spaces associated with any obtieatially large number of cells
that only share a single edge with the present cell. If oneidens the case of problems
with several solution variables, one may want to use sp&gex Py, X --- X Py, with
different indicesk; for each solution variable, and vary the indiéggrom cell to cell. In
that case, the number of different enriched or reduced sga@somes truly astronomical
and may easily lead to inefficient and/or unmaintainableecod

Given this reasoning, we opt to use constraints to deal vatighhg nodes. The follow-
ing sections will discuss algorithms and data structurestdoe, generate, and use these
constraints efficiently. Despite the relative simplicitiytbis approach, it should be noted
already at this place that the generation of constraint®isalways straightforward and
that certain pathological cases exist, in particular in 3tdwever, we will enumerate and
present solutions to all the cases we could find in our extensse and testing of our
implementation.

3. STORING GLOBAL INDICES OF DEGREES OF FREEDOM

In order to keep our implementation as general as can bewathwithout unduly sacri-
ficing performance, we have chosen to separate the conceafdafHand! er from that

of a triangulation and a finite element class in deal.ll (&snperth et al. 2007a] for more
details about this). ADoFHandl er is a class that takes a triangulation and annotates
it with global indices of the degrees of freedom associatél aach of the cells, faces,
edges and vertices of the triangulation.DAFHand!| er object is therefore independent
of a triangulation object, and sevef@FHandl er objects can be associated with the
same triangulation, for example to allow programs that ufferdnt discretizations on the
same mesh.

On the other hand,BoFHandl er object is also independent of the concept of a global
finite element space, since it doesn’t know anything aboapsHunctions. It does, how-
ever, draw information from one or several finite elementoty (that implement shape
functions) in that it needs to know how many degrees of freetloere are per vertex,
line, etc. ADoFHandl er is therefore associated with a triangulation and a finitenelat
object and sets up a global enumeration of all degrees odidreeon the triangulation as
called for by the finite element object.

The deal.ll library has several implementation®of-Handl er classes. The simplest,

: : DoFHandl er allocates degrees of freedom on a triangulation for the tteeall cells
use the same finite element; other such classes allocatesdagfrfreedom for a multilevel
hierarchy of finite element spaces. In the context of thiepape are interested in the data
structures necessary to implemaptfinite element spaces, i.e. we have to deal with the

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software : 7

v3 12 va I3 5 2 5 31116 17 18 12
157930 33 |24

14 g0 |5 gl 16 6 @ 7120 g9 @p 1123
9 598 31 122

VO 10 vl 11 V2 0 4 1913 1415 10

Fig. 3. Left: A mesh consisting of two cells with a numbering of thtiogs, lines, and quadrilaterals of this
mesh. Right: A possible enumeration of degrees of freedarewihe polynomial space on the left cell represents
a Q2 element and that on the right cell@y element. Bottom: Linked lists of degrees of freedom on efittteo
objects of which the triangulation consists.

situation that different cells might be associated witliedént (local) finite element spaces.

Clearly, each cell is only associated with a single finitaredat, and only a single set
of degrees of freedom has to be stored for each cell. Howéwerlower-dimensional
objects (vertices, lines, and faces) that encircle a cell b associated with multiple
sets of degrees of freedom. For example, consider theisitustiown in Fig. 3. There,
a quadratia)- element is associated with the left cell, whereas a qu&tielement is
associated with the one on the right. Here, the vertices dlvdras well as the line I5 are
all associated with both local finite element spaces. Weetbeg have to store the global
indices of the degrees of freedom associated with both sgacéhese objects.

Furthermore, it is clear that vertices in 2-d, and lines i, 3ray be associated with as
many finite element spaces as there are cells that meet aetiéx or line. This leads to
our first requirement on implementations:

REQUIREMENT ON IMPLEMENTATIONS 1. An implementation needs to provide stor-
age for the global indices of degrees of freedom associaithdaach object (vertices, lines,
etc.) of a triangulation. This storage scheme must be dfitieth in terms of memory and
in terms of fast access.

In deal.ll, we implement these requirements in ke : DoFHandl er class using a
sort of linked list that is attached to each object of a tridagion. This list consists of
one record for each finite element associated with this ¢bjewere a record consists of
the number of the finite element as well as the global indibes belong to it. This is
illustrated in Fig. 4 where we show these linked lists forteatthe objects found in the
triangulation depicted in Fig. 3. The caption also contdimther explanations about the
data format.

While other implementations are clearly possible, note this storage scheme mini-
mizes memory fragmentation. Furthermore, because in thierwajority of cases only a
single element is associated with an object, access is algofast since the linked list
contains only one record.

4. REQUIREMENTS ON FINITE ELEMENT CLASSES
4.1 Higher order shape functions

Most importantly, finite element classes of course have ter gupport for higher order
shape functions to allow the use ip finite element methods. This entails that we have

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

8 : W. Bangerth and O. Kayser-Herold

oflo]4a] x|
wijojof x| L1138 14 15] x|
viJoJ11]o] x| AR
zg é 2 : B1]16 17 18 x|
4fole6] x|
vajlofsft]at] x| Bo| 7 1]19 20 2i] x|
wiltlefx] 6 | 1] 22 23 24] x|
qo || 8]

ql || 25 26 27 28 29 30 31 32 3$

Fig. 4. Lists of degrees of freedom associated with each of the tshijentified in Fig. 3. For vertices and lines,
there may be more than one finite element associated withageht, and we have to store a linked list of pairs
off e_i ndex (printed in italics, zero indicates @2 element, one indicates@y element) and the corresponding
global numbers of degrees of freedom for this index; thedisérminated by an invalid index, here represented
by x. For quadrilaterals (i.e. cells in 2-d), only a single setdsgrees of freedom can be active per object, and
there is no need to store more than one data set of @ri ndex that would identify the data set. Note that at
this stage, each degree of freedom appears exactly once. aftsingement is later modified by the algorithm
described in Section 4.2.

an efficient way to generate them automatically for arhigrdmigh polynomial degrees as
well as for all relevant space dimensions. This is imporsamte early versions of most
finite element codes often implement only the lowest-orddyqomials by hard-coding
these functions. For example, in 2-d, the four shape funstior the); element are

wo(x) = (1 —z1)(1 — z2), p1(X) = (1 — x1)x2,
p2(X) = 21 (1 — 22), p3(X) = z129.

These shape functions and their derivatives are obvioirslyis to implement directly.

On the other hand, this approach becomes rather awkwarddgbethorder elements
and in particular in 3d, for several reasons. First, thegetfans and their derivatives can
only reliably be generated using automated code generédoexample by computing the
Lagrange polynomials symbolically in Maple or Mathemati@ad then generating corre-
sponding code in the target programming language. Whikel#aids to correct results, it
is not efficient with respect to both compile and run timecsicode generators are fre-
guently not able to find efficient and stable product repregEms of these functions, such
as for example a Horner scheme representation. Conseguhbattode for these functions
becomes very long, increasing both compile and run timeifsigntly, while at the same
time reducing numerical stability of the result. Seconthg approach is not extensible at
run time: only those polynomial degrees are available foictvithe corresponding code
has been generated and compiled before.

