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Abstract

This work presents and analyzes a collection of finite element procedures for the simu-
lation of wave propagation in a porous medium composed of two weakly coupled solids sat-
urated by a single-phase fluid. The equations of motion, formulated in the space-frequency
domain, include dissipation due to viscous interaction between the fluid and solid phases
and intrinsic anelasticity of the solids modeled using linear viscoelasticity. This formulation
leads to the solution of a Helmholtz-type boundary value problem for each temporal fre-
quency. For the spatial discretization, nonconforming finite element spaces are employed for
the solid phases, while for the fluid phase the vector part of the Raviart-Thomas-Nedelec
mixed finite element space is used. Optimal a priori error estimates for global standard
and hybridized Galerkin finite element procedures are derived. An iterative nonoverlapping
domain decomposition procedure is also presented and convergence results are derived. Nu-
merical experiments showing the application of the numerical procedures to simulate wave
propagation in partially frozen porous media are presented.

Keywords: poroviscoelasticity, finite element method, error estimate, domain decomposition

1 Introduction

Wave propagation in composite porous materials has applications in many branches of science
and technology, such as seismic methods in the presence of shaley sandstones [8], frozen or par-
tially frozen sandstones [31, 10, 11], gas-hydrates in ocean-bottom sediments [12] and evaluation
of the freezing conditions of foods by ultrasonic techniques [27].

A theory to describe wave propagation in frozen porous media was first presented by Leclaire
et al. [25]. This model, valid for uniform porosity, predicts the existence of three compressional
and two shear waves; the verification that additional (slow) waves can be observed in laboratory
experiments was published by Leclaire et al. [26]. Later, Carcione and Tinivella [12] generalized
this theory to include the interaction between the solid and ice particles and grain cementa-
tion with decreasing temperature. Also, Carcione et al. [8] applied this theory to study the
acoustic properties of shaley sandstones, assuming that sand and clay are non-welded and form
a continuous and inter-penetrating porous composite skeleton. Both frozen porous media and
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shaley sandstones are two examples of porous materials where the two solid phases are weakly-
coupled or non-welded, i.e, both solids form a continuous and interacting composite structure,
interchanging mechanical energy. Similar weakly-coupled formulations have previously been pro-
posed. For instance, McCoy [30] has proposed a mixture theory appropriate for the combination
of two acoustic phases.

This article presents a differential and numerical model to describe wave propagation in a
heterogeneous poroviscolastic frame consisting of two weakly-coupled solid phases saturated by
a single phase fluid. The equations of motion, stated in the space-frequency domain, generalizes
that presented in [39] and [9] by the inclusion of solid matrix dissipation using a linear viscoelas-
tic model and frequency dependent mass and viscous coupling coefficients. It also generalizes
the models of Leclaire et al. [25] and Carcione et al. [12] for the case of uniform porosity,
and consequently is the appropriate model to perform numerical simulation in heterogeneous
materials.

The numerical procedures presented employ the nonconforming rectangular element defined
in [17] to approximate the displacement vector in the solid phases. The dispersion analysis
presented in [40] shows that employing this nonconforming element allows for a reduction in
the number of points per wavelength necessary to reach a desired accuracy. On the other hand,
the displacement in the fluid phase is approximated by using the vector part of the Raviart-
Thomas-Nedelec mixed finite element space of zero order, which is a conforming space [36, 32].

The error analysis yields optimal a priori error estimates for the global standard and hy-
bridized Galerkin methods.

Numerical simulation of waves in porous media is computationally expensive due to a large
number of degrees of freedom needed to calculate wave fields accurately; the use of a domain
decomposition iteration is a convenient approach to overcome this difficulty. Here we define a
nonoverlapping domain decomposition iterative scheme and derive convergence results similar
to those presented in [14] for solving second-order elliptic problems.

This iterative procedure was used for the simulation of waves in a sample of water saturated
partially frozen Berea sandstone [9, 12], perturbed by a point source at seismic frequencies. The
sample has an interior plane interface defined by a change in ice content in the pores, and the
snapshots of the generated wave fields show clearly the events associated with the different types
of waves.

2 The differential model

In this section we review and generalize a model recently presented by one of the authors and
some of his colleagues [39] to describe the propagation of waves in a poroviscoelastic domain
Q C R? d =23, in which the matrix consists of two different solids indicated by the super-
indices (1) and (3), saturated by a single phase fluid indicated by the super-index (2). Thus, for
any reference element E of bulk material we have

E=EWUE® yE®,

Let V(@ denote the volumetric measure of the phase E® and by V) and V(™) the volumetric
measures of E and the solid matrix E¢™) = E1) U EG)| respectively, so that

yim) — y() 4 y3) v =y 4 y@ L y6),
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We introduce the bulk volumetric fractions of the different components in the form:

2 1 3
o=V o VY e VY
v®)’ Ve’ v®)’
and the solid fractions of the composite matrix
1 3
s VO gwm VO i s 5@ — 1,

V(sm)’ Vv (sm)

For some practical applications it is convenient to define the absolute or effective porosity ¢(®
of the medium, defined as the ratio of the volume of the interconnected pores V) and the total
volume of the sample, i.e.,

(@) v(p)

V)"

These set of fractions can have different meanings depending on the physical model consid-
ered. For example, in the case of a sandstone or soil at very low temperature, it is reasonable
to consider that a part of the fluid which saturates the pore space is at a liquid state and the
rest is frozen. If E(") represents the mineral grains and E®) the ice, for a given porosity ¢(@
and bulk water content ¢, the following relations hold:

¢(3)

D =1—9@ 4B =gl _g g6 — 5
7 7 1 _

. (2.1)
Tt is useful to introduce an additional fraction S®) to account for the ice content in the pores,
given by

@ VO ¢®
RO

S

A different application of this model would be the case of a shaley sandstone, that is, a porous
rock mainly composed of quartz grains and clay particles, saturated by a fluid (such as water,
brine, gas or oil). In this case we assume that the fluid completely saturates the pore space of
the composite rock so that V(2 = V® . Then, if E() represents the grains of the rock and
E®) the clay part, for a given matriz clay content S and water content ¢, instead of (2.1) the
following hold

p=0¢9, ¢V =5D(1-9¢), ¢ =501-9).

Let us now consider a unit cube © = QM U Q@ U QB ¢ R? of our fluid-saturated porovis-
coelastic material with boundary I' = 9€). Since by hypothesis the two solids are non-welded
(or weakly coupled), we assume that they can move independently and consequently we can
distinguish three different particle displacement fields for this model. Let u(™) = u(™)(z,w) =

t
(ugm) (x,w)," - ,u((im) (z, w)) , m = 1,3, be the averaged solid displacements over the bulk mate-

t
rial Q at the angular frequency w and let 7(® = (? (z,w) = (1752) (z,w),- ,17((12) (z, w)) denote
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the absolute fluid displacement. Also, let the relative flow of the fluid phase with respect to the
composite solid matrix be defined by

u® = (a® — sWy) — g(3)y,())
and set u = (u(l),u@), u(3))t. As explained in [39], the variable

(=-V-u?
(1,5)

represents the change in fluid content. Next we introduce the local stress tensors ij’s

aﬁ’s) in the solid parts Q1) and Q) averaged over the bulk material and the fluid pressure p;.

Following [39], we define the second order tensors

and

op = 0" = SWappo, o) = o — SOy,

associated with the total stresses in Q1) and Q)| respectively. Then the constitutive equations,
stated in the space-frequency domain are follows [39]:

0](-}9) (u) = [Kg)e(l) - BW¢ + B(3)e(3)] djk + 2,u(1)d§-}c) + u(l?’)dﬁ), (2.2a)
oy (u) = [KGe® = BOG+ BOM] gy + 25O +pu0Vaf), (2.20)
pf(u) = —BWe) — B@eB) 4 K., (2.2¢)

where the elastic coefficients K gn)’ B™) Ko, ut™, 1(13) are given in Appendix A.1, and

1
dg.flg) = ejp(u™) — y ™5, m=1,3, in RY,

denotes the deviatoric tensor in Q™) with €jk (u(™)) being the strain tensor with linear invariant
e™). In [39] the constitutive relations (2.2) were stated in the space-time domain with real coef-
ficients that were determined in terms of the properties of the individual solid and fluid phases.
In this work the coefficients in (2.2) will be assumed to be complex and frequency dependent in
order to include viscoelasticity in the solid composite matrix, using a linear viscoelastic model
as explained in Appendix A.

Next, by writing

)\(m) _ K(Gm) _ %N(m)’ D(?’) = B(3) — j—iu(l?’) in ]Rd,

the constitutive relations (2.2) are then stated in the following equivalent form, which will be
used in the analysis that follows:

UJ(? () = Ve — BO¢ + DO e®] 6, + 24D (u®) + e (u®),  (2.3a)
ol () = \&e® — BAC 1+ DO M55, + 2u@ejp(u®) + pPej(u™),  (2.3b)
pr(u) = —BWeM — BReB) 4 K, C. (2.3¢)

Let the positive definite mass matrix P = P(w) and the nonnegative dissipation matrix
B = B(w) be defined by

pud pial pi3l buul —bial —bnl
P = | pial pool posl |, B=| —biol bl b2l |,
p13l posl p33zl —bi1l  biol bl
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where I denotes the identity matrix in R4*?¢. The nonnegative coefficients ik = Pjk(w), bjx, =
bjr(w) in the definition of the matrices P and B can be computed as explained in Appendix A.
The coefficients b11, b2 and byo satisfy the condition

biibay — b2 >0, w >0, (2.4)

which is needed in order that the dissipation function be positive in the variables u(?) and
uM) — 4B, Next, let L(u) be the second order differential operator defined by

£w) = (V-0 (w), ~Vp; (), V -0 ()

Then the equations of motion in (2, stated in the space-frequency domain, are given as follows
[39]:

—w?Pu(z,w) + iwBu(z,w) — L(u(z,w)) = F(z,w), (z,w)eQx(0,w), (2.5)

where F(z,w) = (F(l)(m,w),F(z) (z,w), F) (x,w))t denotes the external source and w* is an
upper temporal frequency of interest.

