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Abstract.
In this paper, we prove an individual homogenization result for a class of almost periodic nonlin-

ear parabolic operators. The spatial and temporal heterogeneities are almost periodic functions in
the sense of Besicovitch. The latter allows discontinuities and suitable for many applications. First,
we derive stability and comparison estimates for sequences of G-convergent nonlinear parabolic op-
erators. Further, using these estimates, the individual homogenization result is shown.

AMS Subject Classification (2000): 35B27, 35K55

1. Introduction. In the present paper, we consider the homogenization problem
for nonlinear parabolic operators of the form

Lε(u) = Dtu − div

(
a

(
x

εβ
,

t

εα
, u, Dxu

))
+ a0

(
x

εβ
,

t

εα
, u, Dxu

)
, (1.1)

where the flux functions a(y, τ, ·, ·) and a0(y, τ, ·, ·) are almost periodic in (y, τ) ∈ Rn+1

in the sense of Besicovitch.
We are interested in the asymptotic behavior of Lε as ε → 0. G-convergence

theory for parabolic operators guarantees that the limiting operator L̂ belongs to the
same class of parabolic operators. G-convergence of nonlinear parabolic operators has
been studied in [20]. To find the form of L̂ some assumptions on the nature of spatial
and temporal heterogeneities of a and a0 need to be imposed. In the periodic setting,
the homogenization of nonlinear parabolic equations is carried out in [20]. In [4], time
homogenization of random nonlinear abstract parabolic equations has been studied.
The homogenization of linear parabolic operators with almost periodic and random
coefficients has been studied in [24, 23]. The homogenization of general nonlinear
random parabolic operators is investigated in [11].

Also we would like to mention several results on homogenization of nonlinear
elliptic operators [2, 5, 12, 13, 17, 19]. Note that in [17, 19] general elliptic operators
in divergence form are considered, including random homogenization, while articles
[2, 5, 12, 13] are devoted to the case of monotone second order elliptic operators. As
for general references in the field of homogenization, we refer to [1, 3, 6, 7, 15, 20].

We would like to point out that the general result of [11] is of statistical na-
ture, i.e., homogenization takes place for almost all realizations of a random parabolic
operator. As it will be shown, any almost periodic operator of the form (1.1) can
be considered as a particular realization of certain random homogeneous operator.
But this realization is not generic and, therefore, the result of [11] does not apply
straightforwardly. Nevertheless, using almost periodicity one can pass from a generic
realization to every particular realization. For this purpose, we first derive stability
and comparison results for G-convergent sequence of operators. These results allow to
estimate the difference between G-limits of two G-convergent sequence of parabolic

∗Department of Mathematics, Texas A & M University, College Station, TX 77843-3368
(efendiev@math.tamu.edu)

†Department of Mathematics, Texas A & M University, College Station, TX 77843-3368
(ljjiang@math.tamu.edu)

‡ Department of Mathematics, College of William & Mary, Williamsburg, VA 23187-8795,
(pankov@math.wm.edu)

1



operators. These estimates are of independent interest. Introducing smoothing of
almost periodic functions (defined in the sense of Besicovitch), one can derive indi-
vidual homogenization results. However, to extend these results to almost periodic
functions defined in the sense of Besicovitch, we need a careful comparison estimates
for sequences of G-convergent parabolic operators. The latter allows us to obtain an
individual homogenization result for nonlinear parabolic operators.

Our motivation for considering homogenization of nonlinear parabolic equations
comes from applications arisen in flow in porous media for both saturated and unsat-
urated media, though one encounter nonlinear parabolic equations in many different
applications. We refer to [8, 9, 10] for numerical realization of parabolic homogeniza-
tion in applied problems. In particular, the fluxes that arise in these applications can
have discontinuities in space and time. For this purpose, we consider almost periodic
functions in the sense of Besicovitch.

The paper is organized as follows. In the next section, we present background
material on G-convergence, almost periodic functions and statistical homogenization.
In Section 3, we present stability and comparison results, which are essential in deriv-
ing individual homogenization results. Finally, in Section 4, we discuss the individual
homogenization results.

2. Preliminaries.

2.1. G-convergence. Let Q0 ⊂ R
n be a bounded open set with Lipschitz

boundary, T > 0, and Q = Q0 × (0, T ). On Q, we consider parabolic operators
of the form

L(u) = Dtu − div
(
a(x, t, u, Dxu)

)
+ a0(x, t, u, Dxu). (2.1)

We suppose that the functions a : Q × R
n+1 → R

n and a0 : Q × R
n+1 → R satisfy

the Carathéodory condition and the following assumptions:
(i) for every ζ = (η, ξ) ∈ R

n+1

∣∣a(x, t, η, ξ)
∣∣q +

∣∣a0(x, t, η, ξ)
∣∣q ≤ c0|ζ|

p + c (2.2)

a. e. on Q, where p > 1, c0 > 0 and c ≥ 0;
(ii) for every ζ ∈ (η, ξ), ζ ′ = (η, ξ′) ∈ R

n+1

[
a(x, t, η, ξ) − a(x, t, η, ξ′)

]
· (ξ − ξ′) ≥ κ

[
h + |ζ|p + |ζ ′|p

]1−β/p
|ξ − ξ′|β (2.3)

a. e. on Q, where κ > 0, β ≥ max(p, 2), and h ≥ 0;
(iii) for every ζ = (η, ξ), ζ ′ = (η′, ξ′) ∈ R

n+1

∣∣a(x, t, η, ξ)−a(x, t, η′, ξ′)
∣∣q +

∣∣a0(x, t, η, ξ) − a0(x, t, η′, ξ′)
∣∣q ≤

≤θ
[(

h + |ζ|p + |ζ ′|p
)
ν
(
|η − η′|

)
+

+
(
h + |ζ|p + |ζ ′|p

)1−s/p
|ξ − ξ′|s

]
, (2.4)

a. e. on Q, where θ > 0, 0 < s ≤ min(p, q) and ν(r) is a continuity modulus,
i. e. a continuous function ν : [0, +∞) → [0, +∞) such that ν(0) = 0,
ν(r) > 0 if r > 0 and ν(r) = 1 if r ≥ 1.

Here p > 1 is fixed and q stands for the conjugate exponent, q−1 + p−1 = 1. In
addition, we always assume that p > 2n/(n + 2).
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Given c0, c, κ, h, θ, ν, s and β, we denote by Π = Π(c0, c, κ, h, θ, ν, s, β) the set of
all operators of the form (2.1) satisfying (i)–(iii).

Introduce

V = Lp(0, T, W 1,p
0 (Q0)), V = Lp(0, T, W 1,p(Q0)),

W = {u ∈ V, Dtu ∈ Lq(0, T, W−1,q(Q0))},

W = {u ∈ V , Dtu ∈ Lq(0, T, W−1,q(Q0))}, W0 = {u ∈ W, u(0) = 0}.

(2.5)

For further analysis X
′

will denote the dual of the space X and ‖ · ‖p,Q denotes the
norm in Lp(Q). Any operator L ∈ Π acts from W0 into V ′.

Now we introduce the notion of G-convergence. For an operator L of the form
(2.1) we set

L1(u, v) = Dtu − div
(
a(x, t, v, Dxu)

)
.

