
Data Structures and Requirements forhp Finite
Element Software

W. BANGERTH
Texas A&M University
and
O. KAYSER-HEROLD
Harvard School of Public Health

Finite element methods approximate solutions of partial differential equations (PDEs) by restricting the problem
to a finite dimensional, discrete function space. In thehp adaptive version of the finite element method, one
defines these discrete spaces by choosing different polynomial degrees for the shape functions defined on a
locally refined mesh.

Although this basic idea is quite simple, its implementation in algorithms and data structures is challenging.
It has apparently not been documented in the literature in its most general form. Rather, most existing implemen-
tations appear to be for special combinations of finite elements, or for discontinuous Galerkin methods which do
not entail many of the complications of the general case.

In this paper, we discuss the generic data structures and algorithms necessary to implement thehp finite
element method for arbitrary elements, and the complications and pitfalls one encounters with such an imple-
mentation. As part of this process, we describe what pieces of information a description of a finite element has
to provide to the generic algorithms for it to be used in anhp context. We support our claim that the generic
algorithms and data structures are efficient using numerical examples that test our reference implementation in
2d and 3d, and demonstrate that thehp specific parts of the algorithm do not dominate the total computing time.
This reference implementation is also made available as part of the Open Source deal.II finite element library.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Finite element software—data structures;
hp finite element methods; G.1.8 [Numerical Analysis]: Partial Differential Equations—finite element method.

General Terms: Algorithms, Design

Additional Key Words and Phrases: object-orientation, software design

1. INTRODUCTION

Thehp finite element method was proposed more than two decades ago by Babuška and
Guo [Babuška 1981; Guo and Babuška 1986a; 1986b] as an alternative to either (i) mesh
refinement (i.e. decreasing the mesh parameterh in a finite element computation) or (ii) in-
creasing the polynomial degreep used for shape functions. It is based on the observation
that increasing the polynomial degree of the shape functions reduces the approximation
error if the solution is sufficiently smooth. On the other hand, it is well known [Ciarlet

Author’s addresses: W. Bangerth, Department of Mathematics, Texas A&M University, College Station, TX
77843, USA; O. Kayser-Herold, Department of EnvironmentalHealth, Harvard School of Public Health, Boston,
MA 02115, USA.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · W. Bangerth and O. Kayser-Herold

1978; Gilbarg and Trudinger 1983] that even for the generally well-behaved class of elliptic
problems, higher degrees of regularity can not be guaranteed in the vicinity of boundaries,
corners, or where coefficients are discontinuous; consequently, the approximation can not
be improved in these areas by increasing the polynomial degreep but only by refining the
mesh, i.e. by reducing the mesh sizeh. These differing means to reduce the error have
led to the notion ofhp finite elements, where the approximating finite element spaces are
adapted to have a high polynomial degreep wherever the solution is sufficiently smooth,
while the mesh widthh is reduced at places wherever the solution lacks regularity. It was
already realized in the first papers on this method thathp finite elements can be a powerful
tool that can guarantee that the error is reduced not only with some negative power of the
number of degrees of freedom, but in fact exponentially.

Since then, some 25 years have passed and whilehp finite element methods are subject
of many investigations in the mathematical literature, they are hardly ever used outside
academia, and only rarely even in academic investigations on finite element methods such
as on error estimates, discretization schemes, or solvers.It is a common perception that
this can be attributed to two major factors: (i) There is no simple and widely accepted a
posteriori indicator applicable to an already computed solution that would tell us whether
we should refine any given cell of a finite element mesh or increase the polynomial degree
of the shape functions defined on it. This is at least true for continuous elements, though
there are certainly ideas for discontinuous elements, see [Houston et al. 2007; Houston
et al. 2007] and in particular [Houston and Süli 2005] and the references cited therein. The
major obstacle here is not the estimation of the error on thiscell; rather, it is to decide
whetherh-refinement orp-refinement is preferable. (ii) Thehp finite element method is
hard to implement. In fact, a commonly heard myth in the field holds that it is “orders of
magnitude harder to implement” than simpleh adaptivity. This factor, in conjunction with
the fact that most software used in mathematical research ishomegrown, rarely passed
on between generations of students, and therefore of limited complexity, has certainly
contributed to the slow adoption of this method.

In order to improve the situation regarding the second pointabove, we have undertaken
the task of thoroughly implementing support forhp finite element methods in the freely
available and widely used Open Source finite element librarydeal.II [Bangerth et al. 2007b;
2007a] and to thereby making it available as a simple to use research tool to the wider
scientific community. deal.II is a library that supports a wide variety of finite element
types in 1d, 2d (on quadrilaterals) and 3d (on hexahedra), including the usual Lagrange
elements, various discontinuous elements, Raviart-Thomas elements [Brezzi and Fortin
1991], Nedelec elements [Nedelec 1980], and combinations of these for coupled problems
with several solution variables.

There are currently not many implementations of thehp finite element method that are
accessible to others in some form. Of these, the codes by Leszek Demkowicz [Demkowicz
2006] and Concepts [Frauenfelder and Lage 2002] may be amongthe best known and in
addition to most other libraries also include fully anisotropic refinement. Others, such as
for example libMesh [Kirk et al. 2007] and hpGEM [Pesch et al.2007] claim to be in the
process of implementing the method, but the current state oftheir software appears unclear.
Most importantly, most of these libraries seem to focus on implementing the method for
one particular family of elements, most frequently either hierarchical Lagrange elements
(for continuous ansatz spaces) or for the much simpler case of discontinuous spaces.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 3

In contrast, we wanted to implementhp support as general as possible, so that it can be
applied to all the elements supported by deal.II, i.e. including continuous and discontinuous
ones, without having to change again the parts of the librarythat are agnostic to what finite
element is currently being used. For example, the main classes in deal.II only require to
know how many degrees of freedom a finite element has on each vertex, edge, face, or cell,
to allocate the necessary data. Consequently, the aim of ourstudy was to find out what
additional data finite element classes have to provide to allow the element-independent
code to deal with thehp situation.

This led to a certaintour-de-forcein which we had to learn the many corner cases that
one can find when implementinghp elements in 2d and 3d, using constraints to enforce
the continuity requirements of any given finite element space. The current paper therefore
collects what we found are the requirements the implementation of hp methods imposes
on code that describes a particular finite element space. deal.II itself already has a library
of such finite element space descriptions, but there are other software libraries whose sole
goal is to completely describe all aspects of finite element spaces (see, e.g., [Castillo et al.
2005]). The current contribution then essentially lists what pieces of information an imple-
mentor of a finite element class would have to provide to the underlying implementation
in deal.II, and show how this information is used in the mathematical description. We also
comment on algorithmic and data structure questions pertaining to the necessity to imple-
menthp algorithms in an efficient way, and will support our claims ofefficiency using a
set of numerical experiments solving the Laplace equation in 2d and 3d and measuring the
time our implementation spends in the various parts of the overall solution scheme.

We believe that our observations are by no means specific to deal.II: Other implemen-
tations of thehp method will choose different interfaces between finite element-specific
and general classes, but they will require the same information. Furthermore, although all
our examples will deal with quadrilaterals and hexahedra, the same issues will clearly arise
when using triangles and tetrahedra. (For lack of complexity, we will not discuss the 1d
case, although of course our implementation supports it as aspecial case.) The algorithms
and conclusions described here, as well as the results of ournumerical experiments, are
therefore immediately applicable to other implementations as well.

The rest of the paper is structured as follows: In Section 2, we will discuss general strate-
gies forh, p, andhp-adaptivity and explain our choice to enforce conformity ofdiscrete
spaces through hanging nodes. In Section 3, we introduce efficient data structures to store
and address global degree of freedom information on the structural objects from which a
triangulation is composed, whereas Section 4 contains the central part of the paper, namely
what information finite element classes have to provide to allow for hp finite element im-
plementations. Section 5 then deals with the efficient handling of constraints. Section 6
shows practical results, and Section 7 concludes the paper.

2. HP -ADAPTIVE DISCRETIZATION STRATEGIES

Adaptive finite element methods are used to improve the relation between accuracy and
the computational effort involved in solving partial differential equations. They compare
favorably with the more traditional approach of using uniformly refined meshes with a
fixed polynomial degree by exploiting one or both of the following observations:

—for most problems the solution is not uniformly complex throughout the domain, i.e. it
may have singularities or be “rough” in some parts of the domain;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · W. Bangerth and O. Kayser-Herold

Fig. 1. Refinement of a mesh consisting of four triangles. Left: Original mesh. Center: Mesh with rightmost cell
refined. Right: The center cell has been converted to a transition cell.

—the solution does not always need to be known very accurately everywhere if, for exam-
ple, only certain local features of the solution such as point values, boundary fluxes, etc,
are of interest.

In either case, computations can be made more accurate and faster by choosing finer
meshes or higher polynomial degrees of shape functions in parts of the domain where
an “error indicator” suggests that this is necessary, whereas the mesh is kept coarse and
lower degree shape functions are used in the rest of the domain.

A number of different and (at least forh-adaptivity) well-known approaches have been
developed in the past to implement schemes that employ adaptivity. In the following sub-
sections, we briefly review these strategies and explain theone we will follow in this paper
as well as in the implementation of our ideas in the deal.II finite element library.

