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Abstract

Nonoscillatory central schemes are a class of Godunov-type (i.e., shock-capturing, fi-
nite volume) numerical methods for solving hyperbolic systems of conservation laws
(e.g., the Euler equations of gas dynamics). Throughout the last decade, central
(Godunov-type) schemes have gained popularity due to their simplicity and effi-
ciency. In particular, the latter do not require the solution of a Riemann problem
or a characteristic decomposition to compute the intercell flux.

One example of a 2D central Godunov-type scheme is that of Jiang and Tadmor
[SIAM J. Sci. Comput. 19 (1998) 1892–1917]. Unfortunately, the latter scheme
is constructed on a uniform Cartesian (tensor product) grid and uses a direction-
by-direction reconstruction. Therefore, the JT scheme is not applicable to problems
with complicated domain geometry, and may not be able to achieve the full second
order of accuracy (in time and space) when the solution is not aligned with the
coordinate directions.

In this paper, an extension of the JT scheme to unstructured triangular grids
will be discussed. To this end, a new, “genuinely multidimensional,” nonoscillatory
reconstruction — the minimum-angle plane reconstruction (MAPR) — is discussed.
The MAPR is based on the selection of an interpolation stencil yielding a linear re-
construction (of the solution from its cell averages) with minimal angle with respect
to the horizontal. Furthermore, numerical results are presented for hyperbolic sys-
tems of conservation laws with convex and nonconvex flux functions. In particular,
it will be shown that the MAPR is able to capture composite waves accurately.
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1 Introduction

The first second-order accurate non-oscillatory central Godunov-type scheme
was introduced by Nessyahu and Tadmor [1], whose work generalized the first-
order accurate staggered Lax–Friedrichs scheme. Over the last decade, there
has been a significant amount of research on the topic. Some of the recent
work on central schemes includes, but is not limited to, semi-discrete for-
mulations, less dissipative central-upwind schemes and extensions to multiple
spatial dimensions (see, e.g., Refs. [2,3,4,5,6,7] and those therein).

In this paper, we present an extension of the second-order accurate (in space
and time) two-dimensional (2D) central scheme of Jiang and Tadmor, which is
a 2D version of the Nessyahu–Tadmor scheme [1], to unstructured triangular
meshes. The Jiang–Tadmore scheme has been further refined by Kurganov and
Tadmor [3] (the so-called modified central differencing scheme) by using the
maximal local speeds of propagation. The extension of the Kurganov–Tadmor
scheme to unstructured triangulations by way of the approach proposed in
this article is straight-forward.

In light of the work of Kurganov and Petrova [4], which extended the “state-
of-the-art” semi-discrete central-upwind schemes [5] to triangular meshes, we
must motivate the present work. Our goal is to build the simplest possible
fully-discrete central scheme on (trully) unstructured triangulations. In doing
so, we are also proposing a novel “genuinely-multidimensional” reconstruction
and showing how adaptive, unstructured meshes can significantly improve
the performance of such a scheme. In addition, it should be noted that our
work differs fundamentally from that of Arminjon et al. [7], who proposed an
extension of the Nessyahu–Tadmor scheme to 2D unstructured triangulations,
because we propose a novel (and simpler) nonoscillatory reconstruction based
on the adaptive choice of an interpolation stencil and a staggered grid that
fits naturally into the hierarchy of central schemes [3,5,4].

Furthermore, we hope to employ the scheme presented herein in a predictor-
corrector-type algorithm that couples the (explicit) Godunov approach to con-
servation laws with the novel (implicit) finite-elements approach of the L1-
minimzation method of Guermond and Popov [8,9]. In this vein, we also hope
to show how many of the common tools (e.g., tessellation of arbitrary domains,
error indicators and adaptive mesh refinement, etc) of finite element methods
can be seamlessly incorporated into Godunov-type finite volume schemes.

This paper is organized as follows. In Sec. 1.1, the problem is stated and basic
notation for the paper is set out. In Sec. 2, the numerical method is described,
including the reconstruction, evolution and projection steps. Finally, in Sec. 3,
several numerical examples, including scalar equations (with both convex and
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non-convex fluxes) and the Euler system of gas dynamics, are presented and
discussed.