In our experience with the deal.ll library, composing sh&pections from an under-
lying representation of the polynomial space addressdhede problems. For example,
we implement the shape functiomzép) of the Lagrange polynomial spac€s, as tensor
products of one-dimensional polynomials:

e)= I ¢ (@a) (1)

0<d<dim

Wherewlgp)() are one-dimensional basis functions gi¢i) maps thedim-dimensional
indices of the basis functions to one-dimensional onesgxXample, a lexicographic order-

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software : 9

ing in 2-d would be represented by(i) = |i/p] andj; (i) = ¢ mod p. The polynomials
wj(.p)(-) can be computed on the fly from the polynomial degreesing the interpolation
property

n
7/)J(p) <m) = Onj, 0<n<p+1,
and are efficiently and stably encoded using the coefficigfittsee Horner scheme to com-
pute polynomials. Using (1), it is also simple to obtain thadientV+ ®) (x) and higher
derivatives without much additional code. The introductid this representation in deal.ll
allowed us not only to trivially add Lagrange elements ofesrdigher than 4 in 2-d and
higher than 2 in 3-d, it also allowed us to delete approximg&®,000 lines of mostly ma-
chine generated code in addition to speeding up computatiogsis functions severalfold.

Basing the computation of shape functions on simple reptatens of the function
space is even more important for more complicated functpacss like those involved
in the construction of Raviart-Thomas or Nedelec elemehRts. example, on the refer-
ence cell, the Raviart-Thomas space on quadrilateralgiarisotropic polynomial space
Qry1,k X Qrpr1 1N 2-d, aNdQr41,k,x X Qrkt1,6 X Qrkk+1 N 3-d (See, e.9., [Brezzi
and Fortin 1991]), where indices indicate the polynomidkutin each space direction in-
dividually. From such a representation, it is easy to wrasib functions of this space for
arbitrarily high degrees as a tensor product of one-dinoerasipolynomials, completely
avoiding the need to implement any of them “by hand”.

REQUIREMENT ON IMPLEMENTATIONS 2. Finite element classes need to have an ef-
ficient way to generate shape functions of arbitrary ordeatoid automatic code gener-
ation of high order polynomials that is usually accompartigdan explosion of code size
and run time.

4.2 Description of identities of degrees of freedom

As mentioned in Section 3, we store global indices for eagfateof freedom on vertices,
lines, quadrilaterals, etc, for each of the cells adjacetti¢se objects. For example, Fig. 3
showed this for the case of adjacent cells withand@, elements, respectively.

If one knows that for Lagrange elements, degrees of free@pmesentaluesof shape
functions, then it is immediately clear that for a finite etrhfieldu(x) = >°, u;p;(X) to
be continuous, one needs the constraints= ug, u3 = u11, anduy = ugyg, in addition
to conditions linkingu19 andus; to uy, u3, andu; (these latter conditions are discussed
in Section 4.3 below). In other words, for Lagrange elemealisdegrees of freedom
associated with the same vertex must have the same valuéh@sdme holds for certain
degrees of freedom on lines (or on quadrilaterals in 3-d)s Worth noting that this is
a property of the finite element, not of degrees of freedonh@miselves: one could, for
example, think oC! conforming elements having four degrees of freedom on eaxbw
representing the value, first derivatives, and the mixedrsgderivative of the field in the
coordinate system of theference cellt this location; unless the adjacent cells have a
particular orientation to each other, only the values atvéirgex will coincide, while the
derivatives will only be related but not necessarily be tiethin value.

Constraints such as; = ug, us = w11, andu; = usy could be dealt with in the same
way as hanging node constraints, by adding these cond#i®esplicit constraints to the
linear system of equations. However, that would be ineffiicié needlessly increases the

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

10 . W. Bangerth and O. Kayser-Herold

if (v->n_active_fe_indices() > 1)
for (unsigned int f=0; f<v->n_active_fe_indices(); ++f)
for (unsigned int g=f+1; g<v->n_active_fe_indices(); ++Qg)
{
unsigned int fe_indexl
fe_ index2

v->nth_active_fe (f),
v->nth_active_fe (9);

std::vector<std::pair<unsigned int, unsigned int> >
dof identities
= fe[fe_indexl].hp_vertex_dof _identities(fe[fe_index2]);

for (unsigned int i=0; i<dof_identities.size(); ++i)
v->set _dof _i ndex (g,
dof _identities.second[i],
v->get _dof _i ndex (f,
dof _identities.first[i]));

Listing 1. ldentifying degrees of freedom on a vertex

number of unknowns of a linear system, costing memory anchcoertime.

Rather, the implementation of ting: : DoFHandl er in deal.ll requires finite element
classes to provide information adentitiesof degrees of freedom. After degrees of free-
dom have been distributed on each cell individually, pracigidor example the layout
referenced in Fig.s 3 and 4, the: : DoFHand| er goes over all objects (vertices, lines,
etc.) again and tries to identify identical degrees of foradf multiple sets of degrees of
freedom are stored on this object.

To this end, thénp: : DoFHandl er would perform a call similar to the one shown in
Listing 1. This code first queries whether there is more thanfite element associated
with a vertex; this would be true for verticed andv4 in Fig. 3, for example. If so, it then
asks all pairs of finite elements active on this vertex torretists of identical degrees of
freedom. In the present case, the Lagrange finite elemesst wlauld return a list of length
1 consisting of a single pair of zeros: the zeroth (and ondgrdes of freedom associated
with either of the two elements are identical. The code walidth go on and set the global
index of the degree of freedom associated with the secord f@ment to the same index
as that of the first. Note that for the hypotheti€dl element above, the returned list would
also consist of a single pair of zeros, indicating that ohétalues, not the derivatives at a
vertex must coincide; on the other hand, if théelement implemented its shape functions
so that the later shape functions indicate derivativesergtbbal coordinate systenthen
all four degrees of freedom must be the same and the finiteegieghould return a list
{{0,0},{1,1},{2,2},{3,3}}.

After this process, for the example given in Fig.s 3 and 4yelegjof freedom 9 and 11
have been removed, and the linked lists for verticksandv4 now read as follows:

vij|Oo|1|1]1]f x
va || 03| 1]3| x

A similar process is then repeated for lines. In this casedjmml 5, we call a func-

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 11

tionfe[f]. hpline_dof_identities(fe[g]) which, for the paiQ, andQ, el-
ements, would return the li§{0, 1}}. This indicates that the first (and only) degree of
freedom of the), element is identical to the second degree of freedom of thele-
ment since they represent shape functions correspondidgmtical interpolation points.
A code similar to the one shown in Listing 1 would then yielé following list for this
line:

[GJoJ7]1]19 7 21] x|

Note that we need not perform any such algorithm on cellgesthey can only have a
single set of degrees of freedom associated with them. Oattrex hand, it is necessary
to do so for quadrilaterals in 3-d. At the end of all these apens and after eliminating
degrees of freedom 9, 11, and 20, we renumber all degreeseafdm to use a consecutive
rangeg, . . . 30.

Using this identification of degrees of freedom, we can imiaedly reduce the total size
of linear systems by a significant fraction: in the 2d tesecawwn in Section 6, some 6%
of degrees of freedom can be eliminated right away; in 3dfrdetion can be as high as
10-15%. This not only keeps matrices and vectors small,Isotsignificantly reduces the
number of degrees of freedom on which we later have to appigihg node elimination
as explained in the following section.

