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Abstract. This work presents the analysis of the numerical dispersion properties of a finite element
method used to approximate the solution of the equations of motion for a fluid saturated porous elas-
tic solid (a Biot medium) in the two dimensional case and the low frequency regime. The finite element
method employed comprises a nonconforming rectangular element for the approximation of each compo-
nent of the displacement vector in the solid phase, and the Raviart-Thomas-Nedelec mixed finite element
space of zero order for the fluid phase.
The study is performed by constructing and analyzing analytic and numerical dimensionless dispersion
relations, and by evaluating derived quantities such as dimensionless phase and group velocities and di-
mensionless attenuation for the three type of waves predicted by Biot’s equations of motion as a measure
of the numerical distortion. It is observed that the finite element procedure introduces both numerical
dispersion and anisotropy, being the slow wave the most affected by this effects. The analysis presented
yields lower bounds for the number of points per wavelength needed to reach a desired accuracy in the
dimensionless phase and group velocites and attenuation coefficients in Biot media.
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1 INTRODUCTION

The propagation of waves in a porous elastic solid saturated by a single–phase compressible
viscous fluid was first analyzed by Biot in several classic papers (1; 2; 3). In Biot’s theory the
two-phase material is considered as a continuum and the macroscopic variables follow the laws
of continuum mechanics. The theory assumes that anelastic effects arise from viscous interac-
tion between the solid and the fluid. Biot predicted the existence of two compressional waves:
the type I or fast wave for which the solid and fluid displacements are in phase, and the type II
or slow wave for which the displacements are out of phase. The type I and shear waves have a
behavior similar to those in an elastic solid, with high phase velocities, low attenuation and very
little dispersion. At low frequencies, the slow wave is diffusive, since viscosity effects domi-
nate (the boundary layer is thick compared to the pore size). At high frequencies, tangential
slip occurs (the boundary layer is thin), inertial effects dominate and the slow wave becomes a
propagation mode. This wave contributes to the attenuation of the fast waves by mode conver-
sions at heterogeneities. For shortness, a porous elastic solid saturated by a single–phase fluid
will be referred to as a Biot medium.
The purpose of this paper is to analyze the numerical dispersion associated with the numeri-
cal solution of Biot’s equations of motion in the 2D case employing the finite element method
presented in (4), where optimal a priori error estimates are derived. The procedure employs
the nonconforming rectangular element defined in (5) to approximate each component of the
displacement vector in the solid phase. On the other hand, the displacement in the fluid phase is
approximated using the vector part of the Raviart-Thomas-Nedelec mixed finite element space
of zero order (RTN0), which is a conforming space (6; 7).
The knowledge of the dispersive properties of any numerical procedure is of practical impor-
tance, since an underestimation of their relevance can lead to significant numerical error. This
is of particular importance for the case of numerical simulation based on Biot’s equations of
motion; from which it is desirable to obtain synthetic seismograms where physical attenuation
and dispersion effects be accurately modeled. In spite of the fact that Biot’s equations of mo-
tion have been widely used to simulate wave propagation in fluid saturated poroelastic materials
using a variety of numerical procedures, to the authors’ knowledge this is the first time that a
numerical dispersion analysis for these equations is performed.
This work is based on some previous results on the subject. The dispersive effects in the numer-
ical solution of the scalar wave equation has been investigated in References (8; 9; 10; 11; 12),
while the elastic case was analyzed in References (13; 14; 15; 16). For the former, a wide
variety of numerical dispersion reducing methods (17; 18; 19; 20; 21; 22; 23; 24; 25) have been
developped.
The choice of the nonconforming rectangular element defined in (5) to approximate the solid
displacement vector is based on the dispersion analysis presented in (15), where it is shown that
employing this nonconforming element allows to approximately halve the number of points per
wavelength necessary to reach a desired tolerance in the numerical dispersion, as compared
with the standard Q1 conforming elements.
The organization of the paper is as follows. In Section 2 a review of Biot’s theory of wave
propagation in fluid saturated poroelastic media is presented, including the calculation of phase



velocites and attenuation coefficients for each type of wave. Section 3 presents the boundary
value problem to be analyzed, together with an associated weak formulation. In Section 4 the
finite element spaces and the global finite element procedure to be analyzed are presented. Also,
a result derived in (4) concerning a-priori error estimates for the algorithm is stated. Section
5 is devoted to the numerical dispersion analysis of the finite element procedure, and Section
6 illustrates the application of the analysis when the Biot medium is a sample of gas saturated
Berea sandstone. Finally, the conclusions are drawn in Section 7.