2.1 h-adaptivity

In the course of an adaptive finite element procedure, an error estimator indicates at which
cells of the spatial discretization the error in the solution field is highest. These cells
are then usually flagged to be refined and, in theh version of adaptivity, a new mesh is
generated that is finer in the area of the flagged cells (i.e., the mesh size functionh(x) is
adapted to the error structure). This could be achieved by generating a completely new
mesh using a mesh generation program that honors prescribednode densities. However, it
is more efficient to create the new mesh out of the old one by replacing the flagged cells
with smaller ones, since it is then simpler to use the solution on the previous mesh as a
starting guess for the solution on the new one.

This process of mesh refinement is most easily explained using a mesh consisting of
triangles,1 see Fig. 1: If the error is largest on the rightmost cell, thenwe refine it by
replacing the original cell by the four cells that arise by connecting the vertices and edge
midpoints of the original cell, as is shown in the middle of the figure.

In the finite element method shape functions are associated with the elements from
which triangulations are composed. Taking the lowest-order P1 space as an example, one
would have shape functions associated with the vertices of amesh. As can be seen in the
central mesh of Fig. 1, mesh refinement results in an unbalanced vertex at the center of
the face separating a refined and an unrefined cell, a so-called “hanging node”. There are
two widely used strategies to deal with this situation: special treatment of the degree of

1For simplicity, we illustrate mesh refinement concepts hereusing triangles. However, the rest of the paper will
deal with quadrilaterals and hexahedra because this is whatour implementation supports. On the other hand,
triangular and tetrahedral meshes pose very similar problems and the techniques developed here are applicable to
them as well.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 5

Fig. 2. Degrees of freedom onh- andp-adaptive meshes. Left: Dots indicate degrees of freedom for P1 (linear)
elements on a mesh with a hanging node. Center: Resolution ofthe hanging node through introduction of
transition cells. Right: A mixture ofP1 andP3 elements on the original mesh.

freedom associated with this vertex through introduction of constraints [Rheinboldt and
Mesztenyi 1980; Carey 1997;Šolı́n et al. 2006], and converting the center cell to a transi-
tion cell using strategies such asred-green refinement[Carey 1997], as shown in the right
panel of the figure. (An alternative strategy is to use Rivara’s algorithm [Rivara 1984].)
The left and center panel of Fig. 2 show the locations of degrees of freedom for these two
cases for the commonP1 element with linear shape functions.

For pureh-refinement, both approaches have their merits, though we choose the first. If
we use piecewise linear shape functions in the depicted situation, continuity of the finite
element functions requires that the value associated with the hanging node is equal to the
average of the value at the two adjacent vertices along the unrefined side of the interface.
We will explain this in more detail in Section 4.4.

2.2 p-adaptivity

In thep version of adaptivity, we keep the mesh constant but change the polynomial degrees
of shape functions associated with each cell. The right panel of Fig. 2 shows this for the
situation that the rightmost cell of the original mesh is associated with aP3 (cubic) element,
whereas the other elements still use linear elements.

As is seen from the figure, we again have two “hanging nodes” inthe form of the two
P3 degrees of freedom associated with the edge separating the two cells. There are again
two widely used strategies to deal with this situation: introduction of constraints for the
hanging nodes (explained in more detail in Section 4.3), andadding or removing degrees
of freedom from one of the two adjacent cells. In the latter case, one would, for example,
not use the fullP3 space on the rightmost cell, but use a reduced space that is missing the
two shape functions associated with the line, and uses modified shape functions for the
degrees of freedom associated with the vertices of the common face. Alternatively, one
could use the fullP3 space on the rightmost cell, and augment the finite element space of
the middle cell by the twoP3 shape functions defined on the common face.

2.3 hp-adaptivity

Thehp version of adaptivity combines both of the approaches discussed in the previous
subsections. One quickly realizes that the use of transition elements is not usually possible
to avoid hanging nodes in this case, and that the only optionsare, again, constraints or
enriched/reduced finite element spaces on the adjacent cells.

As above, in our approach we opt to use constraints to deal with hanging nodes. This is
not to say that the alternative is not possible: it has in factbeen successfully implemented
in numerical codes, see for example [Demkowicz 2006]. However, it is our feeling that

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · W. Bangerth and O. Kayser-Herold

our approach is simpler in many ways: finite element codes almost always do operations
such as integrating stiffness matrices and right hand side vectors on a cell-by-cell basis.
It is therefore advantageous if there is a simple description of the finite element space
associated with each cell. When using constraints, it is unequivocally clear that a cell is, for
example, associated with aP1, P2, orP3 finite element space and there is typically a fairly
small number (for example less than 10) of possible spaces. On the other hand, there is a
proliferation of spaces when enriching or reducing finite element spaces to avoid hanging
nodes. This is especially true in 3-d, where each of the four neighbors of a tetrahedron may
or may not be refined, may or may not have a different space associated with it, etc. To
make things worse, in 3-d not only the space associated with neighbor cells has to be taken
into account, but also the spaces associated with any of the potentially large number of cells
that only share a single edge with the present cell. If one considers the case of problems
with several solution variables, one may want to use spacesPk1 × Pk2 × · · · × PkL

with
different indiceskl for each solution variable, and vary the indiceskl from cell to cell. In
that case, the number of different enriched or reduced spaces becomes truly astronomical
and may easily lead to inefficient and/or unmaintainable code.

Given this reasoning, we opt to use constraints to deal with hanging nodes. The follow-
ing sections will discuss algorithms and data structures tostore, generate, and use these
constraints efficiently. Despite the relative simplicity of this approach, it should be noted
already at this place that the generation of constraints is not always straightforward and
that certain pathological cases exist, in particular in 3-d. However, we will enumerate and
present solutions to all the cases we could find in our extensive use and testing of our
implementation.

3. STORING GLOBAL INDICES OF DEGREES OF FREEDOM

In order to keep our implementation as general as can be achieved without unduly sacri-
ficing performance, we have chosen to separate the concept ofaDoFHandler from that
of a triangulation and a finite element class in deal.II (see [Bangerth et al. 2007a] for more
details about this). ADoFHandler is a class that takes a triangulation and annotates
it with global indices of the degrees of freedom associated with each of the cells, faces,
edges and vertices of the triangulation. ADoFHandler object is therefore independent
of a triangulation object, and severalDoFHandler objects can be associated with the
same triangulation, for example to allow programs that use different discretizations on the
same mesh.

On the other hand, aDoFHandler object is also independent of the concept of a global
finite element space, since it doesn’t know anything about shape functions. It does, how-
ever, draw information from one or several finite element objects (that implement shape
functions) in that it needs to know how many degrees of freedom there are per vertex,
line, etc. ADoFHandler is therefore associated with a triangulation and a finite element
object and sets up a global enumeration of all degrees of freedom on the triangulation as
called for by the finite element object.

The deal.II library has several implementations ofDoFHandler classes. The simplest,
::DoFHandler allocates degrees of freedom on a triangulation for the casethat all cells
use the same finite element; other such classes allocate degrees of freedom for a multilevel
hierarchy of finite element spaces. In the context of this paper, we are interested in the data
structures necessary to implementhp finite element spaces, i.e. we have to deal with the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 7

v0 v1 v2

v4 v5v3

l1

l3

l0

l2

l4 l5 l6q0 q1

21

20

19

27

25

26

28

29

30 33

31

32

10

2

144

6

0 15

1816

13

5 17 12

7

22

23

24

8

91

3 11

Fig. 3. Left: A mesh consisting of two cells with a numbering of the vertices, lines, and quadrilaterals of this
mesh. Right: A possible enumeration of degrees of freedom where the polynomial space on the left cell represents
a Q2 element and that on the right cell aQ4 element. Bottom: Linked lists of degrees of freedom on each of the
objects of which the triangulation consists.

situation that different cells might be associated with different (local) finite element spaces.
Clearly, each cell is only associated with a single finite element, and only a single set

of degrees of freedom has to be stored for each cell. However,the lower-dimensional
objects (vertices, lines, and faces) that encircle a cell may be associated with multiple
sets of degrees of freedom. For example, consider the situation shown in Fig. 3. There,
a quadraticQ2 element is associated with the left cell, whereas a quarticQ4 element is
associated with the one on the right. Here, the vertices v1 and v4 as well as the line l5 are
all associated with both local finite element spaces. We therefore have to store the global
indices of the degrees of freedom associated with both spaces for these objects.

Furthermore, it is clear that vertices in 2-d, and lines in 3-d, may be associated with as
many finite element spaces as there are cells that meet at thisvertex or line. This leads to
our first requirement on implementations:

REQUIREMENT ON IMPLEMENTATIONS 1. An implementation needs to provide stor-
age for the global indices of degrees of freedom associated with each object (vertices, lines,
etc.) of a triangulation. This storage scheme must be efficient both in terms of memory and
in terms of fast access.

In deal.II, we implement these requirements in thehp::DoFHandler class using a
sort of linked list that is attached to each object of a triangulation. This list consists of
one record for each finite element associated with this object, where a record consists of
the number of the finite element as well as the global indices that belong to it. This is
illustrated in Fig. 4 where we show these linked lists for each of the objects found in the
triangulation depicted in Fig. 3. The caption also containsfurther explanations about the
data format.