Unfortunately, a straight-forward adaptation to 3-d of thacepts discussed here is not
possible, though the general idea and the basic algorithraires the same. We will there-
fore come back to identifying degrees of freedom of difféfarite elements in Section 4.6.
This notwithstanding, we need finite element implementetim provide us with the the
following information:

REQUIREMENT ON IMPLEMENTATIONS 3. Finite element classes need to be able to
communicate to thép: : DoFHandl er which degrees of freedom located on vertices,
edges, and faces of cells are identical even though theypbétdfinite elements of different
polynomial orders or even different kinds.

4.3 Interpolation on common faces between cells with different finite elements

The discrete functions which are represented by the fingmeht discretization have to
satisfy certain continuity requirements across the eléméges in most cases. For exam-
ple, after the unification of degrees of freedom 1 and 9, 3 dndtid 7 and 20 in Fig. 3
as discussed in the previous section, finite element fumetim the left and right sides of
the edge separating the two cells will only be continuougpfaticular values of degrees
of freedom 19 and 21. In this section, we will derive the ctinds on these degrees of
freedom for the case that only the polynomial degreéthe ansatz spaces changes across
an edge in our mesh, as well as how such constraints are efficimplemented. The
case that two neighboring cells also have diffefenéfinement levels is treated in the next
section.

It is worth noting that these continuity requirements do metessarily mean that the
function itself has to be continuous across element edggseXample, discrete subspaces
of Hgiy only require continuity of the normal component along theefabetween cells
(c.f. [Brezzi and Fortin 1991]). For the sake of simpliciigt us here only consider conti-
nuity of functions across element edges; it shall be undedsthat the same requirements
and assumptions also hold when the normal or tangential ooerg has to be continuous
along element edges.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

12 . W. Bangerth and O. Kayser-Herold

Let us first consider the simplest case of such constraietshie one corresponding to
the situation of Fig. 3. If we forget for a moment that we halready identified certain
degrees of freedom, then the continuity constraint reguirat

U1P1 (X) + uzps (X) + U7<p7(X)
= ugp1(X) + u11911(X) + w19919(X) + u20920(X) + u21921(X) (2)

for all x on the linel 5. It is apparent in the present case that we need to restect th
degrees of freedom on the element with the higher polynodegiee, in order to enforce
this equality. We identify this situation by saying that {je elementdominateshe Q4
element on a shared face. This leads us to the following reopgnt:

REQUIREMENT ON IMPLEMENTATIONS 4. An implementation needs to be able to de-
termine which of two finite elements that share a face dommitte other, or if neither
does.

We will comment on the last case at the end of this section hénpresent situation,
and given the quadratic polynomials representingys, @7 and the quartic polynomials
V9, P11, P19, P20, P21, it is readily checked that equality (2) implies

Ug = U1, Uil = us, U20 = U7,
3 n 1 +3 +3
Ulg = SUL — SU3 + —U U] = —<U1 + —u3 + —ury.
1o = QU1 — QU3 T 7 U7, 21 gut T gus T uT

Note that the first three constraints have already been tedeenof through identification
of the corresponding degrees of freedom as described irrévéopis section.

Above conditions can be written in a more compact way as¥ig|dinking the degrees
of freedom of the side of the face with the higher polynomegicte to those on the side
with the lower degree:

Ug 1 00
U1 0 1 0 Ui
U|dominated side of5 = | U19 | = % —% % us | = SZiQ2U|dominating side of 5-
UuU20 0 0 1 Uy
)\ e

3)

For Lagrange interpolation polynomials, the matfjjii% that appears in this rela-
tion is simple to compute by evaluating the 5 basis functairibe Q4 element on the right
at the interpolation points of the 3 basis functions of fheelement on the left. However,
these matrices are more complicated to compute for elemérdase the degrees of free-
dom are moments on faces or where values and not only gradiéshape functions are
transformed by the mapping from reference to real cell; timtse cases apply to elements
such as the Raviart-Thomas elementihy, .

REQUIREMENT ON IMPLEMENTATIONS 5. Finite element classes need to be able to
generate the constraint matricd$°® as in (3) that enforce continuity requirements be-
tween cells associated with different finite element spatlksse matrices must be avail-
able for all possible pairs of spaces appearing in a triarggidn.

We remark that an important requirement for this approadesthe functions appear-
ing on one side of (2) must be able to exactly represent thetifurs on the other side.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 13

113 1]4

14 Q2 Q1
Ql !2 Q2 2 [:é
I

. . 12 Q3
L 4 L 4

Fig. 5. The simple (left) and complicated (right) casehefefinement across a face between cells with different
finite element spaces associated with them. Only thoseategfdreedom that are relevant for the interpolation
process are indicated.

For the chosen pair of spaces, this is obvious: the restmictf), onto a line is the space
of quartic polynomials that is of course able to represeatghadratic polynomials that
result from restricting)- to this line, i.e. we say that th@, elementdominateghe Q4
element. However, it is not always the case that one elemanirdhtes the other. For
example, consider the hypothetical situation of a meshaioiniy an edge where elements
meet that havé), and R, » (the space of rational expressions with quadratic denadimina
and enumerator) elements: neither of the two is able to septahe restriction of the other
one on a common edge, i.e. neither element dominates the éthether, more practical
example, would be that one cell is home tQa x @, vector-valued element, whereas its
neighbor is associated with@y, x @2 element.

The solution to this case is to first identify a common subspat the first example
this could be the spad@, of quadratic polynomials on this face, whereas in the second
we would choosé&); x ;. The second step would then be to enforce constraints that
restrict finite element functions on both sides of the fadegavithin this subspace, and in
addition to be equal along the face. In order to not restnietglobal finite element space
more than necessary, we should attempt to find the largesssithie subspace along the
face. However, since this is a case that doesn’t appear torhaeh application in practical
finite element cases, we won't dwell on it in more detail, bilt @ome back to a closely
related case in Section 4.4.3.

4.4 Interpolation on refined faces between cells

The next case to consider is thatefefinement. Fig. 5 shows the two cases that can appear
in this situation: the left panel corresponds to the “simpkese where the element on the
large side of the face (here@,) dominates the one on the right (her&)a). This also
includes the puré-refinement case where both sides use the same element. ttastpn
the right panel shows the “complex” case where the domigatiement sits on the refined
side of a face. We will discuss these two cases separatdhg ifotlowing.

4.4.1 The simple caseThe “simple” case ofi-refinement is where the dominating
element is located on the unrefined side of the face, as shothe ileft part of Fig. 5. In
the situation shown, to guarantee continuity at the sub-{dwe shared part of the face),
we need the constraint

uppo(X) + u101(X) = uapa(X) + uzps(X) + usps(X). (4)

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

14 . W. Bangerth and O. Kayser-Herold

It is obvious that this constraint is enforceable since #striction of the); space on the
left to the sub-face is a linear function and that we can gairsthe quadratic function on
the right to equal this linear function. In particular, itgasy to show that we need

U2

uo subfacés f
U|dominated side of subface™ < > = IQ2ﬁ(§1)U |dominating side of subfage

Uy
(5)

wheresf denotes the number of the subface we are presently lookingsabefore, for
Q1. elements, we can obtain the interpolation maffi%aés/) py evaluating the shape
functions associated with the coarse side of the face ahthgpolation points of the shape
functions on the refined side of the face.