For every fixed v ∈ V , the operator u 7→ L1(u, v) acts from W0 into V ′ and satisfies
the coerciveness and strict monotonicity conditions. Therefore, for every f ∈ V ′,
v ∈ V , the equation

L1(u, v) = f

has a unique solution u ∈ W0 (see, e. g. [16]).
Now let Lk ∈ Π be a sequence of parabolic operators, with fluxes ak and ak

0 , and
L ∈ Π of the form (2.1). Given u ∈ W0 and v ∈ V , we set

Γk(u, v) = ak(x, t, v, Dxuk),
Γk

0(u, v) = ak
0(x, t, v, Dxuk),

Γ(u, v) = a(x, t, v, Dxu),

and

Γ0(u, v) = a0(x, t, v, Dxu),

where uk ∈ W0 is a unique solution of the equation

L1
k(uk, v) = L1(u, v).

The sequence Lk is called G-convergent to L (in symbols, Lk
G

=⇒ L) if for every v ∈ V
and u ∈ W0 we have that

lim uk = u

weakly in W0 and

lim Γk(u, v) = Γ(u, v),
lim Γk

0(u, v) = Γ0(u, v)

weakly in Lq(Q)n and Lq(Q), respectively, as k → ∞. In the following analysis,
k → ∞ will be omitted. This notion was introduced in [20], where the term “strong
G-convergence” was suggested. In this paper we abbreviate it to “G-convergence”
because no other type of such convergence is used here.

The following G-compactness theorem is one of the main results of G-convergence
theory (see [20], Theorem 4.1.1).
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Theorem 2.1. Let Lk be a sequence of parabolic operators of class Π. Then
there exist an operator L of class Π, with possibly another values of parameters
c0, c, κ, h, θ, s, and ν, and a subsequence Lk′ that G-converges to L.

The following theorem is about G-convergence of arbitrary solutions ([20]).

Theorem 2.2. Assume Lk G-converges to L, uk ∈ W , fk, f ∈ Lq(0, T, W−1,q(Q0)),
Lkuk = fk, uk → u weakly in W , and fk → f strongly in V

′

. Then Lu = f , and

ak(x, t, uk, Dxuk) → a(x, t, u, Dxu),

a0,k(x, t, uk, Dxuk) → a0(x, t, u, Dxu)

weakly in Lq(Q)n and Lq(Q), respectively.

2.2. Statistical homogenization results. Let (Ω, Σ, µ) be a probability space
and Lp(Ω) denote the space of all p-integrable functions. Consider (n+1)-dimensional
dynamical system on Ω, T (z) : Ω → Ω, z = (x, t) ∈ R

n+1 (t ∈ R, x ∈ R
n) that satisfies

the following conditions:
1) T (0) = I, and T (x + y) = T (x)T (y);
2) T (z) : Ω → Ω preserve the measure µ on Ω;
3) For any measurable function f(ω) on Ω, the function f(T (z)ω) defined on

Rn+1 × Ω is also measurable.
U(z)f(ω) = f(T (z)ω) defines a (n+1)-parameter group of isometries in the space

of Lp(Ω). U(z) is strongly continuous. Further we assume that the dynamical system
T is ergodic, i.e., any measurable T -invariant function on Ω is constant. Denote by
〈·〉 the mean value over Ω,

〈f〉 =

∫

Ω

f(ω)dµ(ω).

For further analysis we will need Birkhoff Ergodic Theorem. Denote

M{f} = lim
s→∞

1

sn+1|K|

∫

Ks

f(z)dz,

where K ⊂ R
n+1, |K| 6= 0, and Ks = {z ∈ R

n+1 : s−1z ∈ K}. Let f( z
ε ) be bounded in

Lp
loc(R

n+1), 1 ≤ p < ∞. Then f has mean value M{f} if and only if f(z/ε) → M{f}
weakly in Lp

loc(R
n+1) as ε → 0 ([20], page 134). Birkhoff Ergodic Theorem states that

if f ∈ Lp(Ω), 1 ≤ p < ∞ then

〈f〉 = M{f(T (z)ω)} a.e. on Ω.

To formulate the auxiliary problem for the homogenization we need the following
preliminaries. Following to [23] we define spaces similar to V on Ω in the following
way. Denote by ∂full = (∂1, · · · , ∂n+1) the collection of generators of the group U(z).
There is a dense subspace S ⊂ Lp(Ω) that contains in the domains of all operators
∂α

full = ∂α1
1 · · · ∂

αn+1

n+1 , α ∈ Zn+1
+ .

Further denote by V the completion of S with respect to the semi-norm

‖f‖V =

(
n∑

i=1

‖∂if‖
p
Lp(Ω)

)1/p

.
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Note that the completion with respect to a seminorm “cuts off” the kernel of the
semi-norm. The operator ∂ = (∂1, . . . , ∂n) : V → Lp(Ω)n is an isometric embedding.
Moreover, the space V is reflexive, with the dual denoted by V

′

. By duality we define
the operator div : Lq(Ω)n → V

′

by

〈divu, w〉 = −〈u, ∂w〉, ∀w ∈ V . (2.6)

We note that the elements of V in general do not have independent meaning. The
space V contains fields that are not spatially homogeneous. Note that the operators
∂i may be viewed as derivatives along trajectories of the dynamical system T (z)

(∂if)(T (z)ω) =
∂

∂zi
f(T (z)ω) (2.7)

for a.e. ω ∈ Ω and f ∈ Dom(∂i, L
p(Ω)), [23, 20] (page 138 in [20]).

We set

T1(t) = T (0, . . . , 0, t), T2(x) = T (x1, . . . , xn, 0). (2.8)

Let

Mt{fω} = lim
T→∞

1

2T

∫ T

−T

f(T1(τ)ω)dτ, (2.9)

Mx{fω} = lim
|K|→∞

1

|K|

∫

K

f(T2(y)ω)dy. (2.10)

These partial mean values are well-defined for f ∈ Lp(Ω), 1 ≤ p < ∞, and for a
generic ω ∈ Ω. We note that the average of a

a(ω, η, ξ) = Mt{a(ω, η, ξ)}. (2.11)

is defined on Lp(Ω) for each η ∈ R and ξ ∈ R
n. Consider the subset of S consisting

of functions

f(ω) = Mt{f}.

Denote by Vs the completion of this set with respect to the norm

‖f‖ = (
n∑

i=1

‖∂if‖
p
Lp(Ω))

1/p.

Now we would like to consider the differentiation with respect to the time along
the trajectories as an unbounded operator in appropriate functional spaces. Define an
unbounded operator σ from V into V ′ as follows. V1, defined as the image of operator
∂, is a closed subspace of Lp(Ω)n and ∂ maps V onto V1 isomorphically. The dual
space V ′

1 can be identified with the factor space Lq(Ω)n/V⊥
1 , where V⊥

1 = ker(div) is
the orthogonal complement to V1 in Lq(Ω)n. Then the operator div can be considered
as an operator div : V ′

1 → V ′. Let S1 = ∂(S) ⊂ V1. It is easy to see that ∂i(S1) ⊂ S1.
Now we say that v ∈ V1 belongs to the domain D(σ1) if there exists f ∈ V ′

1 such that

〈v, ∂n+1ϕ〉 = −〈f, ϕ〉, ∀ϕ ∈ S1
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and set σ1v = f . The (unbounded) operator σ1 is a well-defined closed linear operator
from V1 into V ′

1 and its domain is dense in V1. It can be verified [11] that σ′
1 = −σ1,

where σ′
1 : V1 → V ′

1 is the adjoint operator to σ1. Now we set

σ = div ◦ σ1 ◦ ∂ .

