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Abstract

The objective of this article is to describe the macroscopic fluid flow within a moving
porous medium composed of a solid matrix, an ice matrix and unfrozen water, with the
additional assumption that there is no direct contact between the solid and ice matrices.
The derived fluid flow equations for this type of saturated porous material are obtained
using two-space homogenization techniques for periodic structures. The pore size is assumed
to be small compared to the macroscopic scale under consideration. At the microscopic
scale the two weakly coupled solids are described by the linear elastic equations, and the
fluid by the linearized Navier-Stokes equations, with appropriate boundary conditions at the
solid-fluid interfaces. After performing the homogenization procedure, a generalized Darcy’s
law for the macroscopic fluid velocity is obtained. Also, a formal relation with a previous
macroscopic fluid flow equation derived using a phenomenological approach is given.

Keywords: composite porous solids, homogenization, Darcy’s law.

1 Introduction

The study of fluid flow in porous saturated media is a subject of interest in many fields such as
geophysics, rock physics and materials science.

The fundamental concepts about the stress-strain relations and the dynamics of deformable
porous single-phase solids fully saturated by a fluid were established in the works of M. Biot
[3, 4, 5]. This formulation assumes that the quantities measured at the macroscopic scale can
be described using the concepts of continuum mechanics.

When the porous matrix is composed by two (or more) different solid phases, more compli-
cated models are required. Based on Biot’s theory, Leclaire et al. [11] developed a phenomeno-
logical model to describe wave propagation in a porous solid matrix where the pore space is
filled with ice and water, assuming no interaction between the solid and ice particles.

This model has been recently generalized to the case of variable porosity [17]. As a con-
sequence of the models in [11] and [17] a generalized Darcy’s law for this type of materials is
obtained.

*CONICET, Departamento de Geoffsica Aplicada, Fac. Ciencias Astronémicas y Geofisicas, UNLP, Paseo
del Bosque S/N, La Plata, 1900, Argentina, and Purdue University, West Lafayette, IN 47907, USA; E-mail:
santos@math.purdue.edu

"Department of Mathematics, Seoul National University, Seoul 151-747, Korea; E-mail: sheen@snu.ac.kr;
supported in part by KRF 2003-070-C00007 and KOSEF R14-2003-019-01000-0.



2 J. E. Santos, and D. Sheen

The macroscopic description of porous media can also be obtained by means of the homoge-
nization method, which consists of passing from the microscopic description at the pore and grain
scales to the macroscopic scale. Important contributions to the solution of this problem were
given by Sanchez-Palencia [15] and Bensoussan et al.[2], who developed the so called two-space
homogenization technique. This method provides a systematic procedure for deriving macro-
scopic dynamical equations starting from the governing equations for the medium valid at the
microscale. It was successfully applied by different authors to obtain theoretical justifications
of Darcy’s law and Biot’s equations for single phase porous media [1, 7, 12, 16]. The procedure
was recently applied to derive the equations of motion for saturated composite porous media for
the special case when only one of the solid phases is in contact with the fluid phase [18].

Following these ideas, the aim of this paper is to apply the homogenization procedure to
obtain a description of the macroscopic fluid flow within a saturated porous medium composed
of a solid matrix, an ice matrix and unfrozen water, where as in [11] it is assumed that there
is no contact between the solid matrix and the ice. This assumption is valid for example in
finely dispersed frozen media, for which there exists a layer of unfrozen water around the solid
particles isolating them from the ice, as explained in [11].

The analysis is restricted to the range of small deformations and for Newtonian fluids, under
the assumption of spatial periodicity. As a result, a generalized Darcy’s law for the material
is obtained, in which the macroscopic fluid flow represents the contributions from the moving
boundaries of the two solid phases as well as the gradient of the fluid pressure. The argument
employs the concept of very weak solutions of the local Stokes problems in order to obtain an
explicit forms of permeability tensors in terms of nonhomogeneous boundary data. The derived
Darcy’s law is formally in agreement with those derived in [11] and [17] using phenomenological
arguments.

The organization of the paper is as follows. In §2 we state the local equations and apply
the homogenization procedure to obtain our form of Darcy’s law containing three permeability
tensors, whose properties are analyzed in §3. Also §3 contains a formal relation of our Darcy’s
law with previously derived forms using phenomenological arguments. Finally in §4 we prove
existence and uniqueness results for the local Stokes problems with nonhomogeneous boundary
data using the concept of very weak solutions.

