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Abstract. Since problems involving the estimation of distributed coefficients in partial differ-
ential equations are numerically very challenging, efficient methods are indispensable. In this paper,
we will introduce a framework for the efficient solution of such problems. This comprises the use of
adaptive finite element schemes, solvers for the large linear systems arising from discretization, and
methods to treat additional information in the form of inequality constraints on the parameter to
be recovered. The methods to be developed will be based on an all-at-once approach, in which the
inverse problem is solved through a Lagrangian formulation.

The main feature of the paper is the use of a continuous (function space) setting to formulate
algorithms, in order to allow for discretizations that are adaptively refined as nonlinear iterations
proceed. This entails that steps such as the description of a Newton step or a line search are first
formulated on continuous functions and only then evaluated for discrete functions. On the other
hand, this approach avoids the dependence of finite dimensional norms on the mesh size, making
individual steps of the algorithm comparable even if they used differently refined meshes.

Numerical examples will demonstrate the applicability and efficiency of the method for problems
with several million unknowns and more than 10,000 parameters.
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1. Introduction. Parameter estimation methods are important tools in cases
where quantities we would like to know, such as material parameters, cannot be
measured directly, but where only measurements of related quantities are available.
In such cases one attempts to find a set of parameters for which the predictions of
a mathematical model, the equation of state, best match what has actually been
observed. Parameter estimation is therefore a problem that can be described as
an optimization problem: minimize, by variation of the unknown parameter, the
misfit between prediction and actual observation, subject to the constraint that the
prediction satisfies the state equation.

If the state equation is a differential equation, such parameter estimation prob-
lems are commonly referred to as inverse problems. These problems have a vast
number of applications. For example, identification of the underground structure
(e.g. the elastic properties, density, electric or magnetic permeabilities of the earth)
from measurements at the surface, or of the groundwater permeability of a soil from
measurements of the hydraulic head fall in this class. Likewise, many biomedical
imaging modalities, such as computer tomography, electrical impedance tomography,
or several optical tomography modalities can be cast as inverse problems.

The case we are interested in here is recovering a distributed, i.e. spatially variable,
coefficient. Oftentimes, such problems are found when trying to identify inhomoge-
nous material properties as in the examples mentioned above. In particular, we will
consider cases where we make many experiments to identify the parameters. Here,
by an experiment we mean subjecting the physical system to a certain forcing and
measuring its response. For example, in computer tomography, a single experiment
would be characterized by irradiating a body from a given angle and measuring the
transmitted part of the radiation; the multiple experiment situation is characterized
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by using data from various incidence angles and trying to find a set of parameters
that matches all the measurements at the same time (joint inversion). Likewise, in
geophysics, a single experiment would be placing a seismic source somewhere and
measuring reflection data at various receiver position; the multiple experiment case
is taking into account data from more than one source position. We may also include
entirely different kinds of data, e.g. use both magneto-telluric and gravimetry data
for a joint, multi-physics inversion scenario.

This paper is devoted to the development of efficient techniques for the solution
of such inverse problems where the state equation is a partial differential equation
(PDE), and the parameters to be determined are one or several distributed functions.
It is well-known that the numerical solution of PDE constrained inverse or opti-
mization problems is significantly more challenging than that of a PDE alone (see,
e.g., [13]), since the optimization procedure is usually iterative and in each iteration
may need the numerical solution of a large number of partial differential equations.
In some applications, several ten or hundred thousand solutions of linearized PDEs
are required to solve the inverse problem, and each PDE may be discretized by up to
several hundred thousand unknowns.

Although it is obvious that efficiency of solution is a major concern for this class
of problems, efficient methods such as adaptive finite element techniques have not
yet found widespread application to inverse problems and are only slowly adopted
in the solution of PDE constrained optimization [9–11, 19, 20, 28, 28–30, 34, 41, 44,
45]. Rather, in most cases, the continuous inverse problem is first discretized on a
predetermined mesh, and the resulting nonlinear problem is then solved using well-
understood finite dimensional methods such as Newton’s method or a variant of it.
On the other hand, discretizations can not be changed by adapting the mesh between
nonlinear iterations, and the potential to significantly reduce the numerical cost by
taking into account the spatial structure of solutions is lost. This is because a change
in the discretization changes the size of finite dimensional problems, rendering finite-
dimensional convergence criteria such as norms meaningless.

The goal of this paper is therefore to devise a framework for adaptive finite element
techniques. By using such adapted meshes, we can not only significantly reduce the
numerical effort needed to solve inverse parameter estimation problems, but the ability
to choose a discretization mesh coarse where we lack information or where a fine mesh
is not required also makes the inverse problem better posed. To achieve this goal, the
main novel ingredients will be:

• formulation of all algorithms in function spaces, i.e. before rather than after
discretization, since this gives us more flexibility in discretizing as iterations
proceed, and resolves all scaling issues related to differing mesh sizes;

• the use of adaptive finite element techniques with mesh refinement based on
a posteriori error estimates;

• the use of different meshes for the discretization of different quantities, for ex-
ample of state variables and of parameters, in order to reflect their respective
properties;

• the use of Newton-type methods for the outer (nonlinear) iteration, and of
efficient linear solvers for the Newton steps;

• the use of approaches that allow for the parallelization of work, yielding sub-
problems that are equivalent to only forward and adjoint problems;

• the inclusion of pointwise bounds on the parameters into the solution process.

Except for the derivation of error estimates, which we defer to future work (see also
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[4]), we will discuss all these building blocks, and will show that these techniques
allow us to solve problems of the size outlined above.

We envision that the techniques to be presented are used for relatively complex
problems. Thus, we will state them in the setting of a generic inverse problem. In
order to explain their concrete structure, we will define a model problem involving the
Poisson equation and apply the framework to it. Numerical examples at the end of
the paper will show this model problem as well as application of the framework to a
significantly more complex case in optical tomography. Applications of the framework
to other problems in acoustic scattering can be found in [4], and further work in optical
tomography in biomedical imaging is also presented in [35, 37].

Solving large-scale multiple-experiment inverse problems requires algorithms on
several levels, all of which have to be tailored to high efficiency. In this article, we
will review the building blocks of a framework for this:

• formulation as a Lagrangian optimization problem with PDE constraints (Sec-
tion 2); a model problem is given in Section 3;

• outer nonlinear solution by a Gauss-Newton method posed in function spaces
(Section 4);

• discretization of each Newton step by finite elements on independent meshes
(Section 5);

• Schur complement solvers for the resulting linear systems (Section 6);
• methods to incorporate bound constraints on the parameters (Section 7).

In Section 8, we will present numerical examples. We will draw conclusions in the
final section.

2. General formulation and notation. Let us begin by introducing some ab-
stract notation, which we will use for the derivation of the entire scheme. This, above
all, concerns the set of parameters, state equations, measurements, regularization,
and the introduction of an abstract Lagrangian.

We note that some of the formulas below will become cumbersome to read because
of the number of indices. To understand their meaning, it is often helpful to imagine
we had only a single experiment (for example, only one incidence angle in tomography,
or only one source position in seismic imaging). In this case, one may drop the index
i on first reading, as well as all summations over i. In addition, the formulas of this
section will be made concrete by introducing a model problem in Section 3.