Then σ is a closed linear operator from V into V ′, with dense domain W = D(σ), and
σ′ = −σ. The space W is endowed with the usual graph norm. As consequence, σ is
a maximal monotone operator (see [16], Lemma 1.2 of Ch. 3). Note that in the case
p = 2 this operator can be defined by means of spectral decomposition theorem [23].

Consider the auxiliary problem

µσNµ
η,ξ − div a(ω, η, ξ + ∂Nµ

η,ξ) = 0. (2.12)

Define the operator A from W to W
′

as

〈Au, v〉 = 〈a(ω, η, ξ + ∂u), ∂v〉.

It can be easily verified that A is strongly monotone, continuous, and coercive operator
from W to W

′

. Since σ is maximal monotone it follows from [16] that the solution
of (2.12) in W exists. Uniqueness follows from the fact that (σu, u) = 0 and A is
strongly monotone. Thus we have the following lemma [8]

Lemma 2.3. Equation (2.12) has a unique solution, Nµ
η,ξ ∈ W, and

‖Nµ
η,ξ‖V ≤ C. (2.13)

The homogenization of nonlinear parabolic equations depends on the ratio be-
tween α and β and is presented in [8]. The following cases are distinguished: 1)
Self-similar case (α = 2β); 2) Non self-similar case (α < 2β); 3) Non self-similar case
(α > 2β); 4) Spatial case (α = 0); 5) Temporal case (β = 0).

Theorem 2.4.

Lε G-converges to L̂, where L̂ is given by

L̂u = Dtu − div(â(ω, x, t, u, Dxu)) + â0(ω, x, t, u, Dxu). (2.14)

â and â0 are defined as follows.
• For self-similar case (α = 2β),

â(η, ξ) = 〈a(ω, η, ξ + ∂Nη,ξ)〉,

â0(η, ξ) = 〈a0(ω, η, ξ + ∂Nη,ξ)〉,

where Nη,ξ = Nµ=1 ∈ W is the unique solution of

σNµ=1 − div a(ω, η, ξ + ∂Nµ=1) = 0. (2.15)

• For non self-similar case (α < 2β),

â(η, ξ) = 〈a(ω, η, ξ + ∂Nη,ξ)〉,

â0(η, ξ) = 〈a0(ω, η, ξ + ∂Nη,ξ)〉,

where Nη,ξ = N0 ∈ V is the unique solution of

−div a(ω, η, ξ + ∂N0) = 0. (2.16)
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• For non self-similar case (α > 2β),

â(η, ξ) = 〈a(ω, η, ξ + ∂Nη,ξ)〉,

â0(η, ξ) = 〈a0(ω, η, ξ + ∂Nη,ξ)〉,

where Nη,ξ = N∞ ∈ Vs is the unique solution of

−div a(ω, η, ξ + ∂N∞) = 0. (2.17)

a is defined in (2.11).
• For spatial case (α = 0),

â(T1(t)ω, η, ξ) = Mx{a(T2(x)ω, η, ξ + ∂Nη,ξ(T2(x)ω))},

â0(T1(t)ω, η, ξ) = Mx{a0(T2(x)ω, η, ξ + ∂Nη,ξ(T2(x)ω))},

where Nη,ξ = Nx ∈ V

−div a(ω, η, ξ + ∂Nx) = 0. (2.18)

• For temporal case (β = 0), the homogenized fluxes are defined by

â(ω, η, ξ) = Mt{a(ω, η, ξ)},

â0(ω, η, ξ) = Mt{a0(ω, η, ξ)},
(2.19)

where Mt is defined in (2.9).

For temporal case one can also define Nη,ξ in the following way (see proof of
Theorem 4.8 in [8]). Define F = a(ω, η, ξ) − Mta(ω, η, ξ), and f = div F . Then it
can be shown that there exists N , such that

f = −σN + g, (2.20)

where ‖g‖V′ ≤ δ, for arbitrary small δ. The latter follows from the fact that the range
of σ is dense in the orthogonal complement of the kernel of σ, and f belongs to the
kernel of σ. The proof of this theorem extensively uses near solutions of (2.12) since
Nµ

η,ξ is no longer a homogeneous random field.

The theorem on the convergence of arbitrary solutions (Theorem 2.2) for G-
convergent sequence of operators allows us not to restrict ourselves to a particular
boundary or initial conditions. In particular, from Theorem 2.2 and Theorem 2.4 we
have

Theorem 2.5. Let uε ∈ W be a solution of Lεuε = f , f ∈ Lq(0, T, W−1,q(Q0)),
such that ‖uε‖W is bounded. Then uε converges to u as ε → 0 weakly in W (up to a

subsequence) where u is a solution of L̂u = f , and L̂ is defined in (2.14).

Remark 2.1. We note that the ergodicity assumption is not essential for the
proof of the theorem. One can carry out the proof for non-ergodic case essentially
in the same manner as that for the ergodic case. The homogenized operators for
non-ergodic case will be invariant functions with respect to T (z).
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2.3. Almost periodic functions. Let Cb(R
n+1) be the Banach space of all

bounded and continuous (complex valued) functions on R
n+1, endowed with the stan-

dard supremum norm. Denote by Trig(Rn+1) the vector space of all trigonometric
polynomials, i.e. all finite sums of the form

u(z) =
∑

ukexp(iξk · z), ξk ∈ R
n+1, uk ∈ C.

The closure of the space Trig(Rn+1) in Cb(R
n+1) is called the space of Bohr almost

periodic (a.p.) functions and is denoted by CAP (Rn+1).
Now we recall the concept of Bohr compactification of R

n+1 [18]. There exist a
compact abelian group R

n+1
B and a continuous group monomorphism

iB : R
n+1 −→ R

n+1
B

with the following property:
f ∈ Cb(R

n+1) is almost periodic if and only if there exists a unique
function f̃ ∈ C(Rn+1

B ) such that f(z) = f̃(iBz).
Such a couple (Rn+1

B , iB) is unique up to a natural equivalence and is called the Bohr
compactification. In the following we identity R

n+1 with its dense image iB(Rn+1)
in R

n+1
B . Frequently, we do not distinguish an almost periodic function f and its

extension f̃ to R
n+1
B . Therefore, CAP (Rn+1

B ) may be isometrically identified with
C(Rn+1

B ). We define a dynamical system T (z) on R
n+1
B by

T (z)ω = ω + z, ω ∈ R
n+1
B , z ∈ R

n+1.

Let us denote by µ the Haar measure on R
n+1
B normalized by µ(Rn+1

B ) = 1. It is
known that

M{f} =

∫

Rn+1

f̃(ω)dµ(ω), (2.21)

where f̃ is the continuous extension of f to R
n+1
B .

Next, we discuss Besicovitch almost periodicity, which is used in the paper. For
a function

f ∈ Lp
loc(R

n+1), 1 ≤ p < ∞,

we set

‖f‖p
Bp = lim sup

t→∞

1

|Kt|

∫

Kt

|f(z)|pdz, (2.22)

where

Kt = {z ∈ R
n+1 : |zi| ≤ t, i = 1, 2, . . . , n + 1}.

A function f ∈ Lp
loc(R

n+1) is said to be Besicovitch almost periodic with the exponent
p if there is a sequence fk ∈ Trig(Rn+1) such that

lim
k→∞

‖f − fk‖Bp = 0.