2 The homogenization procedure and Darcy’s law

2.1 The local description and formal expansion

Let us consider a composite porous medium consisting of a porous solid matrix, an ice matrix
and unfrozen water, i.e, two solid phases and one single-phase fluid. It will be assumed that
there is no contact between the solid matrix and the ice, or equivalently, there exists a layer
of unfrozen water around the solid particles isolating them from the ice. The solid matrix and
the ice will be referred to by the subscripts or superscripts 1 and 3, while the fluid phase will
be indicated by the subscript or superscript f. The porous medium will be considered to be
periodic and composed of a large number of periods, with [ and L denoting the length of the

. . . l . .
period and the macroscopic length, respectively, so that ¢ = 7 << 1. The microscopic and

X
macroscopic behaviors will be described by the two dependent spatial variables x and y = —.
€

Let €2 denote a periodic porous medium consisting of the solid and the ice matrices, €21 and
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(13, and the fluid phase €2;. Also let Y denote one period in {2 so that
Y=Y1UY3UY;, Y;=YNQ,;,j=13,f.
Also, let

Ljp=0Y;n0Y;, Tje=0Y;NoY, j=1,3,

[yp =T15 U3y, Pfe:8Yf08Y,
so that
8Yf:F1fUF3fUPfe, 8Y1:F1fUP18, 8YE},ZF3fUP36.

We assume that all phases are connected and that at the local level the two solid phases
are linear elastic and the fluid is viscous Newtonian. We further assume that the transient
Reynolds number is O(1) at the local level so that the fluid viscosities 7 and & are scaled by €2.
Let u; = uj(w) and o = 0j(w),j = 1,3, f denote the time Fourier transforms at the angular
frequency w of the displacement vectors and stress tensors of the three phases, respectively, let
pf = py(w) be the fluid pressure and set v; = iwu;. The local variables are defined in their
domain of definition and taken to be zero elsewhere. In what follows, to avoid cumbersome
notation the explicit dependence on the frequency w of the field variables will be omitted except
when it is desired to emphasize this dependence. The local equations are given by

solid1: V.01 =—w?piu;, Yi, (2.1a)
o 4] =aj: e(ul), Yl, (21b)
solid 3: V- g3 = —w2p3u3, Y3, (2.1(3)
g3 =asg: e(u3), Y3, (2.1d)
fluid: V-.o; =iwpsvy, Yy, (2.1e)
of =-piltTs Yy, (2.1f)

2
T,  =2ne’e(vy)+é€ (H — §n> V.vy, Yy, (2.1g)
iwwpy = BV-vy, Y. (2.1h)

Here p1, p3, a; and a3 are respectively the mass densities and fourth-order positive definite elastic
tensors associated with the two solid phases, depending on the space variable and Y -periodic.
Also, e denotes the linear strain tensor, i.e.,

_ L1 (0vyy  Ovpm
em(Vy) = 3 (m + aT,) -

Here, and in what follows, if a and b are, respectively, fourth and second order tensors, then
a : b denotes the index contraction operation ag;sbs;, with the usual Einstein’s convention of
summing on repeated indices.
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Also, with v, 5,k = 1,3, f,j # k, denoting the unit outer normal at the interface I';;, the
boundary conditions among the different solid and fluid phases are

vij-op=vyip-oyp, iy, (2.2a)
v3p-o3 =v3p-oyp, I3y, (2.2b)
vi=vys Iy, (2.2¢)
vy =vy, [D3j. (2.2d)

Next, following Sanchez-Palencia [15, 16] and Auriault [1], we expand the unknowns u;, uz, uy
in the form

€

uf = uj(z,9) = u (z,9) + eV (@,9) + S0P @)+, G=13f  (23)

(n)(

where the functions u; z,y),n = 0,1,---, are Y-periodic. Then we substitute the expan-
sions (2.3) into Equations (2.1)—(2.2) describing the local behavior recalling that for the spatial
derivatives we have that % becomes

0 1 0
oz By )