1.1 Statement of the Problem and Notation

We consider the following initial-value problem for a 2D hyperbolic system of
conservation laws:{

qt + f (q)x + g(q)y = 0, (x, y, t) ∈ Ω× (0, T ],

q(x, y, t = 0) = q0(x, y), (x, y) ∈ Ω,
(1)

where Ω ⊂ R2 is the interior of a polygonal domain, whose boundary we
denote by ∂Ω. In addition, let T be a conforming triangulation (see, e.g.,
[10, p.56] of Ω̄ := Ω ∪ ∂Ω, i.e. a finite collection of, say, N subsets τ of Ω̄,
called elements, each of which is a non-degenerate triangle (usually satisfying
a minimum-angle condition). We denote by |τ | the area of an element τ ∈ T .

Furthermore, let w be the approximation to q , the true solution to (1), on the
triangulation T . Then, the constant w̄n

i stands for the approximate average
of the solution over the element τi ∈ T at time t = tn, i.e.

w̄n
i ≈ q̄n

i :=
1

|τi|

∫
τi

q(x, y, tn) dA, (2)

where dA := dx dy. Moreover, given a fixed time step ∆t, we define tn := n∆t.

Finally, throughout the text we represent points in Euclidean space by ordered
pairs, e.g. (x, y). However, if an ordered pair is followed by a > superscript,
e.g. (νx, νy)

>, it stands for a (column) vector. In addition, a dot between two
vectors denotes the usual Euclidean inner product.

2 Overview of the Scheme

2.1 Reconstruction

Without loss of generality, we restrict ourselves to the case of a scalar conser-
vation law for the rest of this section. In the case of a system, the procedures
described herein apply to each component of w (i.e., each equation) in the
same manner — this is the so called componentwise approach to reconstruc-
tion and limiting.
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Thus, to approximate (1), we begin each time step with a piecewise constant
solution of the form

w̄n(x, y) =
N∑

i=1

w̄n
i χi(x, y), (3)

where χi is the characteristic function of the element τi — i.e., χi is unity for
all (x, y) ∈ τi and zero everywhere else.

Then, we construct a piecewise polynomial interpolant of w̄n(x, y):

wn(x, y) =
N∑

i=1

pn
i (x, y)χi(x, y), (4)

where pn
i is a linear function in two variable. We require the reconstruction to

be conservative, hence we must have that at the center of mass of the element
τi, which we denote by (x∗i , y

∗
i ), wn(x∗i , y

∗
i ) ≡ pn

i (x∗i , y
∗
i ) = w̄n

i . Consequently,
the linear interpolant has the following explicit form:

pn
i (x, y) = w̄n

i +∇pn
i · (x− x∗i , y − y∗i )

>. (5)

Clearly, the gradient ∇pn
i uniquely determines each linear interpolant.

There has been a significant amount of work on how to choose ∇pn
i on an

unstructured mesh so that the piecewise-linear reconstruction (4) is nonoscil-
latory: slope-limited nearest-neighbor linear interpolation [11], slope-limited
least-squares gradient recovery [7], “admissible” piecewise-linear reconstruc-
tion [4] (and the references therein), ENO reconstruction [12], WENO re-
construction [13], high-order logarithmic reconstructions [14] etc. We refer
the reader to Refs. [15, pp.212–225] and [16, pp.31–41] for a comprehensive
overview of nonoscillatory reconstruction on unstructured meshes. However,
many of the proposed methods feature empirical parameters and ad-hoc as-
sumptions, which we do not find robust. To this end, we propose the minimum-
angle plane reconstruction, which is similar to the approach in [11], but also
adds a bit of a ENO/UNO (see, e.g., [1,2,17]) flavor to the reconstruction.

Consider an element τi ∈ T and its neighbors, which we define as the elements
in T that share an edge with τi. For a triangulation of the type discussed in
Sect. 1.1, τi may have either one, two or three neighbors, which we denote by
τi1, τi2 and τi3 (see Fig. 1). There are two cases that require special attention.
First, if τi has only two neighbors (i.e., one of τi’s edges lies on ∂Ω), then only
one plane can be constructed and it is the minimum-angle plane. Second, if
τi has only one neighbor (i.e., two of τi’s edges lie on ∂Ω) then its second and
third neighbors are defined as the two neighbors of τi’s first neighbor that are
not τi itself.