State equations. Let the general setting of the problems we consider be as fol-
lows: assume that we subject a physical system to i = 1, . . . , N different external
stimuli, and that we intend to learn about the system’s material parameters by mea-
suring how the system reacts. For the current purposes, we assume that the system’s
states can be described by (independent) partial differential equations posed on a
domain Ω ⊂ Rd:

Ai[q] ui = f i in Ω, (2.1)

Bi[q] ui = hi on Γi
N ⊂ ∂Ω, (2.2)

ui = gi on Γi
D = ∂Ω\Γi

N , (2.3)

where Ai[q] are partial differential operators all of which depend on a common set of
a priori unknown distributed (i.e. spatially variable) coefficients q = q(x) ∈ Q, x ∈ Ω,
and Bi[q] are boundary operators that may also depend on the coefficients. f i, hi and
gi are the known external forcing terms, and that are independent of the coefficients
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q. The functions ui are the solutions of the partial differential equations, i.e. the
physical outcomes (“states”) of our N experiments. These scalar or vector-valued
solutions are assumed to be from spaces V i

g = {ϕ ∈ V i : ϕ|Γi
D

= gi}. We assume that

solutions ui, uj of different equations are independent except for their dependence on
the common set of parameters q. We also assume that the solutions to each of the
differential equations is unique for every given set of parameters q in a subset Qad ⊂ Q
of physically meaningful values, for example Qad = {q ∈ L∞(Ω) : q0 ≤ q(x) ≤ q1}.

Typical cases we have in mind would be a Laplace-type equation when we are
considering electrical impedance tomography or gravimetry inversion, Helmholtz or
wave equations for inverting seismic or magneto-telluric data, or diffusion-reaction
equations for optical tomography applications. The set of parameters q would, in
these cases, be electrical conductivities, densities, elasticity coefficients, or optical
properties. The operators Ai may be the same if we repeat the same kind of ex-
periment multiple times with different forcings, but they will be different if we use
different physical effects (for example gravimetry and seismic data) to identify a set
of parameters.

The formulation above may easily be extended also to the case of time-dependent
problems. Likewise, the case that the parameters are a finite number of scalar values
instead of distributed functions is a simple special case, but we omit these cases for
brevity.

For treatment in a Lagrangian setting in function spaces as well as for discretiza-
tion by finite elements, it is necessary to formulate the state equations (2.1)–(2.3) in
a variational form. For this we assume that the solutions ui ∈ V i

g are solutions of the
following variational equalities:

Ai(q;ui)(ϕi) = 0 ∀ϕi ∈ V i
0 , (2.4)

where V i
0 = {ϕi ∈ V i : ϕi|Γi

D
= 0}. The semilinear form Ai : Q×V i

g ×V
i
0 → R may be

nonlinear in its first set of arguments, but is linear in the test function, and includes
the actions of domain and boundary operators Ai and Bi, as well as of inhomogeneous
forcing terms. We will later have to assume that the Ai are differentiable.

As an example, we will introduce a model problem below for the Poisson equation.
In that case, Ai[q]ui = −∇ · (q∇ui), Bi[q]ui = q∂nu

i, and

A(q;ui)(ϕi) = (q∇ui,∇ϕi)Ω − (f, ϕi)Ω − (h, ϕi)ΓN
.

Measurements. In order to determine the unknown quantities q, we measure
how the physical system reacts to the external forcing, i.e. we measure (parts of) the
states ui or derived quantities. For example, we might have measurements of voltages,
optical fluxes or stresses at certain points, averages on subdomains, or gradients.
Let us denote the space of measurements of the ith state variable by Zi, and let
M i : V i

g → Zi be the measurement operator, i.e. the operator that extracts from

physical state ui that information that we measure.
If we knew the parameters q, we could use the state equation (2.4) to predict the

state the system would be in, and M iui would then be the predicted measurements.
On the other hand, we don’t know q, but we have actual measurements that we
denote by zi ∈ Zi. Reconstruction of the coefficients q will be accomplished by
finding that coefficient, for which the predicted measurements M iui match the actual
measurements zi best. We will measure this comparison using a convex, differentiable
functional m : Zi → R. In many cases, m will simply be an L2 norm on Zi, but more
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general functionals are allowed, for example to suppress the effects of non-Gaussian
noise [48].

Examples of common measurement situations are:

• L2 measurements of values: If measurements on a set Σ ⊂ Ω are available,
then M i is the embedding operator from V i

g into Zi = L2(Σ), and we will
try to find q by minimizing

mi(M iui − zi) =
1

2
‖ui − zi‖2

L2(Σ).

In many non-destructive testing or tomography applications, one has Σ ⊂ ∂Ω
because measurements in the interior are not possible. The case of distributed
measurements occurs in situations where a measuring device can be moved
around to every point of Σ, for example a laser scanning a membrane, or a
camera is imaging a body.

• Point measurements: If we have S measurements of u(x) at positions xs ∈
Ω, s = 1, . . . , S, then Zi = R

S , and (M iui)s = u(xs). If we take again a
quadratic norm on Zi, then for example

mi(M iui − zi) =
1

2

S
∑

s=1

|ui(xs) − zi
s|

2

is a possible choice. The case of point measurements is frequent in applica-
tions where a small number of stationary measurement devices is used, for
example seismometers in seismic data assimilation.

Other choices are of course possible, and are usually dictated by the type of available
measurements.

We will in general assume that the M i are linear, but there are applications where
this is not the case. For example, in some applications only statistical correlations of
ui are known, or a power spectrum. Extending the algorithms below to nonlinear M i

is straightforward, but we omit this for brevity.

Regularization. Since inverse problems are often ill-posed, regularization is
needed to suppress unwanted features in solutions q. In this work, we include it
by using a Tikhonov regularization term involving a convex differentiable regular-
ization functional r : Q → R+, see for example [25, 39]. Most frequently r(q) =
1
2‖∇

t(q− q̄)‖2
L2(Ω) with an a priori guess q̄ and some t ≥ 0. Other popular choices are

smoothed versions of bounded variation seminorms [22, 24, 27]. As above, the type
of regularization is usually dictated by the application and insight into physical and
unphysical features of solutions.

Characterization of solutions. The goal of the inverse problem is to find that
set of physical parameters q ∈ Qad for which the predictions M iui match the actual
observations zi best. We formulate this as the following constrained minimization
problem over ui ∈ V i

g , q ∈ Qad:

minimize J({ui}, q) =

N
∑

i=1

σimi(M iui − zi) + βr(q) (2.5)

such that Ai(q;ui)(ϕi) = 0 ∀ϕi ∈ V i
0 , 1 ≤ i ≤ N.
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Here, σi > 0 are factors weighting the relative importance of individual measurements,
and β > 0 is a regularization parameter. As the choice of these constants is a topic
of its own, we assume their values as given within the scope of this work.

In order to characterize solutions to (2.5), let us subsume the individual solutions
ui to a vector u, and likewise Vg = {V i

g },V0 = {V i
0 }. Furthermore, we introduce

a set of Lagrange multipliers λ ∈ V0, and denote the joint set of variables by x =
{u,λ, q} ∈ Xg = Vg × V0 ×Q.

Under appropriate conditions (see, e.g., [8]), solutions of problem (2.5) are sta-
tionary points of the following Lagrangian L : Xg → R, which couples the functional
J : Vg ×Q → R+ defined above to the state equation constraints through Lagrange
multipliers λi ∈ V i

0 :

L(x) = J(u, q) +

N
∑

i=1

Ai(q;ui)(λi). (2.6)

The optimality conditions then read in abstract form

Lx(x)(y) = 0 ∀y ∈ X0, (2.7)

where the semilinear form Lx : Xg × X0 → R is the derivative of the Lagrangian L,
and X0 = V0 × V0 × Q. Indicating derivatives of functionals with respect to their
arguments by subscripts, we can expand (2.7) to yield the following set of nonlinear
equations:

Lλi(x;ϕi) ≡ Ai(q;ui)(ϕi) = 0 ∀ϕi ∈ V i
0 , (2.8)

Lui(x;ψi) ≡ σimi
u(M iui − zi)(ψi) +Ai

u(q;ui)(ψi, λi) = 0 ∀ψi ∈ V i
0 , (2.9)

Lq(x;χ) ≡ βrq(q)(χ) +

N
∑

i=1

Ai
q(q;u

i)(χ, λi) = 0 ∀χ ∈ ∂Q. (2.10)

The first set of equations denotes the state equations for i = 1, . . . , N ; the second the
adjoint equations defining the Lagrange multipliers λi; finally, the third is the control
equation holding for all functions from the tangent space ∂Q to Q at the solution q.