Similarly,
e=e,t+c e, V=V,+e'V,, etc

2.2 Solution of the local equations for the solid phases

Let us consider the local equations for the solid phases at the lowest order. First, from (2.1b)
and (2.1d),

oj=a;: (es+¢ ley)(u”) +eul +..) (2.4)
= G_Ia] ey( ul? )) +a;: (ew( {0 )) + ey(u 5‘1)) tea;: (ez( 51)) + ey(u 52))) +oe
— —1 ( )+O'()+€o'§)+7 }9’]:1’3

Next, from (2.1a) and (2.4)

= —pjw’ (“§°’ +euf!) +- ) , Y, =13 (25)
Also, from (2.1f)-(2.1g),
o el o= T4 (_pg}) I+ 2ne(v§c0))) +oe (2.6)

— (°)I+e(p§})1+7§”)+--w Y.
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Next we use (2.2a)—(2.2d) to obtain the boundary conditions for the local problems. First, from
(2.2a), (2.2b) and (2.6),

Vs (e_lag-_l) + 0'§-0) + eag-l) + - ) (2.7)

=vjf- (—pﬁf’)l te (—prI + 2ne(v§°))) L. ) Tipi=13

From (2.5) at € 2 and (2.4) and (2.7) at e ! we obtain the following elliptic system for u; ’:

v, o™ =0, w, (2.8a)
ag_l) = a1:ey(ug0)), Y1, (2.8b)
vipeot o= 0, Ty, (2.8¢)
ugo) is Y — periodic. (2.8d)

Let us formulate (2.8) in variational form. Set

WYJ-Z{QDG[Hl(Yj)]?’: cpisY—periodic,/ pdy =0, Vx<pdy:0},j=1,3.

¥; Y;

Also, for an open set S C R? and a two-dimensional manifold v, let (-,-)s and (-, , denote the

L?(S) and L?(y) complex inner products. Then a weak form of (2.8) is given to find ugo) € Wy,
such that

(a1 ey (u)ey(9)) =0, w Wy (29)

Note that thanks to Korn’s second inequality [9, 14] and the fact that a; is positive definite
the sesquilinear form (a; : ey(u),ey(v))y, defines an inner product in the Hilbert space Wy,

equivalent to the H'-inner product [6]. Thus the Lax-Milgram lemma implies that ugo) =0¢€
Wy, is the unique solution of (2.9), or equivalently, the solution of (2.8a)—(2.8¢c) is independent
of the y—variable, so that

@y = u?@), w, (2.10a)
ot =0 w, (2.10b)

where (2.10b) follows from (2.8b). With an identical argument, for the solid phase 3 we get

uizy = o), v, (2.11a)
oiV =0, v (2.11b)
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2.3 Solution of the local equations for the fluid phase: A generalized Darcy’s
law

We now consider the local equations for the fluid at the lowest order. First, from the fluid
equations (2.1e)—(2.1h) it follows that

1€ (Bp+ € (Vo Vy + Vy Vi) +e728,) (v + e+ v 40 (2.12)

1
+€? (F& - 577> [VaVe + €1 (VaVy + Vy Vo) + € 2V, V, ] - ( 500) + ev;) + €e2v (2) )

= (V Y ) ( © + epgcl) + 62p§2) +) +iwpy (V;O) —l—evgcl) +> )
and
w (pgco) + epscl) +-- ) =B; (Vy,+e 'V,)- (v;o) + evgc) +e v(2) ) (2.13)

Thus from (2.12) at ¢ we get

PP (@,y) =} (@), (2.14)

and then it follows from (2.13) at ¢! that
v, v =0, v (2.15)
Hence, from (2.15) and (2.12) at €® we get
nAyvgco) =Vy- TS}) (vsco)) = Vypgcl) + prgco) + z'wpfvgeo), Yy (2.16)
Also, it follows from (2.2c)—(2.2d) that
VE,O) = iwugo) (), Ty, (2.17a)
vi? = iwul(z), Ty (2.17b)

Let us split Problem (2.15), (2.16), and (2.17a)-(2.17b) into two subproblems as follows.