A plane wave analysis shows that three different compressional waves (P1, P2 and P3) and
two shear waves (S1, S2) can propagate [25, 39]. The P1 and S1 waves correspond to the classical
fast P and S waves propagating in elastic or viscoelastic isotropic solids. The additional slow
waves are related to motions out of phase of the different phases. The experimental observation
of the additional (slow) waves was reported by Leclaire et al. [26].

Let us denote by v the unit outer normal on I'. In the 2D case let x be a unit tangent on I"
so that {v, x} is an orthonormal system on T. In the 3D case let x' and x? be two unit tangents
on T so that {v,x!,x?} is an orthonormal system on T.

Then, in the 2D case set

Gr(u) = (o‘” (- v, 0D (v - x,pp(w), 0@ W)y - v,6® (u)v - x) t, (2.6a)
Sr(u) = (um o 1@ -y u® .y @ .X)t, (2.6b)
and in the 3D case set
Gr(u) = <a<1>(u)y v, oMW - x oMW (W - x%pp(u), (2.7a)
o® ) v, 0 (W) xt, o (u)v - XQ) t,
Sp(u) = (uu) W u® 2w L u® @ Ly ®) .Xz)t, (2.7b)

Let us consider the solution of (2.3) with the following absorbing boundary condition, which is
derived in Appendix B:

—0r(u(z,w)) = iwDSr(u(z,w)), (z,w) €T x (0,w"). (2.8)

The matrix D in (2.8) is positive definite.
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3 A weak formulation

For X C R¢ with boundary 0X, let (-,-)x and (-,-)5x denote the complex L?(X) and L?(0X)
inner products for scalar, vector, or matrix valued functions. Also, for s € R, || - ||s,x and |- |s x
will denote the usual norm and seminorm for the Sobolev space H*(X). In addition, if X =
or X =T, the subscript X may be omitted such that (-,:) = (-,*)q or (-,:) = (,*)p. Also, set

H(div;Q) = {w € [L2()]?: V-v € L}(Q)}, H'(div;Q) = {v e [H'(Q)]¢: V-ve H(Q)},
with the norms

]1/2 %]1/2.

s ol aive) = [0l + 1V -0l

We will assume that the solution of (2.5) with the boundary condition (2.8) exists and
satisfies the regularity assumption

D lz + [[u® 2 + @[l + [V - w1 < Cw)||F]lo- (3-1)

1ol rgaivsy = [l0lI5 + 11V - vll5

Let us introduce the space V = [Hl(Q)]d x H(div; Q) x [Hl(Q)]d. Then multiply Equation
(2.3) by v € V, use integration by parts in the (£(u), v)-term, and apply the boundary condition
(2.8) to see that the solution u of (2.5) and (2.8) satisfies the weak form:

—w’ (Pua U) +iw (Bu7 U) + A(“a U) + iw <D SI‘(U), Sr (U)> = (F7 U)a (32)
» — (v(n’v(z),v@))t eV,

where A(u,v) is the bilinear form defined as follows:

Alw,v) = (05 (@), e 0D)) + (o5 (W), £ (0®)) = (ps(w), V- o)), woeVv.  (33)

In (3.3), and the rest of the paper, Einstein’s convention of sum on repeated indices is used.
Note that the bilinear form A(u,v) can be written in the form

A(u,v) = (E €(u),e(v)) = (Br €(u),e(w)) + i (E; €(u),e(v)), u,v €V,

where E = E, + iE; is a complex matrix. Furthermore, we assume that the real part E, is
positive definite since in the elastic limit it is associated with the strain energy density. On the
other hand, the imaginary part E; is assumed to be positive definite because of the restriction
imposed on our system by the First and Second Laws of Thermodynamics. A similar assumption
was used in [35] to obtain restrictions on the imaginary parts of the coefficients in the constitutive
relations for the case of a poroviscoelastic matrix saturated by a two-phase fluid. In the 2D case
the matrix E is defined as follows, with the obvious extension to the 3D case:

_ E 0 ~a 2/1}(1) u(lg)
5o (0 §) 5= (u“‘” 2u® )

e1p (u®
A 42,0 AL D®) 4 ,(13) D®) B 5;Eu(1)g
A 2D 42,0 D®G) D® 4 4,03 B e11(u®)
E=|D® 4 p(13) D®) A®) 2,0 A(3) B(® . Eu) = | ep@®)
D® D®) 4 ,(13) A(3) A3 42,6 B®) V-u®
B B B2 B®) Koy 512(u(1))
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Let us analyze the uniqueness of the solution of our differential model for the case of a unit
square = (0,1)? in the (x1, z2)-plane to shorten the argument; the 3D case follows with the
same argument. Then, set F' = 0 and choose v = u in (3.2). Taking the imaginary part in the
resulting equation, we obtain

w (Bu,u) + (E; €(u),€(u)) +w (D Sr(u), Sr(u)) = 0.

Using (2.4) and that E; and D are positive definite and B is nonnegative, we conclude that

u® =0, u® —u® =y, Q, (3.4a)
oM =0, u® =0, T, (3.4b)
u? v =0, I. (3.4c)

Consider the part I'; of the boundary T" defined by I'y = {z = (z1,22) €' : 21 = 1,0 < 2o < 1}.
Notice that (3.4b) and (3.4c) imply that

Bugl) B Bugl) B 8u§3) B Bug?’)

8.’132 8332 8.’1,‘2 8.’132 :O’ L (3'5)

Owing to (2.8) Gr(u) = 0 leads to the following relations on I'y

oulV oul®
aﬁ) (u) = ()\(1) + 2,u(1)) ;—1 + (D(3) + u(l?’)) ;—;1 +BWV.u@ =0, (3.6a)

z1
(3) 3 3 ou’ 3 13 out) 2 2
o\ () = (A( )+ 24 )) 8—1 + (D( ) ul )) L 4+ BAV..® =0, (3.6b)

1 0z,
D) = uO ‘96"15) % M(m)aa“_g —0, (3.6¢)
D) = u® 3;51) % u )%“_g — 0, (3.6d)
—pslu) = B(l)aau_xgi) + 3(2)68”_;1? + K,V -u? =0. (3.6e)

Next we observe that (3.6c) and (3.6d) form a homogeneous 2 x 2 linear system of equations
with coefficient matrix 2 S, while (3.6a), (3.6b) and (3.6e) is another homogeneous linear system
of equations with matrix coefficients

2D 42,0 pB) 4,13 pA)
EP) = | DB 4,03 \B®) 42,00 BO
BV B(® Koy

We make the assumption (valid in any physically meaningful situation) that the coefficients in
the matrix E; fulfill

Im (det (5(P))) >0, (3.72)
Im (det (§)) > 0. (3.7b)
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For example, a calculation shows that (3.7) is satisfied if the coefficients p13), B B®) and
D®) are real, the coefficients A\(™), ,u(m), m = 1,3, and K, are complex and Im(K,,) is chosen
sufficiently small but different from zero in order that E; be positive definite. Thus, under the
condition (3.7), from (3.6) we conclude that

Bug) B 8ug3)

= = I .
011 oz 0 b (3-8)
Bugl) 8Ug3) (2)
= = . = 1_‘ . .
= g = VU =0 T (3.8b)

The same argument applies for the validity of (3.5) and (3.8) in the rest of the boundary. Thus
by the Cauchy-Kowalevsky theorem u()) = 0, u(® = 0 in a neighborhood of any point on T’
where the coefficients are analytic and with the possible exception at the corners. Then the
unique continuation principle [33] implies

uM =u® =0, Q. (3.9)

Now from (3.4a) and (3.9) we have uniqueness. The 3D case follows with the identical argument.
We summarize the result in the following theorem.

Theorem 3.1. Under the assumption made in the above argument concerning the validity of
(3.7), Problem (2.5) with (2.8) has a unique solution for any w # 0.

For the analysis that follows a similar result can be demonstrated for the adjoint problem to
(2.5) and (2.8). Thus, the solution 1 = (wﬂ),zp(?),w(?’))” of the problem

—WPp —iwB — L*() = F, Qx(0,w"), (3.10a)
Gi(1h) —iwDSr (1) = 0, T x (0,w*), (3.10b)

is unique and satisfies the regularity assumption
Ml + 1@z + 1P + 1V - Pl < C(w)]| Fllo- (3.11)
In (3.10a),

t

() = (V-0 (), =i (@), V - 0 ()

where o(™*) (¢), m = 1,3, and p}(1) are defined as in (2.3) but using the complex conjugates of

the coefficients. Similarly, G5 (%) is defined as in (2.6) but using o(™* (1)), m = 1,3, and p}()
in those definitions. As before, existence for (3.10) will be assumed.

4 The global finite element procedure

The numerical procedures will be defined and analyzed in detail in two dimensions and for
rectangular elements. The changes for triangular elements and the three dimensional case will
be described in Section 9.

Let Th(Ql be a nonoverlapping partition of £ into rectangles @; of diameter bounded by
h such that Q = UJJZIQ]-. Denote by &; and ;i the midpoints of 0Q; NT' and 0Q; N 0Qx,
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respectively. Let ((-,-))r,, denote the approximation to the (complex) inner product (-, -)ij in

L*(Tjx) computed using the mid-point quadrature rule; more precisely,

{{u, 0))rj; = (w0) (&) [Tkl

where |T'j;| denotes the measure of T'jy,

Let us denote by vj; the unit outer normal on 0Q; N dQy from @Q; to Q) and by v; the
unit outer normal to Q. Let x; and x,; be unit tangents on 0Q; NI and 9Q; N 0Qy, so that
{vj,x;} and {vi, x;x} are orthonormal systems on 0Q; NT" and 0Q; N OQy, respectively.