3. A model problem. As a simple model problem which we will use to give
the abstract results of this work a more concrete form, we will consider the following
situation: assume we intend to identify the coefficient q in the (single) elliptic PDE

−∇ · (q∇u) = f in Ω, u = g on ∂Ω, (3.1)

and that measurements are the values of the solution u everywhere in Ω, i.e. we choose
m(Mu− z) = 1

2‖u− z‖2
L2(Ω). This situation can be considered as a mathematical de-

scription of a membrane with variable stiffness q(x). We try to identify this coefficient
by subjecting the membrane to a known force f and clamping it at the boundary with
boundary values g. This results in displacements of which we obtain measurements z
everywhere.

For this situation, Vg = {u ∈ H1 : u|∂Ω = g}, Q ⊂ L∞. Choosing σ = 1, the
Lagrange functional has the form

L(x) = 1
2‖u− z‖2

L2(Ω) + βr(q) + (q∇u,∇λ) − (f, λ).

6



With this, the optimality conditions (2.8)–(2.10) read in weak form

(q∇u,∇ϕ) = (f, ϕ), (3.2)

(q∇ψ,∇λ) = −(u− z, ψ), (3.3)

βrq(q;χ) = −(χ∇u,∇λ), (3.4)

and have to hold for all test functions {ϕ, ψ, χ} ∈ H1
0 ×H1

0 ×Q. Note that the first
of these is the state equation, while the second is the adjoint equation.

4. Nonlinear solvers. The stationarity conditions (2.7) form a set of nonlin-
ear partial differential equations that has to be solved iteratively, for example using
Newton’s method, or a variant thereof. In this section, we will formulate the Gauss-
Newton method in function spaces. The discretization of each step by adaptive finite
elements will then be presented in the next section, followed by a discussion of solvers
for the resulting linear systems.

Since there is no need to compute the initial nonlinear steps on a very fine grid
when we are still far away from the solution, we will want to use successively finer
meshes as we approach the solution. In order to make quantities computed on different
meshes comparable, all of the following algorithms will be formulated in a continuous
setting, and only then be discretized. This also answers once and for all questions
about the correct scaling of weighting matrices in misfit and regularization functionals,
as discussed for example in [2], even if we choose locally refined grids, as they will
appear naturally upon discretization.

In this section, we indicate a Gauss-Newton procedure, i.e. determination of search
direction and step length, in infinite dimensional spaces, and discuss in the next
section its discretization by a finite element scheme. At least for finite-dimensional
problems, there is a vast number of alternatives to the Gauss-Newton method, see for
example [1, 21, 32, 33, 42, 43,47]. However, we believe that the Gauss-Newton method
is particularly suited since it allows for scalable algorithms even with large numbers
of experiments, and large numbers of degrees of freedom both in the discretization of
the state equations as well as of the parameter. Comparing this method to a pure
Newton method, it allows for the use of more efficient linear solvers for the discretized
problems, see Section 6. In addition, the Gauss-Newton method has been shown to
have better stability properties for parameter estimation problems than the Newton
method, see [16, 17].

Search directions. Given a current approximation xk = {uk,λk, qk} ∈ X after
k iterations, the first task of any iterative nonlinear solver method is to compute a
search direction δxk = {δuk, δλk, δqk} ∈ Xδg , in which we seek the next iterate xk+1.
The Dirichlet boundary values δg of this update are chosen as δui

k|ΓD
= gi − ui

k|ΓD
,

δλi
k|ΓD

= 0, bringing us to the exact boundary values if we take a full step.
The Gauss-Newton method determines search directions {δuk, δqk} by minimizing

the following quadratic approximation to J(·, ·) with linearized constraints:

min
δuk,δqk

J(uk, qk) + Ju(uk, qk)(δuk) + Jq(uk, qk)(δqk)

+
1

2
Juu(uk, qk)(δuk, δuk) +

1

2
Jqq(uk, qk)(δqk, δqk)

such that Ai(qk;ui
k)(ϕi) +Ai

u(qk;ui
k)(δui

k, ϕ
i) +Ai

q(qk;ui
k)(δqk, ϕ

i) = 0,

(4.1)

where the linearized constraints are understood to hold for 1 ≤ i ≤ N and for all test
functions ϕi ∈ V i

0 . The solution of this problem provides us with updates δuk, δqk
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for the state variables and the parameters. The updates for the Lagrange multiplier
δλk are not determined by the Gauss-Newton step at first. However, we can get
updates δλk for the original problem, by using λk + δλk as Lagrange multiplier for
the constraint of the Gauss-Newton step (4.1). Bringing the terms with λk to the
right hand side, the updates are then characterized by the following system of linear
equations:

σimi
uu(M iui

k − zi)(δui
k, ϕ

i) +Ai
u(qk;ui

k)(ϕi, δλi
k) = −Lui(xk)(ϕi),

Ai
u(qk;ui

k)(δui
k, ψ

i) +Ai
q(qk;ui

k)(δqi
k, ψ

i) = −Lλi(xk)(ψi),
∑

i

Ai
q(qk;ui

k)(χ, δλi
k) + βrqq(qk)(δqk, χ) = −Lq(xk)(χ),

(4.2)

for all test functions {ϕi, ψi, χ}. The right hand side of these equations is the negative
gradient of the original Lagrangian, given already in the optimality condition (2.8)–
(2.10).

Note that the equations determining the updates for the ith experiment decouple
from all other experiments, except for the last equation. This will allow us to solve
them mostly separated, and in particular it allows for simple parallelization by placing
the description of different experiments onto different machines. Furthermore, the first
and second equations can be solved sequentially.

In order to illustrate these equations, we state their form for the model problem
of Section 3. In this case, the above system reads

(δuk, ϕ) + (∇δλk, qk∇ϕ) = − Lu(xk)(ϕ),

(∇ψ, qk∇δuk) + (∇ψ, δqk∇uk) = − Lλ(xk)(ψ),

(∇δλk, χ∇uk) +βrqq(qk)(δqk, χ) = − Lq(xk)(χ),

with the right hand sides being the gradient of the Lagrangian given in Section 3.
In general, this continuous Gauss-Newton direction will not be computable an-

alytically. We will therefore approximate it by a finite element function δxk,h, as
discussed in the next section.

As a final remark, let us note that the pure Newton’s method would read

Lxx(xk)(δxk, y) = −Lx(xk)(y) ∀y ∈ X0, (4.3)

where Lxx(xk)(·, ·) denotes the bilinear form of second variational derivatives of the
Lagrangian L at position xk. The Gauss-Newton method can alternatively be ob-
tained from this by simply dropping all terms that are proportional to the Lagrange
multiplier λk. This is based on considering (2.9) or (3.3): λi is proportional to
M iui − zi and thus will be small if M iui − zi is small, assuming stability of the
(linear) adjoint operator.

Step lengths. Once we have a search direction δxk, we have to decide how far
to go in this direction starting at xk to obtain the next iterate xk+1 = xk + αkδxk.
In constrained optimization, a merit function including the minimization functional
J(·) as well as the violation of the constraints is usually used for this [46].

One particular problem here is the infinite dimensional nature of the state equa-
tion constraint, with the residual of the state equation being in the dual space, V ′

0 , of
V0 (which, for the model problem, is H−1). Consequently, it is unclear which norm to
use and whether we need to weight a violation of the state equation in different parts
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of the domain differently or not. Furthermore, the relative weighting of constraint
and objective function is not obvious.