While other implementations are clearly possible, note that this storage scheme mini-
mizes memory fragmentation. Furthermore, because in the vast majority of cases only a
single element is associated with an object, access is also very fast since the linked list
contains only one record.

4. REQUIREMENTS ON FINITE ELEMENT CLASSES

4.1 Higher order shape functions

Most importantly, finite element classes of course have to offer support for higher order
shape functions to allow the use ofhp finite element methods. This entails that we have

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · W. Bangerth and O. Kayser-Herold

v0 0 0 ×

v1 0 1 1 9 ×

v2 1 8 ×

v3 0 2 ×

v4 0 3 1 11 ×

v5 1 9 ×

l0 0 4 ×

l1 1 13 14 15 ×

l2 0 5 ×

l3 1 16 17 18 ×

l4 0 6 ×

l5 0 7 1 19 20 21 ×

l6 1 22 23 24 ×

q0 8

q1 25 26 27 28 29 30 31 32 33

Fig. 4. Lists of degrees of freedom associated with each of the objects identified in Fig. 3. For vertices and lines,
there may be more than one finite element associated with eachobject, and we have to store a linked list of pairs
offe index (printed in italics, zero indicates aQ2 element, one indicates aQ4 element) and the corresponding
global numbers of degrees of freedom for this index; the listis terminated by an invalid index, here represented
by×. For quadrilaterals (i.e. cells in 2-d), only a single set ofdegrees of freedom can be active per object, and
there is no need to store more than one data set or anfe index that would identify the data set. Note that at
this stage, each degree of freedom appears exactly once. This arrangement is later modified by the algorithm
described in Section 4.2.

an efficient way to generate them automatically for arbitrarily high polynomial degrees as
well as for all relevant space dimensions. This is importantsince early versions of most
finite element codes often implement only the lowest-order polynomials by hard-coding
these functions. For example, in 2-d, the four shape functions for theQ1 element are

ϕ0(x) = (1 − x1)(1 − x2), ϕ1(x) = (1 − x1)x2,

ϕ2(x) = x1(1 − x2), ϕ3(x) = x1x2.

These shape functions and their derivatives are obviously simple to implement directly.
On the other hand, this approach becomes rather awkward for higher order elements

and in particular in 3d, for several reasons. First, these functions and their derivatives can
only reliably be generated using automated code generators, for example by computing the
Lagrange polynomials symbolically in Maple or Mathematica, and then generating corre-
sponding code in the target programming language. While this leads to correct results, it
is not efficient with respect to both compile and run time, since code generators are fre-
quently not able to find efficient and stable product representations of these functions, such
as for example a Horner scheme representation. Consequently, the code for these functions
becomes very long, increasing both compile and run time significantly, while at the same
time reducing numerical stability of the result. Secondly,the approach is not extensible at
run time: only those polynomial degrees are available for which the corresponding code
has been generated and compiled before.

In our experience with the deal.II library, composing shapefunctions from an under-
lying representation of the polynomial space addresses allthese problems. For example,
we implement the shape functionsϕ(p)

i of the Lagrange polynomial spacesQp as tensor
products of one-dimensional polynomials:

ϕ
(p)
i (x) =

∏

0≤d<dim

ψ
(p)
jd(i)(xd), (1)

whereψ(p)
j (·) are one-dimensional basis functions andjd(i) maps thedim-dimensional

indices of the basis functions to one-dimensional ones; forexample, a lexicographic order-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 9

ing in 2-d would be represented byj0(i) = ⌊i/p⌋ andj1(i) = i mod p. The polynomials

ψ
(p)
j (·) can be computed on the fly from the polynomial degreep using the interpolation

property

ψ
(p)
j

(

n

p+ 1

)

= δnj, 0 ≤ n ≤ p+ 1,

and are efficiently and stably encoded using the coefficientsof the Horner scheme to com-
pute polynomials. Using (1), it is also simple to obtain the gradient∇ψ(p)(x) and higher
derivatives without much additional code. The introduction of this representation in deal.II
allowed us not only to trivially add Lagrange elements of order higher than 4 in 2-d and
higher than 2 in 3-d, it also allowed us to delete approximately 28,000 lines of mostly ma-
chine generated code in addition to speeding up computationof basis functions severalfold.

Basing the computation of shape functions on simple representations of the function
space is even more important for more complicated function spaces like those involved
in the construction of Raviart-Thomas or Nedelec elements.For example, on the refer-
ence cell, the Raviart-Thomas space on quadrilaterals is the anisotropic polynomial space
Qk+1,k × Qk,k+1 in 2-d, andQk+1,k,k × Qk,k+1,k × Qk,k,k+1 in 3-d (see, e.g., [Brezzi
and Fortin 1991]), where indices indicate the polynomial order in each space direction in-
dividually. From such a representation, it is easy to write basis functions of this space for
arbitrarily high degrees as a tensor product of one-dimensional polynomials, completely
avoiding the need to implement any of them “by hand”.

REQUIREMENT ON IMPLEMENTATIONS 2. Finite element classes need to have an ef-
ficient way to generate shape functions of arbitrary order toavoid automatic code gener-
ation of high order polynomials that is usually accompaniedby an explosion of code size
and run time.

4.2 Description of identities of degrees of freedom

As mentioned in Section 3, we store global indices for each degree of freedom on vertices,
lines, quadrilaterals, etc, for each of the cells adjacent to these objects. For example, Fig. 3
showed this for the case of adjacent cells withQ2 andQ4 elements, respectively.

If one knows that for Lagrange elements, degrees of freedom representvaluesof shape
functions, then it is immediately clear that for a finite element fieldu(x) =

∑

i uiϕi(x) to
be continuous, one needs the constraintsu1 = u9, u3 = u11, andu7 = u20, in addition
to conditions linkingu19 andu21 to u1, u3, andu7 (these latter conditions are discussed
in Section 4.3 below). In other words, for Lagrange elements, all degrees of freedom
associated with the same vertex must have the same value, andthe same holds for certain
degrees of freedom on lines (or on quadrilaterals in 3-d). Itis worth noting that this is
a property of the finite element, not of degrees of freedom in themselves: one could, for
example, think ofC1 conforming elements having four degrees of freedom on each vertex
representing the value, first derivatives, and the mixed second derivative of the field in the
coordinate system of thereference cellat this location; unless the adjacent cells have a
particular orientation to each other, only the values at thevertex will coincide, while the
derivatives will only be related but not necessarily be identical in value.

Constraints such asu1 = u9, u3 = u11, andu7 = u20 could be dealt with in the same
way as hanging node constraints, by adding these conditionsas explicit constraints to the
linear system of equations. However, that would be inefficient: it needlessly increases the

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · W. Bangerth and O. Kayser-Herold

if (v->n_active_fe_indices() > 1)
for (unsigned int f=0; f<v->n_active_fe_indices(); ++f)
for (unsigned int g=f+1; g<v->n_active_fe_indices(); ++g)

{
unsigned int fe_index1 = v->nth_active_fe (f),

fe_index2 = v->nth_active_fe (g);

std::vector<std::pair<unsigned int, unsigned int> >
dof_identities
= fe[fe_index1].hp_vertex_dof_identities(fe[fe_index2]);

for (unsigned int i=0; i<dof_identities.size(); ++i)
v->set_dof_index (g,

dof_identities.second[i],
v->get_dof_index (f,

dof_identities.first[i]));
}

Listing 1. Identifying degrees of freedom on a vertexv.

number of unknowns of a linear system, costing memory and compute time.
Rather, the implementation of thehp::DoFHandler in deal.II requires finite element

classes to provide information onidentitiesof degrees of freedom. After degrees of free-
dom have been distributed on each cell individually, producing for example the layout
referenced in Fig.s 3 and 4, thehp::DoFHandler goes over all objects (vertices, lines,
etc.) again and tries to identify identical degrees of freedom if multiple sets of degrees of
freedom are stored on this object.

To this end, thehp::DoFHandler would perform a call similar to the one shown in
Listing 1. This code first queries whether there is more than one finite element associated
with a vertex; this would be true for verticesv1 andv4 in Fig. 3, for example. If so, it then
asks all pairs of finite elements active on this vertex to return lists of identical degrees of
freedom. In the present case, the Lagrange finite element class would return a list of length
1 consisting of a single pair of zeros: the zeroth (and only) degrees of freedom associated
with either of the two elements are identical. The code wouldthen go on and set the global
index of the degree of freedom associated with the second finite element to the same index
as that of the first. Note that for the hypotheticalC1 element above, the returned list would
also consist of a single pair of zeros, indicating that only the values, not the derivatives at a
vertex must coincide; on the other hand, if theC1 element implemented its shape functions
so that the later shape functions indicate derivatives in the global coordinate system, then
all four degrees of freedom must be the same and the finite element should return a list
{{0, 0}, {1, 1}, {2, 2}, {3, 3}}.