In this definition one can replace the space Trig(Rn+1) by CAP (Rn+1). The space
of all such functions is denoted by Bp(Rn+1). For any f ∈ Bp(Rn+1) the quantity
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‖f‖Bp is finite and defines a semi-norm on Bp(Rn+1). With respect to this semi-norm
the space Bp(Rn+1) possesses a kind of completeness (see [20]). However, Bp(Rn+1)
is not a Banach space, since the kernel of the semi-norm ‖ · ‖Bp is non-trivial. We say
that two functions f1, f2 ∈ Bp(Rn+1) are equivalent if

‖f1 − f2‖Bp = 0.

A vector space formed by equivalence classes of members of Bp(Rn+1) will be denoted
by B

p
(Rn+1). The semi-norm ‖ · ‖Bp induces a norm on B

p
(Rn+1) and the last space

is a Banach space with respect to that norm.

Next, we discuss the mean value of Besicovitch almost periodic functions. Assume
that f ∈ Lp

loc(R
n+1) and f has a finite norm (2.22). Since the family f(ε−1z) is

bounded in Lp
loc(R

n+1), the mean value M{f}, if exists, may be characterized as the
weak limit in Lp

loc(R
n+1):

M{f} = w- lim
ε→0

f(ε−1z).

Using this statement it is very easy to verify that M{f} depends continuously on f
with respect to ‖ · ‖Bp . More precisely, assume that f , fk ∈ Lp

loc(R
n+1), fk has a

mean value, and

‖f − fk‖Bp → 0.

Then f also has a mean value and

M{fk} → M{f}.

Since any trigonometrical polynomial has a mean value, we see that for each f ∈
Bp(Rn+1) there exists the mean value M{f}. Moreover,

‖f‖Bp = M{|f |p}1/p, f ∈ Bp(Rn+1). (2.23)

Now we invoke the Bohr compactification. Using (2.23) and (2.21) one can extend,
by continuity, the isomorphism f 7−→ f̃ between CAP (Rn+1) and C(Rn+1

B ) to the
map from Bp(Rn+1) into Lp(Rn+1

B ), the last space being regarded with respect to the
measure µ. In fact, the density of C(Rn+1

B ) in Lp(Rn+1
B ) implies that this map is onto.

Moreover,

‖f̃‖p,Rn+1
B

= ‖f‖Bp . (2.24)

Therefore, the map f 7−→ f̃ induces an isometric isomorphism between B
p
(Rn+1) and

Lp(Rn+1
B ).

In the analysis, we will employ the approximation of Besicovitch almost periodic
functions by Bohr almost periodic functions. Let {Uγ} be a base of symmetric neigh-
borhoods of zero in R

n+1
B , indexed by a directed set Γ in such a way that Uγ1 ⊂ Uγ2 if

γ1 ≥ γ2. By Urysohn’s Lemma, for any Uγ there exists an even non-negative function
ϕ̃γ ∈ C(Rn+1

B ) such that suppϕ̃γ ⊂ Uγ and

∫

R
n+1
B

ϕ̃γ(ω)dµ(ω) = 1.
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Let ϕγ ∈ CAP (Rn+1) be the restriction of ϕ̃γ to R
n+1 ⊂ R

n+1
B . For any function

f̃ ∈ L1(Rn+1
B ) we set

(S̃γ f̃)(ω) = ϕ̃γ ∗B f̃ =

∫

R
n+1
B

ϕ̃γ(ω − θ)f̃(θ)dµ(θ), (2.25)

where ∗B stands for the convolution on R
n+1
B . In the similar way, for f ∈ B1(Rn+1)

we set

(Sγf)(x) = My{ϕγ(x − y)f(y)}, (2.26)

where My stands for the mean value with respect to the variable y. It is obvious that

S̃γf = S̃γ f̃ . (2.27)

Moreover, for f̃ ∈ Lp(Rn+1
B ) (resp., f ∈ Bp(Rn+1)) we have S̃γ f̃ ∈ C(Rn+1

B ) (resp.,

Sγf ∈ CAP (Rn+1)). The operators Sγ and S̃γ are uniformly bounded:

‖Sγf‖Bp ≤ ‖f‖Bp , f ∈ Bp(Rn+1), (2.28)

‖S̃γ f̃‖p,Rn+1
B

≤ ‖f̃‖p,Rn+1
B

, f̃ ∈ Lp(Rn+1
B ). (2.29)

Directly from the definition of ϕ̃γ one can deduce that S̃γ f̃ → f̃ in Lp(Rn+1
B ) for any

f̃ ∈ Lp(Rn+1
B ), 1 ≤ p < ∞. Now (2.24) gives rise to the following

Proposition 2.1. For any f ∈ Bp(Rn+1), 1 ≤ p < ∞, we have

lim
γ

‖f − Sγf‖Bp = 0. (2.30)

Remark 2.2. Let f ∈ F ⊂ Bp(Rn+1). If the image F̃ of F in Lp(Rn+1
B )

is precompact, then the convergence in (2.30) is uniform with respect to f ∈ F .
Moreover, if F̃ is a separable subset in Lp(Rn+1

B ), then the net {Sγ} may be replaced
by a subsequence {Sm}.

Proposition 2.2. The map f 7−→ f̃ is order preserving: if f1 ≤ f2, then f̃1 ≤ f̃2.

Proof. On CAP (Rn) this is obvious. Since ϕ̃γ ≥ 0, the operator Sγ is order
preserving. Therefore, the general statement follows from the previous one by ap-
proximation.

As a consequence, for any f ∈ B1(Rn+1) ∩ L∞(Rn+1) we have f̃ ∈ L∞(Rn+1
B ).

3. Stability and Comparison Results. Let Lk be a sequence of operators of

the class Π such that Lk
G

=⇒ L. Then, L
(η,ξ)
k

G
=⇒ L(η,ξ) for any (η, ξ) ∈ R × R

n.
Consider a unique solution, uk ∈ W0, of the equation

Dtuk − div ak(t, x, η, ξ + Dxuk) = −div a(t, x, η, ξ)

and set vk(t, x) = ξ · x + uk(t, x), then vk possesses the following properties:
1. vk → ξ · x weakly in W ;
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2. The sequences ak(t, x, η, Dxvk) and ak
0(t, x, η, Dxvk) are weakly convergent in

the spaces Lq(Q)n and Lq(Q) respectively ;
3. the sequence Dtvk − div ak(t, x, η, Dxvk) is precompact in the space V

′

.

Theorem 3.1. Let Lk ∈ Π. Assume that, for any (η, ξ) ∈ R × R
n, there exists

vk ∈ W such that the above mentioned properties 1 – 3 are fulfilled. Then the sequence
Lk is G-convergent and for the G-limit operator, L, we have

a(t, x, η, ξ) = lim
k→∞

ak(t, x, η, Dxvk), (3.1)

a0(t, x, η, ξ) = lim
k→∞

ak
0(t, x, η, Dxvk) (3.2)

weakly in Lq(Q)n and Lq(Q), respectively.