To approximate each component of the solid displacement vector we employ the nonconform-
ing finite element space as in [17], while to approximate the fluid displacement vector we choose
the vector part of the Raviart-Thomas-Nedelec space [36, 32] of zero order. More specifically,
set

R=[-1,1 Nﬁ@ﬁﬁmMLﬁﬁwwm—a@M,a@ﬂ=ﬁ—§ﬁ

with the degrees of freedom being the values at the midpoint of each edge of R. Also, if
’(/)L(Zv\l) = #7 wR(?Ll\l) = H—%a ,(l)B(:/E\?) = #a wT(ZE?) = H%a we have that

WI(R) = Span{(*(@1),0)", (" (&1),0)", (0," (32))", (0, %" (32))'}.

For each @), let Fg,; : R Q; be an invertible affine mapping such that Fg, (ﬁ) = Qj, and
define

NCl = {v=(v,v)": v, =00 Fy, 5 € NC(R), i =1,2},
W]h = {w:w= @oFéjl, @ € W(R)}.
Setting

NCh={v :v; =v|g, €NC), vj(&) = vi(&) V{4, k)},
Wh ={w e H(div;Q) : w; = wlg, € th},

the global finite element space to approximate the solution u of (3.2) is defined by
V= NC" x Wh x N'C™.
In order to state the approximation properties of V? let us introduce the space
Al = {Xf : M og;noq, = Mk € [Po(0Q; MOQ) = Al Xejy + X!, = O},
where Py(0Q; N 0Qy) denotes the constant functions defined on 0Q; N 0Qy. Also, define the

projections ITj, : [H2(Q)]> = NC" and P,Sm)  [H2(Q)]2 x H'(div; Q) x [H2(Q)]2 —» A", m = 1,3,
associated with the two solid phases by

(™) = Tapl™)(€) = 0, € = & or &,
(e™ sy = PI™(9;),1) =0, B=0Q;N0Qk or 9Q;NT,
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for all ¢ € [H?(2)]? and o € [H?(Q)]? x H! (dlv, Q) x [H%(Q)]?. Then, standard approximation
theory implies that, for all o = (1), 0, o®)" € [H2(Q)]2 x H(div; Q) x [H(Q)]2,

: 2
) [M ~ g™ o+ (L™ - ™, )+ h2(z o™ — ™ B,
j _

m=1,3

1/2
1 m m
h2<2|90( ) — Iyt )|g,an> +h2(2|0 vj — h (PJ‘OBQ]) ]
J

< h? (Wl + gl + 1V - 6@ ) (4.1)

(m) (m)

We also notice the orthogonality to constants of the difference ;' — @ on the interfaces
0Q; N 0Qy of Q; and Q; that is,

< (m) (m) 1 = 0 for all interfaces 0Q; N 0Q, ™ e NC", m=1,3.

(;0] - (pk ’ >(9Qjﬂan

Next, let us define the projection Q) associated with the displacement vector of the fluid phase
as follows:

Qu: [H Q) > W ((Que® = @) 1,1) =0,
BzaQ]‘ﬂan or BzanﬂP.

Then, it follows from [32, 36] that

lo® —Que®llo < Chllp], (4.2a)
1® = Que@llnieny < Ch (Il + 1 - @) . (4.2b)
Set
n(w,v) Z[( hean)) o+ (o ) ) = (pr(w), V- v<2>>)Qj] (4.3)
J
and

Op(u,v) = —w? (Pu,v) + iw (Bu,v) + Ap(u,v) + iw (D Sr(u), Sr(v)).

Then the global finite element procedure is defined as follows: find u" = (u(l’h), u®h) u(3’h))t €
V" such that

t
Op(ul,v) = (Fv), v= (v(l),v(z),v(?’)) e Vh. (4.4)

Let us denote by ugm’h), j = 1,2,, the components of the vector u(™" m = 1,2,3. The

following theorem analyzes the uniqueness of the solution of (4.4).

Theorem 4.1. Problem (4.4) has a unique solution for any w # 0.



Waves in composite saturated poroviscoelastic solids 11

Proof. Set F = 0, choose v = u” in (4.4) and take the imaginary part in the resulting equation
to obtain

w (Buh,uh) ¥ %: (E z(uh),z(uh))% Fw <D Sr(uh), sp(uh)> —0. (4.5)

Since each term in the left-hand side of (4.5) is nonnegative, in particular we have that (Buh, uh) =
0, and the argument in the proof of Theorem 3.1 can be repeated to show that

W@ Z 0, (L) — B (4.6)

To show that u(lP) = w(h) = 0, take an element, say @i, among the four elements which
intersect I" at the vertices of §2; two faces of () are contained in I'. After a proper transformation,
without loss of generality we can assume that Q; = (—1,1)? with the faces T'® = {(z1,25) € T':
z1 =1} and I'T = {(z1,29) € T : x5 = 1} contained in T. Set
1h
ug ) — a1+ b1z + c1zo + di(a(z) — a(xs)),
"M = ay + bazy + oo + da(a(z1) — a(ze)).

Since the boundary term in (4.5) must vanish and the matrix D is positive definite, we conclude
that Sp(u”) = 0 and consequently u(™" (z, z5), m = 1,3, must vanish on TFUT”. In particular
at the mid point of I'® UTT we have

92 2
ugl’h)(l,()) =a;+b — §d1 =0, “gl,h) (0,1) =a1 +c1+ §d1 =0, (4.7)

5 2
M (1,0) = az + by — 5y =0, uy™(0,1) =ar o2+ 52 =0,

Next, since the second term in the left-hand side of (4.5) is nonnegative and the matrix E; is
positive definite, for (z1,z2) € J1 we must have

10
enn(u™My = b +2d; (xl — §x§> =0, (4.8a)
(1,h) 10 5
goa(u'V™) = g —2dy | T2 — §x2 =0, (4.8Db)
1 10 10
612(u(1’h)) = 5 |:Cl + by — 2d; (xl — givzf) + 2do <IE2 — ?JJ%)] =0. (4.8C)
From (4.7) and (4.8) it follows that ugl’h)|Q1 = ugl’h)|Q1 = 0. and using (4.6) we also have
ug?”h)kg1 = ug?”h)m1 = 0. Let us take an element Q2 adjacent to () that intersects I' and has

a common face 'y with @1. Then ugl’h) and ugl’h) vanish at the mid points of I's and I'19
and 611(u(1’h)),622(u(1’h)) and 622(u(1’h)) vanish identically on @2, so that repeating the above
argument we verify that

u{™M| g, = ul™M |0, =0, m =1,3. (4.9)
Repeating the argument, one can show that (4.9) holds for all elements with a face contained in
I'. Next stripping out such boundary elements, take a boundary element with two faces common
with the corner of stripped out domain and repeat the argument to show the validity of (4.9)
for those elements. Then continue the process until the domain is exhausted. This completes
the proof. O



12 J. E. Santos and D. Sheen

5 A priori error estimates for the global procedure

In this section, we derive an error estimate between the solutions v and u” defined by (3.2)
and (4.4), respectively. The argument in this section is close to that given in [22] which uses a
boot-strapping argument similar to [15] for nonconforming finite element methods for Helmholtz-
type problems. Also, see [16] for such a boot-strapping argument for conforming finite element
methods for the Helmholtz equation.

Set

¢
7y = (Hhu(l), Qhu(Q),Hhu(?’)) , d=u—u" v = Zpu — ul.

Our first goal is to derive an estimate for ||7y]|o, and for that purpose we will solve the adjoint
problem (3.10) to (2.5) and (2.8) with 7y as a source term. It is convenient to define the following
broken norms and seminorms:

||U||§,h = Z ||U||§,Qja |U|§,h = Z M?,Qja |’U|§,h,1‘ = Z |U\3,6Qjmr-
J J J

First note that for v = (v, v @)t € [L2(Q)]6 such that v(1),v0) € [H(Q,)]?,v? €
H(div; Q;). Using integration by parts on each @;, we obtain

— 2 ; _
Op(u,v) = ;( w“Pu + iwBu E(u),v)Qj (5.1)
t
+ 2 (o0 -prun o @) 00,0200y )
J 0Q;\T
Thus from (4.4) and (5.1) we see that for v € V"
— (m) (m) _ 2.
Or(d,v) Z [ Z <o (u)v,v >6Qj\F <pf(u),v V>8Qj\1“]' (5.2)

j Ltm=13

Notice that the regularity assumption (3.1) implies that ps(u) € H 1/ 2(6Q; N 0Qk), which to-
gether with the fact that v](-2) VK + v,(f) -v; = 0 in the sense of H~Y/2(8Q; N 0Qy), leads

to
Z <pf(u), v V>8Qj\1‘ =0. (5.3)

J

Hence, thanks to (5.3) and that v and v(®) are orthogonal to constants, (5.2) can be rewritten
in the form

CHEOED Y <a<m> (w)v — P™ (u),'u(m)> veVh, (5.4)

?
j m=1,3 9Qi\I

Let ¢ = (1/)(1),1/)(2),1/)(3))t be the solution of the adjoint problem to (2.5) and (2.8):

—W?Pp —iwBip — L) = v, Qx(0,w"), (5.5a)
Gi(¥) —iwDSr(1p) = 0, T x(0,w"). (5.5b)
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According to (3.11), 1 satisfies the regularity assumption
1l + 142 o + [Pl + 1V - 2 [ < C(w)lyllo- (5.6)
Using integration by parts on each ; and applying the boundary condition (5.5b), we get

L) = Anl) +iw (D 5e0), S ) = 50| T (10w

j tm=13 9Q;\I

(), 5.7

Next, the argument used to show the validity of (5.3) can be applied to see that the last term
in the right-hand side of (5.7) vanishes. Thus (5.7) implies that

Vg = (7, —w*Pyp —iwBy — L*(y)) (5.8)
= O Y) -2 3 (eI
j m=13 J

Next, since o(™*) (1h)v — P,Em’*) (1) has average value zero on 0Q); \ I, we have that for any
q(m) € [PO(Q])]27m = 1735

(m) 5(m,%) _ plm) — —
<q O (TP)V Ph, (¢)>3Q]\T 07 m 173a
so that (5.8) can be stated in the form
I3 = €ntr ) = > 3 (1) = g™, 0™y — BV (w)) (5.9)
j m=1,3 Q;\I'