After this process, for the example given in Fig.s 3 and 4, degrees of freedom 9 and 11
have been removed, and the linked lists for verticesv1 andv4 now read as follows:

v1 0 1 1 1 ×

v4 0 3 1 3 ×

A similar process is then repeated for lines. In this case, online l5, we call a func-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 11

tion fe[f].hp line dof identities(fe[g]) which, for the pairQ2 andQ4 el-
ements, would return the list{{0, 1}}. This indicates that the first (and only) degree of
freedom of theQ2 element is identical to the second degree of freedom of theQ4 ele-
ment since they represent shape functions corresponding toidentical interpolation points.
A code similar to the one shown in Listing 1 would then yield the following list for this
line:

l5 0 7 1 19 7 21 ×

Note that we need not perform any such algorithm on cells, since they can only have a
single set of degrees of freedom associated with them. On theother hand, it is necessary
to do so for quadrilaterals in 3-d. At the end of all these operations and after eliminating
degrees of freedom 9, 11, and 20, we renumber all degrees of freedom to use a consecutive
range0, . . . 30.

Using this identification of degrees of freedom, we can immediately reduce the total size
of linear systems by a significant fraction: in the 2d test case shown in Section 6, some 6%
of degrees of freedom can be eliminated right away; in 3d, thefraction can be as high as
10-15%. This not only keeps matrices and vectors small, but also significantly reduces the
number of degrees of freedom on which we later have to apply hanging node elimination
as explained in the following section.

Unfortunately, a straight-forward adaptation to 3-d of theconcepts discussed here is not
possible, though the general idea and the basic algorithm remains the same. We will there-
fore come back to identifying degrees of freedom of different finite elements in Section 4.6.
This notwithstanding, we need finite element implementations to provide us with the the
following information:

REQUIREMENT ON IMPLEMENTATIONS 3. Finite element classes need to be able to
communicate to thehp::DoFHandler which degrees of freedom located on vertices,
edges, and faces of cells are identical even though they belong to finite elements of different
polynomial orders or even different kinds.

4.3 Interpolation on common faces between cells with different finite elements

The discrete functions which are represented by the finite element discretization have to
satisfy certain continuity requirements across the element edges in most cases. For exam-
ple, after the unification of degrees of freedom 1 and 9, 3 and 11, and 7 and 20 in Fig. 3
as discussed in the previous section, finite element functions on the left and right sides of
the edge separating the two cells will only be continuous forparticular values of degrees
of freedom 19 and 21. In this section, we will derive the conditions on these degrees of
freedom for the case that only the polynomial degreep of the ansatz spaces changes across
an edge in our mesh, as well as how such constraints are efficiently implemented. The
case that two neighboring cells also have differenth-refinement levels is treated in the next
section.

It is worth noting that these continuity requirements do notnecessarily mean that the
function itself has to be continuous across element edges. For example, discrete subspaces
of Hdiv only require continuity of the normal component along the faces between cells
(c.f. [Brezzi and Fortin 1991]). For the sake of simplicity,let us here only consider conti-
nuity of functions across element edges; it shall be understood that the same requirements
and assumptions also hold when the normal or tangential component has to be continuous
along element edges.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · W. Bangerth and O. Kayser-Herold

Let us first consider the simplest case of such constraints, i.e. the one corresponding to
the situation of Fig. 3. If we forget for a moment that we have already identified certain
degrees of freedom, then the continuity constraint requires that

u1ϕ1(x) + u3ϕ3(x) + u7ϕ7(x)

= u9ϕ1(x) + u11ϕ11(x) + u19ϕ19(x) + u20ϕ20(x) + u21ϕ21(x) (2)

for all x on the linel5. It is apparent in the present case that we need to restrict the
degrees of freedom on the element with the higher polynomialdegree, in order to enforce
this equality. We identify this situation by saying that theQ2 elementdominatestheQ4

element on a shared face. This leads us to the following requirement:

REQUIREMENT ON IMPLEMENTATIONS 4. An implementation needs to be able to de-
termine which of two finite elements that share a face dominates the other, or if neither
does.

We will comment on the last case at the end of this section. In the present situation,
and given the quadratic polynomials representingϕ1, ϕ3, ϕ7 and the quartic polynomials
ϕ9, ϕ11, ϕ19, ϕ20, ϕ21, it is readily checked that equality (2) implies

u9 = u1, u11 = u3, u20 = u7,

u19 =
3

8
u1 −

1

8
u3 +

3

4
u7, u21 = −

1

8
u1 +

3

8
u3 +

3

4
u7.

Note that the first three constraints have already been takencare of through identification
of the corresponding degrees of freedom as described in the previous section.

Above conditions can be written in a more compact way as follows, linking the degrees
of freedom of the side of the face with the higher polynomial degree to those on the side
with the lower degree:

u|dominated side ofl5 =

u9

u11

u19

u20

u21

=

1 0 0
0 1 0
3
8 − 1

8
3
4

0 0 1
− 1

8
3
8

3
4

u1

u3

u7

 = I face
Q4→Q2

u|dominating side ofl5.

(3)

For Lagrange interpolation polynomials, the matrixI face
Qk→Qk′

that appears in this rela-
tion is simple to compute by evaluating the 5 basis functionsof theQ4 element on the right
at the interpolation points of the 3 basis functions of theQ2 element on the left. However,
these matrices are more complicated to compute for elementswhere the degrees of free-
dom are moments on faces or where values and not only gradients of shape functions are
transformed by the mapping from reference to real cell; boththese cases apply to elements
such as the Raviart-Thomas element forHdiv.

REQUIREMENT ON IMPLEMENTATIONS 5. Finite element classes need to be able to
generate the constraint matricesI face as in (3) that enforce continuity requirements be-
tween cells associated with different finite element spaces. These matrices must be avail-
able for all possible pairs of spaces appearing in a triangulation.

We remark that an important requirement for this approach isthat the functions appear-
ing on one side of (2) must be able to exactly represent the functions on the other side.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 13

0

1

2

3
4

Q1

Q2

0

1 4

Q2

Q1
3

Q3
5

6

7
8

2

Fig. 5. The simple (left) and complicated (right) case ofh-refinement across a face between cells with different
finite element spaces associated with them. Only those degrees of freedom that are relevant for the interpolation
process are indicated.

For the chosen pair of spaces, this is obvious: the restriction ofQ4 onto a line is the space
of quartic polynomials that is of course able to represent the quadratic polynomials that
result from restrictingQ2 to this line, i.e. we say that theQ2 elementsdominatestheQ4

element. However, it is not always the case that one element dominates the other. For
example, consider the hypothetical situation of a mesh containing an edge where elements
meet that haveQ4 andR2,2 (the space of rational expressions with quadratic denominator
and enumerator) elements: neither of the two is able to represent the restriction of the other
one on a common edge, i.e. neither element dominates the other. Another, more practical
example, would be that one cell is home to aQ2 ×Q1 vector-valued element, whereas its
neighbor is associated with aQ1 ×Q2 element.

The solution to this case is to first identify a common subspace; in the first example
this could be the spaceQ2 of quadratic polynomials on this face, whereas in the second
we would chooseQ1 × Q1. The second step would then be to enforce constraints that
restrict finite element functions on both sides of the face tobe within this subspace, and in
addition to be equal along the face. In order to not restrict the global finite element space
more than necessary, we should attempt to find the largest admissible subspace along the
face. However, since this is a case that doesn’t appear to have much application in practical
finite element cases, we won’t dwell on it in more detail, but will come back to a closely
related case in Section 4.4.3.

4.4 Interpolation on refined faces between cells

The next case to consider is that ofh-refinement. Fig. 5 shows the two cases that can appear
in this situation: the left panel corresponds to the “simple” case where the element on the
large side of the face (here aQ1) dominates the one on the right (here aQ2). This also
includes the pureh-refinement case where both sides use the same element. In contrast,
the right panel shows the “complex” case where the dominating element sits on the refined
side of a face. We will discuss these two cases separately in the following.

4.4.1 The simple case.The “simple” case ofh-refinement is where the dominating
element is located on the unrefined side of the face, as shown in the left part of Fig. 5. In
the situation shown, to guarantee continuity at the sub-face (the shared part of the face),
we need the constraint

u0ϕ0(x) + u1ϕ1(x) = u2ϕ2(x) + u3ϕ3(x) + u4ϕ4(x). (4)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · W. Bangerth and O. Kayser-Herold

It is obvious that this constraint is enforceable since the restriction of theQ1 space on the
left to the sub-face is a linear function and that we can constrain the quadratic function on
the right to equal this linear function. In particular, it iseasy to show that we need

u|dominated side of subface=

u2

u3

u4

 =

1
2

1
2

0 1
1
4 − 3

4

(

u0

u1

)

= I
subface(sf)
Q2→Q1

u|dominating side of subface,

(5)

wheresf denotes the number of the subface we are presently looking at. As before, for
Qk elements, we can obtain the interpolation matrixIsubface(sf) by evaluating the shape
functions associated with the coarse side of the face at the interpolation points of the shape
functions on the refined side of the face.

REQUIREMENT ON IMPLEMENTATIONS 6. Finite element classes need to be able to
generate the constraint matricesIsubface(sf) as in(5), for each of the2dim−1 subfacessf of
a face. These matrices must be available for all possible pairs of spaces appearing in a
triangulation.