First, let vsfo)’l and pscl)’I be Y-periodic such that

z'wpfvgco)’l—nAyvch)’I—i-VypS})’I = —Vzpspo), Yy, (2.18a)
v, v =0, vy, (2.18b)
Vil =0, Ty (2.18¢)

Second, let v;o)’B and pgcl)’B be the Y-periodic solution of

iwpfv;()) —nly (O)B+Vy ;1)’3 = 0, Yy, (2.19a)
v, VP =0, vy, (2.19b)

v§9)B = iwuV(z), Ty, (2.19¢)

viP = iwa(@), Ty (2.19d)
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Let us solve the cell problem (2.18)- (2.18c) for vgco)’l. Let
Vyf {cp € [Hl(Yf)} : Vy-o=0inY;, @=0only, ¢@isY — periodic} ,

provided with the natural (complex) inner product in [H'(Y})] ®. Then a variational formulation
of (2.18), (2.18c) can be stated as follows: Find v(O) € V)I,f such that

w (pr§v0)’I,<P) (WyV(O)I Vw) v, = —Vzp})( ) /Y edy, ¢ € Vy,. (2.20)
f

It is known that (2.20) has a unique solution, which can be found as usual by solving the
following set of problems [15]. For s = 1,2,3 let V® = (V*)1<i<3 € Vll/f be the solution of

0 (pr V), + (VY Vol = [ iy, eV, (2.21)
f

where e denotes the standard basis in R3 and set

K(z,y,w) = (K(z,y,w)),, = V’(z,,w)- (2.22)
Then,
vl (@,y,0) = —K(z,y,0) VD (z,w). (2.23)

We turn to analyze the second subproblem (2.19a)—(2.19d). First, notice that it follows from
(2.10a) and (2.11a) that

0 = / Vy u z)dy = u(o)( ) - / v;dy (2.24)
9Y;
uj (z) / v,dy + u(o)( ) / vdy = ué-o)(a:) / vdy, j=1,3,

Ljs Tje Tjs

since / vjdy = 0 due to the periodicity of the boundary I'j.. Thus the boundary data function

defined ﬁy
iwug()) (.’E, UJ), Flfa
gz,y,w) = { iwnl (z,w), Ty, (2.25)
periodic in Cye,
satisfies the consistency condition
/ g-vrdy =0. (2.26)
oYy

Remark 2.1. Notice that our boundary data take constant values on each boundary component
of Yy, which implies that the solution of Problem (2.19) is smooth. Therefore a classical abstract
theory of ezistence of solutions of Stokes problems (e.g. [19]) can be applied to our case. However,
it s our intention to derive a form of the permeability tensor depending explicitly on the boundary
data, and consequently we analyze the problem in the very weak sense [8, 13].
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Set
3 i . ..
V)?,f = {(P € [H2(Yf)] : Vyp=0inY;, @o=0onTly, ¢isY — peI‘lOdlC} ,

WZ{qEHl(Yf): /qdy:O, qisY—periodic}.
Yy

Now we state the existence and uniqueness results on the solution of Problem (2.19).
Theorem 2.1. There exists a unique Y -periodic very weak solution v;o),B € [LZ(Yf)]3 and

V§0)’B|st c [L?(I‘sf)}3 of Problem (2.19) in the following sense:

. 0
iw (pr§v°)’B,<p) v, (nvgco)’B,Aw) y, = <ng, 3—‘5>F , @EVY, (227a)
sf

(0),B e
(vf ,Vq) v, = (g u,q)rsf, qgEW. (2.27b)

The proof of Theorem 2.1 is given in §4.
Set

’7;(1}, y) = XFJf (l"y)es7 J = 17 3’ s = ]‘7 2’ 37 (2'28)

y) denotes the characteristic function of I';;. Also on Iy write the boundary data
.25) in the form

g=Y_ (9s7i +93573), veTyy, (2:29)
S

where xr, , (z,
vector g in (

where g; ; denotes the s-component of iwug-o) on ['j;. Let 735 = (Zg’s)lgtgg be the solution of
(2.27) with g replaced by 75, =1,3,s =1,2,3. Set

Kj(:v,y,w) = (Kj(x,y,w)) = Zg’s(xayaw)a .7 = 153' (230)

ts
Then, by linearity the solution of (2.27) is given by

vgco)’B(:E,y,w) = K!(z,y,w) [z’wugo) (:B,w)] + K3(z,y,w) [iwugo) (x,w)] . (2.31)
Combining (2.23) and (2.31), we conclude that
vz, y,w) = v (@,9,0) + v P (@,y,0) (2.32)