Next use (5.4) to see that for v € V",
On(y,v) = Op(d,v) — Op(u — Zpu,v) = Z <a(m) (u)v — P,Em) (u), v(m)>
—On(u — Zpu,v). ’ (5.10)
Then use (5.10) in (5.9) to obtain
IVlls = ©nly,% —v) — On(u — Znu,v)

+3° Y (o™ (v — B™ (u), (™ 5.11
j m=1,3 <0 e po ><9Qj\F (5-11)
_ (m) _ o(m) 5(mx) _ plm=*)

q"™, o v i
IPINC W= P,
Next, since y(™) ¢ [H?(92)]%,m = 1,3, (5.11) can be put in the equivalent form
Mg = On(v, % —v) — On(u — Zpu,v)
(m) _ p(m) (m) _ 4(m)
>y P , 5.12
j m=1,3 <U e R v >3Qj\F (5-12)

DM DIRCREVE RSO

m=1,3 9@\l
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Let us bound each term in the right-hand side of (5.12). First, choose v = (v(l),v@),v(?’))t =
Znt € V" such that

S 1™ = 0y + B — o]+ B2 o™

m=1,3

< (D + 119 2) < CH2[o, (5.13a)
112 — 0@ o < CRIlp?||x < Chlylo, (5.13b)
Hv- (v - 0®) HO +h Hv- (v -0®) H1 < OV @i < Chllo. (5.13¢)

)

For the first term in the right-hand side of (5.12), using (5.13) we see that

O (7,9 — )| < C(w) [anonw —ollo+ D IV ™l = o™

m=1,3
HIZ Aol 7+ (6 = 0o+ (S8(2), 56 o)
< C@hllo [I7Oln + 1P lln + IV -7l + (S (7). Sr(w — o))l - (5.14)

The boundary integral in the right-hand side of (5.14) can be bounded using (5.6) and the trace
inequality as follows:

(Sr(1), S0 = o) < Cllvlloh®? [l lun + Y@ ll1] (5.15)

where we have used that

D <(¢(2) - th/)‘”) RN CON ”>an\r — 0.

J
Hence, using (5.15) in (5.14), we get

On(r.% — )| < C@hllo W s+ W s + 199 o] . (5.16)

By choosing q](-m) = qm\Qj, m = 1,3, to be the average value of 'y(m) on (; and using the
trace inequality, (4.1) and (5.6), the last term in (5.12) is bounded as follows:

> 3 (1™ =g, D - B )

m=1,3 j 9Q;\I
1/2 1/2
& (Z h(m)Q(M)gﬁQ]’\r) (Z“(m’*)w’)”Pém’*)w%,a@,-\r)
m=1,3 j j

1/2
<y (Zh%’”)i@j) B2 (Il + [P o + 1V - )

m=1,3 \ j

< Chliylo (WOl + i) - (5.17)
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Next, using integration by parts in the Ap(u — Zpu,v)-term and the boundary condition
(5.5b), the second term in the right-hand side of (5.12) can be written in the form
On(u — Zpu,v) = Z (v — Znu, —w?Pv — iwBv — L*(v))
J
+ Y (St (u—Znu) ,G5(v)) g1 + ) (St (u = Znu) ,G1(v)) g, r
J J
+iw (DSr (u — Zpu) , Sr(v))
= Z (u — Znu, —w?Pv — iwBv — L*(v))
J

+ D (Sr (u— Znu) , G (v) — GE(W))ag,nr + D (S (u = Znu) , 61 (v) g, 1
' j

Qj

Qj

J
+iw (DSt (u — Znu) , Sr(v — 1))
=T+ To+ T3+ T4 (5.18)

Let us bound each term in the right-hand side of (5.18). First, using (4.1), (4.2), and (5.13) we
see that

T3] < Chllylo (Iu®llz + 6l + [u@]ly + |1V - w1 )
For the T term, applying the trace inequality, (4.1), (4.2), (3.11), and (5.13), one has

Ty < Z Z |u(m) _ Hhu(m)|0,6QjﬁF ‘(U(m,*) (v) — o(m*) (w)) . V‘

m=1,3 j

+ EJ: ‘ (u@) _ Qhu(2)> . y‘_l/Z’anﬁF P50) = s )] .00,

< Cliylo B2 (Ie®lls + 5@l2) + A (6@l + 17 - u@ )1 - (5.19)
Next, we decompose T3 as follows:

Ty = 37 (S (u— Zww), G2 (v) — GR($))ag,p + 3 (S (u— Znw), G2 ($)) o\
J J
= T371 + T3,2. (520)
Then, as in (5.19), the first term is bounded as follows:

T3] < Clivllo [ (@2 + [u®1l2) + A (16 + 17 - w1 )]

0,0Q;NT

(m) is

The other term in (5.20) can be bounded by using again the fact that Hhu(m) — puy,

J
orthogonal to constants

ITso| < ‘ 3 Z<(u(m)_nhu<m)).V,a(m,*)(¢)y.y>

m=13 j 9Q;\

n <(u(m) - Hhu(m)) - x, o™ () - X>
— Z <(u(2) — Qhu(2)> . V’p;(¢)>6Q4\F
j J

< Clhll [hz (Hu(l)H2 + ||u(3)||2)] )

0Q;\I'
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where we have used again the argument in (5.3) to cancel out the terms involving u(?) in the
inequality above. Finally, in order to bound Ty, applying the trace inequality, (4.1), (4.2), and
(5.13), we obtain

Ll < © m;gzj:‘u(m) _HhU(m)‘o,anmF o™ _w(m)‘o,anmr
+Z ‘(u@) B Qhu(2)> v 0,0Q;NT (U(Z) B 1/)(2)) v 0,8Q;NT
J
< 3 S ™ — ™2 ™ — T2 [ — ot 0 — o2
m=1,3 j
+Z§h%|u(2) : V|§,3Qjmrh%|1/)(2) : V|%,6anr
< Clivlo [* (Iulls + 1@ 1) | + Chllu® 19

< Clivllo [A? (Ilu@z + 1ull2) + Chlu® 1]
Collecting the estimates for 71,75, T3, and Ty, we conclude that
1On(u = Znw,v)| < Cllvllo [A2 (@2 + 1@ o)+ (I6@ s + |V - w1 )] (5.21)

Next, use the trace inequality, (4.1), and (5.16) to bound the third term in the right-hand
side of (5.12) as follows:

> [ > (o™ — B (), o™ — w<m>>6%\r

j Ltm=13

1/2
Z (Z o m) - P}Em) (u)l(Z),an\I‘> (Z |’U(m) -
' J

m=1,3

1/2
< O (Il 2 + [u®flo + 1V - w@ ) 572 (Dl + 1Pz

< crlyllo (11Dl + 1@ o + IV - @11 ) (5.22)
Thus collecting the bounds in (5.16), (5.17), (5.21), and (5.22), we obtain

Il < C@) [B (I ua + 1Yl + 1V @) (5.23)
+42 (Dl + [5@]lz) + b (Ju@ ]l + 1V - @[]

Using the triangle inequality, the last estimate (5.23), and the approximation properties of
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[T, and Qp in (4.1) and (4.2), we get

16llo < Ivllo + [[Zpu — ullo < C(w) [h (||5(1)||1,h 161 + IV - 5(2)”0)
+h (lu® = TuOll -+ u® = Tu@ |l + 1V - @ = Quu®) o)
+12 (@ o + [ @) + b (Jlu@ [l + 11V - @) ]
< ) [h (16D + 16D + 17 - 5@ o) (5.24)

+12 (Ju® s + [u@2) + b ([u@[l + ]V - 6@

We next use a Garding-type inequality to bound the §-terms in (5.24) in terms of the u-terms
in that inequality. First note that using Korn’s second inequality [18, 34] and that E; is positive
definite, we get

Im (©4(4,0))] = w(B6,0)+ Z (E; '€(5),'€(6))Qj + w (D Sr(d), Sr(d))

> 1) 60124+ 6P 4+ 17 - 53+ (Sr(6), Sr(6))]
—Ca(w)|1813.

Hence,

16DN2 4+ 16E2 , + |V - 6|2 + (Sp(6), Sr(6))
< C3(w) |O4(8, )| + Ca(w)]|6]/3
< Cs(w) [[16118 + 1Ok (8, u — Zpu)| + |O4(S,7)]] - (5.25)

Since v € V*, the expression for ©p(d,v) given in (5.4) can be replaced by using (5.25) so that
1613 5 + 18T 5 + IV - PG + (Sr(6), Sr(8))
< C3(w) | 16112 = w? (P8, u — Zpu) + iw (BS,u — Zpu) + Ap(6,u — Zpu) (5.26)

+iw (D Sr(8), Sr(u—Zpu)) + 3. Y <o—<m> (w)v — P™ (u), 7<m>>

j m=1,3 90\ ] .

Let us bound the last five terms in the right-hand side of (5.26). First, thanks to the
approximation properties of II, and Qp, given in (4.1) and (4.2), it follows that

‘—wQ (P6,u — Zpu) + iw (BS,u — Zpu)| (5.27)
< () [I01F +* (Il 3 + [u®13) + n2u 3]
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Again, due to (4.1) and (4.2),

A=z < )| S (18 ™ - Ty )

m=1,3

HIZ - 6@1ol7 - () — Quu)]o]
< e (I6D13 + 16D, + 17 - 6 7) (5.28)

+C(w) [B (D3 + 1@ 3) + 527 - u®2] .