4.4.2 The complex case, approach 1.The more complicated case is the one shown
on the right of Fig. 5. The problem is that the linear (dominating) element is located on
the refined side of the subface. As we will see in the following, this case is riddled with
problems, false hopes, and traps; we will consider several cases and possible solutions that
illustrate why this case is hard.

A naive approach to the situation shown in Fig. 5 is as follows: In order to force conti-
nuity of finite element functions, we need to make sure that the three degrees of freedom
0, 1, and 2 of theQ2 element actually form a linear function, since otherwise there would
be no way the linear function on the upper rightQ1 cell could match the one on the left.
In general, we need to constrain the finite element space on the left of the refined face to
the most dominating space on the right, hereQ1. We could do that by constraining the left
face to the degrees of freedom 3 and 4 of the most dominating child face, i.e. to require

u|dominated side of face=

u0

u1

u2

 =

2 −1
0 1
1 0

(

u3

u4

)

= RI
subface(sf)
Q1→Q2

u|most dominating subface.

We call the matrixRIsubface(sf)
Q1→Q2

the reverse interpolation matrix. It is not hard to see that
for this particular subface, we can write it as

RI
subface(sf)
Q1→Q2

= I face
Q2→Q1

[

I
subface(sf)
Q1→Q1

]−1

=

1 0
0 1
1
2

1
2

(

1
2

1
2

0 1

)−1

. (6)

This formula can be understood as follows: Let us introduce the degrees of freedomx0, x1

of a virtual linear finite element space along the entire edge. The condition of continuity
then means that

u0

u1

u2

 = I face
Q2→Q1

(

x0

x1

)

,

(

u3

u4

)

= I
subface(sf)
Q1→Q1

(

x0

x1

)

.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 15

Q2

Q1

Q1 Q1

Q1

Q1

4

10 14

15

1

32

0

16

1312

5

9
6

8

11

7

Fig. 6. Illustration how the first approach leads to connected constraints: Geometry and associated finite element
spaces (left) and degrees of freedom (right).

It is now important to realize that the matrixIsubface(sf)
Q1→Q1

should always be invertible, even
if we replace the spaceQ1 by any other reasonable finite element space. This follows
from the fact that the matrix intuitively describes how a finite element space on a face is
restricted to the same space but on a subface. Its inverse, ifit exists, then describes how
a finite element function on a subface uniquely determines the function on the entire face.
Since we are dealing with polynomials, the existence and uniqueness of the inverse is easy
to see: polynomials are analytic functions, and its Taylor expansion on a subface therefore
uniquely determines its extension to the entire face. The matrix that relates the values of
this polynomial at disjoint interpolation points must consequently be invertible.

Given this, (6) is therefore a universal representation of the reverse interpolation matrix
that we can obtain by removing the virtual unknownsx0, x1 from the equations.

Using these formulas, we have now seen how to constrain the degrees of freedom on the
left Q2 side of the face. The remaining question is what to do with theother subfaces on
the right. To this end, note that we have chosen the most dominant finite element space
present on this face and its children to define the virtual unknownsx0, x1. Consequently,
all other subfaces can be constrained to it as well. For example, for theQ3 subface shown
in the figure, we would get

u5

u6

u7

u8

= I face
Q3→Q1

(

x0

x1

)

= I
subface(sf ′)
Q3→Q1

[

I
subface(sf)
Q1→Q1

]−1

u|most dominating subface.

Here,sf ′ is the subface with theQ3, andsf denotes the subface associated with the most
dominating finite element space, i.e. the one with theQ1.

So what is wrong with this approach? To see why this approach is not always successful,
consider the situation shown in Fig. 6. In this case, we get constraintsu6 = 1

2u0+ 1
2u2, i.e.

u6 is constrained tou0. On the other hand, we have to constrainu0, u7, andu10 to either
u0, u12, or to u10, u12. Let us assume we chose the second alternative. In that case,we
obtain the constraintu0 = 2u12 − u10. In effect,u6 is constrained to a degree of freedom
that is itself constrained.

We note that we could have avoided this here by choosing the second alternative. How-
ever, this would not have been the case if, for example, theQ1 element characterized by

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · W. Bangerth and O. Kayser-Herold

Q2

Q3

Q3

Q3

Q3

Q1

Q1

Q1

Q1
9

8

10

11

4 03

2 16

57

Fig. 7. Illustration how the first approach leads to circular constraints: Geometry and associated finite element
spaces (left) and those degrees of freedom relevant to the discussion (right).

degrees of freedom 12, 13, 0, and 16 were replaced by aQ3 element, in which case the
second alternative would have been forced upon us since we need to restrict to the most
dominating finite element space on a face.

So far, the constraints are not self-contradicting: as longas we get chains of constraints
u6 → u0 → u10, the constraints form an directed acyclic graph (DAG). Although it is
awkward to deal with such nested constraints in programs, itis certainly possible to deal
with them.

However, we can find situations where this graph has cycles. Consider, for example, the
situation shown in Fig. 7: On the bottom face, degrees of freedom 0, 3, and 8 have to be
constrained to theQ1 subface, i.e. to degrees of freedom 3 and 8. In particular, weget the
constraintu0 = 2u8 − u3. In a similar way, we getu1 = 2u9 − u0, u2 = 2u10 − u1, and
u3 = 2u11 − u2 on the other three faces of the central cell. Note how we have just created
a cycle in our directed graph of constraints.

Since we are unsure how to proceed both theoretically and practically, we believe that
this first approach of dealing with constraints in the “complex” case is not workable.

4.4.3 The complex case, approach 2.A second approach is to not constrain the de-
grees of freedom on the large side of the face to those of one ofthe subfaces, but among
themselves. Going back to the right side of Fig. 5, that wouldmean that we impose con-
straints only on degrees of freedom 0, 1, and 2 to make sure theresulting function is linear.
In the present case, this would require the constraintu2 = 1

2u0 + 1
2u1.

In the more general case, let us again introduce virtual degrees of freedomx that corre-
spond to the most dominant finite element restricted to a face, which we nameS. Then

u|coarse side of face= I face
Sface→Sx,

whereS face is the finite element space on the coarse side of the face. Since we have
assumed thatS face is dominated byS, we can divideu|coarse side of faceinto a set of master
and slave nodes such that

u|coarse side of face=

(

u|master
coarse side of face

u|slave
coarse side of face

)

=

(

I face, master
Sface→S

I face, slave
Sface→S

)

x.

Let us assume that we can subdivide degrees of freedom into master and slave nodes such
that I face, master

Sface→S
is an invertible square matrix (an assumption that we will discuss below),

then we can conclude that

u|slave
coarse side of face= I face, slave

Sface→S
x = I face, slave

Sface→S

[

I face, master
Sface→S

]−1

u|master
coarse side of face.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 17

Now that we know how to deal with the degrees of freedom on the coarse side of the
face, it is clear that we can deal with the subfaces as follows:

u|subfacesf = I
subface(sf)

Ssubface(sf)→S
x = I

subface(sf)

Ssubface(sf)→S

[

I face, master
Sface→S

]−1

u|master
coarse side of face.

Here,Ssubface(sf) is the finite element space on subfacesf .
Using this second approach, one can easily construct situations where one gets chains

of constraints. For example, theQ3 degrees of freedom on the interface between the small
Q1 andQ3 cells at the bottom of Fig. 7 (though not explicitly shown) will be constrained
to the degrees of freedom located on the two vertices of the common edge. One of those is
degree of freedom 8, which is itself constrained to degrees of freedom 0 and 3.

However, it is easy to prove that with this second approach there can be no cycles in the
graph of constraints: resulting from the definition of dominance of spaces, each constraint
is always from a degree of freedom to other ones associated with a strictly smaller embed-
ded finite element space. The fact that this wasn’t the case for the first approach illustrates
immediately why that approach was prone to failure.

We conclude this subsection with a discussion of the slight complication of how to
choose the subdivision of nodes on the coarse side of the faceinto master and slave nodes,
u|master

coarse side of faceandu|slave
coarse side of face. First, let us note that the matrixI face

Sface→S
necessarily

must have full column rank, since it is the matrix that interpolates the shape functions of
the dominating spaceS at the support points of the dominated spaceS face. AssumingS to
be unisolvent, i.e. consisting of linearly independent shape functions, and assuming that no
two interpolation points ofS face coincide, then the full column rank immediately follows.
Consequently, we can hope that we can select certain linearly independent rows ofI face

Sface→S

to form an invertible matrixI face,master
Sface→S

.
The selection of these rows, however, turns out to be more involved than one would

think at first. In particular, one can not simply take the firstnS of thenSface rows, since
they sometimes are linearly dependent. It is conceivable that one could devise an exact
strategy for this problem, though we are not aware of any suchapproach and therefore
chose to implement a heuristic: ifnvertex

S , nline
S , nquad

S are the number of degrees of freedom
associated with each vertex, line, and quad of the dominating spaceS, then select the first
nvertex

S degrees of freedom from each vertex in the dominated spaceS face as master nodes,
then the firstnline

S degrees of freedom from each line, and so on.
Using this heuristic almost always produces a matrixI face,master

Sface→S
that is invertible. In our

experiments, the only cases where it fails are in 3-d when aS face = Q4 (or higher) element
on a coarse cell neighbors aS = Q3 (or higher) element on a set of refined cells. If we
encounter such a situation, we drop the last master node to beadded to the list and replace
it with a slave node, until we end up with an invertible matrix. The checks for this are
numerically expensive, but given the rarity of using such high polynomial degrees in 3-d
and that the subdivision into master and slave nodes has to bedone only once per program
run, the additional effort is negligible.