2 REVIEW OF BIOT’S THEORY

Consider a porous solid saturated by a single phase, compressible viscous fluid and assume
that the whole aggregate is isotropic. Let us = (us

i (x, ω)) and ũf = (ũf
i (x, ω)), i = 1, 2

denote the averaged displacement vectors of the solid and fluid phases at the angular frequency
ω respectively. Also let

uf = uf(x, ω) = φ(ũf − us),

be the average relative fluid displacement per unit volume of bulk material, where φ denotes the
effective porosity. Also set u = (us, uf) and note that

ξ = −∇ · uf ,

represents the change in fluid content.
Let τij, i, j = 1, 2, and pf denote the the stress tensor of the bulk material and the fluid pressure,
respectively. Following (3), the stress-strain relations, stated in the space-frequency domain, can
be written in the form:

τij(u) = 2µ εij(u
s) + δij(λc ∇ · us −D ξ),

pf(u) = −D∇ · us +Kavξ, (1)

where εij(u
s) denotes the strain tensor of the solid. The coefficient µ is equal to the shear

modulus of the bulk material, considered to be equal to the shear modulus of the dry matrix.
Also

λc = Kc − µ,

with Kc being the bulk modulus of the saturated material. Following (26; 27) the coefficients
Kc, D and Kav in (1) can be obtained from the relations

α = 1 − Km

Ks

, Kav =

[
α− φ

Ks

+
φ

Kf

]−1

(2)

Kc = Km + α2Kav, D = αKav,

where Ks, Km and Kf denote the bulk modulus of the solid grains composing the solid matrix,
the dry matrix and the the saturant fluid, respectively. The coefficient α is known as the effective
stress coefficient of the bulk material.

2.1 The equations of motion

Let ρs and ρf denote the mass densities of the solid grains and of the fluid, respectively and
let

ρ = (1 − φ)ρs + φρf (3)



denote the mass density of the bulk material. Define the positive definite matrix P and the
nonnegative matrix B by

P =

(
ρI ρfI
ρfI gI

)
, B =

(
0I 0I
0I bI

)
,

where I denotes the identity matrix in R2×2. The mass coupling coefficient g represents the
inertial effects associated with dynamic interactions between the solid and fluid phases, while
the coefficient b includes the viscous coupling effects between such phases. They are given by
the relations

b =
η

k
, g =

Sρf

φ
, S =

1

2

(
1 +

1

φ

)
, (4)

where η is the fluid viscosity and k the absolute permeability. S is known as the structure or
tortuosity factor. Above a certain critical frequency ωt the coefficients b and g become frequency
dependent (2; 28; 29). This effect is associated with the departure of the flow from the laminar
Poiseuille type at the pore scale, which occurs for frequencies greater than ωt. The value of ωt

can be estimated by the formula (30)

ωt =
2η φ

ρf(ap)2
, (5)

where ap is the effective flow channel or pore size parameter. Following the ideas in (31; 32), it
can be expressed in the form

ap = 2

(
A0k

φ

)1/2

, (6)

where A0 denotes the Kozeny-Carman constant (33).
In this article the analysis is restricted to the low-frequency case. The ideas presented here can
be used to treat the high-frequency case that will be the subject of a forthcoming publication.
Next, let L(u) be the second order differential operator defined by

L(u) = (∇ · σ(u),−∇pf(u))
t .

Then if ω = 2πf is the angular frequency and F(x, ω) = (F s(x, ω),F f(x, ω)) is the external
source, the equations of motion, stated in the space-frequency domain, are (1; 2)

− ω2Pu(x, ω) + iωBu(x, ω) − L(u(x, ω)) = F(x, ω). (7)

2.2 Phase velocities and attenuation

Set the source term F to zero in (7) and consider first a standing compressional plane wave
in the plane (x1, x2), and define the potentials

ϕ = Ace
−iq·x ψ = Bce

−iq·x

where
q = (q1, q2) = (q

(r)
1 − i q

(i)
1 , q

(r)
2 − i q

(i)
2 ) ≡ q(r) − iq(i), (8)



and q · x = q1 x1 + q2 x2. Introducing us = ∇ϕ and uf = ∇ψ in (7) the following equations
are obtained:

(ρω2 −Hcq
2)Ac + (ρfω

2 −Dq2)Bc = 0, (9)
(ρfω

2 −Dq2)Ac + (gω2 − iωb−Mq2)Bc = 0,

where q2 = q · q.
The fact that the strain and kinetic energies are positive allows one to choose two physically
meaningful roots q1 and q2 of q in (9) having negative imaginary part, corresponding to the type
I and type II compressional waves, respectively.
In a similar fashion, for the shear waves consider potentials

ϕ = ASe
−iq·x, ψ = BSe

−iq·x.

Introducing the corresponding displacements us =

(
− ∂ϕ

∂x2
,
∂ϕ

∂x1

)
and uf =

(
− ∂ψ

∂x2
,
∂ψ

∂x1

)

in (7) yields the equation

q2
S =

ω2

µ

(
ρ− ρ2

f

g − ib/ω

)
. (10)

In the above equation the root qS with negative imaginary part is chosen, as was done for the
compressional waves.
Notice that equations (9) and (10) involve angles θ2,j between vectors q(r)

j and q(i)
j , j = I, II, S

respectively, which depend only on the physical parameters of the model, that have to be cal-
culated in order to completely determine the dispersion relations. The phase velocities cj and
attenuation ξj (measured in dB) for each one of the waves are usually given by the formulas
(26)

cj = ω/|q(r)
j | (11)

aj = 2π · 8.685889 |q(i)
j |/|q(r)

j |, j = I, II, S, (12)

For the attenuation, ξj = |q(i)
j |, j = I, II, S is also used. The second choice is the one

employed in this paper.