Next, using the trace inequality and approximation properties (4.1) and (4.2) again, we have

lw (D Sr(0), Sr(u — Zpu))|
€(DSr(0), Sr(6)) + C(w) (DSr(u — Zpu), Sr(u — Zpu))
€(DSr(0), Sr(6))

+C(w) Z Z |u(m) — Hhu(m)ﬁ,annF + Z |(u® — Qpu?) - V|(2),8Qjmr]

<
<

m=1,3 j J

< e(DSr(8), 5r(9)) + C(w) [ (Il + [[u®3) + > h2u® uﬁ,aQ,.mr}
J

< e(DS1(8), 50(8)) + C(w) A (D3 + [[u|3) +Zh2u<2>§,Qj]
i J

< €(DS0(8), Sr(8)) + C(w) [1 (1@ + [u®3) + A3 ] (5.29)

Finally, owing to the orthogonality property of 7(m) to constants on 0Q; \T', the trace inequality,
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and (4.1), it follows that

> % (o™= B wam)

j m=1,3

> (oM@ - B ()™~ g™)
J

0Q;\T

m=

1,3
1/2 1/2
<C Z (Z |J(m) (u)v — P}Em) (“)'%,662]\1“) (Z |,y(m) _ q(m)%,an\F)
m=1,3 i :

J

1/2
< On72 (D + [u® s + V- @) 3 (Zhv‘m’h@j)

m=1,3 j

<ch > ™l (IOl + 6@l + |V - 6] )

m=1,3
<ch| 30 18+ e = Tu ™, | (@l + 6@z + 9 - «@, )
m=1,3
< e (I6D12 4+ 1612 ) + Cn2 (a1 + @3 + 7 - u@]2). (5.30)

Hence using (5.27), (5.28), (5.29), and (5.30) in (5.26), we have the following estimate:

18015+ 18D 11,5+ 1V - 6P lo + (S0 (6), Sr(8)) 2
< Cw) 180 + b (@2 + [u® 2 + @5 + 7 -u@ )] (5.31)

Next, use (5.31) in (5.24) to obtain
I8l < Cw) [Blldllo + B2 (lu®lz + [l + 6]l ) (5.32)
+h (Iu® s + 17 - u@|)1)]

Then, for sufficiently small & > 0 such that 0 < C(w)h < 1, the term ||§||o in the right hand side
of (5.32) is absorbed in the left hand side, and therefore,

180 < C(w) [B2 (Il + 6@l + [u@]l3 ) + b (Ju@ ] + 1V -2@ )] (5.33)

Finally using (5.33) in (5.31), we arrive at the following error estimate.

18D 1 + 16D + 17 5 o + (Sr(8), Sr(6))
< C@h [[uD s + @12 + [u@]l3 + IV - u@ ] .

We summarize the above in the following theorem:
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Theorem 5.1. Let u € V and u* € V" be the solutions of (3.2) and (4.4), respectively. We
then have the following energy-norm error estimate: for sufficiently small h > 0,

D ™ — a4 V- @ = aBP)

m=1,3

+ Z |u(m) — U(m’h)|0,1" + |(u® — ). vio,r
m=1,3

< C@h [Ju® s + @l + [u@ |3 + IV - u@ ] .
Also, we have the [L?(2)]%-error estimate as follows: for sufficiently small h > 0,
lu = utllo < Cw) [B2 (D2 + 1@ o + [u@ 5 ) + b (6@l + 7 - w1 )]

6 A global hybridized nonconforming finite element procedure

Let us decompose Q € R? into nonoverlapping subdomains 1, --- ,Qy such that each Q; is
composed of the union of disjoint rectangles Q € 7"(9), with the interfaces [ = 0Q; N Oy,
Also, let I'; = 092, NT'. Set

THY) = {QeTHQ): Qe ),
Nch(Qj) = {U] Q - C UJ'Q € Nch vQ € Th( ) v]|Qk(§kl) = IU]|Q1(£kl) V(k, D)},
WHR) = {w e H(div; ) : vy = wlg, € Wi,
Vi) = NCMQ;) x WHQ;) x NCM(Q;).
Our global hybridized finite element space is then defined by
Vi = {v € [L2(Q)]° : v|g, € V"(Q;)}.

In order to define a hybridized procedure, we follow the ideas in [1, 19, 20, 14] to impose the
cont1nu1ty constraints across interior interfaces using Lagrange multipliers. Thus we introduce

the space AR Y10 with )\;‘k € Ah assoc1ated with G, k(u]) on I'j;:

= (Mo Xy =M agnr,, € A" VQ € Q;such that @ NIy, # 0},
where
K’ll,jk = {X?k L € [Po(0Q NTyk)]° VQ € Qsuch that QN Ty # 0, )‘]k = zj} for all j, k.
Set

The global hybridized nonconforming procedure is defined in the following fashion: find
(@", \*) € V2, x A" such that

> X [P v + (B, v)g + Ang( ) (6.10)
J QeTh(%y)

—Z((Ayk,sr M., +sz<DSr D.85,0)), = (Fo) veVh,
Z <<0’ Sfjk(uj)>>r =0, f¢e A’lla (G.Ib)

J.k ik
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where A}, ¢ indicates the restriction to @ of the bilinear form Aj, defined in (4.3) and Srj40 ST
are defined as in (2.6)—(2.7). The following theorem gives an existence and uniqueness result for
the procedure (6.1).

Theorem 6.1. Problem (6.1) has a unique solution.

Proof. Tt is enough to show uniqueness due to finite dimensionality. For this, set F' = 0 and add
(6.1a) with the choice of v = u" and (6.1b) with the choice # = A\*. Then the imaginary part in
the resulting equation reduces to

3 ( > |wBulal)q + (BE@),£@))e] +w (DSr, @), Sr, (@) ) ) —0. (6.2)
i N QETh(Y) j
Now an argument similar to that given in the proof of Theorem 4.1 shows that
=0 in Q.
Thus (6.1a) reduces to

> (A, Sry (), =0, v eNC,. (6.3)
j’k
Now, for each Q; and each @ € €2; with @) facing the boundary I', we can choose v € Vh(Qj)
with the degrees of freedom chosen such that Sr,, (v) be equal to M at the midpoint m of one

edge of () and zero degrees of freedom at the other three midpoints of ) to show that =0
at the midpoint m. Repeating the argument for all midpoints of ) and all ) € ©; whose faces
meet 0€); for each j yields that A = 0. This completes the proof. O

We next notice the validity of the following lemma whose obvious proof is omitted.

Lemma 6.1. If 2" € V|, then " € V" if and only if

Z<<975ij (ﬂh)»f‘jk =0, f¢ K}il
7.k

Remark 6.2. As a consequence of Theorem 6.1 and Lemma 6.1, 4" solves Problem (4.4).

7 The domain decomposition iterative procedures

Consider the decomposition of problem (2.5) and (2.8) over €; as follows: for j =1,..., N, find
uj(z,w) satisfying

_wQ'PUj + z'wBuj — ,C(u]) F, Qj, (7.1&)

ngk (uJ) + iwlgjksrjk (UJ) gI‘kj (Uk) - iwﬂjksl“kj (Uk), ij, (7_1b)

—0Or;(u;) = wDSr;(uy), Ty, (7.1c)

where Gr,, and Gr; are defined as in (2.6)-(2.7). Notice that (7.1b) is equivalent to imposing

the two consistency conditions:

gfjk(uj) = grkj(uk)’ Ly,
Bik (Srjk(uj)—i_srkj(uk)) = 0, Lk
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A weak form of (7.1) at the differential level may be stated as follows: for all j, find u; €
[HY(2))] x H(div; ;) x [H'(2;)]” such that

—w? (Puy, ’U)Qj + iw (Buj, ’U)QJ_ + Aj(uj,v) +iw <D Sr; (uj), Sr; (U)>
+ Z <iw'6jk(srjk (uj) + kaj (uk)) — grjk (uk), U>I‘jk = (F, U)Qj7
k

v= (o00,00,0)' € (1] x Hdivi ) x [H(@)],

where A; is the restriction to €2; of the bilinear form A defined in (3.3).

We then can define a Jacoby-type iterative procedure at the differential level as follows:
given u§0} € [Hl(Qj)]z x H(div; Q) x [Hl(Qj)]2 for all j, iteratively for n = 1,2,3,---, find
ul"t € [HY(9)]” x H(div; ;) x [H'(%;)]” for all j such that

w (Puj ,v)Qj + iw (Bu] ,v)Qj + Aj(uj ) +iw <D Sr; (uj ), Sr; (v)>rj
37 (i (Sre (™) 4 8ty (uf" ) = Gl ™), 0) = (Fro)ay, (7.2
k J

v= (o000 € Q)] x H(divi) x [H(@)]*.

Next we define a hybridized nonconforming domain decomposition procedure motivated by

~h
(7.2). For that purpose, we introduce a new set of Lagrange multipliers Ajj associated with
Tk(u;) at the midpoints & of face of element @ € ; such that @ NI # 0 for all the interior

interfaces I'j;. Set

Ay ={X Nk = Xjlagar;, € [Po(0Q NTj)]° VQ € Q;such that QN Ty, # 0},

~h ~h ~h  ~h
VIR

and set

A—l == U]A—l,]

Remark 7.1. Note that we have two copies of [Py(Tj;)]°> on each Tjx, one from €2 to Qy and
another from Q. to §2;.

An iterative procedure corresponding to (7.2) is defined as follows: For all j = 1,--- | N,
:{h)o}

~h
choose an initial guess (u;‘-h’o},)\j ) € Vh(Qj) x A_;. Then, for n = 1,2,3,--- , compute
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(h, n} N{h n} ~h
( ; ) € V(Q i) X A _1,; as the solution of the equations

U
QQ;(Q | [—w2 (Pu}h’n},v)Q + fw (Buyl’n}, ) + Ap, ( {h, n} )]
J

+iw (D Sty (™), 50, 0)) -+ (B (Srye (w™™), S, (v) )
! k

' {hns} {h n*}
= (F,v)a; — Z <zwﬂjk(8rjk( ), Sty > + Z Aj Sry, (v) (7,3a)
k Lk
NS Vh(Qj),
~{hn}  fhms} h honx
Ne =My — wB[Se, @™+ Sey W (Er), on Tjg, VE, (7.3b)
forall j =1,--- , N, where n* is defined according to the iteration type as follows:
Jacobi type Seidel type red-black type
F 1 . | n—1, j <k, « | n—1, Q; is red i.e. j € I,
meEnTs, = n, j >k, "= n, Q; is black i.e. j € Ip.