= —K(x,y,w)VpScO) (z,w) + K (z,y,w) [z’wugo) (w,w)] + K3(z,y,w) [iwugo) (:v,w)] .
Let

1
() = 31 /Y 0(y)dy,

denote the average of (y) over Y, where 6 is defined to be zero outside its domain of definition.
Then, averaging (2.32) over Y yields

(WOVN@w) = (&) @)V (e,0) (2.33)
+ ((KY)) (z,w) [z’wugo) (x,w)] + ((K?)) (z,w) [z’wugo) (x,w)] .

which is a generalized Darcy’s law for our composite system.
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3 Properties of the permeability tensors

In this section we analyze some properties of the permeability tensors K, K!, and K?® which
appear in the Darcy’s law (2.33).

3.1 Properties of K

Note that defining on V}l,f the sesquilinear form
B(u,v) = iw (pfu,v)Yf + (nVu,Vv)Yj , w,VvE V%/f, (3.1)
and the continuous linear functional

Le(p) =1 - /Y pdy, (3:2)

with f = f(z,w) = —Vpsco) (z,w), Problem (2.20) can be stated in the form: find u € V)l,f such
that

B(u,v) = Lg(v), v€EVy,. (3.3)

Note that B(u,v) is continuous and coercive in Vll/f since

[B(u,u)| = 5 ([Re(B(u, w))| + [Im(B(u, u))[) = % (1Y, Vu) +w (pru, w)] > C(w)]ulff. (3.4)

N =

Thus, by Lax-Milgram Lemma, Problem (3.3) has a unique solution, which implies that the
solution operator

fo>u="1T¢

where u solves (3.3) is injective. Thus if {€° : s = 1,2,3} denotes the standard basis in
R3, {V® = Tf_l(es), s =1,2,3} forms a linearly independent set in V%;f. Thus the tensor K is

invertible. Set V* = Re(V?*)+iIm(V?®) = V,+iV7 and recall that ((Re (K),,)) = ﬁ (eS,V’;{)Yf

Assuming ¢ to be real, take the real and imaginary parts in (2.21) to obtain

—w (VL @)y, + IVy VR, Vyp)y, = € /Y pdy, ¢ €Vy,, (3.5a)
f
w (pfv.;%’ <P)Yf + (nvyvﬁa vy‘P)yf = 0, p€ Vll/fa s=1,2,3. (35b)

Choose ¢ = V%, in (3.5a) and ¢ = V3§ in (3.5b) with s replaced by ¢ and add the resulting
equations to get

1
(Re (K),) = 157 (0 VoV VyViy, + (19 VE Vo Vi), |

which shows that ((Re (K))) is symmetric. Observe that for any & € R?,

1

" ((Re(K))) € = ¥

1 1
(1759, VitalBy, + 1029y Vigslidy, ] >0,



10 J. E. Santos, and D. Sheen

where the equality holds if and only if V,V3{; = 0 and V, Vi, = 0. Since V® =0 on I',;, by
Poincaré inequality, V3&s = V& = 0, and therefore, ((Re (K))) is positive-definite.

Next, recalling that ((Im (K),,)) = ﬁ (es,Vﬁ)Yf we analyze the properties of ((Im (K))) .
For this, we choose ¢ = V% in (3.5a) and ¢ = V% in (3.5b) with s replaced by ¢. Then

1 1
(p}VtR,Viz> + (p} Vfr,Vfr) ] ,
Yy Yy

which implies that ((Im (K))) is symmetric and negative-definite. This in turn implies that both
the real and imaginary parts of (((K)))™" are symmetric and positive-definite.

((Im (K),,)) = —“"7'

3.2 Properties of K! and K?

Le us turn to analyze the K/-tensors, j = 1,3, having the contribution from the boundaries
I'jz,7 = 1,3. For this purpose, it is convenient to analyze the properties of the solution ZJ:5:(m)
of (4.5) in §4, with right hand side g = €°, s = 1,2, 3. Thus, set

H(div0; Y}) = {<p e[H' () : V, 0=0, @isY— periodic}
and let Z7»*(™) € H'(div0;Y}) be the solution of
y j:sa(m) jisi(m) jysa(m)
i (o2 0) L+ (19,2, V) (204, 0) (3.6)

if
:m<esa<P>I‘jfa (PEHl(diVO;Yf)aj:173'
Set Z75(m) = Re (Zj’s’(m)) +4Im (Zj’s’(m)) = Z{és’(m) + iZ]II’s’(m). Assuming ¢ to be real, take
the real and imaginary parts in (3.6) to obtain

— (o2t 0) + (19025 V) +m (2 0) (3.7a)
—m (e o),
w (pfzg;f’(m), <p) . (nvyzﬂ;s’(m), vyw) , <z§’s’<m>, (p>rjf —0, (3.7b)

¢ € H'(div0 : Y7).