3 THE DIFFERENTIAL PROBLEMS AND A VARIATIONAL FORMULATION

Consider the solution of Biot equations of motion (7) in a rectangular domain Ω with bound-
ary Γ. In order to completely define a boundary value problem, a boundary condition must be
given. Let therefore ν and χ denote the unit outer normal and a unit tangent on Γ, respectively,
so that {ν, χ} is an orthonormal system on Γ. Then, set

GΓ(u) =

(
τ(u)ν · ν, τ(u)ν · χ, pf(u)

)t

, (13a)

SΓ(u) =
(
us · ν, us · χ, uf · ν

)t
. (13b)

The following absorbing boundary condition, which was derived in (34), will be used:

− GΓ(u(x, ω)) = iωDSΓ(u(x, ω)), (x, ω) ∈ Γ × (0, ω∗), (14)



where ω∗ is an upper bound for the frequencies of interest. The matrix D in Eq. (14) is positive
definite, and is given by the following relations: D = A 1

2N 1
2A 1

2 , where N = A−
1
2M 1

2A−
1
2

and

A =



ρ 0 ρf

0 ρ− (ρf )2

g
0

ρf 0 g


 , M =



λc + 2µ 0 α Kav

0 µ 0
α Kav 0 Kav


 . (15)

In order to state a variational formulation for (7) with the boundary condition (14) some notation
must be introduced. For X ⊂ R

2 with boundary ∂X , let (·, ·)X and 〈·, ·〉∂X denote the complex
L2(X) and L2(∂X) inner products for scalar, vector, or matrix valued functions. Also, for
s ∈ R, ‖·‖s,X and |·|s,X will denote the usual norm and seminorm for the Sobolev spaceH s(X).
In addition, if X = Ω or X = Γ, the subscript X may be omitted such that (·, ·) = (·, ·)Ω or
〈·, ·〉 = 〈·, ·〉Γ. Also, set

H(div; Ω) = {v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω)},
H1(div; Ω) = {v ∈ [H1(Ω)]2 : ∇ · v ∈ H1(Ω)},

with the norms

‖v‖H(div;Ω) =
[
‖v‖2

0 + ‖∇ · v‖2
0

]1/2
; ‖v‖H1(div;Ω) =

[
‖v‖2

1 + ‖∇ · v‖2
1

]1/2
.

Considering the space V = [H1(Ω)]
2 × H(div; Ω), multiply equation (7) by v ∈ V , use inte-

gration by parts and apply the boundary condition (14) to see that the solution u of (7) and (14)
satisfies the weak form:

−ω2 (Pu, v) + iω (Bu, v) + A(u, v) + iω 〈D SΓ(u), SΓ(v)〉 = (F , v), (16)

v =
(
v(1), v(2)

)t ∈ V,

where A(u, v) is the bilinear form defined as follows:

A(u, v) =
(
τjk(u), εjk(v

(1))
)
−
(
pf(u),∇ · v(2))

)
, u, v ∈ V. (17)

In (17) Einstein’s convention of sum on repeated indices is used.

4 THE FINITE ELEMENT PROCEDURE

The numerical procedures to approximate the solution of (16) will be defined and analyzed
for the case of rectangular elements. Let T h(Ω) be a nonoverlapping partition of Ω into rectan-
gles Ωj of diameter bounded by h such that Ω = ∪J

j=1Ωj. Denote by mj and mjk the midpoints
of ∂Ωj ∩ Γ and ∂Ωj ∩ ∂Ωk, respectively.
To approximate each component of the solid displacement vector the 2D nonconforming finite
element space NCh defined in (5) is employed, while to approximate the fluid displacement
vector the vector part of the Raviart-Thomas-Nedelec space (6; 7) of zero order, denoted Wh is
chosen. More specifically, set

R̂ = [−1, 1]2, N̂C(R̂) = Span{1, x̂1, x̂2, α(x̂1) − α(x̂2)}, α(x̂1) = x̂2
1 −

5

3
x̂4

1,

with the degrees of freedom being the values at the midpoint of each edge of R̂.



Also, if ψL(x̂1) = −1+bx1

2
, ψR(x̂1) = 1+bx1

2
, ψB(x̂2) = −1+bx2

2
, ψT (x̂2) = 1+bx2

2
, set

Ŵ(R̂) = Span
{
(ψL(x̂1), 0)t, (ψR(x̂1), 0)t, (0, ψB(x̂2))

t, (0, ψT (x̂2))
t
}
.