Here for the red-black type, the red and black parts of subdomains are given alternatively such
that Q = [Ujer, Q] U [Ujer,Q;]. If, for {j,k} C Ig or {j,k} C I, Q; Ny # 0, then Q; N
consists of a common vertex (in 2D) or a common edge (in 3D) of Q; and Qk.

8 Convergence of the iterative procedure

Next, we analyze the convergence of the iterative procedure (7.3). For simplicity in the notation
we consider the case 8;; = BI with 8 = g > 0 and I being the identity matrix of suitable size.

~h
It follows immediately from (6.1) that for j, &, (u (Ngl,/\?k) € V() x A_; ; satisfy the local
equations

> [P v)q + iw(BE", 0)g + Aol v)]

QET™(Q;)
—Z<<X@ 'u>> +iw <DS (@), § .(u)> = (Fv)q,, veV(Q,). (8.1)
7k T T » OT; r; ) R 7/ -
k
Also, since X;lk = ng, (6.1b) is equivalent to
/\ch = ’13]' —wp [Sl“jk( ")+ Sry, (uk)] (§jk), on Ty, Vk. (8.2)
Since u” satisfies the error estimates given in Theorem 5.1, in order to show the convergence
~{h,n} -
of the iteration procedure (7.3) it is sufficient to demonstrate that u}h’"} — u and A;,  — )\;?k

as n — oo for all j, k. For this, set

n {h,n} _ ~n n Fhin} Jh
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Then, from (7.3)—(8.2), we obtain the following iteration error equations:

> [ (Pdh ) o +iw (Bd},0) o + Anald],v)|
QET™(%y)

+iw (D S, (d]), Sr; (0))p, = D (s Sty (0)))y, =0, v €VHQy), (8.3a)
k
7);'119 = 7717;1]* - Zwﬂ [Sl“jk (d;l) + SI'kj (d;cz*)} (gjk)a on ijaVka (83b)

Let us define the pseudo-energy R" at the n-th iteration step as follows:

R" = RMd",n") =) [nf, + iwpBSr;, (d}) k)5, (8-4)
Jik

As in [22] the following lemma is valid, whose proof is omitted.

Lemma 8.1. The following recurrence relation holds:
R" = R"! — kwBIm ,Sp, (d7! , 8.5
s T (" 96, 5

where k = 4 for the Jacobi case, and k = 8 for the Seidel and red-black cases.

Now, we use (8.5) to show the convergence of the iterative procedures (7.3). Choose v = d7
n (8.3a), and take the imaginary part in the resulting equation to obtain

tm 3 (05 S (e = D [o(B} ) + (BE). EAa]  (86)
k QETH ()
w <DSI‘]~ (d;l)a Srj (d;l»

;-
Summing (8.5) for n =1,2,--- ;m, and j =1,--- , N, and using (8.6), we have
m—1
R = Rorop Y (Y lBd o+ (RE) EE))a]
n=0 j QETh(Qj)

cMD&ﬂﬁL&ﬁﬂ»n)

Since S is positive, it follows that (R™) is a nonnegative, decreasing sequence, which implies
that

Z( > [w(Bdy, df)q + (BiE(d)), E(dj))a]

J QETh(Qj)

ﬂMD&ﬂﬂL&ﬂﬁ»n)%O

as n goes to oo. In this case, the argument given in Theorem 6.1 shows that d® — 0 in L? (€25)
and 7™ — 0 as n goes to oo, so that the procedures (7.3) converge.
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~h
We will show that the iterations approach the fixed point of the operator T : V*; x A_; —
~h ~
VI, x A_; defined as follows: for any (p,0) € V*, x A", (u,n) = Tr(p,0) is the solution of the

equations:

Z [—wQ (Puj,v)Q + iw (Buy, ’U)Q + Ap,o(u;, v)]

QET™(Q)
+iw (D Sr, (uj), St, ('U)>1"j + Z (iwBik(Sr;, (ug), Sty (“)>rjk (8.7a)
k
= (F, U)Qj - Z <iw'Bjk(8ij(p)’ Sij (U)>ij + Z <<0kj78ij (U)>>ij )
k k
v e VM),
njk = Okj — 1wk, [St;, (ws) + Sry; (pr)] (55),  on Ty, Vk, (8.7b)

forallj=1,---,N.
The following lemma follows with an argument similar to that given in [17].

Lemma 8.2. (u,n) is a solution of (8.1)—(8.2) if and only if it is a fized point of Tr. If (u,n)
is a fized point of Tk, then n;p = —nx; for all j,k.

Next, Tr(p,0) = To(p,0) + Tr#(0,0) and (p,0) is a fixed point of T if and only if
Tr(p,0) = (p,0) = To(p,0) + Tr(0,0).
Then a fixed point of TF is a solution of the equation
(I —To)(p,0) = Tr(0,0).

Thus, we study the spectral radius of the operator Tj.
Let ¢ be an eigenvalue of Ty with associated eigenvector (u,n), so that To(u,n) = 6(u,n).
Note that, according to (8.4),

R(TO (u7 77)) = |5‘2R(u’ 77)5

and from (8.5)

R(To(u,7m)) = Rlw,n) — sofTm 3 S (0t St () Do 1, (8.8)
i k

where « is 4 or 8 as before. Combining (8.8) and (8.8) with (8.6), with 77, and d7} replaced by
;% and u;, respectively, we see that

Kkwp

52 = 1—
d Ru,)

Z( Y. [w(Bujyuj)g + (Bie(uj), €(u;))q]

i QeTh(Qy)

tw <DST]‘ (uj)7 SFj (uj)>1" ) )

J
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so that |6| < 1 provided that

Z ( Z [w(Buj,uj)q + (Ei(uj), €(uz)) @] + w (DSr; (us), Sr; (uj)) ) > 0,

i N QeTh(ey) !

which is ensured by the positive definiteness of E; and D and the nonnegative property of B.
Moreover, 6 = 1 if and only if

Z( Y w(Bujuy) + (BiE(y;),€(u))q] + w (DS (u)), Sr; (), ) =0,

J QET () !

which is identical to (6.2) and an argument similar to that given in the proof of Theorem 4.1
implies that u; =0, j =1, ,J. Then, (8.7a) immediately shows that

E ({mss SI‘jk(’U)>>FM =0, ve V]’-l. (8.9)
k

Now (8.9) is identical to (6.3) in the proof of Theorem 6.1 on each subdomain 2, and a repetition
of the argument shows that n = 0. Hence, we have proved the following theorem.

Theorem 8.1. Let p(Ty) be the spectral radius of Ty. Then p(Ty) < 1 and consequently the
iterative procedure (7.3) is convergent.

9 The triangular and the three dimensional cases

9.1 The triangular element case

Let Q = U‘]-IZIQJ- be a quasiregular partition of (2 into triangles ();’s; here, ) can be a convex
polygon. Let us change the definition of the set A'C/ in Section 4 to NC} = [P1(Q;)]?, with the
degrees of freedom being the mid point values of the edges of ();. Also, change the definition of
the space W, to be the vector part of the Raviart-Thomas-Nedelec mixed finite element space
of zero order based on triangles [36, 32], with the degrees of freedom being the values of the
normal component of the fluid displacement vector at the midpoints of the edges of @Q;.

An inspection of the analysis shows that all the conclusions presented for the rectangular case
in Theorem 4.1 about the existence and uniqueness of the solution u” of (4.4), the a priori error
estimates in derived in Theorem 5.1 and the convergence of the iterative domain decomposition
method in Theorem 8.1 remain valid for the new definition of the space V.

9.2 The three dimensional case

Let @Q;,7 = 1,---,J, be a nonoverlapping partition of Q. If the Q);’s are tetrahedrons we take
NC? = [P1(Q;)]>. If the Q;’s are cubic elements, we set R = (—1,1) and

S(R) = span{1,£,g,2,a(zg)—a(g),a(fg)—a(g)}

1 a() 1 a(y) 1
2a(1)727 7 2a(1

= S T4+ —y =+
pan{2 2a(1) 27
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and choose N C;-’ = [S(Q;)]*. The four and six degrees of freedom associated with the tetrahedron
case and (9.1) are the values at the centers of the faces. Also, take W; be the Raviart-Thomas-
Nedelec space of order zero over either tetrahedrons or cubic elements depending on @;[32].

-~ o~ =h
Next, change the definitions of the spaces V", V", A% X! 1,j and A_; ; in the obvious fashion.
With these changes in the definitions, all the results derived for the two—dimensional case remain
unchanged.

10 Numerical experiments

We performed wave propagation simulation in a sample of water saturated partially frozen Berea
sandstone, with an interior plane interface I' defined by a change in ice content in the pores. The
material properties of the system, taken from [9, 12] are given in Table 1. Since we would like to
run an experiment in which the slow waves can actually be observed in the low-frequency range,
the water viscosity value was taken be of 10~8 centipoise. In this case Q) and Q®) correspond
to the sandstone and ice, respectively. The computational domain €2 is a square of side length
L = 3 Km with a uniform partition of {2 into squares of side length h = L/261. The absolute
porosity is ¢(®) = .18, with the ice content in the pores changing from § 3 =20 percent in the
lower layer to S ®)' =82 percent in the upper layer.

The source function is a point source representing a force applied to the rock frame in the ver-
tical z-direction, located at (zs = 1.5km, z; = 1.88km). It has the form F = (F(l),F(Q), F(3))t =
(F(,0,0),

0(ay 2"
F) = (0, —gee) )> 9(w),

where J(,, ,,) denotes the Dirac distribution and g(w) is the Fourier transform of the waveform
of central (dominant) frequency fy = 12 Hz given by

g(t) = —26(t — to)e ¢,

with € =8 f2, to = 1.25/ fo.