Uq

<
w
Il
= Onlm

REQUIREMENT ON IMPLEMENTATIONS 6. Finite element classes need to be able to
generate the constraint matricé&'0c¢s/) as in(5), for each of the¥™-! subfaces f of
a face. These matrices must be available for all possiblespaispaces appearing in a
triangulation.

4.4.2 The complex case, approach The more complicated case is the one shown
on the right of Fig. 5. The problem is that the linear (domimgk element is located on
the refined side of the subface. As we will see in the followihis case is riddled with
problems, false hopes, and traps; we will consider sevasasand possible solutions that
illustrate why this case is hard.

A naive approach to the situation shown in Fig. 5 is as foltolmsorder to force conti-
nuity of finite element functions, we need to make sure thattiinee degrees of freedom
0, 1, and 2 of th&), element actually form a linear function, since otherwisréhwould
be no way the linear function on the upper right cell could match the one on the left.
In general, we need to constrain the finite element spaceelethof the refined face to
the most dominating space on the right, h@se We could do that by constraining the left
face to the degrees of freedom 3 and 4 of the most dominatitdjfelse, i.e. to require

U 2 —1 u ésf)

3 subfacés f

u|dominated side of face— Ui = 01 <U4) = RIQlﬂQ2 u|most dominating subface
ug 1 0

We call the matrixRI;“IbLa‘gjf) thereverse interpolation matrixlt is not hard to see that

for this particular subface, we can write it as
11\t
2 2
(53) - ©)

This formula can be understood as follows: Let us introdheealegrees of freedomy,
of a virtual linear finite element space along the entire edd®e condition of continuity

then means that
uzy\ Isubfacésf) Zo
wy) Qi@ x1)

uo
u __ rface Zo
1) = fQ2— x1)’
ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

—1
subfacésf) sface subfacés f) o
RIQlﬂQ2 - IQzﬂQl [IQlﬂQh }

N O =
== O

U2

Data Structures and Requirements for hp Finite Element Software . 15

Q1

Ql/Ql
Ql /Ql

Fig. 6. lllustration how the first approach leads to connected caists: Geometry and associated finite element
spaces (left) and degrees of freedom (right).

Q2

It is now important to realize that the matd%“bfcésf) should always be invertible, even

if we replace the spac€; by any other reasonable finite element space. This follows
from the fact that the matrix intuitively describes how atfnélement space on a face is
restricted to the same space but on a subface. Its inversexists, then describes how

a finite element function on a subface uniquely determinedithction on the entire face.
Since we are dealing with polynomials, the existence anduariess of the inverse is easy
to see: polynomials are analytic functions, and its Taykgagsion on a subface therefore
uniquely determines its extension to the entire face. Theixihat relates the values of
this polynomial at disjoint interpolation points must cegaently be invertible.

Given this, (6) is therefore a universal representatiomefreverse interpolation matrix
that we can obtain by removing the virtual unknowgsz; from the equations.

Using these formulas, we have now seen how to constrain treegof freedom on the
left - side of the face. The remaining question is what to do withotiver subfaces on
the right. To this end, note that we have chosen the most dorhfinite element space
present on this face and its children to define the virtuahemknsz, 1. Consequently,
all other subfaces can be constrained to it as well. For el@rfgy thes subface shown
in the figure, we would get

Us

U6 | _ tface Zo 7Isubfacésf’) Isubfacésf) - u| o

ur — 1Q3—Q1) — Q3 —Q1 Q1—Q: most dominating subface
us

Here,sf’ is the subface with th€s, andsf denotes the subface associated with the most
dominating finite element space, i.e. the one with@he

So what is wrong with this approach? To see why this appraacttialways successful,
consider the situation shown in Fig. 6. In this case, we gestaintsug = %uo + %ug, i.e.
ug IS constrained ta,y. On the other hand, we have to constrainu;, andug to either
ug, 12, Or t0u1g, u12. Let us assume we chose the second alternative. In thatwase,
obtain the constrainty = 2u12 — u1g. In effect,ug is constrained to a degree of freedom
that is itself constrained.

We note that we could have avoided this here by choosing ttensealternative. How-
ever, this would not have been the case if, for examplethelement characterized by

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

16 . W. Bangerth and O. Kayser-Herold

Q3 | Q1

Q1 Q3
Q3 Q1

01 |O3

Fig. 7. lllustration how the first approach leads to circular corafits: Geometry and associated finite element
spaces (left) and those degrees of freedom relevant to sisagiion (right).

degrees of freedom 12, 13, 0, and 16 were replaced @y alement, in which case the
second alternative would have been forced upon us since ek toerestrict to the most
dominating finite element space on a face.

So far, the constraints are not self-contradicting: as Esmge get chains of constraints
ug — ug — u1g, the constraints form an directed acyclic graph (DAG). Altgh it is
awkward to deal with such nested constraints in progranis ciertainly possible to deal
with them.

However, we can find situations where this graph has cyclessider, for example, the
situation shown in Fig. 7: On the bottom face, degrees oftivee0, 3, and 8 have to be
constrained to th€); subface, i.e. to degrees of freedom 3 and 8. In particulaget¢he
constraintug = 2ug — us. In a similar way, we get; = 2ug — ug, us = 2u19 — uy, and
ug = 2u11 — ug On the other three faces of the central cell. Note how we hastecyeated
a cycle in our directed graph of constraints.

Since we are unsure how to proceed both theoretically arctipatly, we believe that
this first approach of dealing with constraints in the “coaxjicase is not workable.

4.4.3 The complex case, approach &.second approach is to not constrain the de-
grees of freedom on the large side of the face to those of otfeecgubfaces, but among
themselves. Going back to the right side of Fig. 5, that woné&hn that we impose con-
straints only on degrees of freedom 0O, 1, and 2 to make suresiéting function is linear.

In the present case, this would require the constraint 2uo + 2u;.

In the more general case, let us again introduce virtualesdegof freedonx that corre-

spond to the most dominant finite element restricted to a fabich we names. Then

face
Ul coarse side of face= 1. Sface_, g X,

where S™°€ is the finite element space on the coarse side of the face.e Siechave
assumed tha$™°® is dominated byS, we can divideu|coarse side of facdNtO & Set of master
and slave nodes such that
| master Iface, masts
. — coarse side of faca _ Sface_,
U|coarse side of face—= slave - Iface, shave | X-
coarse side of fa Gface_, g

Let us assume that we can subdivide degrees of freedom irgtenand slave nodes such
that 773¢® Mastelis an invertible square matrix (an assumption that we witdss below),

Gface_, g
then we can conclude that

—1
u|s|ave _ Iface, sIan;(_ Iface, slave Iface, maste u |master
coarse side of face~ * gface_, g * T L gface_, g Sface_, g coarse side of face

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 17

Now that we know how to deal with the degrees of freedom on tarse side of the
face, it is clear that we can deal with the subfaces as follows

-1
__ rSubfacésf) __ rsubfacésf) face, maste master
u |subfac%f = Issubface{sf) —»SX - Issubface{sf) s ISfaceHS u|coarse side of face

Here,Ssubfacésf) js the finite element space on subfage

Using this second approach, one can easily constructisiisaivhere one gets chains
of constraints. For example, tlig; degrees of freedom on the interface between the small
@1 andQ@s cells at the bottom of Fig. 7 (though not explicitly shown)ldie constrained
to the degrees of freedom located on the two vertices of thexwan edge. One of those is
degree of freedom 8, which is itself constrained to degréégedom 0 and 3.