In order to avoid these problems, we propose to use the norm of the residual of
the optimality condition (2.7) on the dual space of X0 as merit function:

p(α) =
1

2
‖Lx(xk + αδxk)(·)‖2

X ′
0

≡
1

2
sup
y∈X0

[Lx(xk + αδxk)(y)]2

‖y‖2
X0

.

We will show in the next section that we can give a simple-to-compute lower bound
for this norm using the discretization we already employ for the computation of the
search direction.

The following lemma shows that this merit function is actually useful:
Lemma 4.1. The merit function p(α) is valid, i.e. Newton directions are direc-

tions of descent, p′(0) < 0. Furthermore, if xk = x is a solution of the parameter
estimation problem, then p(0) = 0. Finally, in the vicinity of the solution, full steps
are taken, i.e. α = 1 minimizes p as xk → x.

Proof. We prove the lemma for the special case of only one experiment (N = 1)
and that X = H1

0 ×H1
0 × L2, i.e. the situation of the model example. However, it is

obvious how to extend the proof to the general case. In this simplified situation, by
the Riesz theorem there is a representation gu(xk +αδxk) = Lu(xk +αδxk)(·) ∈ H−1,
gλ(xk+αδxk) = Lλ(xk+αδxk)(·) ∈ H−1, and gq(xk+αδxk) = Lq(xk+αδxk)(·) ∈ L2.
The dual norm of Lx can then be written as

‖Lx‖
2
X ′

0

=
〈

gu, (−∆)−1gu

〉

+
〈

gλ, (−∆)−1gλ

〉

+ (gq, gq),

where (−∆)−1 : H−1 → H1
0 , and 〈·, ·〉 indicates the duality pairing between H−1 and

H1
0 . Then,

p′(0) =
〈

guu(δuk), (−∆)−1gu

〉

+
〈

gλλ(δλk), (−∆)−1gλ

〉

+ (gqq(δqk), gq),

where gux(δxk) is the derivative of gu in direction δxk, i.e. the functional of second
derivatives of L. However, by definition of the Newton direction, (4.3), this is equal
to the negative gradient, i.e.

p′(0) = −‖Lx(xk)‖2
X ′

0

= −2p(0) < 0.

Thus, Newton directions are directions of descent for this merit function.
The second part of the lemma is obvious by noting the optimality condition (2.7).

The last part follows by noting that near the solution, the Lagrangian (and thus the
function p(α)) is well approximated by a quadratic function if the various functionals
involved in the Lagrangian are sufficiently smooth. As xk → x, Newton directions
satisfy δxk → x− xk and minα p(α) → 0. On the other hand, it is easy to show that
quadratic functions with p′(0) = −2p(0) and minα p(α) = 0 have their minimum at
α = 1.

5. Discretization. The goal of the preceding section was to provide the function
space tools to find a solution x of the inverse problem. In order to actually compute
finite-dimensional approximations to x, we have to discretize both the state and ad-
joint variables, as well as the parameters. In this section, we will introduce finite
element schemes to do so. The main point is to be able to change meshes between
Gauss-Newton iterations. This has at least three advantages over an a priori choice
of a mesh: (i) it makes the initial iterations significantly cheaper when we are still
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far away from the solution; (ii) coarser meshes act as an additional regularization,
making the problem better posed; and (iii) it allows us to adapt the resolution of the
mesh to the characteristics of the solution.

In each iteration, we define finite element spaces Xh ⊂ X over triangulations in
the usual way. In particular, let Ti

k bet the mesh on which to discretize state and
adjoint variables ui

k, λ
i
k of the ith experiment in the kth Gauss-Newton iteration.

Independently, a mesh T
q
k will be used to discretize the parameters q on step k.

This reflects that the regions of missing regularity of parameters and state variables
need not necessarily coincide. We may also use different discretization spaces for
parameters and state/adjoint variables, for example spaces of discontinuous functions
for quantities like density or elasticity coefficients. For these grids and and the finite
element spaces defined on them, we assume the following requirements:

• Nesting: The mesh Ti
k must be obtainable from Ti

k−1 by hierarchic coarsening
and refinement. This greatly simplifies operations like evaluation of the right
hand side of the Newton direction equation, Lx(xk)(yk+1) for all discrete test
functions yk+1, but also the update operation xk+1 = xk + αkδxk,h.

• State vs. parameter meshes: Each of the ‘state meshes’ Ti
k can be obtained

by hierarchical refinement from the ‘parameter mesh’ T
q
k.

Although obvious, the choice of entirely independent grids for state and parameter
meshes has apparently not been used in the literature to the author’s best knowledge.
On the other hand, this technique offers the prospect of greatly reducing the amount
of numerical work. We will see that with the requirements on the meshes above, the
additional work associated with using different meshes is in fact small.

Choosing different ‘state’ and ‘parameter meshes’ is also beneficial for problems
where the parameters do not require high resolution, or only in certain areas of the
domain, while the state equation does. A typical problem is high-frequency potential
scattering, where the coefficient might be a function that is constant in large parts of
the domain, while the high-frequency oscillations of state and adjoint variables require
a fine grid everywhere.

In the next few paragraphs, we will briefly describe the process of discretizing the
equations for the search directions and the choice of the step length. We will then
give a brief note on the criteria for generating the meshes on which we discretize.

Search directions. By choosing a finite dimensional subspace Xh = Vh × Vh ×
Qh ⊂ X , we obtain a discrete counterpart for equation (4.2) describing the Gauss-
Newton search direction:

σimi
uu(M iui

k − zi)(δui
k,h, ϕ

i
h) +Ai

u(qk;ui
k)(ϕi

h, δλ
i
k,h) = −Lui(xk,h)(ϕi

h),

Ai
u(qk;ui

k)(δui
k,h, ψ

i
h) +Ai

q(qk;ui
k)(δqi

k,h, ψ
i
h) = −Lλi(xk,h)(ψi

h), (5.1)
∑

i

Ai
q(qk;ui

k)(χh, δλ
i
k,h) + βrqq(qk)(δqk,h, χh) = −Lq(xk,h)(χh).

Choosing a basis for the space Xh, we can write (5.1) in matrix form as follows:





M AT 0

A 0 C

0 CT βR









δuk,h

δλk,h

δqk,h



 =





Fu

Fλ

Fq



 . (5.2)

Since the individual state equations and variables do not couple across experiments,
M = diag(Mi) and A = diag(Ai) are block diagonal matrices, with the diagonal
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blocks stemming from second derivatives of the misfit functionals, and of the tangential
operators of the state equations, respectively. They are equal to

(Mi)kl = mi
uu(M iui

k − zi)(ϕi
k, ϕ

i
l), (Ai)kl = Ai

u(xk)(ϕi
l , ϕ

i
k),

where ϕi
l are test functions for the discretization of the ith state equation. Likewise,

C = [C1, . . . ,CN ] is defined by (Ci)kl = Ai
q(xk)(χq

l , ϕ
i
k), with χq

l being discrete test
functions for the parameters q, and (R)kl = rqq(qk)(χq

k, χ
q
l ).

The evaluation of Ci may be difficult since it involves shape functions from dif-
ferent meshes and finite element spaces. However, since we have required that Ti

k can
be obtained from T

q
k by hierarchical refinement, we can represent each shape function

χq
k on the parameter mesh as a sum over respective shape functions χi

s on each of the

state meshes: χq
k =

∑

s Xi
ksχ

i
s. Thus, Ci = ĈiXi, with Ĉi built with shape functions

from only one grid. The matrix Xi is fairly simple to generate in practice because of
the hierarchical structure of the meshes.

Solving equation (5.2) will give us an approximate search direction. The solution
of this linear system will be discussed in Section 6.