Now, for the two cases when three neighbors of τi ∈ T can be identified, we
begin the minimum-angle plane reconstruction by calculating the four planes
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Fig. 1. Diagram of an element of the triangulation and its first neighbors.

that pass through the following collections of points:

(1) (x∗i , y
∗
i , w̄

n
i ), (x∗i1, y

∗
i1, w̄

n
i1), (x∗i2, y

∗
i2, w̄

n
i2);

(2) (x∗i , y
∗
i , w̄

n
i ), (x∗i2, y

∗
i2, w̄

n
i2), (x∗i3, y

∗
i3, w̄

n
i3);

(3) (x∗i , y
∗
i , w̄

n
i ), (x∗i3, y

∗
i3, w̄

n
i3), (x∗i1, y

∗
i1, w̄

n
i1);

(4) (x∗i1, y
∗
i1, w̄

n
i1), (x∗i2, y

∗
i2, w̄

n
i2), (x∗i3, y

∗
i3, w̄

n
i3).

Then, we select the plane that concludes the smallest angle with the horizontal,
where the angle is always corrected to the first quadrant.

Finally, let ν ≡ (νx, νy, νz)
> denote the normal vector to the minimum-angle

plane over some τi ∈ T at t = tn, then it is easy to show that ∇pn
i =

−(νx/νz, νy/νz)
>. Thus, the piecewise-linear reconstruction (4) of the piece-

wise constant data (3) is complete.

2.1.1 Modifying the Reconstruction for Boundary Elements

Due to lack of information at the boundaries — boundary elements have only
one or two neighbors — we add the boundary elements’ second neighbors (i.e.,
their neighbors’ neighbors) to the set of possible points through which the
minimum-angle plane may pass. This results in stable interpolation at the
boundaries, and does not degrade the solution. In fact, the second neighbors’
may be used in for the selection of the minimum-angle plane for interior el-
ements as well, if a more dissipative reconstruction is necessary for a certain
problem.
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Fig. 2. Diagram of the staggered mesh superimposed onto the triangulation.

2.2 Evolution

In order to avoid solving Riemann problems at the interfaces of the elements
in T , we define a staggered mesh S, whose elements contain the Riemann fans
emanating from the discontinuities in the piecewise linear solution. Then, we
realize the solution at the next time step by its averages over elements of S.

To this end, assuming a suitable CFL condition holds, the discontinuity in wn

along the edges and at the vertices of each τi ∈ T cannot propagate into the
sub-triangle ∆i, whose vertices are located at one-third of the distance from
the vertices of τi to its center of mass (x∗i , y

∗
i ). However, the discontinuities in

wn at every vertex do propagate into all elements of T that share it. There-
fore, we define Λij to be the polygonal domains about each vertex of τi, in
which the piecewise linear interpolant (4) is discontinuous due to the jumps
emanating from those edges (of τi and its neighbors) which share the vertex;
j ∈ {1, 2, 3} is an index over the vertices of τi. Furthermore, we denote by Πij

the parallelograms which contain the discontinuities emanating from the edges
of τi only; j ∈ {1, 2, 3} is an index over the neighbors of τi. Fig. 2 illustrates
the elements of the staggered mesh S = ∪i,j{∆i, Λij, Πij} that overlap with
some τi ∈ T .

Two remarks are in order here:

(1) If |∆i| = |Πij| ≡ 0 (∀i, j), the staggered grid becomes the well-known
Voronoi diagram, which is commonly used in finite volume methods for
elliptic problems (see Refs. [10, pp.262–265] and [16, pp.44–45]).

(2) If the maximum local speed of propagation is used to determine the
vertices of ∆i, we get the analogue of Kurganov and Tadmor’s modified
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central differencing [3] for (unstructured) triangulations.

Here, we should note that the CFL condition ∆t < 1
3
· mini |τi|/Smax, where

Smax is the fastest wave’s speed, ensures that all of the above assumptions are
indeed true. However, in practice, ∆t < 1

3
·mini diam(τi)/Smax is sufficient to

ensure stability. The latter CFL condition is the equivalent to the one used in
[4].