Next, for each Ωj , let FΩj
: R̂ → Ωj be an invertible affine mapping such that FΩj

(R̂) = Ωj ,
and define

NCh
j = {v = (v1, v2)

t : vi = v̂i ◦ F−1
Ωj
, v̂i ∈ N̂C(R̂), i = 1, 2},

Wh
j = {w : w = ŵ ◦ F−1

Ωj
, ŵ ∈ Ŵ(R̂)}.

Then the finite element spaces NCh and Wh are defined as follows:

NCh = {v : vj = v|Ωj
∈ NCh

j , vj(mjk) = vk(mjk) ∀(j, k)},
Wh = {w ∈ H(div; Ω) : wj = w|Ωj

∈ Wh
j }.

Note that standard approximation theory implies that, for all ϕ =
(
ϕ(1), ϕ(2)

)t ∈ [H2(Ω)]2 ×
H1(div; Ω),

inf
p∈NCh

[
‖ϕ(1) − p‖0 + h

(∑

j

‖ϕ(1) − p‖2
1,Qj

) 1
2

]
≤ Ch2‖ϕ(1)‖2, (18a)

inf
p∈Wh

‖ϕ(2) − p‖0 ≤ Ch‖ϕ(2)‖1, (18b)

inf
p∈Wh

‖ϕ(2) − p‖H(div;Ω) ≤ Ch
(
‖ϕ(2)‖1 + ‖∇ · ϕ(2)‖1

)
. (18c)

Next, the global finite element space to approximate the solution u of (16) is defined by

Vh = NCh ×Wh. (19)

Set

Ah(u, v) =
∑

j

[(
τjk(u), εjk(v

(1))
)
Ωj

−
(
pf(u),∇ · v(2))

)
Ωj

]
(20)

and
Θh(u, v) = −ω2 (Pu, v) + iω (Bu, v) + Ah(u, v) + iω 〈D SΓ(u), SΓ(v)〉 . (21)

Finally the global finite element procedure is defined as follows: find uh =
(
u(s,h), u(f,h)

)t ∈ Vh

such that

Θh(u
h, v) = (F , v), v =

(
v(1), v(2)

)t ∈ Vh. (22)

The arguments given in (4) shows that problem (22) has a unique solution for any ω 6= 0 and
that the following apriori error estimates hold: Let u ∈ V and uh ∈ Vh be the solutions of (16)
and (22), respectively. Then, the following is the energy-norm error estimate: for sufficiently
small h > 0,

‖us − u(s,h)‖1,h + ‖∇ · (uf − u(f,h))‖0 ≤ C(ω)h
[
‖us‖2 + ‖uf‖ 3

2
+ ‖∇ · uf‖1

]
.

Also, the [L2(Ω)]4-error estimate is as follows: for sufficiently small h > 0,

‖u− uh‖0 ≤ C(ω)
[
h2
(
‖us‖2 + ‖uf‖ 3

2

)
+ h

(
‖uf‖1 + ‖∇ · uf‖1

)]
.



5 NUMERICAL DISPERSION ANALYSIS

The solutions to equations (9) and equation (10) are written, as a first step, in dimensionless
form. For that purpose define the following dimensionless parameters for the case of non-zero
viscosity:

δ1 =
µ

λc + 2µ
, δ2 =

D

λc + 2µ
, δ3 =

M

λc + 2µ
, (23)

(24)

ωc =
b

φρf
, ωa =

ω

ωc
, (25)

γ1 =
ρf

ρ
, γ2 =

g

ρ
, γ3 =

b

ρωc
. (26)

and a reference velocity VR =
√

λc+2µ
ρ

. The solutions to equations (9) for the non-zero viscosity
case can now be written in dimensionless form yielding the following dispersion relation

1

(c̃)2
=
V 2

R

ω2
q2 =

(
1

2 (−δ2
2 + δ3)

(
(γ2 + i

γ3

ωa
− 2 γ1 δ2 + δ3)

∓
√(

γ2 + i
γ3

ωa
− 2 γ1 δ2 + δ3

)2

− 4

(
−γ2

1 + γ2 + i
γ3

ωa

)
(−δ2

2 + δ3)



)
, (27)

where the ∓ signs stands for the fast and slow compressional waves respectively.
The corresponding dispersion relation for the shear wave is

1

(c̃)2
=
V 2

R

ω2
q2 =

(
−γ1

2 + γ2 + i γ3

ωa

(γ2 + i γ3

ωa
) δ1

)
. (28)

In the zero-viscosity case, the dispersion relations (27) and (28) are still valid setting to zero all
the imaginary terms.
In order to proceed, set the source term to zero in Eq. (22) and consider only a portion of the
domain far away from the artificial boundaries so that their contribution can be neglected (35).
Further, assume that the grid is homogeneous and the elements Ωj are square with side length
h.
To perform the discrete dispersion analysis, a stencil without a preferred direction must be
defined (36; 23; 16). If the stencil in Fig.(1a) composed of two nonconfoming elements -
comprising seven nodes-, is considered, it turns out that this stencil has a preferred orientation,
and therefore does not appropriately represent the whole mesh. Then the four two-domains
stencils as in Fig. (1b) are combined in order to get the smallest stencil Ω̃ = ∪4

i=1Ωi representing
the full mesh correctly, i.e., without a preferred direction.
Let u(s,h) = (u