Proof. Let b(t, x) = b(t, x, η, ξ) and b0(t, x) = b0(t, x, η, ξ) be the weak limits of
ak(t, x, η, Dxvk) and ak

0(t, x, η, Dxvk), respectively. By Theorem 2.1 (see also p.184 of
[20]), there exists a subsequence σ(k) and an operator L of the form

Lu = Dtu − div a(t, x, u, Dxu) + a0(t, x, u, Dxu),

such that Lσ(k)
G

=⇒ L. To prove the theorem it is sufficient to show that

a(t, x, η, ξ) = b(t, x) (3.3)

and

a0(t, x, η, ξ) = b0(t, x). (3.4)

From properties 2 and 3, it follows that

−div b(t, x) = lim
k→∞

(Dtvk − div ak(t, x, η, Dxvk))

strongly in V
′

. Because the embedding Lq(Q)n ⊂ V
′

is compact, we also have

b0(t, x) = lim
k→∞

ak
0(t, x, η, Dxvk)

strongly in V
′

. By parabolic version of Remark 2.3.5 (page 104 of [20]) we obtain (3.3)
and (3.4). Parabolic version of Remark 2.3.5 can be readily derived from Theorem
4.1.3 (see [20]).

Corollary 3.2. Let Lk ∈ Π be a sequence such that, for any (η, ξ) ∈ R × R
n,

the sequence ak(t, x, η, ξ) converges in measure and the sequence ak
0(t, x, η, ξ) converges

weakly in L1(Q). Then Lk is G-convergent.

Proof. Inequality (2.2) and the dominated convergence theorem imply that ak(t, x, η, ξ)
and ak

0(t, x, η, ξ) converge strongly in L1(Q)n and L1(Q). Now the statement follows
directly from Theorem 3.1, with vk ≡ ξ · x.

Next, we consider the following problem. Given an operator L ∈ Π and fixed
(t0, x0) ∈ Q, we define the operator Lρ, 0 < ρ ≤ 1, by the formula

11



Lρu = Dtu − div a(t0 + ρt, x0 + ρx, u, Dxu) + a0(t0 + ρt, x0 + ρx, u, Dxu). (3.5)

We look for the asymptotic behavior of Lρ, as ρ → 0, assuming that ρ runs a subse-
quence which tends to 0.

Proposition 3.1. For any common Lebesgue point (t0, x0) ∈ Q of the functions
a(t, x, η, ξ) and a0(t, x, η, ξ), i.e. for almost all (t0, x0) ∈ Q, the sequence Lρ G-
converges, as ρ → 0, to the operator

L̂u = Dtu − div a(t0, x0, u, Dxu) + a0(t0, x0, u, Dxu). (3.6)

Proof. By Lebesgue’s differentiation theorem a(t0 +ρt, x0+ρx, η, ξ) → a(t, x, η, ξ)
and a0(t0 +ρt, x0 +ρx, η, ξ) → a0(t, x0, η, ξ), as ρ → 0, strongly in L1(Q)n and L1(Q)
respectively. Now Corollary 3.2 implies the required statement.

Next, we state another result which provides a criterion for G-convergence and a
representation formula for the G-limit operator. Given L ∈ Π, we define the functions

Ψ(η, ξ, Q1) =

∫

Q1

a(t, x, η, ξ + Dxv(t, x))dxdt (3.7)

and

Ψ0(η, ξ, Q1) =

∫

Q1

a0(t, x, η, ξ + Dxv(t, x))dxdt, (3.8)

for any (η, ξ) ∈ R×R
n and for any open subset Q1 = (0, 1)×Q1

0, where Q1
0 is an open

subset of Q0 and the function v is defined as a unique solution v ∈ Lp(0, 1, W 1,p
0 (Q1

0))
and v(0, x) = 0 of the equation

Dtv − div a(t, x, η, ξ + Dxv) = 0 on Q1. (3.9)

Proposition 3.2. Let L ∈ Π. Then there exists a measurable subset N of Q,
with |N | = 0, such that for any (t0, x0) ∈ (Q \ N) and (η, ξ) ∈ R × R

n

a(t0, x0, η, ξ) = lim
ρ→ 0

Ψ(η, ξ, Uρ(t0, x0))

|Uρ(t0, x0)|
(3.10)

and

a0(t0, x0, η, ξ) = lim
ρ→0

Ψ0(η, ξ, Uρ(t0, x0))

|Uρ(t0, x0)|
, (3.11)

where Uρ(t0, x0) = (t0, x0) + ρU , with U = (0, 1) × U0, U0 being an open bounded
subset of R

n.

Proof. Let N be the complement of the set of all common Lebesgue points of the
family of functions {a(t, x, η, ξ), a0(t, x, η, ξ)}(η,ξ)∈R×Rn . Given (t0, x0) ∈ Q\N , ρ > 0,
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and (η, ξ) ∈ R×R
n, we consider the function v ∈ Lp(0, ρ, W 1,p

0 (Uρ(x0))) defined to be
a unique solution of (3.9), with Q1

0 = Uρ(x0). By performing the change of variables
y = (x − x0)/ρ, τ = (t − t0)/ρ, the equation (3.9) becomes

Dτuρ − divya(t0 + ρτ, x0 + ρy, η, ξ + Dyuρ(y)) = 0, y ∈ U0,

where uρ(τ, y) = v(t0+ρτ, x0+ρy)/ρ. Since w = 0 is a unique solution of the equation

Dtw − divya(t0, x0, η, ξ + Dyw) = 0 on U,

Proposition 3.1 implies that uρ → 0 weakly in Lp(0, 1, W 1,p
0 (U0)),

a(t0 + ρτ, x0 + ρy, η, ξ + Dyuρ) → a(t0, x0, η, ξ),

weakly in Lq(Q)n, and

a0(t0 + ρτ, x0 + ρy, η, ξ + Dyuρ) → a0(t0, x0, η, ξ)

weakly in Lq(Q). Then

a(t0, x0, η, ξ) = lim
ρ→0

1

|U |

∫ 1

0

∫

U

a(t, x0 + ρy, η, ξ + Dyuρ(y))dydt,

from where, by the change of variables, we get (3.10). In the similar way, one can
derive (3.11).

Theorem 3.3. Suppose Lk is a sequence of operators of the class Π. Let Ψk

and Ψk
0 be the functions associated with Lk by (3.7) and (3.8), respectively, U0 be a

bounded open subset in R
n, and Uρ(t0, x0) = (t0, x0)+ ρU with U = (0, 1)×U0. Then

the following statements are equivalent:
(i) for almost all x0 ∈ Q0 and t0 > 0, the limits

lim
k→∞

Ψk(t, x, η, ξ, Uρ(t0, x0))

and

lim
k→∞

Ψk
0(t, x, η, ξ, Uρ(t0, x0))

exist for any (η, ξ) ∈ R × R
n and ρ > 0 small enough;

(ii) the sequence Lk G-converges to an operator L.
Moreover, if these statements hold true, then, for almost all x ∈ Q and t,

a(t, x, η, ξ) = lim
ρ→0

lim
k→∞

Ψk(t, x, η, ξ, Uρ(t, x))

|Uρ(t, x)|
(3.12)

and

a0(t, x, η, ξ) = lim
ρ→0

lim
k→∞

Ψk
0(t, x, η, ξ, Uρ(t, x))

|Uρ(t, x)|
(3.13)

for any (η, ξ) ∈ R × R
n, where L is associated with a and a0.

Proof. Assume (i).
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By G-convergence, we may suppose that a subsequence of Lk still denoted by Lk

is G-covergent to an operator L. If we prove formula (3.12) and (3.13), we conclude
that the initial sequence is G-convergent.