Step lengths. Since step length selection is only a tool for seeking the exact
solution, we may be content with approximating the merit function p(α) introduced
in Section 4. To this end, we use a lower bound p(α) for p(α), by restricting the set
of possible test functions to the discrete space Xh which we are already using for the
discretization of the search direction:

p(α) =
1

2
sup

y∈Xh

[Lx(xk + αδxk)(y)]2

‖y‖2
X0

≤
1

2
‖Lx(xk + αδxk)(·)‖2

X ′
0

= p(α).

By selecting a basis of Xh, p(α) can be computed by linear algebra. For example, for

the single experiment case (N = 1) and if X = H1
0 ×H1

0 × L2, we have that

p(α) =
1

2

[〈

gu(α), Y −1
1 gu(α)

〉

+
〈

gλ(α), Y −1
1 gλ(α)

〉

+
〈

gq(α), Y −1
0 gq(α)

〉]

,

where (Y0)kl = (χk, χl), (Y1)kl = (∇ϕk,∇ϕl) are mass and Laplace matrices, respec-
tively. The gradient vectors are (gu)l = Lu(xk + αδxk)(ϕl), and correspondingly for
gλ and gq. Here, ϕl are again basis functions from the discrete approximation space
to the state and adjoint variable, and χl for the parameters.

The evaluation of p(α) therefore requires only two inversions of Y1 per experiment,
and of one mass matrix for the parameters. Setting up the gradient vectors reuses
operations that are also available from the generation of the linear system in each
Gauss-Newton step. With this merit function, the computation of a step length is
then done using the usual methods (see, e.g., [46]). Having to invert matrices for step
length selection would seem like an expensive procedure. However, compared to the
effort required for the solution (5.2), the effort is usually rather negligible. On the
other hand, we note that p(·) correctly scales components of the residual according
to the size of cells on our adaptive meshes, unlike the usual lp norms of the residual
vectors gu, gλ, gq, and is therefore a robust indicator for progress of the nonlinear
iteration.

Mesh refinement. The meshes we choose for discretization should share a min-
imum of characteristics as described above, but apart from that their generation is
arbitrary. For the numerical examples presented in this paper, both state and parame-
ter meshes are kept constant for a number of nonlinear iterations until we are satisfied
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with the progress of the nonlinear iterations. They are then refined using indicators
based on the smoothness of solutions or rigorous error estimates. The construction of
such refinement indicators is beyond the scope of this paper, but a discussion of can,
for example, be found in [4, 7, 41].

6. Linear solvers. The linear system (5.2) is hardly solvable as is, except for the
most simple problems: its size is twice the number of variables in each discrete forward
problem, summed up over all experiments plus the number of discretized parameters;
for many applications this size easily reaches into the tens of millions. Furthermore,
it is indefinite and often extremely ill-conditioned (see [4]): for the model problem
with m(ϕ) = 1

2‖ϕ‖
2, the condition number of the matrix grows with the mesh size h

as O(h−6).
Several schemes have been devised in the literature to solve (5.2) [3, 23, 31]. Par-

ticularly noteworthy is the comparison of different methods by Biros and Ghattas [14].
Because it leads to an algorithm that is relatively simple to parallelize and because it
allows for the inclusion of bound constraints (see Section 7), we prefer to re-state the
system by block elimination and use of the sub-structure of the individual blocks to
obtain the following Schur complement formulation:

S δqk,h = Fq −

N
∑

i=1

CiTAi−T
(Fi

u − MiAi−1
Fi

λ), (6.1)

Ai δui
k,h = Fi

λ − Ciδqk,h, (6.2)

AiT δλi
k,h = Fi

u − Miδqk,h. (6.3)

Here S denotes the Schur complement

S =
(

βR +

N
∑

i=1

CiT Ai−T
MiAi−1

Ci
)

. (6.4)

These equations are much simpler to solve, mainly for their size and their struc-
ture: For the second and third equations, which are linearized forward and adjoint
problems, efficient solvers are usually available. Since the equations for the individual
experiments are independent, they can also be solved in parallel. The system in the
first equation, (6.1), is small, its size being equal to the number #δqk,h of discretized
parameters δqk,h, which is much smaller than the total number of degrees of freedom
and in particular independent of the number of experiments. Furthermore, S has
some nice properties:

Lemma 6.1. The Schur complement matrix S is symmetric and positive definite
if at least βR as defined above is positive definite.

Proof. The proof of symmetry is trivial, noting that both R and M stem from
second derivatives and are therefore symmetric matrices. Because m(·) and r(·) were
assumed to be convex, M and R are also at least positive semidefinite. Consequently,

vTSv =
∑N

i=1(A
i−1

Civ)TM(Ai−1
Civ) + βvTRv > 0 for all vectors v and S is

positive definite.
By consequence of the lemma, we can use well-known and fast iterative methods

for the solution of this equation, such as the Conjugate Gradient method. In each
matrix-vector multiplication we have to perform one linearized forward and one back-
ward step for each experiment for which, again, we can assume that efficient solvers
are available. The other operations are comparably cheap.
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Of crucial importance for the speed of convergence of the CG method is the
condition number of the Schur complement matrix S. Numerical experiments have
shown that, in contrast to the original matrix (5.2), the condition number only grows
as O(h−4), i.e. by two orders of h less than the full matrix [4]. Furthermore and even
more importantly, the condition number improves if more experiments are available,
i.e. N is higher, corresponding to the fact that more information reduces the ill-
posedness of the problem [37]. In particular, it is not hard to show using Rayleigh
quotients for the largest and smallest eigenvalues that the condition number of the
Schur complement matrix is not greater than the maximal condition number of its
building blocks, i.e. that

κ(S) ≤ max

{

κ(R), max
1≤i≤N

κ
(

CiTAi−T
MiAi−1

Ci
)

}

,

assuming that both R and CiTAi−T
MiAi−1

Ci are regular. In practice, the condition
number κ(S) of the joint inversion matrix is often significantly smaller than that of
the single experiment inversion matrices [37].

Finally, the CG method allows us to terminate the iteration relatively early. This
is important since high accuracy is not required in the computation of search direc-
tions. Experience shows that for typical cases, a good solution can be obtained with
10–30 iterations, even if the size of S, #δqk,h, is several hundred to a few thousand.

The solution of the Schur complement equation can be accelerated by precondi-
tioning the matrix. Since one will not usually build up the matrix, a preconditioner
cannot make use of the individual matrix elements. However, other approaches have
been investigated in the literature, see for example [14, 49].

Finally, we note that the Schur complement formulation is simple to parallelize
(see [4]): matrix-vector multiplications with S are easily performed in parallel due
to the sum structure of this matrix, and the remaining two equations defining the
updates for the state and adjoint variables are independent anyway.

7. Bound constraints. In the previous sections, we have described an efficient
scheme for the discretization and solution of the inverse problem (2.5). However, in
practical applications, one often has more information on the parameter than included
in the formulation so far. For example, lower and upper bounds q0 ≤ q(x) ≤ q1 may be
known, possibly only in parts of the domain, or with spatially dependent bounds. Such
inequalities typically denote prior physical knowledge about the material properties
we would like to identify, but even if such knowledge is absent, we will often want to
impose constraints of the form q ≥ q0 > 0 if q appears as a coefficient in an elliptic
operator (as in the model problem).