However, it is easy to prove that with this second approaetetbhan be no cycles in the
graph of constraints: resulting from the definition of doarine of spaces, each constraint
is always from a degree of freedom to other ones associatadagirictly smaller embed-
ded finite element space. The fact that this wasn’t the casbédirst approach illustrates
immediately why that approach was prone to failure.

We conclude this subsection with a discussion of the sligimmlication of how to
choose the subdivision of nodes on the coarse side of thérfacmaster and slave nodes,
u|master e of fac@NAU[SE | e of face First, let us note that the matrbgse . necessarily
must have full column rank, since it is the matrix that intdgtes the shape functions of
the dominating spac§ at the support points of the dominated spat&¢. Assumings to
be unisolvent, i.e. consisting of linearly independenpshfainctions, and assuming that no
two interpolation points o™ coincide, then the full column rank immediately follows.
Consequently, we can hope that we can select certain lineaépendent rows afface

Gface_, g
to form an invertible matriﬁf;‘facfeﬂgsu?’

The selection of these rows, however, turns out to be morghvad than one would
think at first. In particular, one can not simply take the fitst of the n g rows, since
they sometimes are linearly dependent. It is conceivaldedhe could devise an exact
strategy for this problem, though we are not aware of any sygroach and therefore
chose to implement a heuristic:rife"e nline %" are the number of degrees of freedom
associated with each vertex, line, and quad of the domigafiaces, then select the first
n¥"®* degrees of freedom from each vertex in the dominated sp&ekas master nodes,
then the first2"® degrees of freedom from each line, and so on.

Using this heuristic almost always produces a malﬁi{iﬂassm&hat is invertible. In our
experiments, the only cases where it fails are in 3-d whe®& = Q, (or higher) element
on a coarse cell neighbors®a= @3 (or higher) element on a set of refined cells. If we
encounter such a situation, we drop the last master nodedadded to the list and replace
it with a slave node, until we end up with an invertible matrikhe checks for this are
numerically expensive, but given the rarity of using suaghhpolynomial degrees in 3-d
and that the subdivision into master and slave nodes hasdor@only once per program

run, the additional effort is negligible.

4.5 Complications in 3-d: Seemingly incompatible constraints

Faces between cells, i.e. lines in 2-d and quadrilateradsdnare special in that they are
shared between exactly two cells. Consequently, dealitiy tivem is fairly straightfor-
ward, despite the length of the discussion above. On the b#ed, vertices in 2-d and
lines in 3-d can have arbitrarily many finite elements asgedi with them. While this is

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

18 . W. Bangerth and O. Kayser-Herold

Fig. 8. Left: Depiction of three hexahedral cells meeting at a comradge. The cell in the background is
associated with @1 element and has degrees of freedom 0 and 1 on the common ellgeslement in the
background is &2 and carries degrees of freedom 0, 1, and 2. The element ongieis a3 with degrees of
freedom 0, 1, 3, and 4. Only degrees of freedom on the comngenaee shown. Right: The same situation with
Q2, Q3, andQ4 elements meeting at a common edge.

not much of a problem in 2-d since only slightly uncommon edais (such ag’' con-
tinuous elements) have more than one degree of freedomiatezbwith each vertex, it
is perhaps not surprising that the situation is more compleé3«d and generates an ad-
ditional set of problems. (Vector-valued elements suctpa% of course have more than
one degree of freedom per vertex, but they can be decompuateeitheir individual vector
components, each of which is handled independently.)

Consider, for example, the situation shown in the left parfiétig. 8. There, we have
three cells associated with;,)2, andQ3; elements meeting at a common edge. If we,
for example, first treat the face between the and Q5 elements, we would record the
constraint

Uz = %UO — %’U,l + %UQ.
However, if we treat the face between the and thel); elements next, we would discover
the constraint

2 1
us = §U0 + 5’&1.

It is important to note that these seemingly incompatiblest@ints orug are in fact the
same since we will later discover that = %uo + %ul when we treat the face between the
Q- and@, elements, and we can expand the first constraintgainto the second form by

resolving the chain of constraints.

REQUIREMENT ON IMPLEMENTATIONS 7. An implementation has to be able to keep
track which degrees of freedom are already constrained, sintbly ignore constraints
generated for degrees of freedom for which other constsdiave already been registered.

While this is a simple solution, it is bothersome that oneefothe ability for safety
checks by just throwing away a constraint. It would be ni€eva could keep it, expand
the constraint later on whem, is resolved, and then make sure that it equals the original
constraint with which it appeared to conflict. A defensivgplementation would therefore
follow this latter strategy, in order to ensure that our cotagions are correct, and produce
an error if the two constraints are not the same. We have fthisdstrategy of perva-
sive and exhaustive internal consistency checks of gréag wa finding obscure bugs and
corner cases in our implementation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 19

4.6 Complications in 3-d: Seemingly circular constraints

Yet another situation is shown in the right panel of Fig. 8 e HEituation is similar to the
one discussed in the preceding subsection, but with polyedatagrees increased by one.
The additional complication is introduced because we hdemntified the middle degree of
freedom on the), side of the edge with degree of freedom 2 of heside of the edge,
using the algorithm of Section 4.2. Now, when we build caaists for the face between
the Q4 and@3 elements, we realize that the latter element dominatetinesk one, and
therefore has to register constraints for degrees of frmedg us, andug. In particular,
we find

Ug = —%6’110 — 1—16’111 + %u?, + %u;;.
On the other hand, we find when dealing with the face betwee@thand (), elements
the constraint

ug = %UO — %’U,l + %UQ.

This is a circular constrainty — us — us.

We have not found a fully satisfactory solution to this peshl Ideally, one would like
to exclude those degrees of freedom from identification éseidbed in Section 4.2 that
will later create such trouble. Here, this means that thedieidegree of freedom on the
Q4 edge should not have been identified with the degree of frac2lof the@, edge.
However, writing a routine that pre-scans for the poteifitiatrouble appears complicated.
Our solution is to simply not identify any degrees of freedohenever there are three or
more finite elements associated with an edge in 3-d, in csiriwahe algorithm shown in
Listing 1.

Note that this actually only concerns a relatively small hemof degrees of freedom,
since the restriction only triggers in 3-d and on edges atkhbells meet that have at least
three different finite elements associated with them. Mésiho however, the smoothness
of solutions changes gradually and the regions of the doasnciated with a particular
finite element form shells with interfaces where only twdetint finite elements meet.

5. EFFICIENT HANDLING OF CONSTRAINTS

After applying the strategies of the previous section, wes @ave a set of degrees of
freedom many of which are constrained. (In a slight abusarafliage, we will call them
“constrained degrees of freedom”.) In practical applmasi such as those shown below,
up to 20% of the total number of degrees of freedom can be @nsd. Their efficient
handling is therefore of importance, and involves two agpestoring the information
about constraints, and applying these constraints torlisgstems of equations. We will
discuss these in the following.