Now, we evolve the piecewise linear function (4) according to the conservation
law (1) over the staggered mesh S rather than the original triangulation T .
To this end, we require that the approximate solution w satisfy (1) subject
to the initial condition w(x, y, tn) = wn(x, y). We proceed by integrating the
equation over σk× [tn, tn+1], where σk ∈ S is any one of the staggered elements
described above. Then, after applying the fundamental theorem of calculus to
the temporal integral of wt, we obtain that

w̄n+1
k = w̄n

k −
1

|σk|

∫ tn+1

tn

∫
σk

f (w)x + g(w)y dA dt, (6)

where w̄n+1
k denotes the (staggered) average of w over σk at t = tn+1. Moreover,

it follows from the initial condition that

w̄n
k =

1

|σk|

∫
σk

wn(x, y) dA. (7)

Note that, since wn is a piecewise linear function, the integral in (7) can be
evaluated exactly by the midpoint quadrature rule, provided it is split up into
a sum of integrals over parts of σk on which wn is smooth.

We proceed by applying the divergence theorem to the spatial integral on the
right-hand side of (6) to get

w̄n+1
k = w̄n

k −
1

|σk|

∫ tn+1

tn

∮
∂σk

f (w)νx + g(w)νy ds dt, (8)

where ∂σk denotes the boundary of σk, ν ≡ (νx, νy)
> denotes the outer normal

vector to ∂σk and (ds)2 = (dx)2 +(dy)2. Note that everything up to this point
is exact.

We continue by employing the midpoint quadrature rule to approximate the
temporal integral on the right-hand side of (8), admitting a O

[
(∆t)2

]
local

truncation error. Since we assumed the appropriate CFL condition holds so
that the discontinuities in the solution do not leave the staggered mesh’s ele-
ments during the current time step, the solution at t = tn+ 1

2 is smooth along
∂σk, and so we are justified in using the midpoint rule, and we have formal
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second-order accuracy in time. Consequently,

w̄n+1
k ≈ w̄n

k −
∆t

|σk|

∮
∂σk

f
(
w(x, y, tn+ 1

2 )
)
νx + g

(
w(x, y, tn+ 1

2 )
)
νy ds, (9)

where tn+ 1
2 := 1

2
(tn + tn+1) ≡

(
n + 1

2

)
∆t. Alternatively, one could use the

improved (though still second order) quadrature rule presented in [18] for the
temporal integral.

In the spirit of the Jiang–Tadmor predictor-corrector scheme, we proceed by
predicting the temporal midvalues, i.e. w(x, y, tn+ 1

2 ), assuming the point (x, y)
is located away from discontinuities, which is the case along ∂σk. To this end,
we expand w in a Taylor series in time about t = tn, neglecting all terms
of O

[
(∆t)2

]
, then we use the conservation law (1) to replace wt by a known

quantity (see [2]), and we obtain that

w(x, y, tn+1/2) ≈ wn(x, y)− ∆t

2

(
∂f

∂q

(
wn(x, y)

)∂wn

∂x
+

∂g

∂q

(
wn(x, y)

)∂wn

∂y

)
,

(10)
where ∂f /∂q and ∂g/∂q are the Jacobian matrices corresponding to the flux
functions. In addition, the (limited) slopes ∂wn/∂y and ∂wn/∂x above must
conditionally defined so that it takes the value of ∇pn

i over the parts of σk ∈
S that overlap some τi ∈ T . Finally, we observe that (10) constitutes the
predictor step, whereas (9) constitutes the corrector step of the scheme.

We conclude the derivation of the fully-discrete scheme by computing the
boundary integral in (9) via the composite trapezoidal quadrature rule, since
(by construction) ∂σk is composed of a number of line segments whose end-
points are known (see Fig. 2). Consequently, the scheme is, formally, second-
order accurate in space and (as already stated) in time.

Due to length considerations we omit the explicit calculation of each line
integral in (9), and each double integral in (7), since they depend on the
geometry of each of the three different types of elements of S (see Fig. 2).
However, the calculations are straight-forward, though tedious.

2.3 Reconstruction on the Staggered Mesh

Given an element σi ∈ S and its neighbors σij, 1 ≤ j ≤ m, find all
(

m+1
3

)
possible linear functions in two variable that pass through any triplet of 3D
points in the collection, each of which is defined as the σi’s (or σij’s) center of
mass and value of wn there. Then, retain the linear reconstruction that makes
the smallest angle with the horizontal, and use it to find a limited gradient.
In other words, the reconstruction step on the staggered mesh is conceptually
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(and to a large extent practically) identical to the reconstruction step on the
original triangulation.