In this section, we will extend the scheme developed above to incorporate such
bounds, and we will show that the inclusion of these bounds comes at essentially no
additional cost, since it only reuses information that is already there. On the contrary,
as it reduces the size of the problems, it makes its solution faster. We would also like to
stress that the approach does not make use of the actual form of state equations, misfit
or regularization functionals; it is therefore possible to implement it in a very generic
way inside the Newton solver. The approach is based on the same ideas that active set
methods use (see, e.g., [46]) and is similar to the gradient projection–reduced Newton
method [50]. However, since we consider problems with several thousands or more
parameters, some parts of the algorithm have to be devised differently. In particular,
the determination of the active set has to happen on the continuous level, as discussed
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in the Introduction. For related approaches to constrained optimization problems in
partial differential equations, we refer to [12, 41, 52].

Basic idea. Since the method to be introduced is simple to extend to the more
general case, let us describe the basic idea here for the special case that q is only
one scalar parameter function, and that we only have lower bounds, q0 ≤ q(x). The
approach is then: before each step, identify those regions where the parameters are
already at their bounds and we expect their values to move out of the feasible region.
Let us denote this part of the domain, the so-called active set, by I = {x ∈ Ω :
qk(x) = q0, δqk(x) presumably < 0}. After discretization, I will usually be the union
of a number of cells from T

q
k.

We then have to answer two questions: how do we identify I, and once we have
found it what do we do with the parameter degrees of freedom inside I? Let us
start with the second question: In order to prevent these parameters from moving
further outside, we simply set the respective updates to zero, and for this augment
the definition (4.1) of the Gauss-Newton step by a corresponding equality condition:

min
δuk,δqk

J(uk, qk) + Ju(uk, qk)(δuk) + Jq(uk, qk)(δqk)

+Juu(uk, qk)(δuk, δuk) + Jqq(uk, qk)(δqk, δqk) (7.1)

such that Ai(qk;ui
k)(ϕi) +Ai

u(qk;ui
k)(δui

k, ϕ
i) +Ai

q(qk;ui
k)(δqk, ϕ

i) = 0,

(δqk, ξ)I = 0,

where the last constraint is to hold for all test functions ξ ∈ L2(I).
The optimality conditions for this minimization problem are then equal to the

original ones stated in (4.2), except that the last equation has to be replaced by
∑

i

Ai
q(qk;ui

k)(χ, δλi
k) + βrqq(qk)(δqk, χ) + (µ, χ)I = −Lq(xk)(χ), (7.2)

where µ is the Lagrange multiplier corresponding to the constraint δqk|I = 0.
These equations can be discretized in the same way as before. In particular, we

take the same space Qh for the discrete Lagrange multiplier µ as for δqk. After per-
forming the same block elimination procedure we used for (5.2), we then get as matrix
the following system to compute the Lagrange multipliers and parameter updates:

(

S BT
I

BI 0

) (

δqk,h

µh

)

=

(

Fred

0

)

, (7.3)

with the reduced right hand side Fred equal to the right hand side of (6.1). The
equations identifying δuk,h and δλk,h are exactly as in (6.2) and (6.3), and are solved
once δqk,h is available.

The matrix BI appearing in (7.3) is of mass matrix type. If we denote by Ih

the set of indices of those basis functions in Qh with a support that intersects I, and
Ih(k) its kth element, then BI is of size #Ih × #δqk,h, and (BI)kl = (χIh(k), χl)I .
In this way, the last row of the system, BIδqk,h = 0, simply sets parameter updates
in the selected region to zero.

Let us now denote by Q the projector onto the feasible set for δqk,h, i.e. it is a
rectangular matrix of size (#δqk,h − #Ih) × #δqk,h, where we have a row for each
degree of freedom i 6∈ Ih with a 1 at position i, such that QBT

I = 0. Elementary
calculations then yield that the updates we seek satisfy

[

QSQT
]

(Qδqk,h) = QFred, BI δqk,h = 0,
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which are conditions for disjoint subsets of parameter degrees of freedom. Besides
being smaller, the reduced Schur complement QSQT inherits the following desirable
properties from S:

Lemma 7.1. The reduced Schur complement Sred = QSQT is symmetric and
positive definite. Its condition number satisfies κ(Sred) ≤ κ(S).

Proof. While symmetry is obvious, we inherit (positive) definiteness from S by
the fact that the matrix Q has by construction full row rank. For the proof of the
condition number estimate, let N q = #δqk,h, N

q
red = N q −#Ih; then we have for the

maximal eigenvalue of Sred:

Λ(Sred) = max
v∈R

N
q
red

‖v‖=1

vT Sredv = max
w∈RNq

‖w‖=1

w|Ih
=0

wTSw ≤ max
w∈RNq

‖w‖=1

wT Sw = Λ(S).

Similarly, we get for the smallest eigenvalue λ(Sred) ≥ λ(S).
In practice, Sred needs not be built up for use in a conjugate gradient method.

Since application of Q is essentially for free, the inversion of QSQT for the constrained
updates is at most as expensive as that of S for the unconstrained ones, and possibly
cheaper if the condition number is indeed smaller. It is worth noting that treating
constrained nodes in this way does not imply knowledge of the actual problem under
consideration: if we have code to produce the matrix-vector product with S, then
adding bound constraints is simple.

This approach has several advantages. First, in the implementation of solvers for
the state equations, one does not have to care about constraints as one would need to
if positivity of a parameter were enforced by replacing q by eq. Secondly, it is simple
to add bound constraints in the Schur complement formulation, while it would be
more complicated to add them to a solver operating directly on (5.2).

Determination of the active set. There remains the question of how to deter-
mine the set of parameter updates we want to constrain to zero. For this, let us for a
moment consider I as an unknown set that is implicitly determined by the fact that
the constraint is active there at the solution. The idea of active set methods is then the
following: from (7.2), we see that at the optimum there holds (µ, χ)I = −Lq(x)(χ) for
all test functions χ. Outside I, µ should be zero, and optimization theory tells us that
it must be negative inside. If we have not yet found the solution, these properties do
not hold exactly, but as we approach the solution, the updates δλk, δqk become small
and we can use the identity to get an approximation µ̃k to the Lagrange multiplier
defined on all of Ω. If we discretize it using the same space Qh as for the parameters,
then we can define µ̃k,h by

(µ̃k,h, χh) = −Lq(xk,h)(χh) ∀χh ∈ Qh.

We will then use µ̃k,h as an indicator whether a point lies inside the set where the
constraint on q is active and define

Ih = {x ∈ Ω : qk,h(x) = q0, µ̃k,h(x) ≤ −ε},

with a small positive number ǫ. With the so fixed set Ih, the algorithm proceeds
as above. Since −Lq(xk,h)(χh) is already available as the right hand side of the
discretized Gauss-Newton step, computing µ̃k,h only requires the inversion of the
mass matrix resulting from the left hand side term (µk,h, χh). This is particularly
cheap if Qh is made up of discontinuous shape functions.
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Numerical experiments indicate that it is necessary to set up this scheme in a
function space first, and only discretize afterwards. Enforcing bounds only after
discretization would amount to replacing the mass matrix by the identity matrix.
This would then lead to the elements of the Lagrange multiplier µ̃k,h having a size
that scales with the size of the cell they are defined on, preventing us from comparing
their size with a fixed number ǫ in the definition of the set Ih.

8. Numerical examples. In this section, let us give some examples of com-
putations that have been performed with an implementation of the framework laid
out above. The first two examples are applications of the model problem defined
in Section 3, i.e. we want to recover the spatially dependent coefficient q(x) in a
Laplace-type operator −∇ · (q∇) from measurements of the state variable. In one
or two space dimensions, this is a model of a bar or membrane of variable stiffness
that is subjected to a known force; the stiffness coefficient is then identified by mea-
suring the deflection at every point. Similar applications arise also in groundwater
management, where the hydraulic head satisfies a Poisson equation with q being the
water permeability, as well as in biomedical imaging methodologies such as electric
impedance tomography [18] or ultrasound-modulated optical tomography [51].