Next, with the choice ¢ = Z;’t’(m) in (3.7a) and ¢ = ng,(m) in (3.7b) with s replaced by t, take
the difference in the resulting equations to obtain

_ j7t7(m) j,s,(m) j,s,(m) jata(m) — S j)t7(m)

w [(prR LY, )Yf + (prI Ly )Yf] m<e Ly >ij. (3.8)

Also, add (3.7a) with the choice ¢ = 75 with (3.7b) with the choice ¢ = Z%*™ with s
@ B ¥ I

replaced by ¢ to get

(nz ™, vz;’_.f*m))yf + (nvzm, vzi’s’(m))yf (3.9)

+m [<z§s’(m),z§’(m)>r + (zg ™,z ) ] =m (e, 23 ™)
if if
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Similarly, take ¢ = e’ in (3.7a) and ¢ = e® in (3.7b) with s replaced by ¢ to have
—w (prf’:’(m), 1) +m <Z;{’St’(m), 1> = mdg|Tsl, (3.10a)
’ Yy ’ Ljs

w (o™ 1) +m(ZH™M1) = 0. (3.10b)
Yy Uis

Using (3.10b) in (3.8) and (3.10a) (interchanging s and t) in (3.9) we have

j:t)(m) _ j)ta(m) j,s,(m) j537(m) jat)(m)
(22, ’1)y,_ (z3, 275 )Yf+(zl A )Yf (3.11)
and
wpy (z}f(m),1)yf = n[(vzgs’(m),vzﬁ’(m))nyr(szl"t’(m),vz}"s’(m))yf] (3.12)
jasa(m) jzta(m) jata(m) j:sa(m) _ .
+m [(zR 2% >ij+<z, |27 >rsf 55t|rjf|].
Let
Ko (m) — (Kj,(m)> — Zit(m)
st 5 ’
so that

((Re (1) ) = 7 (™), (i (805) ) = g (81571),,

It follows from (3 11) and (3.12) that, for each m, ((Re (K%(™))) is symmetric positive-definite
and ((Im (KJ’ )))) is symmetric. Due to the weak convergence of Z7%(™) to Z7* in [L2(Y7)]?,
we have (c.f. (4.18)),

lim (255, )y, = (28, v, lim (2727 )y, = (28, 1)y,, 5= 1,3 (3.13)

m— 00 ’

Consequently, <<Re (Kj )>> is symmetric, positive semi-definite and <<Im (Kj )>> is symmetric.
Also, thanks to (3.13) the first term in the left hand side in (3.10b) is bounded. Thus taking
the limit in (3.8) as m tends to oo, it follows that

<Z}"§, 1> ~0. (3.14)
T Ty
Next note that from (3.10a)

<Z;%,,st,(m)’ 1> — 0t |Tjp| = w/)f (Z}::,(m)’ 1)
Lir Yy
In the above equation, the first term in left hand side converges due to the weak convergence of
Z75(m) to Z7* in [L?(Tsf]® and the right hand side tends to zero as m goes to infinity thanks
0 (3.13). Thus,

(Zi1) . = balTyl. (3.15)

if
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3.3 A formal relation of Darcy’s law (2.33) with a previous phenomenological
derivation

Consider Equation (13) in [11] for the fluid part in the steady-state case (i.e. the velocities are
time-independent). In terms of our notation it can be stated as follows:

_¢wVp§‘O) (.’L‘, t) = b12 |:v§f0) (13, t) - vg()) (Ia t)] + b23 [V;O) (l‘, t) - ng) (.’L‘, t)] ’ (316)

where ¢y, b12, and bos are positive coefficients independent of time as defined in [11]. For the
sake of convenience, the above equation is written in the form:
b2 (0) ba3 (0)

vy (z,t) + ———V

v (@), (3.17)