(s,h)
1 , u

(s,h)
2 ) ∈ NCh, u(f,h) = (u

(f,h)
1 , u

(f,h)
2 ) ∈ Wh be expressed in Ω̃ in terms of



the (local) basis associated with the nodal points in Fig.(1b) as follows

u
(s,h)
k =

12∑

j=1

� (s,h)
k,j φj(x1, x2), k = 1, 2, (29)

u
(f,h)
1 =

6∑

j=1

� (f,h)
1,2j ψ2j(x1), (30)

u
(f,h)
2 =

6∑

j=1

� (f,h)
2,2j−1 ψ2j−1(x2). (31)

Now choose in the weak form (22) the following test functions in Vh:

v(1) = (φ1, φ1, 0, ψ1), v(2) = (φ4, φ4, ψ4, 0), (32)
v(3) = (φ7, φ7, 0, ψ7), v(4) = (φ10, φ10, ψ10, 0),

which ends up with an homogeneous algebraic sytem of four equations in 36 unknowns (the
coefficients in Eq. (29), (30) and (31)).
Next, a standing plane wave -a function of the form

(U s
0 , V

s
0 , U

f
0 , V

f
0 )ei(q

(h)
1 x1+q

(h)
2 x2),

where qh = (q
(h)
1 , q

(h)
2 ) is the (discrete) wave vector, is proposed as a solution to the obtained

system of four equations. The coefficients in the expansions (29), (30) and (31) are evaluated ac-
cordingly. For example, if the origin of coordinates is located at the center of Ω̃, the coefficients
for node 4 would be

� s,h
4,1 = U s

0e
i 1
2
q
(h)
2 h, � s,h

4,2 = V s
0 e

i 1
2
q
(h)
2 h, � f,h

4,1 = Uf
0 e

i 1
2
q
(h)
2 h.

After a rather cumbersome algebra the homogenous linear system

DU = 0, (33)

in the unknowns U = (U s
0 , V

s
0 , U

f
0 , V

f
0 ) is obtained. It is from this system that the numerical

dispersion relations are derived, as explained in the next section.
It must be noticed that the process of adding the partial contributions of the stencils is a weighted
one, with the weights coming from a shift to a common origin (23). Another choice to build the
’super-stencil’ that correctly represents the full mesh could have been, as suggested in (36), to
assign different approximate amplitudes to the degrees of freedom multiplying the plane wave,
according to the considered direction.
As a final remark it is noticed that all the rather cumbersome algebraic manipulations related to
the solutions of (33) both for the zero viscosity and viscous cases in Sections 5.1 and 5.2 were
performed using the software package Mathematica (37).

5.1 The zero viscosity case

If the fluid is assumed to have zero viscosity the wave vector is real and can be written in
polar form as q(h) = q

(h)
m (cos(θ1), sin(θ1)), where θ1 is the incidence angle. Besides, the phase



velocity c = ω/q
(h)
m is constant, having different values for each wave type. In this case, Eq.

(33) yields the generalyzed eigenvalue problem

c2/V 2
RMU = −NU. (34)

Here

M = 4h2(q(h)
m )2




−(A2(5 + C1) + A1(5 + C2)) 0 −4A2γ1(2 + C1) 0
0 A2(5 + C1) + A1(5 + C2) 0 4A1γ1(2 + C2)

−A2γ1(5 + 6A1A2 + C1) 0 −4A2γ2(2 + C1) 0
0 −A1γ1(5 + 6A1A2 + C2) 0 −4A1γ2(2 + C2),




(35)

and

N = 96


A2 − δ1(−A1 + A2C1 + A1C2) 2B1B2(A2 + δ1(A1 − 2A2)) −A2δ2(C1 − 1) B1d2δ2
2B1B2(δ1(A1 − 2A2) − A1) −A1 + δ1(−A2 + A2C1 + A1C2) −B2D1δ2 A1δ2(C2 − 1)

−A2δ2(C1 − 1) B1D2δ2 −A2δ3(C1 − 1) B1D2δ3
B2D1δ2 −A1δ2(C2 − 1) B2D1δ3 −A1δ3(C2 − 1).