The third example deals with a parameter estimation problem in fluorescence
enhanced optical tomography and will be explained in Section 8.3. Further examples
of the present framework to Helmholtz-type equations with high wave numbers, as
appearing in seismic imaging, can be found in [4].

In the examples below, mesh adaptation is performed by simply looking at the
smoothness of the solution. In particular, we use an indicator for the size of the
second derivative of ui to refine the meshes Ti as is appropriate when using first
order continuous finite elements, and an indicator for the gradient of q to refine Tq

as we use piecewise constant shape functions. In both cases, approximations of these
derivatives are scaled by appropriate powers of the mesh size h. More details on our
mesh refinement strategies can be found in [4, 36].

The program used here is built on the open source finite element library deal.II

[5, 6] and runs on multiprocessor machines or clusters of computers.

8.1. Example 1: A single experiment. In this first example, we consider the
model problem introduced in Section 3 with N = 1, i.e. we attempt to identify a
possibly discontinuous coefficient from a single global measurement of the solution of
a Poisson equation. This corresponds to the situation

A(q;u)(ϕ) = (q∇u,∇ϕ) − (f, ϕ), m(Mu− z) =
1

2
‖u− z‖2

Ω,

where Ω = [−1, 1]d, d = 2. Measurement data z was generated synthetically by
solving −∇ · q∗∇u∗ = f numerically for u∗ using a higher order method (to avoid the
inverse crime), and setting z(x) = u∗(x) + ε(x), where ε is random noise with a fixed
amplitude ‖ε‖∞.

For this example, we choose q∗ as

q∗(x) =

{

1 for |x| < 1
2 ,

8 otherwise,
f(x) = 2d,

which yields u∗(x) = |x|2 inside |x| < 1
2 , and u∗(x) = 1

8 |x|
2 + 7

32 otherwise. Boundary
conditions g for u are chosen accordingly. The circular jump in the coefficient is not
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Fig. 8.1. Example 1: Exact coefficient q∗ (left) and displacement u∗ (right).
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Fig. 8.2. Example 1: Recovered coefficient with no noise, on grids T
q with 800-900 degrees of

freedom. Left: No bounds on q imposed. Right: 1 ≤ q ≤ 8 imposed.

aligned with the mesh cells, and can only be resolved properly by mesh refinement.
u∗ and q∗ are shown in Figure 8.1.

For the case of no noise, i.e. measurements can be made everywhere without error,
Figure 8.2 shows the mesh Tq and the identified parameter after some refinement
steps. The left panel shows the reconstruction with no bounds on q imposed, whereas
the right one shows results with tight bounds 1 ≤ q ≤ 8. The latter case can be
considered typical if one knows that a body is composed of two different materials,
but their interface is unknown. In both cases, the accuracy of reconstruction is good,
and it is clear that adding bound information stabilizes the process. No regularization
is used for this experiment.

On the other hand, if ‖ε‖∞/‖z‖∞ = 2% noise is present, Figure 8.3 shows the
identified coefficient without and with bounds imposed on the parameter. Again, no
regularization is used, and it is obvious that the additional information of bounds on
the parameter improves the result significantly (quantitative results are given as part
of the next section). Of course, adding a regularization term, for example of Bounded
Variation-type [22, 24, 27], would also aid to get a better reconstruction. Instead of
regularization, we will rather consider noise suppression by multiple measurements in
the next section.

8.2. Example 2: Multiple experiments. Let us consider the same situation
as in the previous section, but this time we perform multiple experiments with different
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Fig. 8.3. Example 1: Same as Fig. 8.2, but with 2% noise in the measurement.

Fig. 8.4. Example 2: Solutions of the state equations for experiments i = 2, 6, 12.

forcing f i, producing measurements zi. Thus, for each experiment 1 ≤ i ≤ N ,

Ai(q;ui)(ϕ) = (q∇ui,∇ϕ) − (f i, ϕ), mi(M iui − zi) =
1

2
‖ui − zi‖2

Ω. (8.1)

Our hope is that if each of these measurements is noisy, we can still recover the
correct coefficient well if we only measure often enough. Since the measurements have
independent noise, measuring more than once would already yields a gain even if we
chose the right hand sides f i identically. However, we expect to gain more if we use
different forcing functions f i in different experiments.

In addition to f1(x) = 2d already used in the last example, we use

f i(x) = π2k2
i sin(πki · x), 2 ≤ i ≤ N

as forcing terms for the rest of the state equations (8.1). The vectors ki are chosen as
the first N elements of the integer lattice {0, 1, 2, . . .}d when ordered by their l2-norm
and after eliminating collinear pairs in favor of the element of smaller magnitude.
Numerical solutions for these right hand sides are shown in Fig. 8.4 for i = 2, 6, 12.
Synthetic measurements zi were obtained as in the first example.

Fig. 8.5 shows a quantitative comparison of the reconstruction error ‖qh−q
∗‖L2(Ω),

as we increase the number of experiments used for the reconstruction, and as Newton
iterations proceed on successively finer grids. In most cases, we only perform one
Newton iteration on each grid, but if we are not satisfied with the progress on this
grid, more than one iteration will be done; in this case, curves in the charts have
vertically stacked data points. The finest discretizations had 3-400,000 degrees of
freedom for the discretization of state and adjoint variable in each experiment (i.e.,
up to a total of about 4 million unknowns in the examples shown), and about 10,000
degrees of freedom for the discretization of the parameter qh. We only show the case
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Fig. 8.5. Error ‖qh − q∗‖L2(Ω) in the reconstructed coefficient as a function of the number N

of experiments used in the reconstruction and the average number of degrees of freedom used in the
discretization of each experiment. Left: No bounds imposed. Right: 1 ≤ q ≤ 8 imposed. 2% noise
in both cases. Note the different scales.

of non-zero noise level, since otherwise the number of experiments was not relevant
for the reconstruction error.

From these numerical results, several conclusions can be drawn. First, impos-
ing bounds helps identify significantly more accurate reconstructions, but using more
measurements also strongly reduces the effects of noise. Secondly, if noise is present,
there is a limit for the amount of information that can be obtained; as can be seen
from the erratic and growing behavior of curves for small N and large numbers of
degrees of freedom, further refining meshes may deteriorate the result beyond a cer-
tain mesh size (the identified parameter deteriorates by high frequency oscillations).
Finally, since the numerical effort required to solve the problem grows roughly linear
with the number of experiments, using more experiments may be cheaper than us-
ing finer meshes in many cases: discretizing twice as many experiments yields better
reconstructions of q than choosing meshes with twice as many unknowns.

8.3. Example 3: Optical tomography. The third and last application comes
from a relatively recent biomedical imaging technique, fluorescent-enhanced optical
tomography. The state equations in this case consist of two coupled equations

−∇ · [Dx∇w] + kxw = 0, −∇ · [Dm∇v] + kmv = bxmqw. (8.2)

These equations describe the propagation of light in tissue and are the diffusion ap-
proximation of the full radiative transfer equation. Here, w is the light intensity at
the wave length of a laser with which the skin is illuminated. v is the intensity of
fluorescent light excited in the interior by the incident light in the presence of a fluo-
rescent dye of unknown concentration q. If the incident light intensity is modulated
at a frequency ω, then both w and v are complex-valued functions and the various
coefficients in the equations above are given by

Dx =
1

3(µaxi + q + µ′
sx)

, kx =
iω

c
+ µaxi + q, bxm =

φ

1 − iωτ
,

Dm =
1

3(µami + µamf + µ′
sm)

, km =
iω

c
+ µami + µamf ,

where µaxi, µami are intrinsic absorption coefficients at incident and fluorescent wave
lengths, µ′

sx, µ
′
sm are reduced scattering coefficients, µamf absorption due fluorophore,
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φ the fluorophore’s quantum efficiency, τ its half life, and c the speed of light. All of
these coefficients are assumed known. More details about this model and the actual
values of material parameters can be found in [35, 37].