Next, note that the inverse Fourier transform of the solutions V® and Z*® of the local Stokes
problems (2.21) and (2.27) vanish for negative times (i.e they are causal functions of time ¢).
Consequently, the inverse Fourier transforms of the permeability tensors ((K)), <<KJ >> ,j=1,3
are causal, and Darcy’s Law (2.33) can be restated in the space-time domain using convolutions
as follows. Let

() (z.00) = D@D iy oy 2 AEID @) 5y 5 (g

w w

~

and for any function f(w) let f(¢) denote its inverse Fourier transform. Then, (2.33) in the
space-time domain becomes

t —
(PN @0 = - [ @t -5Vl @ndr (3.19)
b 9 )
_jzzl’a/o ((SJ))(w,t—T)Evj (x,7)dT

— TN, 00 Vap) (w,0) + [ Tyt = 19 0, 7)dr

—_— - t —_— -
-3 [((Sj))(m,0+)v§-o)(m,t)—l— /O (K7)) (2, t — 1)V (2, 7)dr | .

=13

Thus in the isotropic case we can identify the coefficients in (3.17) with the @(CB,O—}—) and

o ——

({(S7))(z,0+) terms in (3.19).

4 Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1. To avoid cumbersome notations we restate
Problem (2.19) in the following form: find Y-periodic functions v and p such that

iwprv —nAyv+Vyp = 0, Y, (4.1a)
V,ov = 0, Yp, (4.1b)

v = g, Ty, (4.1c)
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where g € [L*(Tsy)] % is Y-periodic and satisfies the consistency condition

/ g -vydy =0. (4.2)
Tyf

For the proof of Theorem 2.1, we prove first three auxiliary lemmas, and then employ a com-
pactness argument to show the existence and uniqueness of Problem (4.1).

Asin [13], for m € Z™, consider the sequence of penalized problems: find Y-periodic functions
v™ and p™ such that

iwppv™ —nAyv™ +Vyp™ = 0, Yy, (4.3a)
Vy-v™ = 0, Y, (4.3b)
1 ov™
my = (Y pm - T,;. 4.
v — (77 v, Vf) g Lo (4.3¢)

Define the sesquilinear form A, : H'(div0;Y}) x H'(div0;Y}) — C by the rule
Aum(v,0) = iw (psv, @)y, + (1VyV, Vy)y, +m(v, @), v, € H'(div0;Y}).(4.4)

Then, testing (4.3a) against ¢ € H'(div0;Y}), we obtain the following variational formulation
of Problem (4.3): find v"" € H'(div 0;Y}) such that

Ao (V™ 0) =m (g, ) ,, ¢ €H (div0;Yy). (4.5)

Lemma 4.1. For each positive integer m there exists a unique solution v™ € H'(div0; Yy) of
(4.5) such that

IV l2r,p) < l8llz2r, p)- (4.6)

Proof. First note that

1
| Awpm (v, v™)| 3 ((wpfvm,vm)yf + (nVyv™, Vyvm)yf +m (vm,vm)rsf)

m .
> C@IN By, + S IV B, v € B (div0;Yy),

Y

where C(w) = § min(psw,n). Thus the Lax-Milgram lemma implies the existence and uniqueness
of the solution of (4.5). Next, taking the real part in the equation

Aw,m(vma v™) =m(g, vm>I‘sf

leads to

IV 2y, + v B,y < Aum (V)] = m] (g vy,

IN

mlglza, IV Lo,
Thus, (4.6) follows.This completes the proof. O

Next we proceed to get an estimate for [[v"™[|f2(y;). First we prove an auxiliary result which
is an extension of a regularity estimate given in Galdi [10].
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Lemma 4.2. Let f € [L2(Yf)]3 be Y -periodic. Then there exist a Y -periodic unique solution
(u,m) € H%(Yf) x H'(Y}) such that

iwppu—nAyu+Vyr = f, Yy, (4.7a)
Vy-u = 0, Yy, (4.7b)
u = 0, Iy, (4.7¢)
satisfying
lallm2vy) + 7l 72 vy < Collfllz2(yy), (4.8)

where Co is independent of w.