2.4 Projection/Reaveraging

Finally, we complete each time step by computing the averages over the ele-
ments of the original triangulation T from the piecewise-linear reconstruction
of the solution on the staggered mesh S, i.e. ∀τi ∈ T

w̄n+1
i =

1

|τi|

∫
τi

wn+1(x, y) dA, (11)

which can be evaluated exactly using the midpoint quadrature rule, provided
it is split-up into integrals over the parts of domain on which the integrand
is smooth [just like the integral in (7)], because wn+1 is a piecewise linear
function.

2.5 Implementation of Boundary Conditions

Following [12,15], we implement boundary conditions by modifying the flux
integrals (9) directly when ∂σk ∩ ∂Ω 6= ∅ (i.e., when we are integrating along
the boundary of the domain), rather than modifying the integrals indirectly
by padding the computational domain with ghost cells as commonly done in
the literature. Of course, if the mesh is to be truly unstructured, it is not clear
whether the concept of a ghost cell (in the usual sense) is well-defined.

2.6 Adaptive Mesh Refinement and Refinement Indicators

Adaptive mesh refinement (AMR) can be incorporated seamlessly into our
algorithm. For example, we could use a simple refinement indicator, such as
those proposed in [15, pp.258–275], to refine and coarsen the mesh at each time
step, depending on where the discontinuities in the solution propagate. As far
as central schemes are concerned, an AMR algorithm for the case of a 2D
triangular mesh and a dual mesh consisting of centroid-median cells (similar
to the Voronoi diagram special case of our dual grid, see [16, pp.35–39]) was
proposed in [19] and shows promise. In addition, the recent work [20] has shown
how a central scheme with AMR can be implemented on non-matching (i.e.,
non-conforming) Cartesian grids in 3D. Finally, it must be noted that a more
sophisticated, theoretically-motivated, smoothness indicator for conservation
laws based on the so-called weak Lip′-norm, which can be used as a refinement
indicator, was developed in [21].
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Table 1
Error in the solution to (12) at t = 0.5 on a structured, uniform triangulation of
Friedrichs–Keller type (see, e.g., [10]), as the mesh is refined.

h L∞ error order L2 error order L1 error order

0.134321 0.140014 – 0.0665534 – 0.0512658 –

0.0671606 0.060454 1.21166 0.0229288 1.53735 0.0170446 1.58869

0.0335803 0.0238228 1.34349 0.00772257 1.57001 0.00536489 1.66769

0.0167902 0.00964388 1.30466 0.00251898 1.61625 0.00164701 1.70371

0.00839508 0.00388086 1.31323 0.000792697 1.66799 0.000471062 1.80585

3 Numerical Results

3.1 Constant-Coefficient Linear Advection

To show that the scheme presented in Sec. 2 is indeed second-order accurate
in space and time, we solve the advection equation:

{
ut + ux + uy = 0, (x, y, t) ∈ [0, 1]2 × (0, 0.5],

u(x, y, 0) = sin[π(x + y)], (x, y) ∈ [0, 1]2,
(12)

subject exact boundary conditions (i.e., at an inflow boundary, the values of
the conserved quantities are prescribed via the exact solution) on ∂Ω, which
has the exact solution u(x, y, t) = sin[π(x + y − 2t)].

The convergence results for this IBVP and estimated orders of accuracy are
presented in Table 1. Though they are in exact agreement with those reported
in [11], we do not seem to be able to achieve the full second-order accuracy
in both the L1 and L∞ norms obtained in [4]. Note that h can be taken to be
any measure of the “fineness” of the mesh as far as the experimental order
of convergence is concerned, e.g. h = maxi diam(τi), where diam(τi) is the
largest side of the triangle τi. However, if we are to compare our results to
those of schemes on rectangular meshes, we should take h to be the maximum
radius of the circumscribed circles of the triangles of the meshes. The latter
is the value given for h in Table 1. Finally, the CFL number used for these
calculations was 1/5.
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Fig. 3. (Left) 3D surface plot of the solution showing the mesh, which is a uni-
form Friedrichs–Keller triangulation with 6,272 elements, for the IC given by (14).
(Right) 3D surface plot showing the solution contours for the IC given by (15) on
a Friedrichs–Keller triangulation with 12,800 elements. The CFL number used was
1/5 in both cases.