In clinical applications, one injects a fluorescent dye into tissue that is suspected
to have a tumor. Since certain dyes specifically bind to tumor cells while they are
washed out from the rest of the tissue, their presence is considered to be a good
indicator for the existence and location of a tumor. The goal of the inverse problem
is therefore to identify the unknown concentration of fluorescent dye, q = q(x), in
the tissue, using above model. Note that q appears in the diffusion coefficient Dx,
the absorption coefficient kx, and the right hand side of the second equation. In
order to identify q one illuminates the body at the incident wave length (but not at
the fluorescent wave length) with a laser, which we can model using the boundary
conditions

2Dx

∂w

∂n
+ γw + S = 0, 2Dm

∂v

∂n
+ γv = 0, (8.3)

where n denotes the outward normal to the surface and γ is a constant depending on
the optical reflective index mismatch at the boundary [26], and S(x) is the intensity
pattern of the incident laser light. We would then measure the fluorescent intensity
v(x) on a part Σ of the boundary ∂Ω. Intuitively, in areas of Σ where we see much
fluorescent light, a fluorescent source must be close by, i.e. the dye concentration is
large pointing to the presence of a tumor.

Given these explanations, we can define the inverse problem in the language of
Section 2 by setting ui = {wi, vi} ∈ V i = [H1(Ω → C)]2, defining test functions
ϕi = {ζi, ξi} ∈ V i, and using

A(q;ui)(ϕi) = (Dx∇u
i,∇ζi)Ω + (kxu

i, ζi)Ω +
γ

2
(ui, ζi)∂Ω +

1

2
(Si, ζi)∂Ω

+ (Dm∇vi,∇ξi)Ω + (kmv
i, ξi)Ω +

γ

2
(vi, ξi)∂Ω − (bxmu

i, ξi)Ω

as the bilinear form, where all scalar products apply to complex-valued quantities.
The measurement operator is given by M i : V i 7→ Zi = L2(Σ → C),M iui = vi|Σ and
we use mi(M iui − zi) = 1

2‖v
i − zi‖2

L2(Σ).
Fig.s 8.6 and 8.7 show results obtained with a program that implements the

framework laid out before for these equations and operators. It shows a situation in
which a simulated widened laser line is scanned in N = 8 increments over an area of
roughly 8cm × 8cm of the experimentally determined surface of a tissue sample (in
this case the groin region of pig, see [38]). Synthetic data zi is generated assuming
that a spherical tumor of 1cm diameter is located at the center of the scene some
1.5cm below the surface. This data is then used to reconstruct the function q(x)
which should ideally match the previously assumed size and location of the tumor.

Fig. 8.6 shows the real parts of the current iterates u2
25, u

6
25 after 25 Gauss-Newton

iterations for experiments 2 and 6, along with the mesh T6
25used to discretize the latter.

This mesh has approximately 22,900 cells, on which a total of some 270,000 primal
and adjoint variables are discretized. The total number of unknowns involved in this
inverse problem, added up over all N = 8 experiments, is some 1.5 million. It is quite
clear that a single mesh able to resolve the features of all forward solutions would
have to have significantly more degrees of freedom since the areas where ui(x) varies
are different between experiments. A back of the envelope calculation shows that this
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Fig. 8.6. Example 3: Left and middle: Real part of the solution w of model (8.2)–(8.3) for
experiments 2 and 6, characterized by different boundary sources S2(x), S6(x). Right: Mesh T

6

after 4 refinement cycles.

Fig. 8.7. Example 3: Left and middle: Meshes T
q used to discretize the parameter q(x) after 1

and 4 refinement cycles, respectively. The left mesh is used for Gauss-Newton iterations 8–11, the
one in the middle for iterations 22-25. Right: Reconstructed parameter q25 after 25 Gauss-Newton
iterations.

single mesh would have to have on the order of 2 million cells, giving rise to a total
number of degrees of freedom on the order of 10–12 million. Since the solution of
the inverse problem is not dominated by generating meshes but by solving the linear
systems (6.1)–(6.3), the savings resulting from using adaptive meshes are apparent.

Finally, Fig. 8.7 shows the meshes T
q
11 and T

q
25, as well as a cloud image of the

solution after 25 Gauss-Newton iterations. The reconstruction has correctly identified
the location and size of the tumor, and the mesh is appropriately refined to resolve
its features. The image does contain a few artifacts, mainly below the target and
elsewhere deep inside the tissue; this is not overly surprising given that light does
not penetrate very deep into tissue. However, the main features are clearly correct.
(For similar reconstructions, in particular using experimentally measured instead of
synthetically generated data, see also [35, 38].)

In the case shown, the final mesh has 977 unknowns, of which 438 are constrained
by the condition 0 ≤ q ≤ 2.5 (the upper bound is, in fact, not attained here). Over
the course of the entire 25 Gauss-Newton iterations, some 9,000 CG iterations were
performed to solve the Schur complement systems. Since each iteration involves 2N

solves with Ai or AiT , and we also need 2N solves for equations (6.2)–(6.3) per
Gauss-Newton step, this amounts to a total of some 150,000 solutions of the three-
dimensional, coupled system (8.2)–(8.3) over the course of the entire computation
which took some 6 hours on a 2.2GHz Opteron system; approximately two thirds of the
total compute time were spent on the last 4 iterations on the finest grid, underlining
the claim that the initial iterations on coarser meshes are relatively cheap.

21



9. Conclusions. Adaptive meshing strategies have become the state-of-the-art
technique in solving partial differential equations. However, they are not yet widely
used in solving inverse problems. This may be attributed in part to the fact that
the numerical solution of inverse problems has, in the past, been considered more
in the context of optimization than in the context of discretizations. Since practical
optimization methods are mostly developed in finite dimensions, the notion that dis-
cretizations can change over the course of a computation therefore doesn’t fit very
well into existing algorithms.

To merge these two streams of research, optimization and discretization, we have
presented a framework for the solution of large-scale multiple-experiment inverse prob-
lems that can deal with adaptively changing meshes. Its main features are:

• formulation in function spaces, allowing for different discretizations in subse-
quent steps of Newton-type nonlinear solvers;

• discretization by adaptive finite element schemes, with different meshes for
state and adjoint variables on the one hand, and the parameters sought on
the other;

• inclusion of bound constraints with a simple but efficient active set strategy;
• choice of a formulation that allows for efficient parallelization.

This framework has then been applied to some examples showing that inclusion
of bounds can stabilize the identification of a coefficient from noisy data, as well as
the (obvious) fact that measuring more than once can reduce the effects of noise. The
last example also demonstrated that the framework is applicable also to problems of
realistic complexity beyond mathematical model problems.

There are obviously many aspects of the framework laid out here that warrant
further research. Among these are:

• Refinement indicators: For the numerical examples, only a rather simple
criterion was used to drive mesh refinement. Ideally, refinement would be
based on error estimates. There are some attempts in this direction [4, 7,
40, 41]. One problem is that traditionally, error estimates are derived using
stability estimates; however, these rarely hold for inverse problems.

• More efficient linear solvers: The majority of the compute time is spent on
inverting the Schur complement system (6.1) because constructing precondi-
tioners for the matrix S is complicated by the fact that its entries are not
known. Attempts to use simpler versions of this matrix to precondition can be
found in [14]. Another possibility are Krylov subspace recycling techniques
using information from previous Gauss-Newton iterations. This, however,
would have to deal with the fact that the matrix S results from discretiza-
tions that may change between iterations.

• Very little theoretical justification, for example in terms of convergence proofs,
has been presented for the viability of the individual steps of the framework
laid out above.

We hope that future research will answer some of these open questions.
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