Fix x0 ∈ Q and t0 > 0 such that the limits in (i) exist. Given (η, ξ) ∈ R × R
n

and ρ > 0 we consider a unique solution vk ∈ Lp(0, ρ, W 1,p
0 (Uρ)), vk(t = 0) = 0, of

the equation

Dtvk − div ak(x, η, ξ + Dxvk) = 0,

and a unique solution v ∈ Lp(0, ρ, W 1,p
0 (Uρ)), v(t = 0) = 0, of the equation

Dtv − div a(x, η, ξ + Dxv) = 0.

It follows that vk → v weakly in Lp(0, ρ, W 1,p(Uρ(x0))),

ak(t, x, η, ξ + Dxvk) → a(t, x, η, ξ + Dxv) (3.14)

weakly in Lq(Uρ(t0, x0))
n, and

ak
0(t, x, η, ξ + Dxvk) → a0(t, x, η, ξ + Dxv) (3.15)

weakly in Lq(Uρ(t0, x0)). Hence,

lim
k→∞

Ψk(t0, x0, η, ξ, Uρ(t0, x0)) =

∫

Uρ(t0,x0)

a(t, x, η, ξ+Dxv)dxdt = Ψ(t0, x0, η, ξ, Uρ(t0, x0))

and the similar statement holds for Ψ0. Now, by Proposition 3.2, we get (3.12) and
(3.13).

Assume (ii). Then, for v and vk defined in the first part of the proof, statements
(3.14) and (3.15) hold true and (i) follows immediately.

To state the next result, we need the following notations. Let Lk ∈ Π and Bk ∈ Π.
We set

gk(t, x, r) = sup
|ξ|,|η|≤r

|ak(t, x, η, ξ) − bk(t, x, η, ξ)|,

gk
0 (t, x, r) = sup

|ξ|,|η|≤r

|ak
0(t, x, η, ξ) − bk

0(t, x, η, ξ)|.

Assuming Lk
G

=⇒ L and Bk
G

=⇒ B, we introduce also the functions

g(t, x, r) = sup
|ξ|,|η|≤r

|a(t, x, η, ξ) − b(t, x, η, ξ)|

and

g0(t, x, r) = sup
|ξ|,|η|≤r

|a0(t, x, η, ξ) − b0(t, x, η, ξ)|.

Given a bounded open subset U = (0, 1) × U0, U0 ⊂ R
n, with the regular boundary

∂U0, we set

Uρ(t0, x0) = (t0, x0) + ρU.
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Let us define the functions g(t, x, r) and g0(t, x, r) by

g(t, x, r) = lim sup
ρ→0

lim sup
k→∞

1

|Uρ(t, x)|

∫

Uρ(t,x)

gk(t, y, r)dydt

and

g0(t, x, r) = lim sup
ρ→0

lim sup
k→∞

1

|Uρ(t, x)|

∫

Uρ(t,x)

gk
0 (t, y, r)dydt.

For any r ≥ 0, these functions are well-defined a.e. on Q and belong to L∞(Q). Also
we shall use the notation

ϕ(r) = r−p + r−αp/(p+α), r > 0,

with the constant α > 0, which will be specified later.

Theorem 3.4. Suppose Lk and Bk are sequences of operators of the class Π,

Lk
G

=⇒ L, and Bk
G

=⇒ B. There exists α > 0 such that given R > 0

g(t, x, R) ≤ g(t, x, r) + K
[
ϕ(r)1/q + ϕγ(r) + (1 + r)γg(t, x, r)γ

]
(3.16)

and

g0(t, x, R) ≤ g0(t, x, r) + K
[
ϕ(r)1/q + ϕγ(r) + (1 + r)γg(t, x, r)γ

]
(3.17)

for a constant K = K(R) and almost all x ∈ Q and for all r > 0, where

γ =
s

q2(β − 1)
.

Proof. We will prove only (3.16). Inequality (3.17) can be proved in a similar
way. For the sake of brevity, we will write Uρ instead of Uρ(x, t). Moreover, we will
suppress the variable η in the functions ak and bk.

Given R > 0 we fix ξ, η ∈ R such that |ξ| ≤ R, |η| ≤ R. Let vk ∈ Lp(0, ρ, W 1,p
0 (Uρ)),

vk(t = 0) = 0, be a unique solution of the equation

Dtvk − div ak(t, x, ξ + Dxvk) = 0

and wk ∈ Lp(0, ρ, W 1,p
0 (Uρ)), wk(t = 0) = 0, be a unique solution of the equation

Dtwk − div bk(t, x, ξ + Dxwk) = 0.

In view of Theorem 3.3, we need to estimate the quantity

J =

∫

Uρ

|ak(t, x, η, ξ + Dxvk) − bk(t, x, η, ξ + Dxwk)|dxdt ≤

≤

∫

Uρ

|ak(t, x, η, ξ + Dxvk) − ak(t, x, η, ξ + Dxwk)|dxdt +

+

∫

Uρ

|ak(t, x, η, ξ + Dxwk) − bk(t, x, η, ξ + Dxwk)|dxdt =

= J1 + J2. (3.18)
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In what follows we shall denote by K any constant depending only on R.
First, we note

‖ξ + Dxwk‖
p
p,Uρ

≤ K|Uρ| ≤ cρn+1. (3.19)

Next, we will use Meyers type estimates for the solution of nonlinear parabolic equa-
tion [22, 14]. In particular, we assume that ξ + Dxwk is bounded in Lp+α(Uρ), for
some α > 0 which depends only on c, h, n and β, i.e.,

‖ξ + Dxwk‖p+α,Uρ
≤ Cρ

−(n+1)α
p(p+α) ‖ξ + Dxwk‖p,Uρ

. (3.20)

The constant can be easily obtained from rescaling. Similar estimates hold for vk.
Next we define the set

Ar = {(t, x) ∈ Uρ : |ξ + Dxwk(x)| > r}.

Then, we have

|Ar|r
p ≤

∫

Ar

|ξ + Dxwk|
pdxdt.

Hence,

|Ar| ≤ K|Uρ|r
−p.

Using the Hölder inequality and (3.20) we obtain

∫

Ar

(1 + |ξ + Dxwk |
p)dxdt ≤ |Ar| + |Ar|

α/(p+α)‖ξ + Dxwk‖
p
p+α,Ar

≤

≤ K|Uρ|(r
−p + r−αp/(p+α)) = K|Uρ| · ϕ(r). (3.21)

To derive an estimate for J , first we consider the integral J2. Using (3.21), we
have

J2 =

∫

Ar

|ak(t, x, η, ξ + Dxwk) − bk(t, x, η, ξ + Dxwk)|dxdt +

+

∫

Uρ\Ar

|ak(t, x, η, ξ + Dxwk) − bk(t, x, η, ξ + Dxwk)|dxdt ≤

≤ K

∫

Ar

(1 + |ξ + Dxwk |
p−1)dxdt +

∫

Uρ\Ar

gk(t, x, r)dxdt ≤

≤

∫

Uρ

gk(t, x, r)dxdt + K|Uρ|
1/p

[∫

Ar

(1 + |ξ + Dxwk|
p)dxdt

]1/q

≤

≤

∫

Uρ

gk(t, x, r)dxdt + K|Uρ| · ϕ(r)1/q . (3.22)

Similarly,
∫

Uρ

|ak(t, x, η, ξ + Dxwk) − bk(t, x, η, ξ + Dxwk)|qdxdt ≤

≤ K(1 + r)

∫

Uρ

gk(t, x, r)dxdt + K|Uρ| · ϕ(r). (3.23)
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Here to get the factor (1 + r) in the first term of the right-hand part, we have used
(2.2) to estimate the integral

∫

Uρ

gk(t, x, r)qdxdt =

∫

Uρ

gk(t, x, r)q/pgk(t, x, r)dxdt.