5.1 Data structures for constraints

All the constraints we have constructed in the previous@estre homogeneous, i.e. have
the form

U =0,
wherec;,i = 1,..., 1 is a vector of weights for théh constraint, and’ is the vector of
unknownsuy, k = 1,..., N. The set of all constraints can therefore be writte@'85= 0,

and we callC' theconstraint matrix

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

20 . W. Bangerth and O. Kayser-Herold

Because constraints typically only involve a small numHbarrknowns,¢; is a sparse
vector and storing constraints as a set of full vectors iseffatient. In addition, we use
that each constraint; corresponds to one particular degree of freeddin that is con-
strained by the values df; other degrees of freedom with indice$:),l = 1,..., L;. In
other words, we can normalize such that(ci)q(i) = 1 to obtain the following form of
constraint:

L;

Ug(i) = = D _(C)py (i) ry (1) (7)

=1

A suitable and efficient storage format for the constraintrim#s therefore a list of length
1, where each entry contains first the indgx) of the constrained degree of freedom, and
secondly a list of lengttL; of pairs;(i), (c;),,). This format is memory efficient and
well suited to the operations involving constraint matsidescribed below.

5.2 Applying constraints

With this definition of constraints, the problem we need tosts AU = F, whereA is the
matrix with entriesu;; = b(y;, ;) obtained from the bilinear forrb(-, -) of the problem
involving all shape functiong; (corresponding to unconstrained and constrained degrees
of freedom) andF' the corresponding right hand side. In addition, we have forea
our constraints”U = 0. In general, however, this constrained form is not paréduyl
suitable, since, among other reasons, it is already uneleether this set of two equations
will have a solution at all. (It is easy to show the existentea anique solution ifA
corresponds to a positive definite operator such as the tiaplgbut the problem becomes
more complicated with indefinite operators where the sofu no longer derived through
the minimization of an energy.)

Instead, let us adopt a viewpoint dual to that consideringstraints. In the approach
outlined above, we obtain a system of linear equations bgideningall shape functions
o; and then solve it subject to constraints. We need the contstrsince in general the
linear combinatioru;,(z) =). u;pi(x) is not going to be a function that satisfies the
continuity requirements of a suitable function space wharging nodes are present. This
can easily be seen on the usggl shape functions, where the functions associated with
hanging nodes are discontinuous and therefordfletonforming; this non-conformity is
shown in Fig. 9. On the other hand, the linear combinatipfx) =), u;p;(x) is indeed
a continuous function if the constraints are respected.

The alternative viewpoint is to construct a getof conforming shape functions (i.e., in
the case off! conformity a set of continuous shape functions) from thefiomsy; that
are defined locally on each cell without respect to hangirdeso We can clearly find as
many conforming shape functiogs as there are unconstrained degrees of freedom on a
mesh. For example, Fig. 10 shows the two conforming shapsifuns associated with the
refined edge of the mesh shown in Fig. 9. For the case showsg thactions are

. 1 . 1
<P0:<Po+5902, @1:%—1—5@-

In the general case, we can find these so-called “condenkagédunctionp; for each

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 21

1

KX
i,

K
XK

Fig. 9. Bilinear (Q1) shape functions on an adaptively refined mesh. Top lefth\es enumeration of degrees
of freedom. Top right, bottom left, bottom right: Shape fioms ¢, 1, ¢2 as defined by mapping vertex shape
functions defined on each of the cells individually to thésdelwhich the corresponding vertex is adjacent. Note

that the shape functions are discontinuous.

Fig. 10. “Condensed” shape functions for the adaptive mesh showngn%

unconstrained degree of freedom as follows:

Gi=eit >, (¢

7 constrained DoF

where(c;); is thei-th component of the constraint vector corresponding toresttained
degree of freedonj. With these new, conforming shape functions, we then otitaen
“condensed” linear systerdU = F where

b(@i, p;) if degrees of freedom j are both unconstrained,
ai; =1 1 if ¢ = j and degrees of freedoins constrained,
0 if degree of freedom or j is constrained but # j.
= [(f,¢;) if degree of freedon is unconstrained,
fi= { if degree of freedoniis constrained.

The solution of this condensed linear system uniquely dstexs the values of those de-
grees of freedom that are unconstrained. The values of therained degrees of freedom

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

22 . W. Bangerth and O. Kayser-Herold

for (unsigned int i=0; i<n_constrained_dofs; ++i) {

for (unsigned int 1=0; I<L_i; ++l)
F(r_I(i)) +=c_i(l) = F(q(i));
F(q(i)) = 0;

}

Listing 2. Condensing constrained degrees of freedom from a right Isadelvector. The
symbold__i ,c.i (1) ,andq(i) correspond td.;, (c;),,(;y, andq(i) in equation(7).

for (unsigned int i=0; i<n_constrained_dofs; ++i)
for (unsigned int j=0; j<n_dofs; ++) {

for (unsigned int 1=0; I<L_i; ++l)
ACr_I(),j) +=ci(h) » ACq(i).]);
ACa(i).j) = 0;

}

Listing 3. A naive algorithm for condensing the rows of a matrix cormsging to con-
strained degrees of freedom.

can be obtained from the equati6éft/ = 0.

The beauty of the approach lies in the fact that we can stlitreble the matrix and
the right hand side vectord, F' as before, i.e. using exclusively the original, possibly
nonconforming shape functions that are defined on each @hbbwt regard for the fact that
they may be located on a hanging node. The condensed férifisare then, in a second
step, obtained by a condensation procedure. For examplE, fee need to take each entry
F; that belongs to a constrained degree of freegothen for eact) < i < N multiply it
by a factor(c;);, and add it to row or columf This corresponds to the operation

ﬁ‘z:(fasaz): fa%‘f' Z (cj)i ©j :(fvcpZ)—’— Z (Cj)i (fvcpj)

j constrained DoF j constrained DoF

=F+ Y. (g:F

7 constrained DoF

Subsequently, the entrid%— are set to zero. An algorithm to implement this is shown in
Listing 2. A similar procedure can be applied to obtdifrom A, by copying and adding
the rows and columns of the matrix corresponding to comstrthidlegrees of freedom to
those of the unconstrained nodes. The rows and columns aneztiroed out, and the
diagonal entry is set to one to ensure regularity of the tieguinatrix.

Given the numbed! = O(N) of constraints inhp computations, it is important that
the condensation of the matrix and right hand side vectorbeaperformed efficiently.
From Listing 2 and using thdt; is a numbel(1) that only depends on the kind of finite
elements in use and the topology of the mesh, it is clear iradensingl is an operation
of complexityO(M) = O(N).

The situation is more complicated when condensing matri€iest, it may be necessary
to add certain elements to the sparsity pattern of the ma8#cond, care must be taken

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 23

to avoid a quadratic complexity of the algorithm. Listingt®w®/s a naive implementation
of eliminating rows corresponding to constrained degrdefseedom. As written, the
algorithms complexity isD(sM N) = O(sN?), wheres = O(1) is the cost of writing
to a random entry of a given row. When operating on sparseieeafrit is clear that one
doesn’t need to loop over all entries of a row (theop in the code), but only over the
O(1) nonzero entries, reducing the complexity@®§sN). On the other hand, with the
usual compressed row storage of sparse matrices, care enadtdm to ensure that the cost
s stays within reasonable bounds even for matrices with matries per row, for example
T entries per row, i.e. with = O(log T') instead ofs = O(T).

A similar algorithm then subsequently eliminates the caiutmat corresponds to this
degree of freedom. A careful implementation of these ideapresent in deal.ll, will yield
arather complicated code that, however, run®{@V) and therefore at a better complexity
than most linear solvers.