3.2 Inviscid Burgers Equation

Next, we solve the following simple scalar equation considered in [2]:

ut +
(

1
2
u2
)

x
+
(

1
2
u2
)

y
= 0, (x, y) ∈ [0, 1]2, (13)

subject to the “oblique” (Riemann problem) initial condition

u(x, y, 0) =


−1.0, x > 0, y > 0;

−0.2, x < 0, y > 0;

0.5, x < 0, y < 0;

0.8, x > 0, y < 0.

(14)

and exact boundary conditions. The solution is advanced up to t = 0.5, in
order to compare our results with those in [2].

In addition, we also consider (13) with the (Riemann problem) initial data

u(x, y, 0) =

{
1.0, 0.1 ≤ x ≤ 0.6, 0.1 ≤ y ≤ 0.6;

0.1, else.
(15)

and Dirichlet boundary conditions on ∂Ω. The solution is advanced up to
t = 0.3, in order for the wavefront not to reach the boundary.
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Fig. 4. (Left) 2D contour plot of the solution. (Right) 3D surface plot of the solution
showing the (a priori refined) mesh with only 3,264 elements. The CFL number used
was 1/6.

3.3 A Nonconvex, Nonlinear Equation

Finally, to demonstrate the robustness of the minimum-angle plane reconstruc-
tion, we consider an example proposed in [6], which results in the formation
of a composite wave. The equation we wish to solve is the following scalar
conservation law with a nonconvex flux (i.e., f ′′(u) and/or g′′(u) may change
sign):

ut + (sin u)x + (cos u)y = 0, (x, y, t) ∈ [0, 1]2 × (0, 1], (16)

subject to the (Riemman problem) initial condition

u(x, y, 0) =


14π

4
, x2 + y2 < 1;

π

4
, else.

(17)

and natural (i.e., outflow) boundary conditions on ∂Ω.

As the results in Fig. 4 show, the MAPR does not suffer from the prob-
lems pointed out in [6] that “less-dissipative” limiters (such as Superbee and
WENO) do, for this nonconvex equation.
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3.4 Euler Equations of Gas Dynamics

In two-dimensions, the governing equations for an ideal gas (i.e., the conser-
vation of mass, momentum and energy) take the form


ρ

ρu

ρv

E


t

+


ρu

ρu2 + p

ρuv

u(E + p)


x

+


ρv

ρuv

ρv2 + p

v(E + p)


y

= 0, (18)

where ρ is the density of the gas, p the pressure, u and v are the x- and y-
velocities, respectively, and E is the total energy. The system is closed via the
ideal gas equation of state:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
. (19)

First, we compare our solutions to the 4 state 2D Riemann problem to those
computed by the central-upwind schemes on structured triangulations [4] and
the various schemes on tensor product Cartesian grids (including JT) tested
in [22]. Unfortunately, the 2D Riemann problem is, in some sense, an “arti-
ficial” scenario in as much as there are no physical boundary conditions one
can impose. Therefore, we were forced to solve the problem, which is posed
on [0, 1]2, on Ω = [−0.5, 1.5]2 using a set of stable (tough incorrect) boundary
conditions on ∂Ω. In this manner, for the problems considered here, any (arti-
ficial) boundary effects do no propagate into [0, 1]2 and so we can display the
results in the latter domain with confidence. In Fig. 5 we present plots of two
representative Riemann problems, which compare favorably with the results
in [4,22,23].

Acknowledgments

We would like to express our thanks to Veselin Dobrev for providing us with a
copy of and his assistance with AggieFEM, which we used as the code base
for the implementation of the scheme proposed in this paper. In addition, we
would like to thank Peter Popov for his advice on various programming and
computational issues.

13



Fig. 5. Case 12 (left) and Case 15 (right) using the plotting convention of [22] —
i.e., the black contours are of the density ρ, the color contours are of the pressure p
and the arrows represent the velocity field (u, v)>. The mesh is a uniform Friedrich-
s–Keller triangulation with diam(τi) =

√
2/256. The CFL number used was 0.275

in both cases.
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