Before to handle J1, we need an estimate for Dxvk − Dxwk. Using the Hölder
inequality and (3.23), we have

0 =

∫

Uρ

[
ak(t, x, η, ξ + Dxvk) − bk(t, x, η, ξ + Dxwk)

]
· Dx(vk − wk)dxdt +

+
1

2

∫

Uρ

Dt(vk − wk)2dxdt =

=

∫

Uρ

[
ak(t, x, η, ξ + Dxvk) − ak(t, x, η, ξ + Dxwk)

]
· Dx(vk − wk)dxdt +

+

∫

Uρ

[
ak(t, x, ξ + Dxwk) − bk(t, x, ξ + Dxwk)

]
· Dx(vk − wk)dxdt +

+
1

2

∫

Uρ

(vk − wk)2(t = ρ)dx ≥

≥ K

∫

Uρ

(1 + |ξ + Dxvk|
p + |ξ + Dxwk|

p)
1−β/p

· |Dx(vk − wk)|βdxdt −

− J
1/q
3 · ‖Dx(vk − wk)‖p,Uρ

≥

≥ K

[∫

Uρ

(1 + |ξ + Dxvk|
p + |ξ + Dxwk|

p) dxdt

]1−β/p

· ‖Dx(vk − wk)‖β
p,Uρ

−

− J
1/q
3 · ‖Dx(vk − wk)‖p,Uρ

≥

≥ K|Uρ|
1−β/p · ‖Dx(vk − wk)‖β

p,Uρ
− J

1/q
3 · ‖Dx(vk − wk)‖p,Uρ

.

Therefore,

‖Dx(vk − wk)‖β−1
p,Uρ

≤ K|Uρ|
β/p−1J

1/q
3 ≤ (3.24)

≤ K|Uρ|
β/p−1

[
(1 + r)

∫

Uρ

gk(t, x, r)dxdt + |Uρ| · ϕ(r)

]1/q

.

Hence,

J1 ≤ |Uρ|
1/p

[∫

Uρ

|ak(t, x, η, ξ + Dxvk) − ak(t, x, η, ξ + Dxwk)|qdxdt

]1/q

≤

≤ |Uρ|
1/p

[∫

Uρ

(1 + |ξ + Dxvk|
p + |ξ + Dxwk |

p)
1−s/p

|Dx(vk − wk)|sdxdt

]1/q

≤

≤ |Uρ|
1/p

[∫

Uρ

(1 + |ξ + Dxvk|
p + |ξ + Dxwk |

p) dxdt

](p−s)/(pq)

‖Dx(vk − wk)‖
s/q
p,Uρ

.

Using (3.19) and (3.24), we obtain after some calculations
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J1 ≤ K|Uρ|
1−γ

[
(1 + r)

∫

Uρ

gk(t, x, r)dxdt + |Uρ| · ϕ(r)

]γ

. (3.25)

Inequalities (3.22) and (3.25) imply

J =

∫

Uρ

|ak(t, x, η, ξ + Dxvk) − bk(t, x, η, ξ + Dxwk)|dxdt ≤

≤ K|Uρ|
1−γ

[
(1 + r)

∫

Uρ

gk(t, x, r)dxdt + |Uρ| · ϕ(r)

]γ

+

+

∫

Uρ

gk(t, x, r)dxdt + K|Uρ| · ϕ(r)1/q .

(3.26)

From here, dividing both sides by |Uρ|, and taking the limit limρ→0 limk→∞, we obtain
the inequality (3.16). The inequlaity (3.17) can be obtained similarly.

Now we state some direct consequences of the last result.

Corollary 3.5. Let Ak and Bk be two sequences of operators of the class Π

such that Ak
G

=⇒ A and Bk
G

=⇒ B. Assume that for any r ≥ 0

lim
k→∞

sup
|ξ|,|η|≤r

|ak(t, x, η, ξ) − bk(t, x, η, ξ)| =

= lim
k→∞

sup
|ξ|,|η|≤r

|ak
0(t, x, η, ξ) − bk

0(t, x, η, ξ)| = 0

strongly in L1(Q). Then A = B.

We shall say that a sequence Ak ∈ Π converges to A ∈ Π component-wise in L1

(c.-w. in L1), if for any r ≥ 0

lim
k→∞

sup
|ξ|,|η|≤r

|ak(t, x, η, ξ) − a(t, x, η, ξ)| =

= lim
k→∞

sup
|ξ|,|η|≤r

|ak
0(t, x, η, ξ) − a0(t, x, η, ξ)| = 0

strongly in L1(Q).

Corollary 3.6. Let Al
k be a double sequence of operators of the class Π such that

Al
k

G
=⇒ Al for any l ∈ N, as k → ∞. Assume that Al

k → Ak c.-w. in L1 uniformly

with respect to k ∈ N and Al → A c.-w. in L1, as l → ∞. Then Ak
G

=⇒ A.

Remark 3.1. The statement of Corollary 3.6 is still valid without this assumption
if we replace c.-w. convergence in L1 by the following condition:

lim
l→∞

ess sup
x∈Q

sup
(η,ξ)∈Rn+1

|ak
l (t, x, η, ξ) − ak(t, x, η, ξ)|q

(c + |η|p + |ξ|p)
= 0,

and similarly for the differences ak
0,l(t, x, η, ξ)−ak

0 (t, x, η, ξ), al(t, x, η, ξ)−a(t, x, η, ξ),
and a0,l(t, x, η, ξ) − a0(t, x, η, ξ).
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4. Individual Homogenization. Now we consider almost periodic operators
of the class Π. We will prove that homogenization takes place in the individual sense,
not only in the statistical one. We consider the case α > 0 and β > 0. More precisely,
let us consider a couple of functions

(a, a0) ∈ ΠRn+1 = ΠRn+1(c0, c, κ, h, θ, ν, s, β),

where c0, c, κ, h, θ, ν, s, and β are constants subject to the standard assumptions.
We consider the family of operators

Lεu = Dtu − div a(
t

εα
,

x

εβ
, u, Dxu) + a0(

t

εα
,

x

εβ
, u, Dxu), ε > 0. (4.1)

Assume that

for any ζ = (η, ξ) ∈ R × R
n, the functions a(t, x, η, ξ)and a0(t, x, η, ξ)

are B1-almost periodic with respect to the variable (t, x) ∈ R
n+1.

(4.2)

Associated with the family Lε, there is a family of random operators Lε(ω) defined on
the probability space Ω = R

n+1
B in the following way. One can extend the functions

a(t, x, η, ξ) and a0(t, x, η, ξ) to the functions ã(ω, η, ξ) and ã0(ω, η, ξ), respectively,
defined on R

n+1
B . Proposition 2.2 implies that

(ã, ã0) ∈ Π
R

n+1
B

.

To simplify the notations, we suppress the tilde here and still denote ã and ã0 by a
and a0, respectively. Let

Lε(ω)u = Dtu−div a(ω+(ε−αt, ε−βx), u, Dxu)+a0(ω+(ε−αt, ε−βx), u, Dxu). (4.3)

Then, we have formally

Lε = Lε(0).