6. NUMERICAL RESULTS

In this section, we present some numerical examples thabdsirate how the imple-
mentation of the ideas outlined in previous sections perfor a practical implementa-
tion. In particular, we will investigate the run-time bel@wof the various steps of thigp
method identified above, and implemented in release 6.@af¢hl. |l finite element library
[Bangerth et al. 2007b; 2007a]. The program with which theilts below are generated
is a slight modification of the extensively documented &putorial program of deal.ll.
All computations were performed on a system equipped wittefp 8216 processors and
16GB of memory.

Both numerical examples solve the linear Poisson equatidky = f. Since all al-
gorithms described above are independent of the actualgmnodplved, it is of no further
consequence that we do not solve a more complicated equation

Example 1.In this first example, we solve on a square domain with a hQle=
[—1,1]%\[-2, 1]?, using the right hand sidé(z,y) = (z + 1)(y + 1), and usinghp
finite element%); with orders2 < k£ < 8.

The solution of this problem is shown in Fig. 11, togethehwiite mesh after a few steps
of adaptive refinement and a distribution of finite elements ¢his mesit. The algorithm
to determine whether to refirfeor increasep on a given cell uses an error indicator and
a simple criterion to estimate the smoothness of the sa@lwfahis cell. Looking at the
right panel of Fig. 11, we see that the polynomial degreedséa low in the vicinity of
the singularities close to re-entrant corners as well asgailbe boundary, and high in the
interior. This corresponds to the expected smoothnesepiep of the solution. Whether
this particular arrangement of elements is in fact optimdili¢h it certainly isn’t) is outside
the scope of this contribution: we only want to investigade/lour algorithms perform for a
given distribution of finite elements onto a mesh, not thémak choice of finite elements.
For details of the: refinement ang assignment algorithms, we refer to the documentation
of the step-27 tutorial program [Bangerth et al. 2007b].

Given this, the left panel of Fig. 12 shows the growth of thenber of degrees of
freedom ashp refinement iterations proceed, as well the number of cansiladegrees

2The solution looks blocky since we output it as a bilineaeiipblation even on cells with high polynomial
degree. The actual computed solution is much more accuratedepicted.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

24 . W. Bangerth and O. Kayser-Herold

i
i

St

stz m et
H

+

SR e e

R
e

o
S

+
o
H
H
o
H
H
i
S
——

Fig. 11.Results for example 1. Left: The solutionCenter: The mesh used for the discretization in the seventh
adaptive refinement step. Right: The distribution of poigiad degrees onto cells.

1le+06 T T T T T 100000 T T
Degrees of freedom —+— Total time —+—
Constrained DoFs ---x--- 10000 F Allocation of DoFs ---x---]
Construction of constraints ------
1000 Elimination of constraints &

100000 Assembly of linear system ——=

100

10000 10 ¢

Time in seconds

1k

1000 ¢/ E 01k

'
! 0.01 E
100 3 Il Il Il Il Il Il Il 0001
0 2 4 6 8 10 12 14 16 1000 10000 100000
Refinement step Degrees of freedom

Fig. 12. Results for example 1 for a sequence of adaptively refinetieses eft: Growth of the total number of

degrees of freedom and the number of constrained degreesealoin as refinement iterations proceed. Right:
Compute times in seconds for (i) total compute time excugwstprocessing on one mesh, (ii) allocation and
identification of degrees of freedom alone, (iii) constimetof constraints alone, (iv) elimination of constrained
degrees of freedom from the linear system alone, and (vjrddgef the linear system alone.

of freedom. The latter number is roughly constant at abo¥i 20the total.

The right panel shows a view of where the compute time for thmerical solution of
this problem is spent. The total time used on each mesh grgpvezimately likeO(N!-%),
whereN is the total number of degrees of freedom; this rate can beagd for the SSOR
preconditioned Conjugate Gradient solver we use in thisprdation. This total compute
time is in fact entirely dominated by solving the linear gyst which consumes more than
95% of the compute time faV > 10°.

The rest of the time is spent on assembling the linear sys3éfrf¢r N=105) and various
other tasks. Among thep specific activities, both allocating degrees of freedore tbe
discussion in Sections 3 and 4.2) and computing constr@atsSections 4.3—4.5 and 5.1)
take negligible fractions of the total compute time, andydheé elimination of constrained
nodes from the linear system (see Section 5.2) is noticedft®vever, even the latter
takes less than 2% of the total compute time on finer grids,fartdermore grows at a
complexity of onlyO(N) and therefore slower than the overall solver process.

In summary, we can conclude from this example thatithepecific algorithms do not

3A better fit for the data points involved is in fa@(sN), wheres = log T with T the number of nonzero
entries per row. Her@' grows with refinement iterations since the average polyabdégree of shape functions
on cells grows. The observation is then consistent with gtienates given in Section 5.2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 25

Fig. 13. Results for example 2. Left: The solutian Right: The mesh and distribution of polynomial degrees
onto cells after five refinement steps.

le+06

100000 T

T T T T T
Degrees of freedom —+— Total time —+—
Constrained DoFs ---x--- 10000 F Allocation of DoFs ---x---]
- Construction of constraints ---:---

Elimination of constraints
Assembly of linear syst

100000 £ P 1000
100
10000 £ E 10

1

Time in seconds

1000 £ E 0.1 .
x . 7
001 F oy X]
| o o -
100 | ! ! ! ! ! 0.001 L N !
0 1 2 3 4 5 6 7 1000 10000 100000 1e+06
Refinement step Degrees of freedom

Fig. 14. Results for example 2 for a sequence of adaptively refinetleseseft: Growth of the total number of

degrees of freedom and the number of constrained degreesealoin as refinement iterations proceed. Right:
Compute times in seconds for (i) total compute time excugstprocessing on one mesh, (ii) allocation and
identification of degrees of freedom alone, (iii) constimetof constraints alone, (iv) elimination of constrained
degrees of freedom from the linear system alone, and (vjrddgef the linear system alone.

significantly contribute to the overall compute time of tha&té element solution of this
problem. An obvious opportunity of improvement is cleaihg tsimplistic linear solver,
although this is outside the scope of this paper.

Example 2.In our second example, we solve on a realistic 3d domain pusly already
used in the simulation of breast cancer imaging [Bangerdh @007a; Hwang et al. 2006],
see Fig. 13. As a right hand side, we u8er,y,z) = 1 in the wedger > |y|, and
f(z,y, z) = 0 otherwise. We use elemers, with orders2 < k < 5.

Compared to the 2d example, the solver is still the most tioreseming part of the
program, but assembling the linear system now takes up to, 22 eliminating con-
strained degrees of freedom from the matrix and the spapaitern takes another 11%.
On the other hand, actually computing these constraietsta.form the constraint matrix
C discussed in Section 5.1 takes less than 0.5%, and all @tbles re also negligible.