For the calculation of the elastic coefficients we need values for the bulk and shear moduli of
the two solid (dry) frames, denoted by Kfrfl),lﬂ(rfm, uﬁl) and ug,i?’), respectively (see Appendix
A). Following [25, 12] and [39], it is assumed that Ki”= 14.4 GPa and that the modulus
usfll), ,u$,§3) and Kf,fzﬂ can be computed using a percolation-type model with critical exponent
3.8 [13] using the relations

. . . 3)
(s5) _ [, (si)imaz _ ()01 [_ P 138 L (s)0 s _
) = [ w15 —ml T i=13

3
K6 — [K(3mes _ g(69)0] [1 ¢(¢)(1)]3.8 + K0,

where uﬁf;l)’m‘”, u$23)’m” and Kr(,fs)’max are computed using the Kuster and Toksoz’s model [24],

taking the known values of K1) (51 K(3) ,(s3) for the background medium with inclusions



28 J. E. Santos and D. Sheen

of air, with properties K( (% (see Table 1). The moduli u$;§1)’°, uﬁff’)’o and K50 are

appropriate reference values, which we take

plE0 = 13.3 GPa, K30 =4

m

(33))0 — 0

m

The viscoelastic parameters describing the dissipative behavior of the saturated sandstone are
given as follows (see Appendix A): T}y = (27 10)~'ms, T5 » = (27 10°) “'ms, and the mean
quality factors are taken to be @M = 300 for M = Kg),Kg’),u(l),p(?’),Kav. The value of the

Kozeny-Carman constant was taken to be 5 [23]. Also, the coefficient g;3 in the definition (A.3)
for by1(w) was taken to be zero.

Solid grain | bulk modulus, K®V | 38.7 GPa
shear modulus, x| 39.6 GPa
density, p() 2650 kg/m®
permeability (10 1.07 1071 m?

Ice bulk modulus, K©3) | 8.58 GPa
shear modulus, p3 | 3.32 GPa
density, p®) 920 kg/m3
permeability (30 5107* m?

Fluid bulk modulus, K) | 2.25 GPa
density, p( 1000 kg/m?®
viscosity, 7 1076 cP

Air bulk modulus, K@ | 1.510~* GPa
shear modulus, (@ |0 GPa

Table 1: Material properties of the frozen sandstone model

Table 2 displays values of the phase velocity and attenuation factors at 12 Hz for the five
different types of waves for the two-layer model used in this experiment.

Ice content 0.82 ‘ Ice content 0.20
Wave phase velocity (Km/s) attenuation (dB) phase velocity (Km/s) attenuation (dB)
Fast P1 wave 4.316 1.87210 3 3.723 4.28210 2
Slow P2 wave 1.463 1.825 7.281107! 1.151 10!
Slow P3 wave 9.5771072 4.053 10! 1.19210°1 6.562
Fast S1 wave  2.946 1.281 2.384 2202101
Slow S2 wave 7.104107! 5.582 1072 1.0131071 4.605101

Table 2: Wave speeds and attenuation factors for all waves at frequency 12 Hz.

The following figures present snapshots of the wave fields for this experiment, generated after
solving (7.3) for 110 equally spaced temporal frequencies in the interval (0,12 Hz) and using an
approximate inverse Fourier transform as explained in [16].

Figures 1, 2 and 3 show respectively snapshots of the vertical component of the particle
velocity of the three phases at £ = 410 ms where we can observe that after arriving at the
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interface I, the direct P1 wave labeled P1D has generated the transmitted fast P1-wave labeled
P1T-P1D and the slow P2 transmitted and reflected waves labeled P2R-P1D and P2T-P1D,
respectively. Also, after arriving at I, the direct fast shear wave labeled S1D has generated the
transmitted and reflected fast shear waves labeled S1T-S1D and S1R-S1D, respectively. In the
snapshots for the ice and fluid phases in Figures 2 and 3 we also can observe the direct slow P2
wave front labeled P2D. The relative amplitudes among the snapshots in Figures 1, 2 and 3 are
1, 0.56873, and 0.023708, respectively. We observe that the slow P2 wave is observed better in
the ice and fluid phases than in the solid matrix phase.

Appendix

A The elastic coefficients and modifications to viscoelasticity

A.1 The elastic coefficients

Let Kfil),Kr(,fs), ,uszl), and ,uﬁ,is) denote the bulk and shear moduli of the two solid (dry) frames,
respectively. Also, let K1), u(“”l),K(S?’), u(53) denote the bulk and shear moduli of the grains in
the two solid phases, respectively, and K (f) the bulk modulus of the fluid phase. Then, following
[12, 39], the elastic coefficients can be given by the formulae:

(s7)

M(j) =[(1— g(j))(/)(l)]?MaU _|_u$rsbj)’ g(j) __Hm j=1,3,

p = (1= gD) (1 — g™ gy,

(1 - g)g

#0 G)’

Hav =

Ko =|(1-c

N(Sl)

1)

K(sl)

¢ (L=g®)p®

K((;j) =KD 4 (aV)2Ky,, o) =50) - 21

2wn 'u(s3) ?
-1 .
¢ (31, 9" o _ K _
trep T x| 0 ¢ T ke L
K9
K(s3)’

A0 = K9 g,m in3D, A =KY _uDin j=1,3

B —

S(l)¢2Kav + C'12 B(z) - S<3)¢2Kav + 023
¢ ’ B

¢ bl

B® = (Ci3 + Sy 4+ SMCy3 + 5(1)5(3)¢2Kav)’

DB = B _

where

1
3”

in3D, D® =BG _ %uﬂ?*) in 2D,

C1z = $Ka(V) = 8V ¢), Oy = $Kan(a® — 5@9),
Ci3 = Kap(aM — M) (o) — 5G)g).

The moduli K& and K&

coefficients o(!) and af
5, 7].

3)

are the analogues of the Gassmann’s moduli [21], while the

correspond to the effective stress coefficients in the classic Biot theory
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A.2 Modification of the elastic coefficients to introduce viscoelasticity

In order to introduce viscoelasticity we use the correspondence principle stated by M. Biot [3, 5],
i.e., we replace the real poroelastic coefficients in the constitutive relations by complex frequency
dependent poroviscoelastic moduli satisfying the same relations as in the elastic case. In this
work the linear viscoelastic model presented in [28] is used to make the moduli in (2.3a)—(2.3c)
complex and frequency dependent. The set of poroviscoelastic moduli is computed using the
following formula:

M"'e
Ry (w) —iTy(w)’

Mw) =

where the symbol ‘M’ represents any of the moduli in (2.3a)—(2.3c) and the coefficients M,
is the relaxed elastic modulus associated with M [6]. The frequency dependent functions Ry,
and Ty, associated with a continuous spectrum of relaxation times, characterize the viscoelastic
behavior and are given by [28]

1 1 + W?T? 2 w(Tyy — T
— 12M, Ty(w) = —— tan ! ( 1’2/1 2’M).
TQMm "Trw 2Ty TQMm 1+ w* T, mTom

RM(w) =1-

The model parameters Q. Ti,m and Th pr are taken such that the quality factors Qu(w) =
Ty /Rar are approximately equal to the constant @M in the range of frequencies where the
equations are solved, which makes this model convenient for geophysical applications. Values of
Q M range from Q m = 20 for highly dissipative materials to about Q » = 1000 for almost elastic
ones.

A.3 Mass and dissipative coefficients

Let pm,m = 1,2,3, denote the mass density of each solid and fluid constituent in Q. In [39]
the coefficients in the mass matrix P were taken to be real and frequency independent with
Pjk = mjj and the mji-entries defined by the relations

my = pP¢ (1 +(SM)2ag + (S®)2a1, —28®) — (S<1>)2) (A.la)
alPpWg® + (a3 —1)p ¢,
mig = p(2) (5(3)(1 —a12) + s )a32) , (A.1b)
m13 = p(2)¢ (1 — (5(1))26132 — (5(3))2a12 — 5(1)5(3)) (A.lC)
+ADg0 (1 - a) + fOgO (1 — ay),
@
moy = e (a12 + a3z — 1), (A.1d)
mo3 = p(2) (S(l)(l — a32) + 5(3)61,12) , (A.le)
mas = pP¢ (1 + (S 2a35 + (8®))2q19 — 250 — (s<3))2) (A.1f)

+az1p® @) + (a1 —1)pD gD



Waves in composite saturated poroviscoelastic solids 31

Here,
(1) (3)
a1 = %Tu +1, az = W@f;mz +1,
(3) o 1)
a ¢ pT13+1, ¢ pT31+1a

137 5,0 91 =46) 6)

with the r;;’s being the geometrical aspects of the boundaries separating the phases j and k
equal to + for spheres) and
2

¢p(2) _|_ ¢(3) p(s) , ¢p(2) + ¢(1)p(1) '

P e 0 P T T et

Next, in [39] the elements in the matrix B were taken to be b1; = f11, b2 = fi2, and
bao = fo9, with f11, fi2, and foy computed as follows. For the case of frozen porous media, let
¢? ¢?
dig=—, da=—,
K1 K3
where and the permeability coefficients k1 and k3 are defined in terms of the absolute perme-
abilities £, and k3,9 of the two solid frames by the relations (see also [25, 26])

ey (1- (/)(1))2 ( ¢ )3
K1 = K1,0 (1 _ ¢(1))37 K3 = K3,0 (¢(3))2 ¢(1) .
For the case of shaley sandstones, following [8], set
21—y 21—y
— (s1) L A €Y — (s3) a1 6))
dip =45 (ROV) "= Fg0, dyy =45 (ROY) T =g,

where R(*1) and R(*3) denote the average radii of the sand and clay particles, respectively. The
permeability coefficients are defined in this case by

(RD)” (ROD)”

K1 = 27945(1) , R3 = 279(}5(3) .

Then the frequency independent friction coefficients fi1, fi2 and fa9 are determined from the
equations

2 2 d128G) — dg3 S dig +d
g11 = di2 (5(3)) + da3 (5(1)) , g2 = 2 ) 2 ) 922:%’ (A.2)

fui=ngu+913, fiz=n0912, fo2=1n g,

where 77 denotes the fluid viscosity and in the case of frozen porous media gi3 is a friction
coefficient between the ice and the solid frames, while gi3 is taken to be zero in the case of
shaley sandstones.