(36)

In the above matrices,

A1 = cos(
1

2
hq(h)

m cos(θ1)), A2 = cos(
1

2
hq(h)

m sin(θ1)),

B1 = sin(
1

2
hq(h)

m cos(θ1)), B2 = sin(
1

2
hq(h)

m sin(θ1)),

C1 = cos(hq(h)
m cos(θ1)), C2 = cos(hq(h)

m sin(θ1)),

D1 = sin(hq(h)
m cos(θ1)), D2 = sin(hq(h)

m sin(θ1)). (37)

Note that if λ denotes the wavelength, q(h)
m = 2π

λ
and Np = λ

h
is the number of grid points

per wavelength (recall that an homogeneous grid is being considered). Then hq(h)
m = 2π

Np
; by

replacing this expression in the two matrices written above, and setting P = {δ1, δ2, δ3, γ1, γ2},
the system (34) depends on P , the angle θ between the wave vector and the x1-axis and Np, the
number of points per wavelength.
Let Λi = Λi(P, θ,Np), i = I, II, S be the generalized eigenvalues of the system (34) associated
with the compressional fast, slow and shear waves, respectively. Finally, the equation

vd,i =

√
Λi

c̃
, i = I, II, S, (38)

defines the dimensionless phase velocity, where for each Λi, c̃ is the correspondig analytic phase
velocity as defined in equations (27) and (28) with γ3 = 0.
For any fixed set of parameters P this dimensionless phase velocity yields the numerical dis-
persion properties of the algorithm; this is exemplified in Section 6.



5.2 The non-zero viscosity case

In this situation the wave vector q(h) is complex, as in Eq (8) for the continuous case. Note
that q(h) can be written as

q(h) = q(r,h) − iq(i,h) = q(r,h)
m (cos(θ1), sin(θ1)) − iq(i,h)

m (cos(θ1 + θh
2 ), sin(θ1 + θh

2 )), (39)

where θh
2 is the angle between the vectors q(r,h) and q(i,h).

Proceeding as before, take the four test functions in (32) in the weak form (22) to get another
algebraic linear system of four equations in 36 unknowns. By proposing plane wave solutions
to this new linear system another homogeneous 4 × 4 linear system

D̃(P̃ , θ1, θ
h
2 , Np, h, q

r,h
m , qi,h

m )U = 0, (40)

is obtained. The coefficients of the matrix D̃ are much more involved than the ones of the
zero viscosity case; they also depend on expressions of the form cos(β/2) and cos(β), where
β = ihq

(i,h)
m cos(θ1 + θh

2 ) and similar ones replacing the cosines by sines one at a time and
both simultaneously. Moreover, the system (40) cannot be written as a generalyzed eigenvalue
problem, so in order to proceed the following steps are adopted: Let P̃ = P ∪ {γ3, ωa} and set
θh
2 = θ2 in qh, recalling that θ2 is the angle between the vectors q(r) and q(i). Fix Np, θ1 plus all

parameters in P̃ , and take h = 2π/(Npq
r
m). Asking for nontrivial solutions of (40) is equivalent

to the validity of the following two conditions:




Re
(

det(D̃(P̃ , θ1, θ2, Np, h, q
r,h
m , qi,h

m )
)

= 0,

Im
(

det(D̃(P̃ , θ1, θ2, Np, h, q
r,h
m , qi,h

m )
)

= 0.
(41)

Now (41) are two coupled nonlinear equations depending on just the two unknowns qr,h
m and

qi,h
m .

The nonlinear system (41) was solved for a finite number of dimensionless frequencies ωa in
the interval (0, ωt/ωc) using an iterative method, choosing as initial guesses the analytic qr

m’s
and qi

m’s for each wave type.

6 NUMERICAL RESULTS

The analysis presented in the previous Sections was applied to study the dispersive properties
of the finite element procedure (22) when the Biot medium is a sample of gas saturated Berea
sandstone described in (38) as follows. The solid matrix has porosity φ = .19, permeability
k = 200 millidarcies, and (dry) compressional and shear wave speeds of 3670 m/s and 2170
m/s, respectively. This yields values of Km = 15.43 GPa and µ = 10.11 GPa for the dry bulk
and shear modulus. The grain material composing the solid matrix has density ρs = 2.65 gr/cm3

and bulk modulus Ks = 37.9 GPa. The gas has viscosity η = 0.022 centipoise, density ρf =
1.0 gr/cm3 and sound velocity 629.7 m/s, so that Kf = 0.05543 GPa.
The corresponding dimensionless model parameters are:

δ1 = 0.35, δ2 = 0.6 10−2, δ3 = .01,

γ1 = 0.06, γ2 = 1.05, γ3 = 0.12 10−2.

The associated characteristic frequency is ωc = 6.59 105 Hz, and the critical frequency -recall
that this is the frequency at which γ2 and γ3 become frequency dependent- is ωt = 7.6 103 Hz,



therefore, the considered frequency range is 0 < ωa ≤ 0.011.
Consider now the zero viscosity case, where in the continuous case phase velocities are fre-
quency independent and the system is conservative (attenuation vanishes).
Figure 2 displays the behaviour of the dimensionless phase velocities vd in (38) for the three
wave types, in terms of the reciprocal of the number of points per wavelength and for different
angles θ1 in the range [0, π