The fact that assembling the linear system takes a signifmamponent of the over-
all compute time does not come as much of a surprise, and iskwelvn for higher-
order finite elements in 3d. One of the available strategieisnprove this situation is
to pre-compute some of the matrix components, as explaoreexiimple in [Kirby and

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

26 . W. Bangerth and O. Kayser-Herold

Logg 2006]. We were surprised, however, that eliminatingst@ints is so expensive.
In our initial implementation, eliminating constrainedgdees of freedom from the col-
umn compressed storage sparsity pattern was the largést fa®verall compute time.
We consequently changed the data structures used to stordeamediate form of the
sparsity pattern (see the documentation of @oepr essedSpar si t yPat t er n and
Conpr essedSet Spar si t yPat t er n classes at [Bangerth et al. 2007b]) and thereby
reduced the time for elimination by about a factor of 6, legdio the numbers quoted
above. On the other hand, the fact that tampering with negtrand sparsity patterns
should not have come entirely unexpected given that in 3¢ alement has 216 degrees
of freedom on each cell, and a typical row in the system mafxix have more than 300
nonzero entries. Given these algorithmic improvemenis ri#¢assuring to see that the lin-
ear solver is still the dominant part of the simulation, igipy that even in 3dap finite
elements are very much a feasible and usable technology.

7. CONCLUSIONS

The implementation of fullyhp adaptive finite element methods for general classes of
elements is a complicated task, sometimes rumored to bef®af magnitude harder”
than nonAp methods. While the mathematics of such methods are welfithescin the
literature, there do not appear to be very many attemptstt@mby implement it beyond
discontinuous Galerkin methods for which the method doésatiire the construction of
hanging node constraints.

In the current paper, we have described the many componeagssary to implement
hp methods for general combinations of finite elements and ind?d and 3d (the 1d case
is so notably absent of any particular problems that we didiisguss our implementation),
and the complications and pitfalls one runs into. The temies discussed here provide the
generic algorithms that can make this implementation watikomly for ;. elements, but
general combinations of elements. Actual instances offigitment classes essentially
only have to describe equivalences between degrees ofofreed vertices, edges, and
faces, and provide matrices that describe interpolatiomfone element to another on
faces and subfaces between cells. Beyond that, the getgoiitiams discussed can work
independently of the actual elements involved. In paréiguhis includesHyy, [Brezzi
and Fortin 1991] andi., [Nedelec 1980] elements, but also immediately vectoraalu
elements for problems with more than one solution variable.

In the final section of this paper, we also demonstrated thatatgorithms are effi-
cient, i.e. that they are cheap compared to the expensit® g@idinite element programs:
assembly of linear systems and solving them. This demdastthat it is possible to im-
plementhp finite elements efficiently, even for continuous and 3d eleisieA reference
implementation of our ideas, as well as the tutorial progstep-27 explaining the use of
hp adaptivity, is available as part of release 6.0 of the Opamr@&finite element library
deal.ll [Bangerth et al. 2007D].

Finally, we can also address the question whetthas hard to implement: we estimate
that to fully address the problems discussed in this papehad to implement less than
20,000 lines of code on top of what deal.ll already had toroffehis is comparable to
probably less than one year of work for a skilled and traimetividual already familiar
with the internals of deal.ll. This has to be compared to al i roughly 360,000 lines of
code presently in deal.ll, of which maybe 100,000 are patti@low-level core that deals

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

Data Structures and Requirements for hp Finite Element Software . 27

with meshes, degrees of freedom, and finite elements. I atbes, while a significant
and certainly non-trivial task, the implementation of tdeas in this paper is clearly not
“orders of magnitude” more difficult than a reasonably gahenplementation of the finite
element method.

REFERENCES

BABUSKA, |. 1981. Error estimates for the combinka@ndyp version of finite element methodlumer. Math. 37
252-277.

BANGERTH, W., HARTMANN, R.,AND KANSCHAT, G. 2007a. deal.ll — a general purpose object oriented finite
element library.accepted for publication in ACM Trans. Math. Softw.

BANGERTH, W., HARTMANN, R., AND KANSCHAT, G. 2007b. deal . I | Differential Equations Analysis
Library, Technical Referencént t p: / / www. deal ii.org/.

BREZzzI, F.AND FORTIN, M. 1991. Mixed and Hybrid Finite Element MethadSpringer.

CAREY, G. F. 1997.Computational Grids: Generation, Adaptation and Solutitrategies Taylor & Francis.

CASTILLO, P., REBEN, R.,AND WHITE, D. 2005. FEMSTER: An object-oriented class library of léglorder
discrete differential formsACM Trans. Math. Software 3425-457.

CIARLET, P. G. 1978.The Finite Element Method for Elliptic Problepisirst ed. Studies in Mathematics and
its Applications, vol. 4. North-Holland, Amsterdam, NewrkKpOxford.

Demkowicz, L. 2006. Computing with hp-adaptive finite elements. Volume 1: Orgt Bmo Dimensional
Elliptic and Maxwell ProblemsChapman & Hall.

FRAUENFELDER, P.AND LAGE, C. 2002. Concepts — An object-oriented software packaggditial differen-
tial equations M2AN 36 937-951.

GILBARG, D. AND TRUDINGER, N. S. 1983.Elliptic Partial Differential Equations of Second Orde8econd
ed. Springer, Heidelberg.

Guo, B. AND BABUSKA, |. 1986a. The h-p version of the finite element method. Paié basic approximation
results.Comp. Mech. 121-41.

GuoO, B. AND BABUSKA, I. 1986b. The h-p version of the finite element method. RaitHe general results
and applicationComp. Mech. 1203-220.

HousTON, P., SHOTZAU, D., AND WIHLER, T. P. 2007. Energy norm a posteriori error estimatiorhof
adaptive discontinuous galerkin methods for elliptic peats. M3AS 17 33-62.

HousToN, P.AND SULI, E. 2005. A note on the design bf-adaptive finite element methods for elliptic partial
differential equationsComp. Meth. Appl. Mech. Engrg. 19229-243.

HousToN, P., SiLI, E.,AND WIHLER, T. P. 2007. A posteriori error analysis bp-version discontinuous
galerkin finite element methods for second-order quasitirliptic problems.submitted to IMA J. Numer.
Anal..

HwWANG, K., PaN, T., JosHI, A., RASMUSSEN J. C., BANGERTH, W., AND SEVICK-MURACA, E. M.
2006. Influence of excitation light rejection on forward rebchismatch in optical tomographyhys. Med.
Biol 51,22, 5889-5902.

KIRBY, R.AND LOGG, A. 2006. Optimizing the FEnICS form compiler FFC: Efficigméetabulation of integrals.
submitted to ACM Trans. Math. Softw.

KIRK,B. S., ETERSON J. W., SSOGNER, R. H.,AND CAREY, G. F. 2007. libMesh: A C++ library for parallel
adaptive mesh refinement/coarseniimgineering with Computers, accepted for publication

NEDELEC, J.-C. 1980. Mixed finite elements 3. Numer. Math. 35315-341.

PeEScH, L., BELL, A., SOLLIE, H., AMBATI, V. R., BOKHOVE, O.,AND VAN DER VEGT, J. W. 2007. hpGEM
— A software framework for discontinuous Galerkin finiterent methodssubmitted to ACM Trans. Math.
Sofw.

RHEINBOLDT, W. C. AND MESZTENYI, C. K. 1980. On a data structure for adaptive finite elemerghme
refinementsACM Trans. Math. Software, 66—187.

RIVARA, M. C. 1984. Mesh refinement processes based on the geedrdiizection of simplicesSIAM J.
Numer. Anal. 21604-613.

SoLiN, P.,CERVENY, J.,AND DOLEZEL, |. 2006. Arbitrary-level hanging nodes and automatic idiyp in
the hp-FEM.accepted for publication in Math. Comput. Sim.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.