4.5 Complications in 3-d: Seemingly incompatible constraints

Faces between cells, i.e. lines in 2-d and quadrilaterals in3-d, are special in that they are
shared between exactly two cells. Consequently, dealing with them is fairly straightfor-
ward, despite the length of the discussion above. On the other hand, vertices in 2-d and
lines in 3-d can have arbitrarily many finite elements associated with them. While this is

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · W. Bangerth and O. Kayser-Herold

3

4

2

1

0

Q1

Q2
Q3 6

5

2

3

4
2

1

0

Q2

Q4
Q3

Fig. 8. Left: Depiction of three hexahedral cells meeting at a common edge. The cell in the background is
associated with aQ1 element and has degrees of freedom 0 and 1 on the common edge. The element in the
background is aQ2 and carries degrees of freedom 0, 1, and 2. The element on the right is aQ3 with degrees of
freedom 0, 1, 3, and 4. Only degrees of freedom on the common edge are shown. Right: The same situation with
Q2, Q3, andQ4 elements meeting at a common edge.

not much of a problem in 2-d since only slightly uncommon elements (such asC1 con-
tinuous elements) have more than one degree of freedom associated with each vertex, it
is perhaps not surprising that the situation is more complexin 3-d and generates an ad-
ditional set of problems. (Vector-valued elements such asQk

d of course have more than
one degree of freedom per vertex, but they can be decomposed into their individual vector
components, each of which is handled independently.)

Consider, for example, the situation shown in the left panelof Fig. 8. There, we have
three cells associated withQ1, Q2, andQ3 elements meeting at a common edge. If we,
for example, first treat the face between theQ2 andQ3 elements, we would record the
constraint

u3 = 2
9u0 −

1
9u1 + 8

9u2.

However, if we treat the face between theQ3 and theQ1 elements next, we would discover
the constraint

u3 = 2
3u0 + 1

3u1.

It is important to note that these seemingly incompatible constraints onu3 are in fact the
same since we will later discover thatu2 = 1

2u0 + 1
2u1 when we treat the face between the

Q2 andQ1 elements, and we can expand the first constraint onu3 into the second form by
resolving the chain of constraints.

REQUIREMENT ON IMPLEMENTATIONS 7. An implementation has to be able to keep
track which degrees of freedom are already constrained, andsimply ignore constraints
generated for degrees of freedom for which other constraints have already been registered.

While this is a simple solution, it is bothersome that one loses the ability for safety
checks by just throwing away a constraint. It would be nicer if we could keep it, expand
the constraint later on whenu2 is resolved, and then make sure that it equals the original
constraint with which it appeared to conflict. A defensive implementation would therefore
follow this latter strategy, in order to ensure that our computations are correct, and produce
an error if the two constraints are not the same. We have foundthis strategy of perva-
sive and exhaustive internal consistency checks of great value in finding obscure bugs and
corner cases in our implementation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 19

4.6 Complications in 3-d: Seemingly circular constraints

Yet another situation is shown in the right panel of Fig. 8. The situation is similar to the
one discussed in the preceding subsection, but with polynomial degrees increased by one.
The additional complication is introduced because we have identified the middle degree of
freedom on theQ4 side of the edge with degree of freedom 2 of theQ2 side of the edge,
using the algorithm of Section 4.2. Now, when we build constraints for the face between
theQ4 andQ3 elements, we realize that the latter element dominates the former one, and
therefore has to register constraints for degrees of freedom u2, u5, andu6. In particular,
we find

u2 = − 1
16u0 −

1
16u1 + 9

16u3 + 9
16u4.

On the other hand, we find when dealing with the face between theQ3 andQ2 elements
the constraint

u3 = 2
9u0 −

1
9u1 + 8

9u2.

This is a circular constraintu2 → u3 → u2.
We have not found a fully satisfactory solution to this problem. Ideally, one would like

to exclude those degrees of freedom from identification (as described in Section 4.2 that
will later create such trouble. Here, this means that the middle degree of freedom on the
Q4 edge should not have been identified with the degree of freedom 2 of theQ2 edge.
However, writing a routine that pre-scans for the potentialfor trouble appears complicated.
Our solution is to simply not identify any degrees of freedomwhenever there are three or
more finite elements associated with an edge in 3-d, in contrast to the algorithm shown in
Listing 1.

Note that this actually only concerns a relatively small number of degrees of freedom,
since the restriction only triggers in 3-d and on edges at which cells meet that have at least
three different finite elements associated with them. Most often, however, the smoothness
of solutions changes gradually and the regions of the domainassociated with a particular
finite element form shells with interfaces where only two different finite elements meet.

5. EFFICIENT HANDLING OF CONSTRAINTS

After applying the strategies of the previous section, we now have a set of degrees of
freedom many of which are constrained. (In a slight abuse of language, we will call them
“constrained degrees of freedom”.) In practical applications such as those shown below,
up to 20% of the total number of degrees of freedom can be constrained. Their efficient
handling is therefore of importance, and involves two aspects: storing the information
about constraints, and applying these constraints to linear systems of equations. We will
discuss these in the following.

5.1 Data structures for constraints

All the constraints we have constructed in the previous sections are homogeneous, i.e. have
the form

cTi U = 0,

whereci, i = 1, . . . , I is a vector of weights for theith constraint, andU is the vector of
unknownsuk, k = 1, . . . , N . The set of all constraints can therefore be written asCU = 0,
and we callC theconstraint matrix.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · W. Bangerth and O. Kayser-Herold

Because constraints typically only involve a small number of unknowns,ci is a sparse
vector and storing constraints as a set of full vectors is notefficient. In addition, we use
that each constraintci corresponds to one particular degree of freedomq(i) that is con-
strained by the values ofLi other degrees of freedom with indicesrl(i), l = 1, . . . , Li. In
other words, we can normalizeci such that(ci)q(i) = 1 to obtain the following form of
constrainti:

uq(i) = −

Li
∑

l=1

(ci)rl(i)url(i). (7)

A suitable and efficient storage format for the constraint matrix is therefore a list of length
I, where each entry contains first the indexq(i) of the constrained degree of freedom, and
secondly a list of lengthLi of pairsrl(i), (ci)rl(i). This format is memory efficient and
well suited to the operations involving constraint matrices described below.

5.2 Applying constraints

With this definition of constraints, the problem we need to solve isAU = F , whereA is the
matrix with entriesaij = b(ϕi, ϕj) obtained from the bilinear formb(·, ·) of the problem
involving all shape functionsϕi (corresponding to unconstrained and constrained degrees
of freedom) andF the corresponding right hand side. In addition, we have to enforce
our constraintsCU = 0. In general, however, this constrained form is not particularly
suitable, since, among other reasons, it is already unclearwhether this set of two equations
will have a solution at all. (It is easy to show the existence of a unique solution ifA
corresponds to a positive definite operator such as the Laplacian, but the problem becomes
more complicated with indefinite operators where the solution is no longer derived through
the minimization of an energy.)

Instead, let us adopt a viewpoint dual to that considering constraints. In the approach
outlined above, we obtain a system of linear equations by consideringall shape functions
ϕi and then solve it subject to constraints. We need the constraints since in general the
linear combinationuh(x) =

∑

i uiϕi(x) is not going to be a function that satisfies the
continuity requirements of a suitable function space when hanging nodes are present. This
can easily be seen on the usualQr shape functions, where the functions associated with
hanging nodes are discontinuous and therefore notH1-conforming; this non-conformity is
shown in Fig. 9. On the other hand, the linear combinationuh(x) =

∑

i uiϕi(x) is indeed
a continuous function if the constraints are respected.

The alternative viewpoint is to construct a setϕ̃i of conforming shape functions (i.e., in
the case ofH1 conformity a set of continuous shape functions) from the functionsϕi that
are defined locally on each cell without respect to hanging nodes. We can clearly find as
many conforming shape functions̃ϕi as there are unconstrained degrees of freedom on a
mesh. For example, Fig. 10 shows the two conforming shape functions associated with the
refined edge of the mesh shown in Fig. 9. For the case shown, these functions are

ϕ̃0 = ϕ0 +
1

2
ϕ2, ϕ̃1 = ϕ1 +

1

2
ϕ2.

In the general case, we can find these so-called “condensed” shape functioñϕi for each

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 21

0

1

2Q1

Fig. 9. Bilinear (Q1) shape functions on an adaptively refined mesh. Top left: Mesh and enumeration of degrees
of freedom. Top right, bottom left, bottom right: Shape functionsϕ0, ϕ1, ϕ2 as defined by mapping vertex shape
functions defined on each of the cells individually to the cells to which the corresponding vertex is adjacent. Note
that the shape functions are discontinuous.