4
]. No more propagation directions are shown, because it turns out

that the eigenvalues are invariant upon reflexions of the wave vector with respect to the x1- and
x2- axes and the straight line x2 = x1.
It can be clearly seen that the slow wave is the most affected by numerical dispersion, with
about 2% departure -for the worst propagation directions- between numerical and continuous
phase velocities at ten points per wavelength.
In the next figures the more realistic viscous case, i.e., η 6= 0 is analyzed. In Figure 3 the dimen-
sionless phase velocities for the three wave types are shown, as a function of the dimensionless
frequency for different number of points per wavelength at a fixed direction. It can be seen that
both the fast and shear waves display a negligible frequency dependent behavior; contrary to
what happens with the slow wave. For the former waves the departure from the exact value
is insignificant when using 20 points per wavelength, reaches about .5 % with 10 points per
wavelength and climbs up to 2.5 % with 4 points per wavelength. The slow wave behavior is
worse than that of the others; it shows a departure from the exact value of almost 2 % for some
frequencies even using 10 points per wavelength, and the difference climbs up to 8 % when
using 4 points per wavelentgh.
In Figure 4 the dimensionless group velocities v

g
d for the three wave types under the same

conditions as in Figure 3 are displayed. The same general behavior that was just described is
reproduced here with all curves lifted upwards (in the sense that they are farther from the exact
value). Notice that in all displayed cases the group velocity was numerically calculated from
the computed values of the corresponding phase velocity, since as explained before the discrete
wave vector q(h) is obtained from (41) only for a finite number of frequencies.
In Figure 5 the dimensionless attenuation coefficient ξd,l = q

(i,h)
m,l /q

(i)
m,l, l = I, II, S is displayed;

all three waves show the same dependence with frequency as in Figure 3, but they worsen their
numerical dispersive behavior; this is more evident for the shear wave, where with Np = 20 the
error is slightly more than 1 % and for Np = 10 the error is almost 5%.
Figure 6 displays the results in a different fashion. Here the dimensionless phase velocities for
the three waves are displayed as function of the reciprocal of the number of points per wave-
length for a given fixed frequency. In this way, it can be analyzed how the waves behave when
changing the propagation direction. The three waves present the same symmetries as in the
non-viscous case, therefore it is only necessary to depict angles θ1 lying in the interval [0, π

4
];

from there four representative cases were chosen. As expected, the fast and shear waves are less
affected by numerical anisotropy than the slow wave; however, there is a noticeable dependence
of the three numerical waves with the propagation direction. Some directions are better behaved
than others; nevertheless, in order to establish a bound, the worst case must be considered. Then,
taking for example Np=5, the fast and shear waves have an error of about 1.5%, while the slow
wave has an error of almost 9% for θ1 = π

4
. All directions, as expected, converge to the exact

solution when increasing the number of points per wavelength, but although the fast and shear
waves do it fairly fast -with Np=10 they lie well within the 1% error bound- it is necessary to
use almost twice the number of points for all propagation directions for the slow wave to behave
likewise. Accordingly to this situation, for small Np’s the slow wave display big errors, that is
why the abscissae range for this wave in the figure was reduced; it is not meaningful to use less



than four points per wavelength if the error is about 14% for this discretization level.
Finally, Figure 7 shows the dimensionless attenuation coefficients ξd for the three waves as a
function of Np for different propagation directions at a fixed frequency. Although for the slow
and shear waves there is a direction for which almost no quality loss is observed even with small
number of points per wavelength, the general behavior is dependent on the propagation direc-
tion. Notice that the distance between numerical and exact solution strongly increased when Np

is diminished. For example, all the considered directions of the fast wave lie within a 1% error
bound for Np = 20, but they reach a 3% when the number of points is halved; the situation is
worse for the other two waves, with 20 points per wavelength they also are within a 1% error
bound (but closer to it than the fast wave) and reaching a 4% relative error for Np = 10 and
even a 9% error for Np = 6.
As a final remark, it should be recalled that in the performed analysis the element size h is dif-
ferent for each wave because it is calculated, as previously explained, as h = 2π/(Npq

r
m,i), i =

I, II, S. In practice the grid size will be fixed so as to obtain a Np that guarantees a certain
error bound for the worst behaved wave, i.e., the slow wave. This is the wave with shortest
wavelength (greatest wave vector modulus), and automatically the shear and fast waves will
fall, as already observed, within the same error bound. In fact, they will be “overestimated”,
leading to an unavoidable increase of the computation time, unless certain loss in accuracy in
the calculation of the slow wave is accepted.
The results here obtained are of importance for example when performing numerical experi-
ments to simulate wave propagation in heterogeneous saturated poroelastic materials modeling
mesoscopic loss mechanisms due to wave induced fluid flow (39). In this particular application,
a very accurate calculation of the slow mode is critical in order to properly compute the physical
attenuation.