In the high frequency range the set of inertial and friction coefficients m;;, 1 < j,k < 3, and
f11 fi2, and fo9 need to be modified to include the departure of the relative flow from laminar
type above a certain critical frequency depending on the pore radius as explained in [4]. For
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that purpose, the dissipative terms fi1, fi2 and fao in (A.2) are modified by multiplying the
fluid viscosity n by the frequency correction factor F(6), where the complex valued frequency
dependent function F(0) = Fr(0) + iFr(0) is the frequency correction function defined by Biot

[4]:
1 _ ber'(0) + ibei' (0)
41— 27(0) (6) = ber(0) + ibei(f) ’

with ber(f) and bei(d) being the Kelvin functions of the first kind and zero order. The frequency
dependent argument 6 = f(w) is given in terms of the pore size parameter a, by the equations:

0 =a,\/wp?/n, a,=2vKkAo/P,
1 1 1

where — = — 4+ — and Ay is the Kozeny-Carman constant [2, 23].
K K1 K3
Consequently the frequency dependent mass and viscous coupling coefficients are defined in

the following fashion

Fr (6 Fr (0

p11(w) = mn + %, p12(w) = miz — %, (A.3a)
Fr(0 Fr (6

p13(w) = m3 — %, p22(w) = maz + %, (A.3D)
Fr(0 Fr(0

p23(w) = mao3 + %, p33(w) = p33 + nl(wi, (A.3c)

bii(w) = nFr(0)gi1 + 913, bi2(w) = nFr(60)g12, boa(w) =nFr(0)g2e. (A.3d)

The coefficients g13 is left as a free parameter chosen so that the condition (2.4) is satisfied.

B A first order absorbing boundary condition

The absorbing boundary condition (2.8) will be first derived in the space-time domain in the
3D elastic case, that is, ignoring dissipation due to viscoelastic behavior of the solid phases and
ignoring viscous damping. Thus the entries p;; in M are taken to be equal to the coefficients
m, defined in (A.1) and the coefficients in the constitutive relations (2.3a)—(2.3c) are taken to
be real and equal to their relaxed values M, (see Appendix A.2), where M stands for any of
the coefficients in those relations. Also, later the changes for the 2D case will be indicated.

Fix the wave velocity ¢ > 0. Denote by ul®) = 1,2, 3, the displacements in the phase ¢ in
Q whose wave fronts arrive normally to any part of the boundary T" with speed ¢. According to
(2.5) the conservation of momentum on I' can be written as

c(mnﬂu,c) i@ 4 m13u<3v0>) S P L (B.1a)
Oejp (ul©)

c(mlzﬂ(ljc) + m22u(2;c) + m23'd(37c)) — pr = Ba—vc[_/yj’ (Blb)

c(mlgau’c) T i) 4 m33u<3’c>) O LA P
O€j (u3<)

In the above equations 4(“¢) denotes the time derivative of u(“% , =1,2,3.
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Let x' and x? be two unit tangent vectors of T' so that {v,x!,x?} forms an orthonormal
system on I'. Taking inner product with x!, x? in (B.1), we obtain
3(1e) Lol 1(3:6) L 4
miatl
a0 Lyt = M2 A S LA S Y (B.2)

ma2

Let us introduce the variables

— lra(lzc) ‘v, 'US — lu(lac) . X17 'Ug — lu(lac) . X27 IUZ — 1:&(2:0) -V,
C C C

=0

v

1
—71(3’6) 2

C
1 1
v = —aB39 .y pe = g3yl vl
C

67 ¢

[S2]eY

Taking inner product with {v, x!, x?} in (B.1)-(B.1) and using (B.2), one sees that the following
seven equations must hold on I':

c? (mllfuf + miov§ + mlgvg) =—oMy. v, (B.3a)
¢ (qlvg + qzvg) = —oWp.xt, (qlvg + qgfu?) = —oWv.y?, (B.3b)
? (mlgvf + moouf + maozvs | = py, (B.3c)
? <m131)f + mogvi + m3311§> = —B®y. v, (B.3d)
c (qzvz? + qgvé) =Byt ¢ (qwéf + qs'v?) =Py, (B.3e)
where
_ (m12)? _ m12mao3 _ (mag3)?
q1 = mi1 — y g2 =MmM13 — y 43 =Mmg33 — .
moo Mmoo moo

Next, we write the force
t
Fo (U(n,, B O SIS S C BC DI NS X2>

on I' associated with the arrival of the wave front traveling with speed c in terms of the new
variable v¢ = (v§,--- ,v5)!. For that purpose, recall that on the surface T', the strain tensor
¢k (u>9)) can be written in the form [29, 38]

(¢5€) (¢,¢)
1/ 0u; ou 1 1 1
. (L,C) = — J k = —— —1 ('L,C) -y (L,C) =
ik (') 2( By + o, ) 2(chu] +V]cuk ), t=1,2,3. (B.4)

By using (B.4) in the constitutive relations (2.3a)—(2.3c) and defining the matrices

[ mi1 0 0 mi2 miz 0 0 7
0 q1 0 0 0 q2 0
0 0 ¢ O 0 0 ¢

Me=|mi2 0 0 mog mo3 0 0 [,

mi3 0 0 mao3 133 0 0

0 q2 0 0 0 q3 0

L 0 0 ¢ O 0 0 g3
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[ A 1240 0 0 BY DY+ 8 o 0
0 w0 0 0 |
0 o 4 0 0 0 Lul

SC = B7(‘e13) 0 0 K(w,re BT('E) 0 0 ’
D +uY o 0 BP V42,9 o0 0

o L 0 0 o0 @

Y A S S S

the equations (B.3) can be restated as follows
EMNVE=—F=E~v¢ onT. (B.5)

On the other hand, applying (B.4) in (2.2), we conclude that the strain energy density WW on T’
can be written in the form

so that (B.5) can be stated in the equivalent form

EMNE = —F = av;‘(: ). (B.6)

Set
S, = MC_%ECMC_%, and v¢ = MC%VC.
Then, in terms of the variable v¢, (B.5) can be put as an eigenvalue matrix form:
SV¢ = V¢,

and the strain energy density W on I' can be written as follows:

W(EF®) = %(ecy S, v°. (B.7)

The seven eigenvalues (c;)?,j =1,---,7, in the equation
det(S, — *I) = 0,

are the wave speeds of the system. Four of them correspond to the shear modes of propagation,
with only two of them being different, and the other three to the compressional modes. Let

N;,j =1,---,7, be the set of orthonormal eigenvectors of S, associated with the eigenvalues
(cj)2, j=1,---,7, N the matrix containing as columns the eigenvectors N;, and C the diagonal
matrix containing the eigenvalues (c;)?. Then we have the following diagonalization form

Let

t
2 (uu) i a0 2 6@ Dy a6 o) .X2)
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be a general velocity field on I' due to the simultaneous arrival of waves with speeds c;,j =
, 7. Setting

z = Mc%z,
notice that the orthogonality of the N;’s allows us to represent z in the form
J J
Let us denote
e , 1
z = Mc%zc] = (Nj . Mc%z) N;. (B.8)
G

Recall that N; is an eigenvector of S., associated with eigenvalue c?. Thus z% is also an

eigenvector of S, associated with the same eigenvalue c?:

Sz = c?i“f, (B.9)
and therefore, according to (B.7), we get
s 1 .. e
W(z9) = §(ch)t S, z9.

Also, using (B.6) and (B.7), we see that the force F; associated with z% satisfies the equation
1 OW(z%)
N O

Assuming that the interaction among the different waves arriving at a given interface I' is
small compared with the total energy involved (see Santos et al. [37] for the validity of this
assumption in the case of a single solid phase), the total strain energy density on I' is equal

to the sum of the partial energies and the total force F on I' is equal to the sum of the forces
associated with each type of wave, so that

2= WE),
J

M = M 2835 = £z = —F;.

and

F=) F=-Y M M 28,36 (B.10)

J J

Next, decompose MC’%F in term of the eigenvectors NN; as follows:

MTF =3 (N MTEF) N, (B.11)
J

In the meanwhile, using (B.8)-(B.9) in (B.10), we have

M 3F =380 = =38 = Yo (N M) N (Ba2)
J J
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Thus, from (B.11) and (B.12) we conclude that
¢ (N,- : Mc%z) —_ (Nj : M;%f) =1, T, (B.13)
In matrix form, (B.13) can be expressed as follows:
C:N'Miz=—N'M. 3 F,

and multiplying (B.13) to the left by MC%N , we see that under the assumption of small inter-
action among the different types arriving simultaneously to I', the conservation of momentum
on I' can be stated in the form

1
—F = M8 M2z = (ECMC‘I) * Mez = D (B.14)

Note that D is positive definite. By identifying the Fourier transforms of F and z by Gr(u(z,w))
and Sr(u(z,w)), respectively, one sees that the boundary condition (2.8) is the Fourier trans-
formation in time of (B.14).

Remark B.1. In the 2D case the form of the absorbing boundary condition in (B.14) remains
identical if the matrices M. and &, are modified as follows:

mi; 0 mi2 maz 0
0 ¢ O 0 ¢
M= | mi2 0 mo mo3 0 |,
mi3 0 mo3 mg3
0 ¢ O 0 g3

e

A2l 0 BY DR+l 0 ]
0 pd 0 0 Lt
SC = B?Q) 0 Kav,re Bg) 0
DR +ui” 0 BE AT 42uBr 0
0 e o 0 psd
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z-conponent velocity solid phase 1 at t = 410 ns
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1.5+

Figure 1. Snapshot of the vertical particle velocity of the solid matrix phase at ¢ = 410 ms
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z-conponent velocity solid phase 3 at t = 410 ns
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Figure 2. Snapshot of the vertical particle velocity of the ice phase at t = 410 ms
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z-conponent velocity fluid phase at t = 410 ns
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Figure 3. Snapshot of the vertical particle velocity of the fluid phase at ¢ = 410 ms