Fig. 10. “Condensed” shape functions for the adaptive mesh shown in Fig. 9.

unconstrained degree of freedom as follows:

ϕ̃i = ϕi +
∑

j constrained DoF

(cj)i ϕj ,

where(cj)i is thei-th component of the constraint vector corresponding to a constrained
degree of freedomj. With these new, conforming shape functions, we then obtainthe
“condensed” linear system̃AU = F̃ where

ãij =

b(ϕ̃i, ϕ̃j) if degrees of freedomi, j are both unconstrained,
1 if i = j and degrees of freedomi is constrained,
0 if degree of freedomi or j is constrained buti 6= j.

f̃i =

{

(f, ϕ̃i) if degree of freedomi is unconstrained,
0 if degree of freedomi is constrained.

The solution of this condensed linear system uniquely determines the values of those de-
grees of freedom that are unconstrained. The values of the constrained degrees of freedom

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · W. Bangerth and O. Kayser-Herold

for (unsigned int i=0; i<n_constrained_dofs; ++i) {
for (unsigned int l=0; l<L_i; ++l)

F(r_l(i)) += c_i(l) * F(q(i));
F(q(i)) = 0;

}

Listing 2. Condensing constrained degrees of freedom from a right handside vector. The
symbolsL i, c i(l), andq(i) correspond toLi, (ci)rl(i), andq(i) in equation(7).

for (unsigned int i=0; i<n_constrained_dofs; ++i)
for (unsigned int j=0; j<n_dofs; ++j) {

for (unsigned int l=0; l<L_i; ++l)
A(r_l(i),j) += c_i(l) * A(q(i),j);

A(q(i),j) = 0;
}

Listing 3. A naive algorithm for condensing the rows of a matrix corresponding to con-
strained degrees of freedom.

can be obtained from the equationCU = 0.
The beauty of the approach lies in the fact that we can still assemble the matrix and

the right hand side vectorsA,F as before, i.e. using exclusively the original, possibly
nonconforming shape functions that are defined on each cell without regard for the fact that
they may be located on a hanging node. The condensed formsÃ, F̃ are then, in a second
step, obtained by a condensation procedure. For example, forF , we need to take each entry
Fj that belongs to a constrained degree of freedomj, then for each0 ≤ i < N multiply it
by a factor(cj)i, and add it to row or columni. This corresponds to the operation

F̃i = (f, ϕ̃i) =

f, ϕi +
∑

j constrained DoF

(cj)i ϕj

 = (f, ϕi) +
∑

j constrained DoF

(cj)i (f, ϕj)

= Fi +
∑

j constrained DoF

(cj)i Fj .

Subsequently, the entries̃Fj are set to zero. An algorithm to implement this is shown in
Listing 2. A similar procedure can be applied to obtainÃ fromA, by copying and adding
the rows and columns of the matrix corresponding to constrained degrees of freedom to
those of the unconstrained nodes. The rows and columns are then zeroed out, and the
diagonal entry is set to one to ensure regularity of the resulting matrix.

Given the numberM = O(N) of constraints inhp computations, it is important that
the condensation of the matrix and right hand side vector canbe performed efficiently.
From Listing 2 and using thatLi is a numberO(1) that only depends on the kind of finite
elements in use and the topology of the mesh, it is clear that condensingF is an operation
of complexityO(M) = O(N).

The situation is more complicated when condensing matrices. First, it may be necessary
to add certain elements to the sparsity pattern of the matrix. Second, care must be taken

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 23

to avoid a quadratic complexity of the algorithm. Listing 3 shows a naive implementation
of eliminating rows corresponding to constrained degrees of freedom. As written, the
algorithms complexity isO(sMN) = O(sN2), wheres = O(1) is the cost of writing
to a random entry of a given row. When operating on sparse matrices, it is clear that one
doesn’t need to loop over all entries of a row (thej loop in the code), but only over the
O(1) nonzero entries, reducing the complexity toO(sN). On the other hand, with the
usual compressed row storage of sparse matrices, care must be taken to ensure that the cost
s stays within reasonable bounds even for matrices with many entries per row, for example
T entries per row, i.e. withs = O(log T) instead ofs = O(T).

A similar algorithm then subsequently eliminates the column that corresponds to this
degree of freedom. A careful implementation of these ideas,as present in deal.II, will yield
a rather complicated code that, however, runs inO(N) and therefore at a better complexity
than most linear solvers.

6. NUMERICAL RESULTS

In this section, we present some numerical examples that demonstrate how the imple-
mentation of the ideas outlined in previous sections perform in a practical implementa-
tion. In particular, we will investigate the run-time behavior of the various steps of thehp
method identified above, and implemented in release 6.0 of the deal.II finite element library
[Bangerth et al. 2007b; 2007a]. The program with which the results below are generated
is a slight modification of the extensively documented step-27 tutorial program of deal.II.
All computations were performed on a system equipped with Opteron 8216 processors and
16GB of memory.

Both numerical examples solve the linear Poisson equation,−∆u = f . Since all al-
gorithms described above are independent of the actual problem solved, it is of no further
consequence that we do not solve a more complicated equation.

Example 1.In this first example, we solve on a square domain with a hole,Ω =
[−1, 1]2\[− 1

2 ,
1
2]2, using the right hand sidef(x, y) = (x + 1)(y + 1), and usinghp

finite elementsQk with orders2 ≤ k ≤ 8.
The solution of this problem is shown in Fig. 11, together with the mesh after a few steps

of adaptive refinement and a distribution of finite elements onto this mesh.2 The algorithm
to determine whether to refineh or increasep on a given cell uses an error indicator and
a simple criterion to estimate the smoothness of the solution of this cell. Looking at the
right panel of Fig. 11, we see that the polynomial degree is indeed low in the vicinity of
the singularities close to re-entrant corners as well as along the boundary, and high in the
interior. This corresponds to the expected smoothness properties of the solution. Whether
this particular arrangement of elements is in fact optimal (which it certainly isn’t) is outside
the scope of this contribution: we only want to investigate how our algorithms perform for a
given distribution of finite elements onto a mesh, not the optimal choice of finite elements.
For details of theh refinement andp assignment algorithms, we refer to the documentation
of the step-27 tutorial program [Bangerth et al. 2007b].

Given this, the left panel of Fig. 12 shows the growth of the number of degrees of
freedom ashp refinement iterations proceed, as well the number of constrained degrees

2The solution looks blocky since we output it as a bilinear interpolation even on cells with high polynomial
degree. The actual computed solution is much more accurate than depicted.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · W. Bangerth and O. Kayser-Herold

no name �� no name ��

Fig. 11.Results for example 1. Left: The solutionu. Center: The mesh used for the discretization in the seventh
adaptive refinement step. Right: The distribution of polynomial degrees onto cells.

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16

Refinement step

Degrees of freedom
Constrained DoFs

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000

T
im

e
in

 s
ec

on
ds

Degrees of freedom

Total time
Allocation of DoFs

Construction of constraints
Elimination of constraints

Assembly of linear system

Fig. 12. Results for example 1 for a sequence of adaptively refined meshes. Left: Growth of the total number of
degrees of freedom and the number of constrained degrees of freedom as refinement iterations proceed. Right:
Compute times in seconds for (i) total compute time excluding postprocessing on one mesh, (ii) allocation and
identification of degrees of freedom alone, (iii) construction of constraints alone, (iv) elimination of constrained
degrees of freedom from the linear system alone, and (v) assembly of the linear system alone.

of freedom. The latter number is roughly constant at about 20% of the total.
The right panel shows a view of where the compute time for the numerical solution of

this problem is spent. The total time used on each mesh grows approximately likeO(N1.5),
whereN is the total number of degrees of freedom; this rate can be expected for the SSOR
preconditioned Conjugate Gradient solver we use in this computation. This total compute
time is in fact entirely dominated by solving the linear system, which consumes more than
95% of the compute time forN ≥ 105.

The rest of the time is spent on assembling the linear system (3% for N=105) and various
other tasks. Among thehp specific activities, both allocating degrees of freedom (see the
discussion in Sections 3 and 4.2) and computing constraints(see Sections 4.3–4.5 and 5.1)
take negligible fractions of the total compute time, and only the elimination of constrained
nodes from the linear system (see Section 5.2) is noticeable. However, even the latter
takes less than 2% of the total compute time on finer grids, andfurthermore grows at a
complexity of onlyO(N) and therefore slower than the overall solver process.3

In summary, we can conclude from this example that thehp specific algorithms do not

3A better fit for the data points involved is in factO(sN), wheres = log T with T the number of nonzero
entries per row. HereT grows with refinement iterations since the average polynomial degree of shape functions
on cells grows. The observation is then consistent with the estimates given in Section 5.2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 25

no name ��no name ��

Fig. 13. Results for example 2. Left: The solutionu. Right: The mesh and distribution of polynomial degrees
onto cells after five refinement steps.