7 CONCLUSIONS

An analysis of the numerical dispersion properties of a finite element method used to approx-
imate wave propagation in a Biot medium has been presented. The used finite element method
comprises a nonconforming rectangular element for the approximation of each component of
the displacement vector in the solid phase, and the Raviart-Thomas-Nedelec mixed finite ele-
ment space of zero order (RTN0) -which is a conforming space- for the fluid phase.
The study was performed by constructing and analyzing analytic and numerical dimension-
less dispersion relations, and by evaluating derived quantities such as dimensionless phase and
group velocities and dimensionless attenuation for the three type of waves predicted by Biot.
Further, two cases were separately considered; the first one where no viscosity is present, lead-
ing to frequency independent numerical dispersion relations with no attenuation, and the more
realistic viscous case, leading to dispersion relations involving frequency dependent attenuating
waves. In the last case the low-frequency range was considered, so that the mass and viscous
coupling coefficients are frequency independent.
It was observed that the analyzed numerical method introduces both numerical dispersion and
anisotropy; being the loss of accuracy in the numerical solution more severe for the slow wave
than for the fast or shear waves in most of the analyzed cases.
As the performed analysis is local in the sense that the results are shown in terms of the num-
ber of points per wavelength, it should be expected that when performing a simulation of wave
propagation in a Biot medium, if the computational domain comprises several wavelengths, the
dispersion error will be incremented accordingly. The fact that the attenuation behaves worse
for all three waves than the group velocity, would suggest to decrease the number of points



per wavelength if the interest is in computing arrival times, and not in amplitudes. Finally, as
a rule of thumb derived from the presented analysis, it is concluded that using 10 points per
wavelength of the slow wave the error in the group velocities and attenuation coefficients for
the three waves is smaller than 2 %, and 4%, respectively.

Acknowledgments

This work was partially supported through grants PICT 03-13376 (ANPCyT) and PIP 04-
5126 (CONICET)

REFERENCES

[1] M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. I.
Low frequency range. J. Acoust. Soc. Amer., 28:168–171, 1956.

[2] M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. II.
High frequency range. J. Acoust. Soc. Amer., 28:179–191, 1956.

[3] M. A. Biot. Mechanics of deformation and acoustic propagation in porous media. J. Appl.
Phys., 33:1482–1498, 1962.

[4] J. E. Santos and D. Sheen. Finite element methods for the simulation of waves in compos-
ite saturated poroviscoelastic media. Siam J. Numer. Anal., to appear, 2006.

[5] J. Douglas, Jr., J. E. Santos, D. Sheen, and Ye. X. Nonconforming Galerkin methods
based on quadrilateral elements for second order elliptic problems. RAIRO Mathematical
Modelling and Numerical Analysis (M2AN), 33:747–770, 1999.

[6] P. A. Raviart and J. M. Thomas. Mixed finite element method for 2nd order elliptic prob-
lems. Mathematical Aspects of the Finite Element Methods, Lecture Notes of Mathematics,
vol. 606, Springer, 1975.

[7] J. C. Nedelec. Mixed finite elements in R
3. Numer. Math., 35:315–341, 1980.

[8] A. Bayliss, C. Goldstein, and E. Turkel. On accuracy conditions for the numerical com-
putation of waves. J. Comp. Phys., 59:396–404, 1985.

[9] F. Ihlemburg and I. Babuska. Dispersion analysis and error estimation of Galerkin finite el-
ement methods for the Helmholz equation. Intl. J. for Numerical Methods in Engineering,
38:3745–3774, 1995.

[10] F. Ihlemburg and I. Babuska. Finite element solution of the helmholtz equation with high
wave number Part I: the h-version of the FEM. Computers Math. Applic., 30(9):9–37,
1995.

[11] F. Ihlemburg and I. Babuska. Finite element solution of the helmholtz equation with high
wave number Part II: the h−p-version of the FEM. SIAM J. Numer. Anal., 34(1):325–358,
1997.

[12] F. Ihlemburg and I. Babuska. Reliability of finite element methods for the numerical
computation of waves. Advances in Engineering Software, 28(7):417–424, 1997.

[13] A. Bamberger, G. Chavent, and P. Lailly. Etude de schémas numériques pour les équations
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Figure 1: The figure on the left shows the degrees of freedom of a NC-stencil. However, in order to perform
a dispersion analysis of the NCFEM method, a stencil without preferred direcions is needed. The figure on the
right shows a scheme of how it is obtained. In both figures the filled circles represent the degrees of freedom
corresponding to the solid, the circle to the x1-component of the fluid and crosses to the x2-component of the fluid.
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Figure 2: Non-viscous case. Dimensionless phase velocities for the fast (left), slow (middle) and shear waves (right) as a function of the reciprocal of the number of points
per wavelegth for different propagation directions.
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Figure 3: Viscous case. Dimensionless phase velocities for the fast (left), slow (middle) and shear waves (right), as a function of the frequency, for different numbers of
points per wavelength. Only one propagating direction is depicted; for most cases this corresponds to the worst one.
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Figure 4: Same as Fig.3 for the group velocity case.
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Figure 5: Same as Fig.3 for the attenuation.
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Figure 6: Viscous case. Dimensionless phase velocities for the fast (left), slow (middle) and shear (right) waves, as a function of the reciprocal of the number of points per
wavelength at a fixed frequency for different propagation directions.
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Figure 7: Viscous case. Dimensionless attenuations for the fast (left), slow (middle) and shear (right) waves, as a function of the reciprocal of the number of points per
wavelength at a fixed frequency for different propagation directions.
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