Proof. Let F € [LQ(Yf)]3 be Y-periodic and (U, P) be the Y-periodic solution of

-nA,U+V,P = F, Y, (4.9a)
Vy,-U = 0, Yj, (4.9b)
U = 0, Ty (4.9¢)

According to [10] (Theorem 6.1, pp.225), the following regularity estimate holds:
10l z2(v;) + 1Pl vy < CullF(|L2evy)- (4.10)

Consequently, applying (4.10) in (4.7) we get

[ullm2(vy) + 7l vy < Ch (||f||L2(yf) + w||u||L2(yf)) : (4.11)

By testing (4.7a) against u and taking the imaginary part in the resulting equation, it follows
that

1
wllal[L2(y;) < EHf”LQ(Yf)’ (4.12)

which combined with (4.11) proves the validity of (4.8). O
Using the result in Lemma 4.2, we now obtain an estimate for [|v™||z2(v;).-

Lemma 4.3. The solution v'™ of (4.5) satisfies the estimate

IVl < Csllglze,)- (4.13)
where C3 > 0 is a constant independent of m and w.

Proof. Consider the auxiliary Y-periodic problem to find u and 7 satisfying

—iwppu—nAyu+Vyr = v, Yy, (4.14a)
Vyou = 0, Yj (4.14b)
u = 0, Ty (4.14c¢)
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Take ¢ = u in (4.5), use integration by parts in the n-term and apply (4.14) in the resulting
equation. After integrating by parts the term (v™, V), owing to the fact that v™™ is divergence
free, we obtain

(v, v )Yf + <v , (na—u — uw)>r f = 0. (4.15)

Next, recall the continuity of the trace operators

H2(Yy) — L*(Dsy) HY(Y;) —» L2(T
oo’ apa 10D Tsr) (4.16)
u |_) - u |_> ll|r
ov sf

Then from (4.6) and (4.8) it follows that

<vm ( Ou uw)> < V™l ) ‘( Ou uw)
ou 2 du
\"ow re| w\"aw L2(Tyy)
< Cllglee, ) (Il + Il )
< Gsllgllzz@, plIv™llz2(vy)- (4.17)

Next, using (4.17) in (4.15) we get
V™ 12y, < Collgllzz e V™ 2y,
which shows the validity of (4.13). This completes the proof. O

Now we proceed to derive the desired existence and uniqueness result on the solution of Prob-
lem (4.1). Note that the bounds in Lemmas 4.1 and 4.3 imply that there exists a subsequence
of v, that we denote again v, such that

v =~ v weakly in  [L*(Y})]°, (4.18a)
v g0 weakly in [L2(I‘sf)]3. (4.18b)

We wish to show that z° = g on [s¢. First, since V-v"™ = 0 in Y}, we notice that / 2’.vdS = 0.
Tof

Then, take a Y-periodic function ¢ € [CQ(Yf)]?’ with V- ¢ = 0 as a test function in (4.5) and

use (4.6) and (4.13) to obtain

(4.19)

m(v™ —g, @),

. 0
iw (prv™, @) — (nv™, Ap) + (v, ¥
ov Ty

IN

¢ (w”"m||L2(Yf)||<P||L2(Yf) + ||Vm||L2(Yf)||A<P||L2(Yf)
8_<p

al/ L2(st)>
C(p) max{1,w}|gllz2(r, )

HIv™ 2,

IA
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Taking limit as m — oo in (4.19), we get that

(2° —g,0), =0,

for all of such test functions ¢. Since the traces of functions ¢ € [C*(Y )] ® are dense in L2 (Csy),
we conclude that

2’ =g, a.e. on Lyy.

Again, take ¢ € V)Q;f in (4.5) and use integration by parts in the 7-term to obtain

iw (pv ,cp)Yf — (nv ,Aygo)yf + <77v , 8_U>F =0. (4.20)
sf

Next, using (4.18), take limit when m — oo in (4.20) to obtain

. oy
tw (PfV0,<P)yf B (T]VO,Ay(p)Yf = - <nga B_V>F , y PE Vl%'f

Also, note that for ¢ € W, since V - v'* = 0,

(V" Ty, = (v, ) (421)
Due to Vi € [LQ(Yf)]3 and (4.18a), by taking limit in (4.21) as m — oo, we get

(v, V), = (& v, %), bEW.

Thus v is a very-weak solution of (4.1) in the sense defined in (2.27). This completes the proof
of Theorem 2.1.
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