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7

Refinement step

Degrees of freedom
Constrained DoFs

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06

T
im

e
in

 s
ec

on
ds

Degrees of freedom

Total time
Allocation of DoFs

Construction of constraints
Elimination of constraints

Assembly of linear system

Fig. 14. Results for example 2 for a sequence of adaptively refined meshes. Left: Growth of the total number of
degrees of freedom and the number of constrained degrees of freedom as refinement iterations proceed. Right:
Compute times in seconds for (i) total compute time excluding postprocessing on one mesh, (ii) allocation and
identification of degrees of freedom alone, (iii) construction of constraints alone, (iv) elimination of constrained
degrees of freedom from the linear system alone, and (v) assembly of the linear system alone.

significantly contribute to the overall compute time of the finite element solution of this
problem. An obvious opportunity of improvement is clearly the simplistic linear solver,
although this is outside the scope of this paper.

Example 2.In our second example, we solve on a realistic 3d domain previously already
used in the simulation of breast cancer imaging [Bangerth etal. 2007a; Hwang et al. 2006],
see Fig. 13. As a right hand side, we usef(x, y, z) = 1 in the wedgex > |y|, and
f(x, y, z) = 0 otherwise. We use elementsQk with orders2 ≤ k ≤ 5.

Compared to the 2d example, the solver is still the most time consuming part of the
program, but assembling the linear system now takes up to 22%, and eliminating con-
strained degrees of freedom from the matrix and the sparsitypattern takes another 11%.
On the other hand, actually computing these constraints, i.e. to form the constraint matrix
C discussed in Section 5.1 takes less than 0.5%, and all other tasks are also negligible.

The fact that assembling the linear system takes a significant component of the over-
all compute time does not come as much of a surprise, and is well known for higher-
order finite elements in 3d. One of the available strategies to improve this situation is
to pre-compute some of the matrix components, as explained for example in [Kirby and

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · W. Bangerth and O. Kayser-Herold

Logg 2006]. We were surprised, however, that eliminating constraints is so expensive.
In our initial implementation, eliminating constrained degrees of freedom from the col-
umn compressed storage sparsity pattern was the largest factor in overall compute time.
We consequently changed the data structures used to store anintermediate form of the
sparsity pattern (see the documentation of theCompressedSparsityPattern and
CompressedSetSparsityPattern classes at [Bangerth et al. 2007b]) and thereby
reduced the time for elimination by about a factor of 6, leading to the numbers quoted
above. On the other hand, the fact that tampering with matrices and sparsity patterns
should not have come entirely unexpected given that in 3d aQ5 element has 216 degrees
of freedom on each cell, and a typical row in the system matrixcan have more than 300
nonzero entries. Given these algorithmic improvements, itis reassuring to see that the lin-
ear solver is still the dominant part of the simulation, implying that even in 3d,hp finite
elements are very much a feasible and usable technology.

7. CONCLUSIONS

The implementation of fullyhp adaptive finite element methods for general classes of
elements is a complicated task, sometimes rumored to be “orders of magnitude harder”
than non-hp methods. While the mathematics of such methods are well described in the
literature, there do not appear to be very many attempts to actually implement it beyond
discontinuous Galerkin methods for which the method does not require the construction of
hanging node constraints.

In the current paper, we have described the many components necessary to implement
hp methods for general combinations of finite elements and bothin 2d and 3d (the 1d case
is so notably absent of any particular problems that we did not discuss our implementation),
and the complications and pitfalls one runs into. The techniques discussed here provide the
generic algorithms that can make this implementation work not only forQk elements, but
general combinations of elements. Actual instances of finite element classes essentially
only have to describe equivalences between degrees of freedom on vertices, edges, and
faces, and provide matrices that describe interpolation from one element to another on
faces and subfaces between cells. Beyond that, the generic algorithms discussed can work
independently of the actual elements involved. In particular, this includesHdiv [Brezzi
and Fortin 1991] andHcurl [Nedelec 1980] elements, but also immediately vector-valued
elements for problems with more than one solution variable.

In the final section of this paper, we also demonstrated that our algorithms are effi-
cient, i.e. that they are cheap compared to the expensive parts of finite element programs:
assembly of linear systems and solving them. This demonstrates that it is possible to im-
plementhp finite elements efficiently, even for continuous and 3d elements. A reference
implementation of our ideas, as well as the tutorial programstep-27 explaining the use of
hp adaptivity, is available as part of release 6.0 of the Open Source finite element library
deal.II [Bangerth et al. 2007b].

Finally, we can also address the question whetherhp is hard to implement: we estimate
that to fully address the problems discussed in this paper, we had to implement less than
20,000 lines of code on top of what deal.II already had to offer. This is comparable to
probably less than one year of work for a skilled and trained individual already familiar
with the internals of deal.II. This has to be compared to a total of roughly 360,000 lines of
code presently in deal.II, of which maybe 100,000 are part ofthe low-level core that deals

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Data Structures and Requirements for hp Finite Element Software · 27

with meshes, degrees of freedom, and finite elements. In other words, while a significant
and certainly non-trivial task, the implementation of the ideas in this paper is clearly not
“orders of magnitude” more difficult than a reasonably general implementation of the finite
element method.

REFERENCES

BABUŠKA, I. 1981. Error estimates for the combinedh andp version of finite element method.Numer. Math. 37,
252–277.

BANGERTH, W., HARTMANN , R.,AND KANSCHAT, G. 2007a. deal.II – a general purpose object oriented finite
element library.accepted for publication in ACM Trans. Math. Softw..

BANGERTH, W., HARTMANN , R., AND KANSCHAT, G. 2007b. deal.II Differential Equations Analysis
Library, Technical Reference. http://www.dealii.org/.

BREZZI, F. AND FORTIN, M. 1991.Mixed and Hybrid Finite Element Methods. Springer.
CAREY, G. F. 1997.Computational Grids: Generation, Adaptation and SolutionStrategies. Taylor & Francis.
CASTILLO , P., RIEBEN, R.,AND WHITE, D. 2005. FEMSTER: An object-oriented class library of higher-order

discrete differential forms.ACM Trans. Math. Software 31, 425–457.
CIARLET, P. G. 1978.The Finite Element Method for Elliptic Problems, First ed. Studies in Mathematics and

its Applications, vol. 4. North-Holland, Amsterdam, New York, Oxford.
DEMKOWICZ, L. 2006. Computing with hp-adaptive finite elements. Volume 1: One and Two Dimensional

Elliptic and Maxwell Problems. Chapman & Hall.
FRAUENFELDER, P.AND LAGE, C. 2002. Concepts – An object-oriented software package for partial differen-

tial equations.M2AN 36, 937–951.
GILBARG , D. AND TRUDINGER, N. S. 1983.Elliptic Partial Differential Equations of Second Order, Second

ed. Springer, Heidelberg.
GUO, B. AND BABUŠKA, I. 1986a. The h-p version of the finite element method. Part I: The basic approximation

results.Comp. Mech. 1, 21–41.
GUO, B. AND BABUŠKA, I. 1986b. The h-p version of the finite element method. Part II: The general results

and application.Comp. Mech. 1, 203–220.
HOUSTON, P., SCHÖTZAU, D., AND WIHLER, T. P. 2007. Energy norm a posteriori error estimation ofhp-

adaptive discontinuous galerkin methods for elliptic problems.M3AS 17, 33–62.
HOUSTON, P.AND SÜLI , E. 2005. A note on the design ofhp-adaptive finite element methods for elliptic partial

differential equations.Comp. Meth. Appl. Mech. Engrg. 194, 229–243.
HOUSTON, P., S̈ULI , E., AND WIHLER, T. P. 2007. A posteriori error analysis ofhp-version discontinuous

galerkin finite element methods for second-order quasilinear elliptic problems.submitted to IMA J. Numer.
Anal..

HWANG, K., PAN , T., JOSHI, A., RASMUSSEN, J. C., BANGERTH, W., AND SEVICK-MURACA, E. M.
2006. Influence of excitation light rejection on forward model mismatch in optical tomography.Phys. Med.
Biol 51,22, 5889–5902.

K IRBY, R.AND LOGG, A. 2006. Optimizing the FEniCS form compiler FFC: Efficientpretabulation of integrals.
submitted to ACM Trans. Math. Softw..

K IRK , B. S., PETERSON, J. W., STOGNER, R. H.,AND CAREY, G. F. 2007. libMesh: A C++ library for parallel
adaptive mesh refinement/coarsening.Engineering with Computers, accepted for publication.

NEDELEC, J.-C. 1980. Mixed finite elements inR3. Numer. Math. 35, 315–341.
PESCH, L., BELL , A., SOLLIE , H., AMBATI , V. R., BOKHOVE, O.,AND VAN DER VEGT, J. W. 2007. hpGEM

– A software framework for discontinuous Galerkin finite element methods.submitted to ACM Trans. Math.
Sofw..

RHEINBOLDT, W. C. AND MESZTENYI, C. K. 1980. On a data structure for adaptive finite element mesh
refinements.ACM Trans. Math. Software 6, 166–187.

RIVARA , M. C. 1984. Mesh refinement processes based on the generalized bisection of simplices.SIAM J.
Numer. Anal. 21, 604–613.

ŠOLÍN , P.,ČERVENÝ , J.,AND DOLEŽEL, I. 2006. Arbitrary-level hanging nodes and automatic adaptivity in
the hp-FEM.accepted for publication in Math. Comput. Sim..

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