Based on statistical homogenization results, for the family Lε(ω) there exists a ho-
mogenized operator L̂. However, since the conclusion of the theorem is fulfilled in the
statistical sense, i.e. for almost all ω ∈ Ω only, we cannot conclude directly that L̂
serves the particular operator Lε = Lε(0). In the next theorem, we prove that the
individual homogenization takes place.

Theorem 4.1. Assume that (a, a0) ∈ ΠRn+1 and condition (4.2) is fulfilled. Then

for any open bounded subset Q ⊂ R
n+1 we have Lε

G
=⇒ L̂.

Proof. First, we prove the statement under a more restrictive assumption than
(4.2). Namely, let us assume that for any

ζ = (η, ξ) ∈ R × R
n

the functions a(t, x, η, ξ) and a0(t, x, η, ξ) are almost periodic in the sense of Bohr with
respect to the variable t ∈ R

+, x ∈ R
n. Then, being extended to R

n+1
B , the functions

a(ω, η, ξ) and a0(ω, η, ξ) are continuous with respect to ω ∈ R
n+1
B . Moreover, since

(a, a0) ∈ Π
R

n+1
B

,
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it is easy to verify that these functions are equicontinuous in ω if ζ belongs to any
bounded subset of R × R

n.
Based on statistical homogenization theorem, there exists a subset Ω0 ⊂ R

n+1
B ,

with µ(Ω0) = 1, such that Lε(ω)
G

=⇒ L̂ for ω ∈ Ω0. We note that any subset Ω0 ⊂
R

n+1
B of full measure is dense in R

n+1
B . Hence, there exists a sequence (more precisely,

a net) ωl ∈ Ω0 such that ωl → 0 in R
n+1
B . Moreover, by Theorem 2.1, for every

sequence ε′ → 0 there exists a subsequence εk of ε′ such that Lk = Lεk
= L0,εk

G
=⇒ L̃

on Q for some parabolic operator L̃ of class Π. Using Corollary 3.6, we conclude that
L̃ = L̂. In particular, the passage to a subsequence εk is superfluous and we obtain

that Lε
G

=⇒ L̂ The latter holds for every ω ∈ R
n+1
B , not only for ω = 0.

Next, we return to the general case. Consider new functions am(t, x, η, ξ) and
am
0 (t, x, η, ξ) defined by

am(t, x, η, ξ) = Sma(t, x, η, ξ),

am
0 (t, x, η, ξ) = Sma0(t, x, η, ξ),

where Sm is the sequence of “smoothing” operators introduced earlier (see Remark
2.2). Then am(t, x, η, ξ) and am

0 (t, x, η, ξ) are almost periodic in (t, x) ∈ R
n+1 in the

sense of Bohr, and

(am, am
0 ) ∈ ΠRn+1 ,

with the same values of the parameters. The last follows from the fact that the kernel
function of Sm is non-negative and has the mean value equals to 1. By definition, for
any

ζ = (η, ξ) ∈ R × R
n

we have

lim
m→∞

am(·, ·, η, ξ) = a(·, ·, η, ξ), (4.4)

lim
m→∞

am
0 (·, ·, η, ξ) = a0(·, ·, η, ξ), (4.5)

in the B1-norm. Moreover, since a and a0 are continuous functions of ζ with values
in B1(Rn+1), these limits are uniform with respect to ζ, whenever ζ belongs to any
bounded subset of R × R

n. By G-compactness, we may assume that

Lε
G

=⇒ B ∈ Π,

where

Bu = Dtu − div b(t, x, u, Dxu) + b0(t, x, u, Dxu).

Since individual homogenization takes place for the operator

Lm
ε u = Dtu − div am(

t

εα
,

x

εβ
, u, Dxu) + am

0 (
t

εα
,

x

εβ
, u, Dxu),
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we have Lm
ε

G
=⇒ L̂m.

Now we apply Theorem 3.4. Consider the functions

g(t, x, r) = sup
|η|,|ξ|≤r

|am(t, x, η, ξ) − a(t, x, η, ξ)|,

ĝ(t, x, r) = sup
|η|,|ξ|≤r

|âm(η, ξ) − b(t, x, η, ξ)|,

and the functions g0(t, x, r) and ĝ0(t, x, r) defined similarly in terms of a0, am
0 , âm

0 ,
and b0. For simplicity of notations, we suppress here the explicit dependence of the
functions g, ĝ, g0, and ĝ0 on m. Suppose K = (0, 1)×K0, where K0 is the unit cube
in R

n centered at the origin and

Kρ(t0, x0) = (t0, x0) + ρK.

We set

g(t, x, r) = lim sup
ρ→0

lim sup
ε→0

1

|Kρ(t, x)|

∫

Kρ(t,x)

g(ε−ατ, ε−βy, r)dydτ,

g0(t, x, r) = lim sup
ρ→0

lim sup
ε→0

1

|Kρ(t, x)|

∫

Kρ(t,x)

g0(ε
−ατ, ε−βy, r)dydτ.

By Theorem 3.4, we have

ĝ(t, x, R) ≤ g(t, x, r) + c(R)
[
ϕ(r)1/q + ϕγ(r) + (1 + r)γg(x, r)γ

]
, (4.6)

ĝ0(t, x, R) ≤ g0(t, x, r) + c(R)
[
ϕ(r)1/q + ϕγ(r) + (1 + r)γg(x, r)γ

]
, (4.7)

for any r > 0, where γ > 0 and ϕ(r) → 0, as r → ∞. Taking into account (2.23) and
mean value theorem, it follows that

lim
ε→0

1

|Kρ(t, x)|

∫

Kρ(t,x)

g(ε−αt, ε−βy, r)dy = ‖g(·, ·, r)‖B1

which does not depend on t, x and ρ. By (4.4) and (4.5), for any r > 0, we have

‖g(·, ·, r)‖B1 → 0, ‖g0(·, ·, r)‖B1 → 0, as m → ∞.

Passing in (4.6) and (4.7) to the limit as m → ∞ and, then, as r → ∞, we see that

b(t, x, η, ξ) = lim
m→∞

âm(η, ξ),

b0(t, x, η, ξ) = lim
m→∞

âm
0 (η, ξ).

The same argument works for the operators Lε(ω) and Lm
ε (ω), with ω ∈ R

n+1
B .

For a generic ω ∈ R
n+1
B , the homogenized operators for Lε(ω) and Lm

ε (ω) coincide

with L̂ and L̂m, respectively. Therefore,

b(t, x, η, ξ) = â(η, ξ),
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b0(t, x, η, ξ) = â0(η, ξ).

We would like to note that the proof can be easily extended to the case α = 0 or
β = 0.

Remark 4.1. By Theorem 3.3, we have the following representation formulas
for the homogenized operator L̂:

â(η, ξ) = lim
τ→∞

1

τn+1

∫

Kτ

a(t, x, η, ξ + Dxvζ
t )dxdt,

â0(η, ξ) = lim
τ→∞

1

τn+1

∫

Kτ

a0(t, x, η, ξ + Dxvζ
t )dxdt,

where Kτ is a generic cube, with the side length τ , centered at the origin and

vζ
τ ∈ Lp(0, τ, W 1,p

0 (Kτ ))

is a unique solution of the problem

Dtv − div a(t, x, η, ξ + Dxv) = 0 on Kτ .

Here, as usual, ζ = (η, ξ) ∈ R × R
n.
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